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Abstract—In this contribution, we propose a new technique for Il. PROBLEM FORMULATION

collaborative sensing based on the analysis of the normalized (by .
the trace) largest eigenvalues of the sample covariance matrix. A- Signal Model
Assuming that several base stations are cooperating and without Consider a secondary wireless network formedibyodes,

the knowledge of the noise variance, the test is able to determineW rking in nsing mode. Wi me that &llnod r
the presence of mobile users in a network when only few samples orking Sensing mode. Vve assume tha odes are

are available. Unlike previous heuristic techniques, we show that Simultaneously sensing a given sub-baBif the spectrum.
the test has roots within the Generalized Likelihood Ratio Test For eachk = 1,..., K, we denote byy,(n) the complex

and provide an asymptotic random matrix analysis enabling to envelope of the signal received by tigh sensor in band

determine adequate threshold detection values (probability of 5 5ftar proper filtering and sampling. Denote yn) =

false alarm). Simulations sustain our theoretical claims. T . .
[y1(n),...,yx(n)]* the vector obtained when stacking all

I. INTRODUCTION K sensors’ observations at time into a column vector.

Recently, cognitive networks [1] have been advocated 48€ aim is to detect the presence of one or several primary
one of the major solutions to increase the spectral effigiefic transmitters in band3. We respectively denote by/, and
wireless systems by making full use of the available spettruf1 the hypotheses corresponding to the case where “band
This requires networks to be able to exploit opportunidica B is free” and “one or several primary devices are already
spectrum left-overs, by means of knowledge of the enfansmitting in bandB™:
ronment and cognition capability, and to adapt their radio { w(n): H,

parameters accordingly. Unfortunately, usual cognitiadia y(n) =
Hs(n) +w(n): Hy

; )

techniques, based on sensing, require either a large number

of received samples or the precise knowledge of the syste

. . erew(n) represents a complex circular temporally-white
parameters (such as the noise variance or the structures of . . ) : .
) . aussian noise vector with zero mean and covariance matrix
signal). The techniques range from energy detector [2], [

2 _ _ T
[4], matched filter detector or ciclostationary methods. dgﬁgietggthlg .urkrtlr(])iv}rg-dciz?:eer,li(ig%al [Srlo(:e)é.s. 'S’sri(?] the
In this contribution, we propose a collaborative sensiogte " : . P y
primary active devices. IntegeP denotes the number of

nigue using very limited knowledge on the signal model (@oi ctive transmitters in the band of interest. Sequesies is

variance unknown) adapted to highly mobile environmenfs . . . - .
where only a few number of samples can be acquired. We ua}ssesumed to be an independent identically distributed.ji.i.

the space dimension and suppose that various base statiorfe ] °_Mean random sequence with independent entries. We

. ssume without restriction that,(n) has unit variance for
the network can cooperate (through a virtual MIMO system) & chp. Matrix H € CK*P represents the complex-valued

sense the received signal. The technique based on the isnaly ltiple-Input Multiple-Output (MIMO) channel betweengh

of the normalized (by the trace) of the maximum eigenvalue . o
. N - transmitters and th& receiving nodes. In our context, most
the sample covariance matrix originates from the derivatib .
parameters are unknown. In particular:

the Generalized Likelihood Ratio Test (GLRT). Intereslyng
we are able to compute threshold detection values (probabil ¢ the noise variance? is unknown,

ities of false alarm) by using recent results of asymptotic * the channel matridH is unknown.

random matrix theory and show that the statistics of tHeepending on the context, the number of transmitféray
test converge to a multivariate Tracy-Widom distributidine either be known or unknown. In case is unknown, it is
results are valid for any number of users in the network. Thesually reasonable to assume that there exists a knowreinteg
paper is articulated as follows: next Section focuses on tli,,, such thatP < P,,.. < K. In that case, it is always
problem formulation and contains the signal model, whilpossible to test hypothesi§, versusH,, whereP is replaced

in Section Il the GLRT approach is exploited. Maximunwith P,,... More involved order detection methods may as
likelihood estimates of the unknown parameters involvetthén well be used, but such methods are out of the scope of this
test are evaluated and their asymptotic behavior are disduspaper. In the sequel, we assume tRais known. Robustness

in Section IV. A brief numerical assessment follows in Sacti issues related to model order mismatch will be investigated

V, while Conclusions are given in Section VI. an extended version of this paper.



B. Main Obijective B. ML Estimates

In the sequel, we denote by the number of samples The GLR is simply obtained by replacing the unknown
observed by each sensbr Consider the followingkk x N parameter valueHl ando? by their maximum likelihood (ML)
data matrixy: estimates: 5

sz(Y _ po(Y;67) _
In order to test hypothesi¢l, versus H,, the aim is to whereH; is the ML estimate o under hypothesig¢/, and
construct a relevant test function : CK*N — {0,1} with wheres? (resp.6?) is the ML estimate of2 under hypothesis

the sense that one decides hypothé&js(resp.H;) whenever Ho (résp.fy). Denote by, > Ay --- > Ax > 0 the ordered

o(Y) = 0 (resp.o(Y) = 1). As usual, we restrict ourselveséigenvalues oR (all distincts with probability one). For each

to the search for test functions such that the probability &= 1--- K, denote bye, the K" x 1 eigenvector associated

()

false alarm does not exceed a predefined threeshbéd, with A,. We provide the expression of the ML estimates
4% andH;. Note that the likelihood function is unchanged by
Py, [p(Y)=1] <e, (3) right-multiplication of H with a P x P unitary matrix, thus

H is identifiable only up to a unitary matrix. ML estimates
where Py, [€] represents the probability of a given eveht are given by:

under hypothesigi.

1 K 1 K
~2 ~2
o = — A, 0] = A
I1l. GENERALIZED LIKELIHOOD RATIO TEST 0 K ; r ' K-pP k:z:PH »
In the present section, we investigate the case where in%lt : / 2 o
' . L = ley,...,ep]dia AL — 6%, .\ Ap — U
symbolss(n) are supposed to be Gaussian distributgd;) ~ ! lex r]diag 1791 Y e

CN(0,Ip) wherelp denotes the” x P identity matrix. In this \yhere U is a P x P unitary matrix indeterminacy. The proof
case, the generalized likelihood ratio test can be expiesse of the above lemma is omitted due to the lack of space. We
o . may now evaluate the GLR by substituting the valaésand
A. Likelihood Ratio R in equations (4)-(5) with the corresponding ML estimates

We respectively denote by (Y;02) andp, (Y; H,02) the &5 andH H{’ + 671 respectively. For each, we define:
likelihood functions of the observation matrix indexed by Ap
the unknown parameteild ando? under hypothesefl, and HPp =7 rR (®)
H, respectively: K

C. Proposed Hypothesis Test
po(Y;02) = (102) VK exp (—]\;tr R) 4) The following result is a direct consequence of Lemma 1.
g ~
, X« e L Proposition 1. The GLR writesLy(Y) = CV exp NLy
pi(Y;H,0%) = (77 det R)™ exp (—Ntr (RR )) ®) wherec = (1- %)Kﬁp is a constant and wheré y =

L ey is the statistic defined b
whereR = R(H, ¢?) is the true covariance matrix undéf N 1r) y

defined by P L
R = HH" 4 521 Ly =) logu,+ (K - P)log (“KZ%) )

p=1 p=1
and whereR is the sampled covariance matrix: The above result implies that the “trace-normalize&”
largest eigenvalues,, ..., up of the sampled covariance ma-
R = iYYH ) trix form in some sense a sufficient statistic for the gerized|
N likelihood ratio test. For technical reasons which will bee

to clear in the sequel, we rather focus on the following “cesder

In the ideal case where paramet&fsando? are supposed g wus -
generalized log-likelihood ratio:

be available, it is well known that a uniformly most powerfufnd rescaled”

test rejects the null hypothesis when ratio Ly = N33y (Ln —an) . (10)
po(Y;0?) Here, we defined the centering constant by
LyY)= ————"~7. 6
~(Y) p1(Y;H,02) ©)

an = 2Plog (1+ /c)

lies below a certain threeshold which is selected so that (3) 2 4
holds. Unfortunately, parameteld and o2 are unknown in ~P(1+e) (1~ C%) - % (11)
our context so that a uniformly powerful test can no Iongee{ d the normalisation constagi by
be defined. In this case, a suboptimal but classical approacrh

consists in replacing the true likelihood ratio by the stech -+ \/5)2/3 (12)

generalized likelihood ratio (GLRJ x(Y). Py = (24 \/c) /3



where we defined = K/N. Clearly, the GLRT which consists N of samples have the same order of magnitude. Otherwise
in comparing (7) with a predefined threeshold is equivalent (stated, we consider the following asymptotic regime:
terms of false alarm and miss probabilities) to the follagvin N = o0, K — 00, K/N—¢, Pisfixed (15)

test:
- where0 < ¢ < 1 is a constant. It is worth stressing that under
Ly 2 (13)  H,, the distribution ofu, = A, /(4 tr R) does not depend on
Hy o2. Therefore, the distribution of ;» does not depend on?.

wherevy is a suitable threshold. As a consequence, there is no restriction in assuming that

o2=1
Comments
e Clearly, the test statisti€  is equivalent to the generalized
likelihood ratio L (Y) in the sense that there exists a oneA. Some Insights

to-one mapping from one to other. The reason for uding  The goal of the present section is to characterize the
and K are large enough, the threeshold vatue does not f; |n order to have some insights on this behaviour, assume
depend on the system characterisfiésK” or i/N. Universal  for the sake of illustration thaP = 1 (at most one source is
threeshold tables are likely to be provided irrespectivéh® jikely to be active).

DalftICU|Zr cognitive slystenr: OL'”ft_erE_’St' - Case P = 1. From Proposition 1, the (rescaled) gen-

a n order LO Cﬁmpﬁtﬁjt el € |nA|t|on 0 It € t_es]E_, V\:je mu%.Iralized Iog-lilfelihood ratioly is a function of the ratio

th(-}atte r{rr:(lane rtott;}ai)ilriia ; oof fa\I/:eug\I]érms ;sssl:)ii,;tjédlswime th(saote# o A/ (%trR) - The asymptotic analysis &y thus reduces
P Y B the separate study of; and %tr R. First consider the

does not exceed a certain predefined valuas required by . A . A
. P -largest eigenvalue; of R. Under hypothesig/,, R belongs
N h f levh . i
constraint (3). In order to maximize the power of our testley Lo the Laguerre Unitary Ensemble (LUE). It is well known

keeping the latt traint satisfied lect the tiof .
eeping the latter constraint satisfied, we select the bioids that A\; converges a.s. to the right edge of the Marchenko-

7w such thatFly, p(yy) = € where Pastur distribution:\; % (1 + \/c)2. A further result due
Fy,p(z) = Pp, [Ly < 2] (14) to Johnstone(2001) [5] states that convergence holds atispe
- 1/N?/3 and, more precisely, that the centered and rescaled
is the distribution function of random variabley underH,. quantity
Otherwise statedyy can simply be defined agy = Fjgvlp(lf

in the present section, for the sake of analysis.

¢), where Fy,', denotes the inverse dfy p with respect to 2/3 A — (14 /)2

€Ly, : ; {1 = N% (16)
composition. Unfortunately, the expression of functibr p . 1/3
is hardly tractable and its inversion would require invalve (1+Ve) (% + 1)

numerical methods. In the next section, we propose 1o studlyerges in distribution toward a standard Tracy-Widom

the asymptotic behaviour dfy, p(x) in order to simplify the - jisyiption function®, which can be defined in the following
computation of the threshold value. wav:

e The proposed test benefits from the prior knowledge of Y o0 )

the numberP of primary transmitters (or at least an upper Fi(s) = exp (_/ (= s)q”(x) dm) ) 17
bound on this number). In case such an information is n\s)vthere solves the Painlélsll differential equation:
available, or in casé® > K, the GLRT would reduce toKthe 4 q :

standard sphericity test based on the statisicR / (tr R) . q"(z) = zq(z) + 2¢°() ,
The proposed test can be interpreted as an extension of the q(x) ~ Ai(z) as z — oo
above sphericity test to the case where the dimengtoof and Ai(z) denotes the Airy function. This result provides the

the “signal-subspace” is known to be strictly less thén asymptotic behaviour of the numeratdr of p;.
Now consider the denominatd%trR of p;. By the law of
IV. ASYMPTOTICANALYSIS large numbers;Ltr R converges a.s. to? = 1. Furthermore,

In the present section, we provide a simple procedure allof@nvergence holds at spegdN in the sense thagtr R =
ing to determine the threeshold value, based on the asyimptdt+ Or(1/N) (where Op(1/N) stands for a term which is
analysis of the test statistié y under Hy. Our analysis is bounded in probability by”/NN for a certain constart). It is
relevant in contexts where the numbiérof sensors is assumedtherefore straightforward to prove that rafig = A, /(#trR)
to be large i(e. significantly larger than the numbeP of has the same asymptotic behaviourias As a consequence,
sources). Due to cognitive radio constraints, the secgnddhe asymptotic behaviour df y can be expressed in terms of
system must be able to decide the presence/absence of printd@ Tracy-Widom law (17).
transmitters in a moderate amount of time. Therefore, wadfoc Case P > 1. When the numbeP of sources is larger than
on the context where the numbg&r of sensors and the numberone, a similar behaviour occurs. In that case, the tessstati



L is a continuous function ofus, ..., pup) Where for each ensures that the probability of false alarBy, [Ln < n]is
p=1...P, up = )\p/(%tr R). Due to the same argumentsno larger thane for N large enough.

(1,...,pup) has essentially the same asymptotic behaviour
as(\1, ..., \p). Therefore, the asymptotic distribution Bfy i )
can be expressed in terms of the asymptotic joint distdputi ® The above results provide a ;lmple way to set the threshold
of the P largest eigenvalue$\, ..., \p) in the LUE. For 7~ Orto computq?—value§ assouatgd with the propo.sed'test. It
eachp, we define?, as the r.h.s. of equation (16) when Prevents from using tedious algorithms for approximating t

is replaced with),. Random variables/y, ..., (p) are the distribution ofL_N._ Ins_tead, it only relies orpre-determmeq
properly centered and rescaled largest eigenvaludd.dfhe tables of the distributionf’». Such tables are well known in
following result can be found for instance in [6]. Denote b§aSel” = 1. The caseP” > 1 has been subject to much less

We now make the following comments.

1, the indicator of setd. Investigations at the present time. We note however that the
main developments in the field of multivariate Tracy-Widom
Theorem 1. [6] For each zy > 22+ > xp, distributions are most recent (see for instance [6], [7] and
. references therein).
| Py, b1 < z1,....0p <zp|=F .
N Koo Ho s @1,ebp Swp] =Fp(21,.. o zp) e Note thatFp does not depend on the technical parameters
where Fp(z1, ..., xp) is the P-variate Tracy-Widom distri- K, N or K/N. This observation is one of the main arguments

for using test statistic y: the threshold selection procedure

bution defined b
ttion cefined by only depends on the desired probability of false alarm and on

Fp(z1,...,2p) = the.maximum number of source? likely to be present in
1 GirtHip a given band. It does not depend on the number of available
Z e R = Det(1+Kx,....p)|, _._. _, shapshots. More importantly, it does not depend on the numbe
(ir..ip)el tie-etpi 0zt .. Ozp ! "~ of secondary users in the system. Such a flexibility of the tes

represents a particularly important feature for cognitiadio

where I consists of all sets ofP nonnegative integers
systems.

i1,...,4p such thati;, = 0 andi; + --- 4+ ¢;41 < j for each . . .
L The selection ofyy as in (19) ensures that the PFA is below
j=1...P—1.Here,Det(1+ Kx., ..., ) represents the Fred- * i (19)

) . P e at least from a certain value d¥. However, Theorem 2

hcrx]lm determinant with kernek'(x:,y) >, (2p = 1)1k, () provides no information omow largeshould beN in order

where Ai(2) Al () — Ai(y) Al () that the PFA stays below for finite values of N, K. Such

v —y a characterization would require to study more accuratady t
convergence speed in (18), and is out of the scope of thigpape

is the Airy kernel and wherek, ... R, are the intervals However, some answers are provided in the simulations.
(.Il, OO), (l‘g, 331],. oy (Z‘p, xp_l] respectlvely.

K(aj>y) =

C. Sketch of the Proof of Theorem 2

Note that numerically efficient methods to compute Fred- . .
holm determinants and Tracy-Widom distributions have be%nAssume that hypothesi, holds. We study the asymptotic

. 2/3 o . .
studied, see for instance the works of [7]. Algorithms fo eh_av(ljorf_of]\; b (Lﬁ lalt\;]),whereLt Nt s def_lnedjtg/(Q) and
constructing tables faF » are however far beyond the scope of v IS defined by (11). Inthe asymptotic regime (1a); con-

. : ges to the constant= 2P log(1+/c) — P(1+/c). The
this paper. We may now express the main result of the preséﬁgmptotic study o2/3 (L — o) iS thus equivalent to the

section. study of N%/3 (L — o). Define the following quantities:
B. Main R I
a|£ esult S Z, = LQ 1, (20)
Let — denote the convergence in distribution in the asymp- (1+ /)
totic re.glme.(15). A skgtch of the proof of the following rétsu log (1 L >, up) P
is provided in subsection IV-C. Ay = S 1— =)
K H
Theorem 2. Under hypothesisy, K tE
N Finally, defineBy = (1 + /¢)?PN?/3(1 — Ay).
Ly 2 ZX,, , (18) Lemma 1. The following equality holds true:
p=1
2/3 o _
where (X4,...,Xp) follows a standard P-variate Tracy- IJDV (Ly = Pac)
Widom distribution. ZNQ/BZP <1og (1Z+ Zy) An(1+ ﬁ)2> V By, (1)
Denote byFp(z) the distribution function ofzp X, and  p=1 P

by Fp' the inverse ofFp w.r.t. composition.

The proof of Lemma 1 is obtained by straightforward
expansion of the rh.s. of (21). Ag, converges a.s. to
v > Fpt(l—e) (19) (1 + /¢)? Z, tends to zero asV — oo. This implies that

Corollary 1. Any threesholdyy such that



the ratio 2. *%2) converges a.s. to one. Similarl; ° 1,

tends to zeropaﬁf, K — oo. Thus, AN converges a.s. to one.
Moreover, it can be shown that, converges to one at speec oall o
1/Ni.e, N(Ay—1) is bounded in probability a& — oo (the ek
proof is omitted due to the lack of space). As a consequen T
By o N?/3(1— Ay) converges in probability to zero. On the

1+ : . e 2 Salae
asymptotic DEE E ,*

09 —=—K=100 : B Y T
K=50 p

06

otherhand, the facts that, — 0 and Ay — 1 a.s. imply that oer l
04F ‘
log (1+ Z, a.s.
Vp, W—AN(H\/E)Q—A—(IJF\%)Q. 03F <
p 02
By Theorem 1,N%/3Z, is bounded in probability for eagh 0 7 A
lThedreftore’ using— (1—|-\/E)2 — _\/6(24’\%): equation (21) ok . 720 R h .............. = 75 0
eads to:
P —
N2/3 (LN _p ac) _ —\/5(2 + \@) ZN2/3ZP + Op(l) , Figure 1. Cumulative distribution function &y — P = 1,2,3,4—c=0.4
p=1
/3(2 4 ,/2) P 23 pp — (14 /) g.d.f. An arbitrary value of: (? :'0.4.) is.chgsen. Solid bold
= fm Z el or(1) lines represent the asymptotic distributionfof; for each P,
p=1 (1++/c) (ﬁ + 1) given by Theorem 2, which is independentoFigure 1 shows

) _that, even for very moderate values &f, N, the empirical
where op(1) stands for a term which tends to zero inyigyribytion function fits the asymptotic one. Typically, —
probability. As explained in subsection IV-A, the asympiot | is sufficient to achieve the asymptotic regime wHen- 1

distribution of the trace-normalized eigenvalyes. .., up i (aithough, as expected, whéhincreases, largest values &f
equivalent to the asymptotic distribution of the non-noiieeal required to reach the asymptotic regime). This provas th

eigenvalues\,, .. . Ap, and is therefore given by Theorem 14, asymptotic analysis can reliably be used for the selecti
We finally obtain: of the threesholdy or for the computation of-values, even

P for moderate values oV, K.
N2/3(LN_pa)g_m2X ,
¢ (14 /c)2/3 r REFERENCES
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case, the convergence speed@f (in distribution) would
hold at ratel/N'/3, which is a rather slow convergence rate.
This unfortunate behaviour is due to the presence of the term
By in (21), which tends to zero only at rate/N'/3. The
correction term (22) allows to circumvent this issue, and to
provide a higher convergence rate ©f;. This term has no
impact on the results, but allows the asymptotic regime to be
reached even for moderate values¥f K, as illustrated by
the following simulations.

V. SIMULATIONS

~ Figure 1 represents the empirical c.d.f. of the test statist
Ly for different values of the number of sourcés 1000
realizations of matriXY are used to evaluate each empirical



