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Abstract—In this paper, we deal with the estimation of the er-
godic capacity of large MIMO systems, using training sequences
whose lengths are of the same order of magnitude than the
number of antennas. In this context, the traditional estimator
becomes inconsistent. Following the ideas developed by Girko in
the context of the so-called theory of G-estimation, we propose
a new estimator. We analyze its asymptotic behaviour and show,
using numerical simulations, that it tends to improve significantly
the performance of the standard estimate for a realistic number
of antennas.

I. I NTRODUCTION

One of the goal of channel sounding methods is to evaluate
the influence of the environment on relevant figure of merits in
order to predict the potential performance of digital communi-
cation systems. In this paper, we address the estimation of the
ergodic capacity of mobile MIMO systems in the context of
channel sounding. Due to the mobility, the size of the training
sequence from which the channel can be estimated is of course
limited because the MIMO channel matrix has to be constant
on the duration of the training sequence. If the sizeL of the
training sequence is of the same order of magnitude than the
number of antennas of the system, the traditional estimate of
the capacity, built on the training based estimate of the channel
matrix, provides poor performance because the influence of the
background noise is not negligible. We can mention the recent
work of [1] in which an estimator of the capacity is derived
using Free Probability Theory; however it is not consistentin
the case considered here.

In order to design new improved estimates, we use the
theory of large random matrices, and assume that the number
of receive and transmit antennasM and N as well as the
size of the training sequenceL converge to+∞ at the same
rate. In this asymptotic regime, we propose a new estimator
of the channel ergodic capacity inspired by the so-called G-
estimation theory developed by Girko.

The paper is organized as follows. In section II, we present
the signal model, the precise context of the estimation and
the addressed problem. In section III, we provide some useful
results in Large Random Matrix Theory (LRMT). In section
IV, we propose a new consistent ”G-estimator” of the MIMO
channel ergodic capacity. In section V, we provide some
numerical simulations which illustrate the previous results.

II. M ODEL AND PROBLEM’ S STATEMENT

We consider a MIMO channel sounder withN transmit
antennas andM receive antennas, and we suppose that the
channel is a MIMO block fading channel. In order to es-
timate the ergodic capacity of the channel, the transmitter
sends periodically a training sequence of sizeL, denoted
S = [s1, . . . , sL], wheres1, . . . , sL areN -dimensional vectors
for which SS

† = LIN . The channel matrix is assumed
to be constant on each ”slot”, i.e during the transmission
of each training sequence. We denote byT the number of
avalaible slots, and we assume that the statistical properties
of the channel are time invariant during the transmission
of theseT slots. If H(t) (for t = 1, . . . , T ) represents the
channel matrix on slott, normalized in such a way that
E[ 1

M
Tr H(t)H

†
(t)] = 1, we address the estimation problem

of

C(σ2) =
1

N

1

T

T∑

t=1

log det

(
IM +

H(t)H(t)

σ2

)
(1)

which clearly represents an approximation of the ergodic
capacity (per transmit antenna). For eacht = 1, . . . , T , the
receiveM × L channel matrixY(t) corresponding to the
transmission of the sequenceS can be written as

Y(t) = H(t)S + V(t) (2)

where V(t) is the M × L noise matrix, assumed to be iid
Gaussian, with entries having zero mean and varianceσ2

v . The
training-based estimateZ(t) of H(t) is defined by

Z(t) =
1

L
Y(t)S

† = H(t) +
ρ√
N

W(t) (3)

with ρ =
√

σ2
vN

L
andW a M ×N Gaussian random matrix

whose elements are iid, unit variance and zero mean. In order
to keepρ constant, we suppose in this paper that the length
of the learning sequenceL is linearly increasing withN .

One classical way to estimate (1) is to replaceH(t)H
†
(t) by

its standard unbiased estimateZ(t)Z
†
(t)−ρ2

IM . However, some

eigenvalues ofZ(t)Z
†
(t) may be less thanρ2. If we denote by

λ̂
(t)
1 , . . . , λ̂

(t)
M the eigenvalues ofZ(t)Z

†
(t) (in increasing order),



the standard estimator of (1) is given by

Ĉtrad(σ2) =
1

N

1

T

T∑

t=1

M∑

m=1

log


1 +

(
λ̂

(t)
m − ρ2

)+

σ2


 (4)

where(.)
+ is the positive part. This estimator is relevant in the

case whereL→ +∞ andN/L→ 0. However, this asymptotic
regime is not realistic in the context of mobile systems. We
therefore assume thatN → +∞, L→ +∞ in such a way that

ρ =
√

σ2
vN

L
remains constant. We also assume thatM < N ,

M → +∞, N → +∞ and thatcN = M
N

converges to a
constantc ∈]0, 1[. In this context, (4) is not consistent because
‖Z(t)Z

†
(t) − (ρ2

IM + H(t)H
†
(t))‖ does not converge anymore

to 0.
Using LRMT tools, we are able to find a consistent esti-

mator of (1) in the latter case. Note that our results can be
extended to the casec > 1 by considering matrixZ†

Z instead
of ZZ

†.

III. R EVIEW OF SOME USEFULLRMT RESULTS

In literature, the model (3) is commonly referred as the
”Information plus Noise model” and we now summarize some
published results concerning the statistical spectral proper-
ties of the random matrixZZ

† (dependency in slott is
dropped only for this section). First, we denote respectively
by λ1, . . . , λM and λ̂1, . . . , λ̂M the eigenvalues (in increasing
order) ofHH

† andZZ
†.

For an easier reading, we do not mention explicitely the
dependency inM,N,L of all quantities involving matrixH.
Moreover, when we will say ”N → +∞”, it will stand for
”M,N,L → ∞ while cN → c ∈]0, 1[ and ρ remains con-
stant”. The notation ”X ≈ X” will also stand for ”X−X → 0
with probability one asN → +∞” with X deterministic and
X random.

Consider the empirical spectral measureµ̂ of the random
matrix ZZ

† given by

µ̂ =
1

M

M∑

m=1

δ
λ̂m

(5)

where δ
λ̂m

is the Dirac measure at the eigenvalueλ̂m. It is
useful to characterizêµ in terms of its Stieltjes transformΥµ̂

defined∀z ∈ C − {λ̂1, . . . , λ̂M} by

Υµ̂(z) =

∫

R+

µ̂(dλ)

λ− z
=

1

M
Tr
(
ZZ

† − zIM

)−1
(6)

Clearly, µ̂ is random and the following fundamental theorem
(see [2]) gives us details about its asymptotic behaviour.

Theorem 1. Assume thatsupM,N ‖H‖ <∞.
Then asN → +∞, with probability one, µ̂ converges
in distribution toward a deterministic measureµ called the
asymptotic eigenvalue distribution ofZZ

†.
Measureµ is characterized by the functionδ(x) = ρcΥµ(x)

whereΥµ is the Stieltjes transform ofµ. ∀x ∈ R
−
∗ , δ(x) is

the solution to the equation

δ(x) =
ρ

N
Tr T(x)

T(x) =
[(
−x(1 + ρδ(x)) + ρ2(1 − c)

)
IM +

HH
†

1 + ρδ(x)

]−1

Moreover, if we defineS = supp(µ), i.e the support of
the asymptotic eigenvalue distribution ofZZ

†, then δ(x) is
analytic onR − S.

Thanks to (6) and Theorem 1, we have∀x ∈ R
−
∗ , Υµ(x) ≈

Υµ̂(x) and therefore

δ(x) ≈ δ̂(x) (7)

with δ̂(x) = ρ
N

Tr
(
ZZ

† − xIM

)−1
Thus,δ(x) is consistently

estimated bŷδ(x) on R
−
∗ .

The next theorem (see [3]) characterizes the infimum ofS,
the support ofµ.

Theorem 2. We consider the case whereHH
† is full rank

and N → +∞. Let φ(w) be the function defined onR −
{λ1, . . . , λM} by

φ(w) = w(1 − ρ2f(w))2 + ρ2(1 − c)(1 − ρ2f(w))

with f(w) = 1
N

Tr[HH
† − wIM ]−1. Let w− be the smallest

local extremum ofφ satisfying1−ρ2f(w−) > 0 andφ(w−) >
0. Then we have

x− = φ(w−) = inf S
Moreover, φ is a strictly increasing bijective function from
] −∞, w−[ to ] −∞, x−[. Let ψ(x) be its inverse defined on
] −∞, x−[. Then, we have

ψ(x) = x (1 + ρδ(x))
2 − ρ2(1 − c) (1 + ρδ(x))

and forw < w−, the equationψ(x) = w has a unique solution
in ] −∞, x−[ equal toφ(w).

Figure 1 and 2 represent two possible behaviours ofφ when
c < 1. We also represent the pointw0, solution ofφ(w) = 0
in the interval]−∞, w−[, which will be useful for Proposition
1 in the next section. Note that in the two cases,0 does not
belong toS, becausec < 1. We now state a fundamental result

x−

w

φ(w)

w−w0 λ1

Fig. 1. Allure of φ on ] −∞, λ1[ whenc < 1 andf(0) > 1

ρ2
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x−

φ(w)

Fig. 2. Allure of φ on ] −∞, λ1[ whenc < 1 andf(0) < 1

ρ2

on the eigenvalues ofZZ
†. It can be found in [4] (Theorem

23.1 p.267).

Theorem 3. If M,N are large enough, then almost surely,
the eigenvalues ofZZ

† belong toS.

We now give a theorem which is a direct consequence of
Theorem 1 and which can be found in [5] and [6].

Theorem 4. Consider the functionC defined onR−
∗ by

C(x) =

1

N
log det

(
IM − HH

†

ψ(x)

)

+ log (1 + ρδ(x))

+ c log

(
1 + ρδ(x) − ρ2(1 − c)

x

)

+ xδ(x)

(
δ(x) − ρ(1 − c)

x

)

Then,

C(x) ≈ 1

N
log det

(
IM − 1

x
ZZ

†

)
(8)

Moreover, we have

E

[
1

N
log det

(
IM − 1

x
ZZ

†

)]
= C(x) + O

(
1

N2

)
(9)

Var

[
1

N
log det

(
IM − 1

x
ZZ

†

)]
= O(

1

N2
) (10)

IV. D ERIVATION OF THE G-ESTIMATOR

We present a new consistent estimator of (1), based on
Theorem 4. In what follows, we add the notation(t) for all
the quantities of the previous sections which depend on the
matrix H(t) (i.e on a certain slot timet). In particular, we
havex−(t) = inf S(t).

In order to have a better understanding of the techniques
involved in the derivation of the G-estimator, we derive here
an estimator in a simple case.

Proposition 1. AsN → +∞, ∀ σ2 > −w0,(t) we have

1

N
log det

(
IM +

H(t)H
†
(t)

σ2

)
≈

1

N
log det

(
IM −

Z(t)Z
†
(t)

x̂
(t)
∗

)
− log(1 + ρδ̂(t)(x̂

(t)
∗ ))

− c log

(
1 + ρδ̂(t)(x̂

(t)
∗ ) − ρ2(1 − c)

x̂
(t)
∗

)

− x̂
(t)
∗ δ̂(t)(x̂

(t)
∗ )

(
δ̂(t)(x̂

(t)
∗ ) − ρ(1 − c)

x̂
(t)
∗

)

with x̂(t)
∗ the solution to the equation̂ψ(t)(x) = −σ2 and ψ̂(t)

defined onR−
∗ by

ψ̂(t)(x) = x
(
1 + ρδ̂(t)(x)

)2

− ρ2(1 − c)
(
1 + ρδ̂(t)(x)

)

(11)

Proof: Let x(t)
∗ be the solution to the equation

ψ(t)(x) = −σ2 (12)

As we have−σ2 < w0,(t) < w−
(t) and φ(t)(w0,(t)) = 0, we

deduce from Theorem 2 that it exists a unique solutionx
(t)
∗

to the equation (12) such thatx(t)
∗ < 0. Therefore we can use

Theorem 4 (because it is valid onR−
∗ ) to obtain

1

N
log det

(
IM +

H(t)H
†
(t)

σ2

)
=

C(t)(x
(t)
∗ ) − x

(t)
∗ δ(t)(x

(t)
∗ )

(
δ(t)(x

(t)
∗ ) − ρ(1 − c)

x
(t)
∗

)

− log
(
1 + ρδ(t)(x

(t)
∗ )
)
− c log

(
1 + ρδ(t)(x

(t)
∗ ) − ρ2(1 − c)

x
(t)
∗

)

(13)

From (7), we can approximateδ(t)(x) by δ̂(t)(x), and therefore

functionψ(t)(x) ≈ ψ̂(t)(x) for x ∈ R
−
∗ . If x̂(t)

∗ is the random

solution toψ̂(t)(x) = −σ2, we clearly havex(t)
∗ ≈ x̂

(t)
∗ . Thus

we deduce from (7) and (8)

δ(t)(x
(t)
∗ ) ≈ δ̂(t)(x̂

(t)
∗ )

ψ(t)(x
(t)
∗ ) ≈ ψ̂(t)(x̂

(t)
∗ )

C(t)(x
(t)
∗ ) ≈ 1

N
log det

(
IM − 1

x̂
(t)
∗

Z(t)Z
†
(t)

)

By replacing the previous approximations in the righthand side
of (13) and in equation (12) we get the final result.

We now extend the domain of convergence for (7) and (8).

Proposition 2. AsN → +∞, we have∀x ∈] −∞, x−(t)[,

δ(t)(x) ≈ δ̂(t)(x) (14)

with δ̂(t)(x) = ρ
N

Tr
(
Z(t)Z

†
(t) − xIM

)−1

.

Proof: The proof, which relies on Theorem 2, 3 and
Montel’s theorem, is omitted here.



Proposition 3. AsN → +∞, ∀ σ2 > −mint=1,...,T

{
w−

(t)

}
,

C(σ2) given by(1) is consistently estimated by

Ĉnew

(
σ2
)

=
1

T

T∑

t=1

[
1

N
log det

(
Z(t)Z

†
(t) − x̂

(t)
∗ IM

)

+ (c− 1) log
(
1 + ρδ̂(t)(x̂

(t)
∗ )
)

− x̂
(t)
∗

(
δ̂(t)(x̂

(t)
∗ ) − ρ(1 − c)

x̂
(t)
∗

)]

− c log
(
σ2
)

with x̂(t)
∗ the solution to the equation

ψ̂(t)(x) = −σ2 (15)

Proof: We consider a particular slott. Thanks to Theorem
3, we know that forM,N large enough andx < x−(t),

functionsδ̂(t)(x) and 1
N

log det
(
Z(t)Z

†
(t) − xIM

)
are defined

and integrable on] −∞, x[, with probability one. We have

d

dx

[
1

N
log det

(
Z(t)Z

†
(t) − xIM

)]
= −1

ρ
δ̂(t)(x)

Thus, forx ∈] −∞, x−(t)[ andx0 > 0 such that−x0 < x, we
can write

1

N
log det

(
Z(t)Z

†
(t) − xIM

)
=

1

N
log det

(
Z(t)Z

†
(t) + x0IM

)
− 1

ρ

∫ x

−x0

δ̂(t)(u)du (16)

From Proposition 2, we havêδ(t)(u) ≈ δ(t)(u) on ]−∞, x−(t)[.

δ̂(t) is integrable on] − ∞, x[, and by using the dominated
convergence theorem, we get

∫ x

−x0

δ̂(t)(u)du ≈
∫ x

−x0

δ(t)(u)du (17)

From Theorem 4, asx0 > 0, we have

c log x0 + C(t)(−x0) ≈
1

N
log det

(
Z(t)Z

†
(t) + x0IM

)
(18)

Straightforward calculations lead to the following derivative

−1

ρ
δ(t)(x) = − 1

N
Tr T(t)(x)

=
d

dx

[
1

N
log det

[
T

−1
(t) (x)

]

+ log
(
1 + ρδ(t)(x)

)

+ xδ(t)(x)

(
δ(t)(x) −

ρ(1 − c)

x

)]

Therefore, we deduce that

−1

ρ

∫ x

−x0

δ(t)(u)du =
1

N
log det

[
T

−1
(t) (x)

]

+ log
(
1 + ρδ(t)(x)

)

+ xδ(t)(x)

(
δ(t)(x) −

ρ(1 − c)

x

)

− C(t)(−x0) − c log(x0) (19)

It follows from (16), (18) and (19) that

1

N
log det

(
Z(t)Z

†
(t) − xIM

)
≈

1

N
log det

[
T

−1
(t) (x)

]
+ log

(
1 + ρδ(t)(x)

)

+ xδ(t)(x)

(
δ(t)(x) −

ρ(1 − c)

x

)
(20)

Moreover, we notice that

1

N
log det

[
T

−1
(t) (x)

]
= c log (ψ(x)) − c log

(
1 + ρδ(t)(x)

)

+
1

N
log det

[
−

H(t)H
†
(t)

ψ(x)
+ IM

]

(21)

As −σ2 < w−
(t), we know from Theorem 2 that the equation

ψ(x) = −σ2 has a unique solutionx(t)
∗ on ]−∞, x−(t)[. Then,

from (20) and (21), we deduce that

1

N
log det

[
H(t)H

†
(t)

σ2
+ IM

]
≈

1

N
log det

(
Z(t)Z

†
(t) − x

(t)
∗ IM

)

− x
(t)
∗

(
δ(t)(x

(t)
∗ ) − ρ(1 − c)

x
(t)
∗

)

+ (c− 1) log
(
1 + ρδ(t)(x

(t)
∗ )
)
− c log(σ2) (22)

Now denote byx̂(t)
∗ the solution to the equation̂ψ(t)(x) =

−σ2. In the same way than in the proof of Proposition 1, and
because−σ2 < w−

(t), we have

x
(t)
∗ ≈ x̂

(t)
∗

δ(t)(x
(t)
∗ ) ≈ δ̂(t)(x̂

(t)
∗ )

ψ(t)(x
(t)
∗ ) ≈ ψ̂(t)(x̂

(t)
∗ )

Finally, by replacing the previous approximation in (22), we
get the final form of the G-estimator.

We now study the performance of the previous estimator in
terms of bias and MSE.

Property 1. ∀ σ2 > −mint=1,...,T

{
w0,(t)

}
the quantity

Ĉnew

(
σ2
)

defined in(15) satisfies

E

[
Ĉnew

(
σ2
)]

= C
(
σ2
)

+ O
(

1

N2

)
(23)

E

[(
Ĉnew

(
σ2
)
− C

(
σ2
))2
]

= O
(

1

N2

)
(24)

Proof: The proof relies on formulae (9) and (10) and
analysis of higher moments of̂δ(t). It is omitted here due to
lack of space.

Remark: Notice that the previous results of bias and MSE are
valid ∀ σ2 > −mint=1,...,T {w0,(t)}. They probably remain
valid for σ2 > −mint=1,...,T {w−

(t)}, but it has not been proven
yet.



V. NUMERICAL SIMULATIONS

In this section, we compare the performance of the tradi-
tional and new estimators in terms of bias and MSE.

The channel matricesH(t) follow the well-known ”Kro-
necker model”, i.e

H(t) =
1√
N

C
1
2

(t)XC̃
1
2

(t)

with C(t), C̃(t) real positive definite matrices (respectively of
sizeM ×M andN ×N ) andX a random matrix such that
Xij ∼ CN (0, 1). For the simulations,C(t), C̃(t) are defined
by

C(t) =
[
η
|i−j|
1,(t)

]

1≤i,j≤M
and C̃(t) =

[
η
|i−j|
2,(t)

]

1≤i,j≤N

η1,(t), η2,(t) being constants chosen between] − 1, 1[.
In order to keep the quantityρ constant in (3), we setL =

2N . Computing the G-estimator implies to solve equation (15)
with numerical techniques. The solution is obtained by using
the Newton-Raphson method. Moreover we setT = 30, σ2

v =
0.25 andσ2 = 1.

In Figure 3 we compared the bias of (4) and (15) when
N,M increase (c = 0.5). We clearly notice that the bias of
(4) is constant withN while the bias of (15) is decreasing.
Unfortunately, the rate of convergence of the bias in Figure3
does not fit with 1

N2 for large values ofN . This is because
the corresponding values of the bias are of the same order of
magnitude than the accuracy of the numerical technique which
is used to solve the equation̂ψ(x) = −σ2.
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Fig. 3. Bias of the traditional and new estimator versusN

Figure 4 represents the evolution of the MSE with respect to
N (c = 0.5). We notice that the MSE of (4) is constant while
the MSE of (15) is clearly decreasing in1

N2 , as predicted in
Property 1.

Proposition 3 states that we are not entirely free to choose
the value of σ2 at which we want to evaluate the ca-
pacity. Indeed, we are restricted to the conditionσ2 >

−mint=1,...,T

{
w−

(t)

}
(or to σ2 > −mint=1,...,T

{
w−

0,(t)

}
for

the validity of bias and MSE). It can be interesting to see
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Fig. 4. MSE of the traditional and new estimator versusN

how restrictive is this condition. In Figure 5, we compute for
several values ofσ2

v the minimum ofw− andw0 over a large
number of channel matricesH (c = 0.5 andL = 2N ) and
it proves that the condition onσ2 is not as restrictive as it
appears.
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