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Abstract—In this contribution, we propose a new technique for
collaborative sensing based on the analysis of the normalized (by
the trace) largest eigenvalues of the sample covariance matrix.
Assuming that several base stations are cooperating and without
the knowledge of the noise variance, the test is able to determine
the presence of mobile users in a network when only few samples
are available. Unlike previous heuristic techniques, we show that
the test has roots within the Generalized Likelihood Ratio Test
and provide an asymptotic random matrix analysis enabling to
determine adequate threshold detection values (probability of
false alarm). Simulations sustain our theoretical claims.

I. I NTRODUCTION

Recently, cognitive networks [1] have been advocated as
one of the major solutions to increase the spectral efficiency of
wireless systems by making full use of the available spectrum.
This requires networks to be able to exploit opportunistically
spectrum left-overs, by means of knowledge of the envi-
ronment and cognition capability, and to adapt their radio
parameters accordingly. Unfortunately, usual cognitive radio
techniques, based on sensing, require either a large number
of received samples or the precise knowledge of the system
parameters (such as the noise variance or the structure of the
signal). The techniques range from energy detector [2], [3],
[4], matched filter detector or ciclostationary methods.

In this contribution, we propose a collaborative sensing tech-
nique using very limited knowledge on the signal model (noise
variance unknown) adapted to highly mobile environments
where only a few number of samples can be acquired. We use
the space dimension and suppose that various base stations in
the network can cooperate (through a virtual MIMO system) to
sense the received signal. The technique based on the analysis
of the normalized (by the trace) of the maximum eigenvalue of
the sample covariance matrix originates from the derivation of
the Generalized Likelihood Ratio Test (GLRT). Interestingly,
we are able to compute threshold detection values (probabil-
ities of false alarm) by using recent results of asymptotic
random matrix theory and show that the statistics of the
test converge to a multivariate Tracy-Widom distribution.The
results are valid for any number of users in the network. The
paper is articulated as follows: next Section focuses on the
problem formulation and contains the signal model, while
in Section III the GLRT approach is exploited. Maximum
likelihood estimates of the unknown parameters involved inthe
test are evaluated and their asymptotic behavior are discussed
in Section IV. A brief numerical assessment follows in Section
V, while Conclusions are given in Section VI.

II. PROBLEM FORMULATION

A. Signal Model

Consider a secondary wireless network formed byK nodes,
working in sensing mode. We assume that allK nodes are
simultaneously sensing a given sub-bandB of the spectrum.
For eachk = 1, . . . ,K, we denote byyk(n) the complex
envelope of the signal received by thekth sensor in band
B after proper filtering and sampling. Denote byy(n) =
[y1(n), . . . , yK(n)]T the vector obtained when stacking all
K sensors’ observations at timen into a column vector.
The aim is to detect the presence of one or several primary
transmitters in bandB. We respectively denote byH0 and
H1 the hypotheses corresponding to the case where “band
B is free” and “one or several primary devices are already
transmitting in bandB”:

y(n) =

{

w(n): H0

H s(n) + w(n): H1

, (1)

where w(n) represents a complex circular temporally-white
Gaussian noise vector with zero mean and covariance matrix
equal toσ2

IK . In the H1-case,s(n) = [s1(n), . . . , sP (n)]T

denotes the unknownP -dimensional process sent by the
primary active devices. IntegerP denotes the number of
active transmitters in the band of interest. Sequences(n) is
assumed to be an independent identically distributed (i.i.d.)
zero mean random sequence with independent entries. We
assume without restriction thatsp(n) has unit variance for
eachp. Matrix H ∈ C

K×P represents the complex-valued
Multiple-Input Multiple-Output (MIMO) channel between the
P transmitters and theK receiving nodes. In our context, most
parameters are unknown. In particular:

• the noise varianceσ2 is unknown,
• the channel matrixH is unknown.

Depending on the context, the number of transmittersP may
either be known or unknown. In caseP is unknown, it is
usually reasonable to assume that there exists a known integer
Pmax such thatP ≤ Pmax < K. In that case, it is always
possible to test hypothesisH0 versusH1, whereP is replaced
with Pmax. More involved order detection methods may as
well be used, but such methods are out of the scope of this
paper. In the sequel, we assume thatP is known. Robustness
issues related to model order mismatch will be investigatedin
an extended version of this paper.



B. Main Objective

In the sequel, we denote byN the number of samples
observed by each sensork. Consider the followingK × N
data matrixY:

Y = [y(0), . . . ,y(N − 1)] . (2)

In order to test hypothesisH0 versus H1, the aim is to
construct a relevant test functionϕ : C

K×N → {0, 1} with
the sense that one decides hypothesisH0 (resp.H1) whenever
ϕ(Y) = 0 (resp.ϕ(Y) = 1). As usual, we restrict ourselves
to the search for test functions such that the probability of
false alarm does not exceed a predefined threesholdǫ i.e.,

PH0
[ϕ(Y) = 1] ≤ ǫ , (3)

where PH0
[E] represents the probability of a given eventE

under hypothesisH0.

III. G ENERALIZED L IKELIHOOD RATIO TEST

In the present section, we investigate the case where input
symbolss(n) are supposed to be Gaussian distributed:s(n) ∼
CN(0, IP ) whereIP denotes theP ×P identity matrix. In this
case, the generalized likelihood ratio test can be expressed.

A. Likelihood Ratio

We respectively denote byp0(Y;σ2) andp1(Y;H, σ2) the
likelihood functions of the observation matrixy indexed by
the unknown parametersH andσ2 under hypothesesH0 and
H1 respectively:

p0(Y;σ2) = (πσ2)−NK exp

(

−N

σ2
tr R̂

)

(4)

p1(Y;H, σ2) = (πK detR)−N exp
(

−N tr (R̂R
−1)
)

(5)

whereR = R(H, σ2) is the true covariance matrix underH1

defined by

R = HH
H + σ2

IK

and whereR̂ is the sampled covariance matrix:

R̂ =
1

N
YY

H .

In the ideal case where parametersH andσ2 are supposed to
be available, it is well known that a uniformly most powerful
test rejects the null hypothesis when ratio

LN (Y) =
p0(Y;σ2)

p1(Y;H, σ2)
. (6)

lies below a certain threeshold which is selected so that (3)
holds. Unfortunately, parametersH and σ2 are unknown in
our context so that a uniformly powerful test can no longer
be defined. In this case, a suboptimal but classical approach
consists in replacing the true likelihood ratio by the so-called
generalized likelihood ratio (GLR)̂LN (Y).

B. ML Estimates

The GLR is simply obtained by replacing the unknown
parameter valuesH andσ2 by their maximum likelihood (ML)
estimates:

L̂N (Y) =
p0(Y; σ̂2

0)

p1(Y; Ĥ1, σ̂2
1)

. (7)

whereĤ1 is the ML estimate ofH under hypothesisH1 and
whereσ̂2

0 (resp.σ̂2
1) is the ML estimate ofσ2 under hypothesis

H0 (resp.H1). Denote byλ1 > λ2 · · · > λK ≥ 0 the ordered
eigenvalues of̂R (all distincts with probability one). For each
k = 1 . . . K, denote byek the K × 1 eigenvector associated
with λk. We provide the expression of the ML estimatesσ̂2

0 ,
σ̂2

1 andĤ1. Note that the likelihood function is unchanged by
right-multiplication of H with a P × P unitary matrix, thus
H is identifiable only up to a unitary matrix. ML estimates
are given by:

σ̂2
0 =

1

K

K
∑

k=1

λk, σ̂2
1 =

1

K − P

K
∑

k=P+1

λk

Ĥ1 = [e1, . . . ,eP ] diag

(

√

λ1 − σ̂2
1 , . . . ,

√

λP − σ̂2
1

)

UP

whereUP is aP ×P unitary matrix indeterminacy. The proof
of the above lemma is omitted due to the lack of space. We
may now evaluate the GLR by substituting the valuesσ2 and
R in equations (4)-(5) with the corresponding ML estimates
σ̂2

0 andĤ1Ĥ
H
1 + σ̂2

1IK respectively. For eachp, we define:

µp =
λp

1
K tr R̂

. (8)

C. Proposed Hypothesis Test

The following result is a direct consequence of Lemma 1.

Proposition 1. The GLR writesL̂N (Y) = CN expNLN

where C =
(

1 − P
K

)K−P
is a constant and whereLN =

LN (µ1, . . . , µP ) is the statistic defined by

LN =

P
∑

p=1

log µp + (K − P ) log

(

1 − 1

K

P
∑

p=1

µp

)

. (9)

The above result implies that the “trace-normalized”P
largest eigenvaluesµ1, . . . , µP of the sampled covariance ma-
trix form in some sense a sufficient statistic for the generalized
likelihood ratio test. For technical reasons which will become
clear in the sequel, we rather focus on the following “centered
and rescaled” generalized log-likelihood ratio:

L̄N = N2/3βN (LN − αN ) . (10)

Here, we defined the centering constantαN by

αN = 2P log
(

1 +
√

c
)

− P
(

1 +
√

c
)2

(1 − P

cN
) − P 2(1 +

√
c)4

2Nc
(11)

and the normalisation constantβN by

βN =
− (1 +

√
c)

2/3

(2 +
√

c) c1/3
(12)



where we definedc = K/N . Clearly, the GLRT which consists
in comparing (7) with a predefined threeshold is equivalent (in
terms of false alarm and miss probabilities) to the following
test:

L̄N

H1

≷

H0

γN (13)

whereγN is a suitable threshold.

Comments
• Clearly, the test statistic̄LN is equivalent to the generalized
likelihood ratio L̂N (Y) in the sense that there exists a one-
to-one mapping from one to other. The reason for usingL̄N

instead ofL̂N (Y) or LN is that, when the dimensionsN
and K are large enough, the threeshold valueγN does not
depend on the system characteristicsN , K or K/N . Universal
threeshold tables are likely to be provided irrespective tothe
particular cognitive system of interest.
• In order to complete the definition of the test, we must
determine the threshold valueγN . As usual,γN is fixed so
that the probability of false alarm associated with the test
does not exceed a certain predefined valueǫ, as required by
constraint (3). In order to maximize the power of our test while
keeping the latter constraint satisfied, we select the threshold
γN such thatFN,P (γN ) = ǫ, where

FN,P (x) = PH0

[

L̄N ≤ x
]

(14)

is the distribution function of random variablēLN underH0.
Otherwise stated,γN can simply be defined asγN = F−1

N,P (1−
ǫ), whereF−1

N,P denotes the inverse ofFN,P with respect to
composition. Unfortunately, the expression of functionFN,P

is hardly tractable and its inversion would require involved
numerical methods. In the next section, we propose to study
the asymptotic behaviour ofFN,P (x) in order to simplify the
computation of the threshold value.
• The proposed test benefits from the prior knowledge of
the numberP of primary transmitters (or at least an upper
bound on this number). In case such an information is not
available, or in caseP ≥ K, the GLRT would reduce to the

standard sphericity test based on the statisticdet R̂/
(

tr R̂

)K

.
The proposed test can be interpreted as an extension of the
above sphericity test to the case where the dimensionP of
the “signal-subspace” is known to be strictly less thanK.

IV. A SYMPTOTIC ANALYSIS

In the present section, we provide a simple procedure allow-
ing to determine the threeshold value, based on the asymptotic
analysis of the test statistic̄LN under H0. Our analysis is
relevant in contexts where the numberK of sensors is assumed
to be large (i.e., significantly larger than the numberP of
sources). Due to cognitive radio constraints, the secondary
system must be able to decide the presence/absence of primary
transmitters in a moderate amount of time. Therefore, we focus
on the context where the numberK of sensors and the number

N of samples have the same order of magnitude. Otherwise
stated, we consider the following asymptotic regime:

N → ∞, K → ∞, K/N → c, P is fixed, (15)

where0 < c < 1 is a constant. It is worth stressing that under
H0, the distribution ofµp = λp/( 1

K tr R̂) does not depend on
σ2. Therefore, the distribution of̄LN does not depend onσ2.
As a consequence, there is no restriction in assuming that

σ2 = 1

in the present section, for the sake of analysis.

A. Some Insights

The goal of the present section is to characterize the
asymptotic behaviour of̄LN asN,K → ∞, under hypothesis
H0. In order to have some insights on this behaviour, assume
for the sake of illustration thatP = 1 (at most one source is
likely to be active).

Case P = 1. From Proposition 1, the (rescaled) gen-
eralized log-likelihood ratioL̄N is a function of the ratio
µ1 = λ1/( 1

K trR̂). The asymptotic analysis of̄LN thus reduces
to the separate study ofλ1 and 1

K tr R̂. First consider the
largest eigenvalueλ1 of R̂. Under hypothesisH0, R̂ belongs
to the Laguerre Unitary Ensemble (LUE). It is well known
that λ1 converges a.s. to the right edge of the Marchenko-
Pastur distribution:λ1

a.s.−−→ (1 +
√

c)2. A further result due
to Johnstone(2001) [5] states that convergence holds at speed
1/N2/3 and, more precisely, that the centered and rescaled
quantity

ℓ1 = N2/3







λ1 − (1 +
√

c)2

(1 +
√

c)
(

1√
c

+ 1
)1/3






(16)

converges in distribution toward a standard Tracy-Widom
distribution functionF1 which can be defined in the following
way:

F1(s) = exp

(

−
∫ ∞

s

(x − s)q2(x) dx

)

, (17)

whereq solves the Painlev́e II differential equation:

q′′(x) = xq(x) + 2q3(x) ,
q(x) ∼ Ai(x) as x → ∞

and Ai(x) denotes the Airy function. This result provides the
asymptotic behaviour of the numeratorλ1 of µ1.

Now consider the denominator1K tr R̂ of µ1. By the law of
large numbers,1K tr R̂ converges a.s. toσ2 = 1. Furthermore,
convergence holds at speed1/N in the sense that1K tr R̂ =
1 + OP (1/N) (whereOP (1/N) stands for a term which is
bounded in probability byC/N for a certain constantC). It is
therefore straightforward to prove that ratioµ1 = λ1/( 1

K tr R̂)
has the same asymptotic behaviour asλ1. As a consequence,
the asymptotic behaviour of̄LN can be expressed in terms of
the Tracy-Widom law (17).

CaseP > 1. When the numberP of sources is larger than
one, a similar behaviour occurs. In that case, the test statistics



L̄N is a continuous function of(µ1, . . . , µP ) where for each
p = 1 . . . P , µp = λp/( 1

K tr R̂). Due to the same arguments,
(µ1, . . . , µP ) has essentially the same asymptotic behaviour
as(λ1, . . . , λP ). Therefore, the asymptotic distribution ofL̄N

can be expressed in terms of the asymptotic joint distribution
of the P largest eigenvalues(λ1, . . . , λP ) in the LUE. For
eachp, we defineℓp as the r.h.s. of equation (16) whenλ1

is replaced withλp. Random variables(ℓ1, . . . , ℓP ) are the
properly centered and rescaled largest eigenvalues ofR̂. The
following result can be found for instance in [6]. Denote by
1A the indicator of setA.

Theorem 1. [6] For each x1 ≥ x2 · · · ≥ xP ,

lim
N,K→∞

PH0
[ℓ1 ≤ x1, . . . , ℓP ≤ xP ] = FP (x1, . . . , xP )

whereFP (x1, . . . , xP ) is the P -variate Tracy-Widom distri-
bution defined by

FP (x1, . . . , xP ) =
∑

(i1...iP )∈I

1

i1! . . . iP !

∂i1+···+iP

∂zi1
1 . . . ∂ziP

P

Det(1+Kχz1...zP
)
∣

∣

z1=···=zP =1

where I consists of all sets ofP nonnegative integers
i1, . . . , iP such thati1 = 0 and i1 + · · · + ij+1 ≤ j for each
j = 1 . . . P−1. Here,Det(1+Kχz1...zP

) represents the Fred-
holm determinant with kernelK(x, y)

∑P
p=1(zp − 1)1Rp

(y)
where

K(x, y) =
Ai(x)Ai′(y) − Ai(y)Ai′(x)

x − y

is the Airy kernel and whereR1 . . . Rp are the intervals
(x1,∞), (x2, x1],. . . , (xP , xP−1] respectively.

Note that numerically efficient methods to compute Fred-
holm determinants and Tracy-Widom distributions have been
studied, see for instance the works of [7]. Algorithms for
constructing tables forFP are however far beyond the scope of
this paper. We may now express the main result of the present
section.

B. Main Result

Let
D−→ denote the convergence in distribution in the asymp-

totic regime (15). A sketch of the proof of the following result
is provided in subsection IV-C.

Theorem 2. Under hypothesisH0,

L̄N
D−→

P
∑

p=1

Xp , (18)

where (X1, . . . ,XP ) follows a standardP -variate Tracy-
Widom distribution.

Denote byFP (x) the distribution function of
∑

p Xp and
by F−1

P the inverse ofFP w.r.t. composition.

Corollary 1. Any threesholdγN such that

γN > F−1
P (1 − ǫ) (19)

ensures that the probability of false alarmPH0
[L̄N < γN ] is

no larger thanǫ for N large enough.

We now make the following comments.

• The above results provide a simple way to set the threshold
γN or to computep-values associated with the proposed test. It
prevents from using tedious algorithms for approximating the
distribution of L̄N . Instead, it only relies onpre-determined
tables of the distributionFP . Such tables are well known in
caseP = 1. The caseP > 1 has been subject to much less
investigations at the present time. We note however that the
main developments in the field of multivariate Tracy-Widom
distributions are most recent (see for instance [6], [7] and
references therein).
• Note thatFP does not depend on the technical parameters
K,N or K/N . This observation is one of the main arguments
for using test statistic̄LN : the threshold selection procedure
only depends on the desired probability of false alarm and on
the maximum number of sourcesP likely to be present in
a given band. It does not depend on the number of available
snapshots. More importantly, it does not depend on the number
of secondary users in the system. Such a flexibility of the test
represents a particularly important feature for cognitiveradio
systems.
• The selection ofγN as in (19) ensures that the PFA is below
ǫ at least from a certain value ofN . However, Theorem 2
provides no information onhow largeshould beN in order
that the PFA stays belowǫ for finite values ofN , K. Such
a characterization would require to study more accurately the
convergence speed in (18), and is out of the scope of this paper.
However, some answers are provided in the simulations.

C. Sketch of the Proof of Theorem 2

Assume that hypothesisH0 holds. We study the asymptotic
behavior ofN2/3 (LN − αN ), whereLN is defined by (9) and
αN is defined by (11). In the asymptotic regime (15),αN con-
verges to the constantα = 2P log(1+

√
c)−P (1+

√
c)2. The

asymptotic study ofN2/3 (LN − αN ) is thus equivalent to the
study ofN2/3 (LN − α). Define the following quantities:

Zp =
µp

(1 +
√

c)2
− 1 , (20)

AN =
log
(

1 − 1
K

∑

p µp

)

− 1
K

∑

p µp

(

1 − P

K

)

.

Finally, defineBN = (1 +
√

c)2PN2/3(1 − AN ).

Lemma 1. The following equality holds true:

N2/3 (LN − P αc) =
P
∑

p=1

N2/3Zp

(

log (1 + Zp)

Zp
− AN (1 +

√
c)2
)

+ BN . (21)

The proof of Lemma 1 is obtained by straightforward
expansion of the r.h.s. of (21). Asµp converges a.s. to
(1 +

√
c)2, Zp tends to zero asN → ∞. This implies that



the ratio log(1+Zp)
Zp

converges a.s. to one. Similarly,1K
∑

p µp

tends to zero asN,K → ∞. Thus,AN converges a.s. to one.
Moreover, it can be shown thatAN converges to one at speed
1/N i.e., N(AN−1) is bounded in probability asN → ∞ (the
proof is omitted due to the lack of space). As a consequence,
BN ∝ N2/3(1−AN ) converges in probability to zero. On the
otherhand, the facts thatZp → 0 andAN → 1 a.s. imply that

∀p,
log (1 + Zp)

Zp
− AN (1 +

√
c)2

a.s.−−→ 1 − (1 +
√

c)2 .

By Theorem 1,N2/3Zp is bounded in probability for eachp.
Therefore, using1−(1+

√
c)2 = −√

c(2+
√

c), equation (21)
leads to:

N2/3 (LN − P αc) = −
√

c(2 +
√

c)
P
∑

p=1

N2/3Zp + oP (1) ,

= −c1/3(2 +
√

c)

(1 +
√

c)2/3

P
∑

p=1

N2/3







µp − (1 +
√

c)2

(1 +
√

c)
(

1√
c

+ 1
)1/3






+ oP (1) .

where oP (1) stands for a term which tends to zero in
probability. As explained in subsection IV-A, the asymptotic
distribution of the trace-normalized eigenvaluesµ1, . . . , µP is
equivalent to the asymptotic distribution of the non-normalized
eigenvaluesλ1, . . . , λP , and is therefore given by Theorem 1.
We finally obtain:

N2/3 (LN − P αc)
D−→ −c1/3(2 +

√
c)

(1 +
√

c)2/3

P
∑

p=1

Xp

where (X1, . . . ,XP ) follows a standardP -variate Tracy-
Widom distribution. This proves Theorem 2.

D. A remark on the convergence speed

One may question the reason for introducing the term

P
(

1 +
√

c
)2 P

cN
− P 2(1 +

√
c)4

2Nc
(22)

into the definition of αN in equation (11). Indeed, since
this term is negligible in the asymptotic regime, Theorem 2
would still hold when simply replacingαN with its limit
α = 2P log(1 +

√
c) − P (1 +

√
c)2. Unfortunately, in this

case, the convergence speed ofL̄N (in distribution) would
hold at rate1/N1/3, which is a rather slow convergence rate.
This unfortunate behaviour is due to the presence of the term
BN in (21), which tends to zero only at rate1/N1/3. The
correction term (22) allows to circumvent this issue, and to
provide a higher convergence rate ofL̄N . This term has no
impact on the results, but allows the asymptotic regime to be
reached even for moderate values ofN,K, as illustrated by
the following simulations.

V. SIMULATIONS

Figure 1 represents the empirical c.d.f. of the test statistic
L̄N for different values of the number of sourcesP . 1000
realizations of matrixY are used to evaluate each empirical

Figure 1. Cumulative distribution function of̄LN – P = 1, 2, 3, 4 – c = 0.4

c.d.f. An arbitrary value ofc (c = 0.4) is chosen. Solid bold
lines represent the asymptotic distribution ofL̄N for eachP ,
given by Theorem 2, which is independent ofc. Figure 1 shows
that, even for very moderate values ofK,N , the empirical
distribution function fits the asymptotic one. Typically,K =
10 is sufficient to achieve the asymptotic regime whenP = 1
(although, as expected, whenP increases, largest values ofK
are required to reach the asymptotic regime). This proves that
our asymptotic analysis can reliably be used for the selection
of the threesholdγN or for the computation ofp-values, even
for moderate values ofN,K.
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