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Abstract—In this paper, we deal with the estimation of the er- Il. MODEL AND PROBLEM'S STATEMENT

godic capacity of large MIMO systems, using training sequences . . .
whose lengths are of the same order of magnitude than the Ve consider a MIMO channel sounder witli transmit

number of antennas. In this context, the traditional estimator antennas and// receive antennas, and we suppose that the
becomes inconsistent. Following the ideas developed by Girko in channel is a MIMO block fading channel. In order to es-
the context of the so-called theory of G-estimation, we propose timate the ergodic capacity of the channel, the transmitter

a new estimator. We analyze its asymptotic behaviour and show, - - .
using numerical simulations, that it tends to improve significantly sends periodically a training sequence of size denoted

the performance of the standard estimate for a realistic number S = [51; ...,SL], wheresy, ... s areN-dimen;ior\al vectors
of antennas. for which SST = LIy. The channel matrix is assumed
to be constant on each "slot”, i.e during the transmission
I. INTRODUCTION of each training sequence. We denote Bythe number of

One of the goal of channel sounding methods is to evaluﬁvalaible slots, and we assume that the statistical priepert

. g : g ) . Of the channel are time invariant during the transmission
the influence of the environment on relevant figure of mernits Iof these T’ slots. If Hy,, (for ¢ — 1 T) represents the
order to predict the potential performance of digital comimu h | trix .on sl(é%t normalize’c-j“ir} such a wav that
cation systems. In this paper, we address the estimatidmeof a}nne ma + ' N Y
ergodic capacity of mobile MIMO systems in the context o [37Tr HiyHy| = 1, we address the estimation problem
channel sounding. Due to the mobility, the size of the tragni
sequence from which the channel can be estimated is of course ) 11<& HyH,
limited because the MIMO channel matrix has to be constant Co7) = NT Zlog det (IM + 02> 1)
on the duration of the training sequence. If the sizef the t=1
training sequence is of the same order of magnitude than thiich clearly represents an approximation of the ergodic
number of antennas of the system, the traditional estimiateqapacity (per transmit antenna). For eack- 1,...,7, the
the capacity, built on the training based estimate of theebh receive M x L channel matrixY ;) corresponding to the
matrix, provides poor performance because the influendeeof transmission of the sequenBecan be written as
background noise is not negligible. We can mention the rtiecen
work of [1] in which an estimator of the capacity is derived Yo =HunS+V 2
using Free Probability Theory; however it is not consisient
the case considered here.

In order to design new improved estimates, we use t

where V) is the M x L noise matrix, assumed to be iid
r(]Baussian, with entries having zero mean and variarjcd he
g%ining-based estimaté ;) of H, is defined by

theory of large random matrices, and assume that the number
of receive and transmit antennd¢ and N as well as the 1 P
— = T
size of the training sequende converge to+-oco at the same Zw = LY(”S =Hq + ‘ﬁNW(” ®)

rate. In this asymptotic regime, we propose a new estimator

of the channel ergodic capacity inspired by the so-called Gith p = ,/‘TETN and W a M x N Gaussian random matrix

estimation theory developed by Girko. whose elements are iid, unit variance and zero mean. In order
The paper is organized as follows. In section I, we prese keepp constant, we suppose in this paper that the length

the signal model, the precise context of the estimation agélthe learning sequenck is linearly increasing withV.

the addressed problem. In section Ill, we provide some Usefu One classical way to estimate (1) is to replﬂi@)Hzt) by

results in Large Random Matrix Theory (LRMT). In Sections standard unbiased estim&t@)zzt)—pQIM. However, some

IV, we propose a new consistent "G-estimator” of the MIMO . | g 7t be | han?. If q b
channel ergodic capacity. In section V, we provide sonfgdenvalues o, 4,) may be ess thap®. It we denote by

numerical simulations which illustrate the previous resul  A\”,..., A} the eigenvalues )], (in increasing order),



the standard estimator of (1) is given by where Y, is the Stieltjes transform of. Vo € R, 6(z) is
the solution to the equation

T M (S\(t) - p2>+ p
m 6 _ —T T
Cirad (0 NT Z > log [ 1+ | @ (z) = Tr T(x)
s T(x) =
. . L . . HH' 1°°
where(.)™ is the positive part. This estimator is relevant in the (—z(1+ pd(z)) + p*(L—¢)) Iy +
case wherd, — +oo andN/L — 0. However, this asymptotic 14 pd(z)

regime is not realistic in the context of mobile systems. Weloreover, if we defineS = supp(y), i.e the support of
therefore assume that — +oco, L — +oc in such a way that the asymptotic eigenvalue distribution BZ', then §(z) is
p= analytic onR — S.
M — +o00, N — +oo and thatey = 4 converges to a  Thanks to (6) and Theorem 1, we hawe € R, T, (z) =
constaTnt: €10, 1[ In this context, (4) is not consistent becauser . a(z) and therefore
ZnZ Ty +H does not converge anymore .
240t = T+ o H)| e (@) ~ b() ™

Using LRMT tools, we are able to find a consistent est{Nlth 5( )= LTy (sz B MM)A
mator of (1) in the latter case. Note that our results can be _
extended to the case> 1 by considering matri¥zZ'Z instead &Stimated byS( ) onR,, . -

The next theorem (see [3]) characterizes the infimuns ,of

:
of 7. the support of.

Thus,d(x) is consistently

I1l. REVIEW OF SOME USEFULLRMT RESULTS Theorem 2. We consider the case whelH is full rank
In literature, the model (3) is commonly referred as thand N = +oo. Let ¢(w) be the function defined oR —

"Information plus Noise model” and we now summarize som Moo Anr} By
published results concerning the statistical spectrapgro p(w) = w(l — p? f(w))? + p*(1 — ¢)(1 — p? f(w))
ties of the random matrixZZ' (dependency in slot is
(dep y Qwith f(w) = §Tr[HH' — wIy]~'. Letw™ be the smallest

dropped only for this section). First, we denote respeltive L 0w _
by A1,...,Ax andAq, ..., Ay the eigenvalues (in mcreasmgIocal extremum o satisfyingl —p*f(w™) > 0 andé(w™) >

order) of HH' and ZZ'. 0. Then we have
For an easier reading, we do not mention explicitely the 2™ =¢(w) =inf S

dependency inV/, N, L of all quantities involving matrixH. . . . . L .
Moreover, when we will say N — +oc”, it will stand for Moreover, ¢ is a strictly increasing bijective function from

"M,N,L — oo while ey — ¢ €]0,1] and p remains con- |- oo,w_—[ to ] — oo,z [. Lety(x) be its inverse defined on
stant”. The notationX ~ X" will also stand for X —x — o | — @ [ Then, we have
with probability one asV — +oo” with X deterministic and V() =z 1+ p(;(x)f —p*(1—¢) (1 + pd(x))
X random.

Consider the empirical spectral measureof the random
matrix ZZ' given by

and forw < w—, the equation)(xz) = w has a unique solution
in | — oo, z~ [ equal tog(w).

Figure 1 and 2 represent two possible behaviours when
(5) ¢<L We also represent the poinfy, solution ofp(w) = 0
in the interval] — co, w™ [, which will be useful for Proposition
. 1 in the next section. Note that in the two casésioes not
where d; is the Dirac measure at the eigenvalg. It is  belong toS, because < 1. We now state a fundamental result
useful to characterlzﬁ in terms of its Stieltjes transfornf ;

|~
HMi
yOn

m=

definedvz € C — {A1,..., Ax} by oq
A _ a(dA) i o -1
Tu(z) = /]R+ P N[Tr (2Z" — =1y) (6)
Clearly, i is random and the following fundamental theorem /\f |
(see [2]) gives us details about its asymptotic behaviour. /50 *— }M -
Theorem 1. Assume thagup,, v [|H| < oc. \_/ |

Then asN — +o0, with probability one, i converges
in distribution toward a deterministic measuye called the
asymptotic eigenvalue distribution @fZ".

Measurey is characterized by the functiof(z) = pcT ()

Fig. 1. Allure of ¢ on] — oo, A;[ whenc < 1 and £(0) > p%



P (w) .
Proposition 1. ASN — +oo, V 02 > —wj ;) we have

1 HyH
N log det <IM + 2(t)>

;
Va A w ! ogdet [ 1 ZZiy log(1 + pd.p (3
N wtomden (11~ 2070 ) g1+ i a4

. 1—
—clog (1 + pé(t)(ﬁcit)) _P ( 0 C)>
— &5 () ( 6 (34 — (Aa) g
X

*

Fig. 2. Allure of ¢ on] — oo, A;[ whenc < 1 and £(0) < p%

on the eigenvalues dZZ'. It can be found in [4] (Theorem With 2\") the solution to the equation;)(z) = —o? and ¥,
23.1 p.267). defined onR, by

. . 2 .
Theorem 3. If M, N are large enough, then almost surely, o, (z) =« (1 + pby (x)> (1= (1 + pbes (x))
the eigenvalues dZZ' belong toS. (11)

We now give a theorem which is a direct consequence of Proof: Let ¢

) be the solution to the equation
Theorem 1 and which can be found in [5] and [6].

. o ~ by (z) = —o? (12)
Theorem 4. Consider the functior®’ defined onR;, by
As we have—c? < wy (b < wg and by (wo, 1)) = 0, we
C(x) = deduce from Theorem 2 that |t exists a unique solutigh
1 HH' to the equation (12) such that” < 0. Therefore we can use
N log det (IM - 1/)(1?)) Theorem 4 (because it is valid d&,) to obtain
+log (1 + pd(x)) 1 H H
p2(1—¢) v logdet { Tn ) =
+ clog (1 + pd(z) — ) o*
N T () — 208 (2 (5 (@) _ P C)>
+ 26 (x) (5(@ - '0(1_0)> S T T g
T 2
1-c¢
— log (1 + pd() (;cit))) —clog (1 + pdp (x o) — ril=c) 0 )>
Then, Tx
(13)
Cla) ~ 1 log det (IM _ 1ZZT) (8) From (7), we can approximate, (z) by S(t)(x), and therefore
N * function ¢ (z) = ﬁ(t) (x) for z e R, . If 7" is the random
Moreover. we have solution to;[}(t) (x) = —0o?, we clearly haver!” ~ 2. Thus
' we deduce from (7) and (8)
E |2 iogdet (Ty — 2221 )| = Cla) + 0 ) 5y () = by (35
N x N2

lb(t)(fl?it)) ~ 77/A1(t) (fﬁit))
Ty L
C(t)(x* ) ~ Nlogdet (IM (t) Z(t)Z(t)>

IV. DERIVATION OF THE G-ESTIMATOR By replacing the previous approximations in the righthaide s
of (13) and in equation (12) we get the final result. [ ]

We present a new consistent estimator of (1), based onWe now extend the domain of convergence for (7) and (8).
Theorem 4. In what follows, we add the notatigr) for all
the quantities of the previous sections which depend on t
matrix H, (i.e on a certain slot time). In particular, we 8oy (x) ~ 5(t)(l’) (14)
havex(t = inf S().

In order to have a better understanding of the techniqugsth 5(t)( z) = £Tr (Zu)ZL) - xIM)

involved in the derivation of the G-estimator, we deriveeher ) ]
an estimator in a simple case. Proof: The proof, which relies on Theorem 2, 3 and

Montel’'s theorem, is omitted here. [ ]

Var [1 log det (IM — 1zz*>} = O(i (10)
N x

N2)

ﬁroposmon 2. AsN — +o0, we havevz €] — oo, z,,

-1



Proposition 3. As N — +o0, V 0% > —min;—;__r {“’(_t)} It follows from (16), (18) and (19) that

.....

en by(1) is consistently estimated b -
C(0?) giv y@)i i y esti y ilogdet (Zu)ZL)fa:IM) ~

T
Chew (o?) = jlw; %logdet (Z(t)ZJ(rt) - i’(*t)IM) — log det { (t)( )] +log (1 + pdy(2))
+ (e = log (1+ pbp (a1")) + 26 () <5(t) () — ”(1;0)) (20)
—7® (S(t)(if)) - p(lA(:) C))] Moreover, we notice that
~ clog (0?) ) %log det {T(_f)l(:r)} = clog (¢(x)) — clog (1 + pd(x))
with 559 the solution to the equation I 1 log det [_ HmHL) +1
dioe) = —o? (1) o)

(21)
Proof: We consider a particular slot Thanks to Theorem

3, we know that forM, N large enough and: < z,, As —0? < w,), we know from Theorem 2 that the equation
. R . _ i iy (8

functionsd ;) (z) and 4, log det (z(t)z(t) xIM> are defined ¥(2) = —c” has a unique solution,” on] — oo,z [. Then,

and integrable oh — oo, z[, with probability one. We have from (20) and (21), we deduce that

T
d 1 1 H(t)H(t)
— - — 1

Thus, f_orz €] oo,o:(t)[ andz > 0 such that-z, < z, we 2 Jog det (Z(t)Z t xSf)IM)
can write ®

1 ) 0y _ P —0)

 logdet (22, — L) = —al <5(t) @ -

L yog det (2 Z! I L[ Swdu (16 1)log (1 + pép (2" log(o? 22

o8 et( 2Ly + To M)_; (1 (uw)du  (16) + (c— )Og( + po(r) (- ))*Cog(a) (22)

2o

From Proposition 2, we hawgy) (u) ~ 6 (u) on] —oo, z, |. Now denote byz!"” the solution to the equationh (z) =

g(t) is integrable on — oo, z], and by using the dominated ~ a2. In the same way than in the proof of Proposition 1, and
convergence theorem, we get because-o? < W, We have

x v 1) 51

S(t) (u)du ~ Oy (u)du 17) M~ gl

—Zo —xo 5(t)( (t)) ~ 8( (A(t))
From Theorem 4, as, > 0, we have 0
1/)(7:) (l’* ) ~ 77/1(15)( )

— 1
log zo + C () (—0) =~ — logdet (Z(nZ!, +zolp ) (18) , o
clogzo + Cy)(~20) ~ 17 logde ( O T 0 M> (18) Finally, by replacing the previous approximation in (22 w

Straightforward calculations lead to the following detiva  get the final form of the G-estimator. ]
1 1 We now study the performance of the previous estimator in
_;5(1&)(5”) = _NTY Ty (x) terms of bias and MSE.
_d 1 det Property 1. V 0? > —miney,. 7 {wo )} the guantity
T x| N { 0@ )} Chew (02) defined in(15) satisfies

Flo(ie o) E [Conn (07)] =0 () +0(57) @3
) I PR IV

€T
Proof: The proof relies on formulae (9) and (10) and

Therefore, we deduce that

—1/ Oy (u)du = %log det [T(;)l(x)} analysis of higher moments 6@). It is omitted here due to
P J—xo lack of space. [
+log (14 pd)(x)) Remark: Notice that the previous results of bias and MSE are
b (2) (5 (2) — p(1— C)) valid ¥V 02 > —min,—1,_7{wo ) }. They probably remain
® @ x valid for 02 > — min;—; . T{w } but it has not been proven

— C)(~x0) — clog(z) (19) vet



MSE of the ergodic capacity estimate (c=0.5,T=30,6°=0.25,0°1)

V. NUMERICAL SIMULATIONS -

In this section, we compare the performance of the tradi-
tional and new estimators in terms of bias and MSE.

The channel matrice$l;, follow the well-known "Kro- Wiy
necker model”, i.e

1 1 1
H(t) =—C2,XC’? B0t

with Cy), é(t) real positive definite matrices (respectively of
size M x M and N x N) andX a random matrix such that
Xij ~ CN (0,1). For the simulationsC;), C(,) are defined

b : : : —<— G-estimator
y —&— Standard Estimator

10! 10°

e i and ) = |nj )
M,(t); M2,+) Deing constants chosen between 1, 1].
In order to keep the quantity constant in (3), we set =
2N. Computing the G-estimator implies to solve equation (15w restrictive is this condition. In Figure 5, we compute fo
with numerical techniques. The solution is obtained by gisirseveral values of2 the minimum ofw~ andw, over a large
the Newton-Raphson method. Moreover we Bet 30, 02 = number of channel matriceH (c = 0.5 and L = 2N) and
0.25 ando? = 1. it proves that the condition on? is not as restrictive as it
In Figure 3 we compared the bias of (4) and (15) wheappears.
N, M increase € = 0.5). We clearly notice that the bias of
(4) is constant withNV while the bias of (15) is decreasing. o T ) and 7 min ) verses, (092219
Unfortunately, the rate of convergence of the bias in Fiddire -
does not fit with% for large values ofN. This is because L
the corresponding values of the bias are of the same order of

Lgi,ng Lgi,jgz\i

Fig. 4. MSE of the traditional and new estimator versus

magnitude than the accuracy of the numerical techniquetwhic o3y
is used to solve the equatiof(x) = —o2. oaf . i
0.251 pid .
Bias of the ergodiic capacity estimate (¢=0.5,7=30,02=0.25,0°=1) L -
10" : : : ! : . : ozr : : o
0.15F Pig .
. AT R A AT KA K N RRKARA a’
w0l , , : ] .
B i 01r P
o
0.05}- o g o - min{w}
10°E 3 ~ g - minfwg)
0.‘1 0‘.2 u.‘a 0‘4 U‘; O.‘G 0‘,7 0.8 0.9 1

Bias
=
5

T

Fig. 5. —min{w~} and — min{wo} versuso?
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