
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 2, FEBRUARY 2013 1129

Performance of Mutual Information Inference
Methods Under Unknown Interference

Abla Kammoun, Romain Couillet, Jamal Najim, and Mérouane Debbah

Abstract—In this paper, the problem of fast point-to-point
multiple-input-multiple-output channel mutual information esti-
mation is addressed, in the situation where the receiver undergoes
unknown colored interference, whereas the channel with the
transmitter is perfectly known. The considered scenario assumes
that the estimation is based on a few channel use observations
during a short sensing period. Using large dimensional random
matrix theory, an estimator referred to as G-estimator is derived.
This estimator is proved to be consistent as the number of antennas
and observations grow large and its asymptotic performance is
analyzed. In particular, the G-estimator satisfies a central limit
theorem with asymptotic Gaussian fluctuations. Simulations are
provided which strongly support the theoretical results, even for
small system dimensions.

Index Terms—Central limit theorem, G-estimation, mutual in-
formation inference, random matrices.

I. INTRODUCTION

T HE use of multiple-input-multiple-output (MIMO) tech-
nologies has the potential to achieve high data rates, since

several independent channels between the transmitter and the
receiver can be exploited. However, the proper evaluation of
the achievable rate in the MIMO setting is fundamentally con-
tingent to the knowledge of the transmit–receive channel as well
as of the interference pattern. In recent communication schemes
such as cognitive radios [1], it is fundamental for a receiver to
be able to infer these achievable rates in a short sensing period,
hence extremely fast. This paper is dedicated to the study of
novel algorithms that partially fulfill this task without resorting
to the (usually time consuming) evaluation of the covariance
matrix of the interference.
Conventional methods for the estimation of the mutual in-

formation in single-antenna systems rely on the use of classical
estimation techniques which assume a large number of obser-
vations. In general, consider a parameter we wish to estimate,
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and the number of independent and identically distributed
(i.i.d.) observation vectors . Assume is a
function of the covariance matrix of the re-
ceived random process, i.e., , for some function .
From the strong law of large numbers, a consistent estimate of
the covariance of the random process is simply given by the em-

pirical covariance of , i.e.,
. The one-step estimator of would then con-

sist in using the empirical covariance matrix as a good ap-
proximation of , thus yielding [2]. Such methods
provide good performance as long as the number of observa-
tions is very large compared to the vector size , a situation
not always encountered in wireless communications, especially
in fast changing channel environments.
To address the scenario where the number of observations

is of the same order as the dimension of each observation,
new consistent estimation methods, sometimes called G-esti-
mation methods (named after Girko’s pioneering works [3], [4]
on General Statistical Analysis) have been developed, mainly
based on large dimensional randommatrix theory. In the context
of wireless communications, works devoted to the estimation of
eigenvalues and eigenspace projections [5], [6] have given rise
to improved subspace estimation techniques [7], [8]. Recently,
the use of these methods to better estimate system performance
indexes in wireless communications has triggered the interest
of many researchers. In particular, the estimation of the mutual
information of MIMO systems under imperfect channel knowl-
edge has been addressed in [9] and [10], where methods based,
respectively, on free probability theory and the Stieltjes trans-
form were proposed.
In this paper, we consider a different situation where the re-

ceiver perfectly knows the channel with the transmitter but does
not a priori know the experienced interference. Such a situation
can be encountered in multicell scenarios, where interference
stemming from neighboring cell users changes fast, which is a
natural assumption in packet switch transmissions. Our target
is to estimate the instantaneous or ergodic mutual information
of the transmit-receive link, which serves here as an approxi-
mation of the achievable communication rate provided that no
improved precoding is performed. An important usage of the
mutual information estimation is found in the context of cogni-
tive radios where multiple frequency bands are sensed for fu-
ture transmissions. In this setting, the proposed estimator pro-
vides the expected rate performance (either instantaneous or er-
godic) achievable in each frequency band, prior to actual trans-
mission. The transmit–receive pair may then elect the frequency
sub-bands most suitable for communication.

0018-9448/$31.00 © 2012 IEEE
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The setting of the paper assumes that the channel from the
transmitter to the receiver is known by the receiver (but not
known by the transmitter), which is a realistic scenario provided
that some channel state feedback is delivered by the transmitter,
and that the statistical inference on the mutual information is
based on successive observations of channel uses, where
is not large compared to the number of receive antennas ,
therefore naturally calling for the G-estimation framework. The
progression of this paper will consist first in studying the con-
ventional one-step estimator, hereafter called the standard em-
pirical (SE) estimator, which corresponds to estimating the in-
terference covariance matrix by the empirical covariance matrix
and to replacing the estimate in the mutual information formula.
We then show that this approach, although consistent in the large
regime, performs poorly in the regime where both and

are of similar sizes. We then provide an alternative approach,
based on the G-estimation scheme, and produce a novel G-esti-
mator of the mutual information which we first prove consistent
in the large , regime and for which we derive the asymp-
totic second-order performance through a central limit theorem
(CLT).
The remainder of this paper is structured as follows. In

Section II, the system model is described and the consid-
ered problem is mathematically formalized. In Section III,
first-order results for both the SE estimator and the G-estimator
are provided. In Section IV, the fluctuations of the G-estimator
are studied. We then provide in Section V, numerical simula-
tions that support the accuracy of the derived results, before
concluding the paper in Section VI. Mathematical details are
provided in the appendices.
Notations: In the following, boldface lower case symbols

represent vectors, and capital boldface characters denote ma-
trices ( is the size- identity matrix). If is a given matrix,

stands for its transconjugate; if is square, , ,
and , respectively, stand for the trace, the determinant, and
the spectral norm of . We say that the variable has a stan-
dard complex Gaussian distribution if ,
where and are independent real random variables with
Gaussian distribution . The complex conjugate of a
scalar will be denoted by . Almost sure convergence will be
denoted by , and convergence in distribution by . Notation
will refer to Landau’s notation: if there exists

a bounded sequence such that . For a square
Hermitian matrix , we denote

the ordered eigenvalues of .

II. SYSTEM MODEL AND PROBLEM SETTING

A. System Model

Consider a wireless communication channel
between a transmitter equipped with antennas and a re-
ceiver equipped with antennas, the latter being exposed
to interfering signals. The objective of the receiver is to
evaluate the mutual information of this link during a sensing
period assuming known at all time. For this, we assume
a block-fading scenario and denote by the number
of channel coherence intervals (or time slots) allocated for

sensing. In other words, we suppose that, within each channel
coherence interval , is deterministic and
constant. We also denote by the number of channel uses
employed for sensing during each time slot ( times the
channel use duration is therefore less than the channel coher-
ence time). The concatenated signal vectors received in slot
are gathered in the matrix defined as

where is the concatenated matrix of the trans-
mitted signals and represents the concatenated
interference vectors.
Since is not necessarily a white noise matrix in the

present scenario, we write where
is such that is the deterministic matrix of
the noise variance during slot , while is a
matrix filled with independent entries with zero mean and unit
variance. That is, we assume that the interference is stationary
during the coherence time of , which is a reasonable as-
sumption in practical scenarios, as commented in Remark 1.
The choice of using the additional system parameter , not nec-
essarily equal to , is also motivated by practical applications
where the sources of interference may be of different dimen-
sionality than the number of receive antennas, as discussed in
Remark 1 as follows. This will have no effect on the resulting
mutual information estimators.
We finally assume that perfect decoding of (possibly

transmitted at low rate or not transmitted at all) is achieved
during the sensing period. If so, since is assumed perfectly
known, the residual signal to which the receiver has access is
given by

Remark 1: The usual white noise assumption naturally arises
from the thermal noise created by the electronic components at
the receiver radio front end as well as from the large number
of exogenous sources of interference in the vicinity of the
receiver. However, in cellular networks, and particularly so
in cell edge conditions, the main source of interference arises
from coherent transmissions in adjacent cells. In this case,
only a small number of signal sources interfere in a colored
manner. Calling the channel from interferer

, equipped with antennas, to the receiver
and the concatenated transmit signals from
interferer , the received signal can be modeled as

(1)

where is the concatenated additional white
Gaussian noise with variance . In this case, we see that
denoting and
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Fig. 1. System model of Remark 1 with two interferers.

we fall back on the aforementioned model. Fig. 1 depicts this
scenario in the case of interfering users.
The statistical properties of the random variables and
are precisely described as follows.

Assumption A1: For a given where , the entries
of the matrices and are i.i.d. random variables with
standard complex Gaussian distribution.
The objective for the receiver is to evaluate the average (per-

antenna) mutual information that can be achieved during the
slots. In particular, for , the expression is that of the in-
stantaneous mutual information which allows for an estimation
of the rate performance of the current channel. If is large in-
stead, this provides an approximation of the long-term ergodic
mutual information. Under Assumption A1, the average mutual
information is given by

(2)
The target of this paper is to address the problem of estimating
based on successive observations assuming

perfect knowledge of , but unknown for all .

B. SE Estimator

If the number of available observations during the sensing
period in each slot is very large compared to the channel vector
, a natural estimator, hereafter referred to as the SE estimator,

consists in the following one-step estimator

(3)

For future use, it is convenient to introduce the notation

(4)

With this notation at hand, .
For fixed, it is an immediate application of the law of large

numbers and of the continuous mapping theorem to observe that
as

(5)

However, from the aforementioned discussions, the assumption
may not be tenable for practical settings where sensing

needs to be performed fast, particularly so under fast fading con-
ditions. In this case, as will be shown in Section III, the SE
estimator is asymptotically biased in the large , regime,
hence not consistent, and (5) will no longer hold true. This mo-
tivates the study of an alternative consistent estimator based
on the G-estimation framework. To this end, we first need to
study in depth the statistical properties of the SE estimator from
which the G-estimator will naturally arise. The statistical prop-
erties of the latter will similarly be obtained by first studying the
second-order statistics of the SE estimator (themselves being of
limited practical interest). Before moving to our main results,
we first need some further technical hypotheses.

C. Asymptotic Regime

In this section, we formalize the conditions under which the
large , regime is considered. We will require the following
assumptions.
Assumption A2: , , , , and

Remark 2: The constraints over and simply state that
these quantities remain of the same order. The lower bound for
the ratio accounts for the fact that is larger than ,
although of the same order.
In the remainder of this paper, we may refer to Assumption

A2 as the convergence mode , , .
We also need the channel matrices to be bounded in spectral

norm, as , , , as follows.
Assumption A3: Let a sequence of integers in-

dexed by . For each , consider the family of
matrices . Then, we have the following.

1) The spectral norms of are uniformly bounded in the
sense that

2) For , the smallest eigenvalue of
denoted by is uniformly bounded away from
zero, i.e., there exists such that

Assumption A4: Let a sequence of integers in-
dexed by . For each , consider the family of

matrices . Then, the spectral norms of are uni-
formly bounded in the sense that
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Assumption A5: The family of matrices satisfies addi-
tionally the following assumptions.
1) Denote by the rank of . Then

2) The smallest nonzero eigenvalue of is uniformly
bounded away from zero, i.e., there exists such that

III. CONVERGENCE OF THE AVERAGE MUTUAL
INFORMATION ESTIMATORS

In this section, we study the asymptotic behavior of the SE es-
timator and prove that under the asymptotic regimeA2, this
estimator is asymptotically biased. Relying on this first analysis,
we then derive a consistent estimator based on the random ma-
trix inference techniques known as G-estimation.
These techniques can be classified in two categories. One

is based on the link between the Stieltjes transform (see
Appendix A) and the Cauchy complex integral, recently exhib-
ited by Mestre who developed a framework for the estimation
of eigenvalues and eigenspace projections [5]. This approach
is often well adapted as long as the estimation of parameters
depending either on the eigenvalues or on the eigenvector pro-
jections of is considered (see, for instance, Lemma 1)
but may fail when the dependence is more involved. The second
approach, which we will adopt here, is based on the technique
of deterministic equivalents developed in [11] and [12]. It
follows from the initial work [10] of Vallet and Loubaton, and
will be illustrated in Section III-B.

A. SE Estimator

We start by studying the second of the two terms in the dif-
ference (2) for which it is much easier to derive an estimate.

Lemma 1: Let Assumptions A1–A4 hold. Then, we have the
following convergence:

Proof: See Appendix A

Remark 3: It should be noted that in the proof of lemma 1,
the Gaussianity assumption of the entries is not necessary and
can be replaced by a finite moment condition.

Remark 4: Lemma 1 relies on the Stieltjes transform estima-
tion technique fromMestre. The latter is used to compute a con-
sistent estimate of the quantity , which
is seen here as a functional of the (nonobservable) eigenvalues
of . Following the work from Mestre [5], the idea is to
link the Stieltjes transform of to that of the (almost sure)

limiting Stieltjes transform of the (observable) sample covari-
ance matrix . See [13] for a tutorial on these notions.
As a consequence of Lemma 1, we see that the

is a consistent estimate of
(recall that )

up to a bias term depending on the time and space dimensions
only. This may suggest that, up to the introduction of the term

in the log determinants for estimating the first term in
(2), the SE estimator is also a consistent estimator for . This
is however not true. To study the first term in (2), which is not
as immediate as the second term, we need some further work.
We start with a first technical lemma which follows instead
from random matrix operations on deterministic equivalents.1

Lemma 2: Let Assumptions A1– A4 hold and let .
Then, we have the following identities.
1) The fixed-point equation in

(6)

admits a unique positive solution .
Denote by and the following quantities:

2) Then, for any deterministic family of complex
matrices with uniformly bounded spectral norm, we have

3) Let

Then, the following convergence holds

Proof: See Appendix B.

Clearly, when setting , this result provides a conver-
gence result for the SE estimator, as will be stated in Theorem
1. Lemma 2 is however more generic in its replacing the term
1 in front of by an auxiliary parameter . As a matter of
fact, the introduction of is at the core of the novel estimator
derived later. We can indeed already anticipate the remainder of

1By deterministic equivalents, we mean deterministic quantities which
are asymptotically close to the quantity under investigation. The advantage
of considering such equivalents comes from the fact that this prevents from
studying the true limit of the quantities under investigation (which might not
exist anyway). See [11] for more details.
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the derivations: if can be made equal to , then
the first term in the expression of is proportional to the
first term in (2) which we are interested in. Turning the factor
1 into a generic variable will therefore provide the flexibility
missing to estimate (2) precisely in the large , , regime.
Before getting into these considerations, let us start with the fol-
lowing result on the SE estimator.

Theorem 1 (Asymptotic Bias of the SE Estimator): Let As-
sumptions A1–A4 hold, and denote

(7)

where is the unique solution of (6). Then

Proof: Gathering item 3) of Lemma 2 together with
Lemma 1 yields the desired result.

This result suggests that the SE estimator is not necessarily
a consistent estimator of the mutual information, as there is no
reason for the bias term in (7) (for ) to be identically
null. However, based on the discussion prior to Theorem 1, we
are now in a position to derive a novel consistent estimator.
Section IV is dedicated to this task.

B. G-estimator of the Average Mutual Information

The following result is our main contribution, which provides
the novel consistent estimator for (2).

Theorem 2 (G-estimator for the Average Mutual Informa-
tion): Assume that A1–A4 hold and define the quantity

where is the unique real positive solution of

Then

Proof: We hereafter provide an outline of the proof, which
is developed in full detail in Appendix C. Denote the average
mutual information at time as

Recall that a consistent estimate of was provided in
Lemma 1. It therefore remains to build a consistent estimate for

.
The proof is divided into four steps, as follows.
1) In the first step, we exploit the convergence of parameter-
ized quantities of interest. Denote

and recall the definition of as given in Lemma 2-1).
By Lemma 2-3)

Clearly, for most values of , the deterministic quantity to
which converges differs from .

2) In the second step, we find a specific value of to enforce
the desired quantity to appear. One can readily check
that if is the solution of the equation in

(8)

then we immediately obtain

(9)

From the definition of , we show that there exists a
unique positive solution of (8), given by the closed-
form expression

(10)

However, the value of still depends upon the unknown
matrix to this point.

3) In the third step, we provide a consistent estimator
of . Based on an analysis of , and on finding a
consistent estimate for this quantity, we show that there
exists a unique positive solution to

(11)
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Moreover, satisfies

4) Finally, it remains to check that we can replace by
in the convergence (9). This immediately yields a consis-
tent estimate for . For the proof of the theorem to
be complete, it remains to gather the estimates of and

, which finally yields the announced result

IV. FLUCTUATIONS OF THE G-ESTIMATOR

In this section, we establish a CLT for the improved G-es-
timator so to evaluate the asymptotic performance of our
novel estimator. Due to the Gaussian assumption on , we
can use the powerfulGaussian methods developed for the study
of large random matrices by Pastur and colleagues [12], [14]. In
order to derive the asymptotic fluctuations of the G-estimator
, similar to the previous section, a first step consists in eval-

uating the fluctuations of .

Theorem 3: Let Assumptions A1–A5 hold and recall the def-
inition (4) of . We then have the following results.
1) The sequence of real numbers

is well defined and

2) The following convergence holds:

where is defined in (7).

Proof: See Appendix D.

With the aforementioned result at hand, we are now in a posi-
tion to derive the fluctuations of the G-estimator. As opposed to

though, the G-estimator has no closed-form expression,
as the ’s are solutions of implicit equations. Establishing a
CLT for therefore requires to control both the fluctuations of
the received matrix and of the quantity . In the following
lemma, we first prove that the fluctuations of are of
order , a rate which will turn out to be sufficiently fast

to discard the randomness stemming from in the asymp-
totic fluctuations of .

Lemma 3: For , the following estimates hold
true, as , , :
1) ;
2) .

Proof: See Appendix E.

We are now in a position to state the CLT for .

Theorem 4: Let Assumptions A1–A5 hold true. Then

where given by

(12)

which is a well-defined quantity which satisfies

Proof: Consider the function defined for as

Then, . Since all the random variables
are independent, it is sufficient to prove

a CLT for , for a given . In order to
handle the randomness of , we shall perform a Taylor ex-
pansion of around . Recall the following differentiation
formula:

A direct application of this formula together with the mere def-
inition of yields

Hence, the Taylor expansion writes

(13)

where lies between and . The definition (11) of
yields
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Fig. 2. Empirical and theoretical variances with respect to the SIR.

In particular, uniformly belongs to a fixed compact interval,
and so does for similar reasons. One can easily prove that
the second and third derivatives of are uniformly bounded
on the union of these intervals. This result combined with the
fact that implies that the last
two terms in the right-hand side (rhs) of (13) converge to zero
in probability. By Slutsky’s lemma [2], it suffices to establish
the CLT for instead of . This is
extremely helpful since unlike which is random, is
deterministic. The result is thus obtained by applying Theorem
3 and noticing that . Note that although
being valid only for fixed , Theorem 3 could be applied by
considering the slightly different model .

V. SIMULATIONS

In the simulations, we consider the case where a mobile ter-
minal with antennas receives during a sensing period
of slots data stemming from an antenna secondary
transmitter. We also set the number of symbols for sensing per
slot to . We assume that the communication link is de-
graded by both additive white Gaussian noise with covariance

and interference caused by monoantenna users.
Hence, this scenario follows the model described by (1), where
for each , the vectors , , respectively, rep-
resent the channel from the interferers to the receiver, whereas
represent the channel with the transmitter. Denote by

. In the simulations, and are randomly
chosen as Gaussian matrices and remain constant during the
Monte Carlo averaging. To control the interference level, we
scale the matrix for each so that the signal-to-interference
ratio (SIR) be given by

In a first experiment, we set and
and represent in Fig. 2 the theoretical and empirical normalized

mean square errors for the G-estimator with respect to the SIR
given, respectively, by

where is the G-estimator at the th Monte Carlo iteration and
is the total number of iterations. We also display in

the same graph the empirical normalized mean square error of
the SE estimator defined as

We observe that the G-estimator exhibits better performance for
the whole SIR range. These results are somewhat in contradic-
tion with the intuition that a low level of interference tends to
have a small impact on the accuracy of the SE estimator. The
reason is that the mutual information depends rather on the in-
verse of the covariance of the interference and noise signals

, as

We study in a second experiment the effect of when the
SNR and the SIR are set, respectively, to 10 and . Fig. 3
depicts the obtained results. We observe that, since the SE esti-
mator is asymptotically biased, its mean square error does not
significantly decrease with and remains almost unchanged,
whereas the G-estimator exhibits a low variance which drops
linearly with . Finally, to assess the Gaussian behavior of the
proposed estimator, we represent in Fig. 4 its corresponding his-
togram. We note a good fit between theoretical and empirical
results although the system dimensions are small.
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Fig. 3. Empirical and theoretical variances with respect to .

Fig. 4. Histogram of .

VI. CONCLUSION

In this paper, we have proposed a novel G-estimator for fast
estimation of the MIMO mutual information in the presence of
unknown interference in the case where the number of available
observations is of the same order as the number of receive an-
tennas. Based on large random matrix theory, we have proved
that the G-estimator is asymptotically unbiased and consistent,
and have studied its fluctuations. Numerical simulations have
been provided and strongly support the accuracy of our results
even for usual system dimensions.

APPENDIX A
PROOF OF LEMMA 1

Recall that if is a probability distribution on , then the
Stieltjes transform of is defined as

(14)

For example, the Stieltjes transform associated with
the empirical distribution of the eigenvalues of the Hermitian
matrix is simply the normalized trace of the associated
resolvent

where denotes the eigenvalues of . Since
their introduction by Marčenko and Pastur in their seminal
paper [15], Stieltjes transforms have proved to be a highly
efficient tool to study the spectrum of large random matrices.
From an estimation point of view, Stieltjes transform are, in
the large dimension regime of interest, consistent estimates
of well-identified deterministic quantities. Therefore, the
following approach consists in expressing the parameters of
interest as functions of the Stieltjes transform of the eigenvalue
distribution of .
Using the same eigenvalue decomposition as in Appendix B,

we can prove that where is an
standard Gaussian matrix, and where is a diagonal matrix
with the same eigenvalues as . In the sequel, if is a

Hermitian matrix, denote by the empirical distribution
of its eigenvalues, i.e., , and by the
associated Stieltjes transform.
Notice that due to Assumption A3, the following decompo-

sition holds true:

where is a positive semidefinite matrix (simply write
).

Notice that . Using this fact, and
the result in [16, Th. 1.1], one can easily prove that
satisfies

where is the unique Stieltjes transform of a probability
distribution , solution of the following functional equation:

(15)
Moreover, is analytical on
where stands for the imaginary part of . Using (15),
one can prove that satisfies

(16)

The link between the unobservable Stieltjes transform and
the deterministic equivalent being established, it remains
to express in terms of , which
follows easily by differentiation
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Hence

(17)

We shall now perform a change of variables within the integral
in order to substitute for with the help of (16). Since the
support of is on , the Stieltjes transform is contin-
uous and increasing on . It establishes then a bijection
from to . Obviously,

whereas since 0
is an eigenvalue of with multiplicity at least equal to

.
We have thus

establishing a bijection from to . Considering the
change of variable , (17) shows

We shall now compute this integral, denoted by in the sequel.
Write where

Straightforward computations yield

(18)

As our objective is to compute the limit of as and
, we need to obtain equivalents for at 0 and . A

direct application of the dominated convergence theorem yields

Recall that is the probability distribution associated with .
Then, . Although this property is not
easy to write down properly, it is quite intuitive if one sees a.s.
close to (the empirical distribution of the eigenvalues of

) which clearly satisfies

by Assumption A2: This assumption implies in fact that zero is
an eigenvalue of of order . Hence

Using these relations, we can derive equivalents for the first four
terms in the rhs of (18). In particular, we obtain

(19)

(20)

(21)

(22)

Let us now handle the last term in (18). Clearly, we have

which implies that

The aforementioned relations can also be transferred to the limit
Stieltjes transforms and and their associated probability
distribution functions and . Actually, we have

and also

Note in particular that , hence that is a deter-

ministic approximation of , the empirical distribution
of the eigenvalues of . Now

(23)

Using the dominated convergence theorem, one can prove that
the rhs of (23) is equivalent to

(24)
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Plugging (19)–(22) and (24) into (18) yields

Since the spectrum of is almost surely eventually
bounded away from zero and upper bounded [17], uniformly
along , we have

where are the eigenvalues of . A
consistent estimator of is thus given by

which concludes the proof.

APPENDIX B
PROOF OF LEMMA 2

Define for

Recall that . Denote by the
singular value decomposition of , being the diagonal ma-
trix of eigenvalues of ; in particular, ’s entries are non-
negative and bounded away from zero. Let .
Since the entries of are i.i.d. and Gaussian, has the same
entry distribution as . Hence, becomes

Obviously, we have and
. Deterministic equivalents for

and have been derived in [11] and are recalled
in the following lemma.

Lemma 4 (cf., [11]): Let .
1) Let . The following functional equation:

admits a unique positive solution .

2) Define

Then, for any sequence of deterministic matrices
with uniformly bounded spectral norm

In particular, setting , we get

3) Let

then

The general idea of the proof of Lemma 2 is to transfer these
deterministic equivalents to the case ; we will proceed by
taking advantage from the fact that all the diagonal elements of
are positive and uniformly bounded away from zero.
We first prove the existence and uniqueness of . Con-

sider the function defined on by

An easy computation yields the derivative of with respect to

which is obviously always positive. Function is thus always
increasing and thus establishes a bijection from to

. Since is negative, we conclude that has a
single zero. This proves the existence and uniqueness of .
It remains to extend the asymptotic convergence results to the
case .
In the sequel, we only prove item 2) for as

it captures the key arguments of the proof; the extension to
general sequences will then be straightforward. Write

as
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where . We now handle sequentially each of the differ-
ences of the rhs of the previous decomposition. We first prove
that there exists a fixed constant (which only depends
on ) such that for every , there exists
(which depends on the realization and hence is random) such
that for every , we have

(25)

To prove this, we rely on the resolvent identity
which holds for any square invertible ma-

trices and . Then, we have

Recall that is an matrix and that by AssumptionA2,
. Therefore, the spectrum of

is almost surely eventually bounded away from zero.2 In par-
ticular, there exists a constant such that eventually, we have

; hence

The second step consists in proving that for some constant
(depending on ), there exists (depending on
the realization) such that for all

(26)

The proof of (28) relies on the following identity:

(27)

where

It is clear that . Thus, by Assumption A2,
. Also, one can prove that there exists such

that . In fact, satisfies

(28)

2Recall that if , then the smallest eigenvalue
converges to ; it remains to argue on subse-

quences to conclude in the case where .

One can prove that and are smaller than
. In fact, can be written as

Similar arguments hold for , thus proving that
. From (27), we conclude that there ex-

ists such that for all

We are now in a position to prove the almost sure convergence
of . Consider the constants and
as defined previously and let . According to (25), there
exists such that

Using the almost sure convergence result of
stated in Lemma 4, there exists

such that

Finally from (26), there exists such that for all

Combining all these results, we have for

hence proving that

which is the desired result.

APPENDIX C
PROOF OF THEOREM 2

As previously mentioned, the proof of Theorem 2 relies on
the existence of a consistent estimate for
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Denote by the parameterized quantity

Then by Lemma 2-3), we obtain

(29)

Obviously, if is replaced by , a solution of

(30)

then the term appears in (29). The existence and uniqueness
of immediately follows from the fact that the function
defined as

is a contraction. Moreover, straightforward computations yield

(31)

Unfortunately, depends on the unobservable matrix .
One needs therefore to provide a consistent estimate of

. In order to proceed, we shall study the asymptotics of
. By Lemma 2-2), we have

(32)

On the other hand, we have

(33)

Substituting (33) into (32), we obtain

(34)

Intuitively, a consistent estimate of should satisfy
. This intuition

is confirmed by the following lemma:

Lemma 5: There exists a unique positive solution to
the equation

Moreover, the following convergence holds true:

where is defined by (30) (see also (31)).
Proof: The existence of follows from the fact that

is a continuous function
on , satisfying and .
Assume that admits more than one zero. It is clear that the
zeros of are isolated. Since , there exists then
and such that and for every

. However, this could not happen since is concave,
and as such . Function
admits then a unique zero .
Using (34), we get that

Beware that in (34), the convergence holds true for a fixed
while depends upon . A way to circumvent this issue
is to merge into and to consider the slightly different
model based on .
Therefore, the mere definition of and the previous con-

vergence yield

where

Expanding , we get

To conclude that converges almost surely zero, one
needs to establish that a deterministic asymptotic approximate
of
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could not be equal to zero. This is true, since from
the definition of , we can easily check that

can be approximated asymptotically

by , where we recall
that writes as

The deterministic equivalent of is thus
given by

which is obviously uniformly lower bounded by 1.

With the help of Lemma 5, the following convergence can be
easily verified:

Let , where

. As the minimum

eigenvalue of is almost surely bounded away from
zero, function is Lipschitz. Therefore, the following conver-
gence hold true:

We then get

which in turn implies that

Using this estimate of together with the estimate of as
provided in Lemma 1 immediately yields a consistent estimate
for , and the theorem is proved.

APPENDIX D
PROOF OF THEOREM 3

The proof of Theorem 3 relies on the tools used in [12],
adapted for dealing with Gaussian random variables. Recall that

is given by

where . Similarly, as in Appendix B and

Appendix A, we can prove that where
is a standard Gaussian matrix, and is the
diagonal matrix containing the eigenvalues of . Then,

becomes

Denote by the eigenvalue

decomposition of . Since is the rank
of , matrix has exactly nonzero entries which we
denote by . We get that can be written as

Let . Obviously, only the diagonal
elements of contribute in the expression of . Then,
using [18, Th. 3.2.11], we can prove that can be written
as

where is a standard Gaussian matrix.
Let ; we finally get

Let . By Assumptions A2 and A5-1), we
have

Moreover, Assumptions A4 and A5-2) imply that matrix
satisfies
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We retrieve then the same model as in [12], with the
slight difference that has an extra random term

. As we will see next, this has no
impact on the applicability of the method and one can get the de-
sired result by following the same lines of [12]. For ease of nota-
tion, we will drop next the subscripts and from all matrices.
In particular, we consider to prove a CLT for the functional

where , is an standard Gaussian matrix, and
is an deterministic matrix.
The expression of the variance for this CLT will depend on

some deterministic quantities which we recall hereafter.
1) Notations: Let and define the resolvent

matrix by

Let also be given by

We introduce the following intermediate quantities:

Matrix is an diagonal matrix defined by

where . We also define the diagonal
matrix given by

where . We also define as the unique positive
solution of the following equation:

where the existence and uniqueness of have already been
proven in [12]. Let and be the and diagonal
matrices defined by

Define also , , and as , ,
and .

2) Mathematical Tools: We recall here the mathematical
tools that will be used to establish theorem 3. All these results
can be found in [12].

1) Differentiation formulas

2) Integration by parts formula for Gaussian functionals: de-
note by a complex function polynomially bounded
with its derivatives; then

where is the th diagonal element of .
3) Poincaré–Nash inequality: The variance of can be
upper bounded as

4) Deterministic approximations of some functionals:

Proposition 1: Let and be two sequences of, respec-
tively, and diagonal deterministic matrices with uni-
formly bounded spectral norm. Let Assumptions A1–A4 hold
true. Then, the following holds true:

Proposition 2: Let , , and be three sequences of
, , and diagonal deterministic matrices

whose spectral norms are uniformly bounded in . Consider
the following:

and assume thatA1–A4 hold true. Then, we have the following.
a) The following estimations hold true: ,

, are .
b) The following approximations hold true:

(35)

(36)

(37)



KAMMOUN et al.: PERFORMANCE OF MUTUAL INFORMATION INFERENCE METHODS UNDER UNKNOWN INTERFERENCE 1143

3) CLT: All the notations being defined, we are now in
a position to show the CLT. We recall that our objective is
to study the fluctuations of . Since

are independent, it suffices to con-

sider the CLT for , for . We consider
thus the random quantity . Before get-
ting into the proof details, we shall first recall the CLT of

whose proof can be found in [19]. Indeed, it
is shown that

where . Like in [12],

define , where
is the deterministic equivalent defined by

and verifying

The principle of the proof is to establish a differential equation
verified by . Writing the derivative of with
respect to , we get

(38)

Since [12], we have

(39)

On the other hand, we have

Applying the integration by part formula, we get

After summing over index , we obtain

(40)

Recall the relation and where

. Plugging the relation into (40), we get

(41)

Hence, solving this equation with respect to
and using the fact that

, we get

(42)
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Using the relation , we get after sum-
ming with respect to

Using the relation , we have

Summing over , we finally obtain

It remains thus to deal with the terms . Using
proposition 1, we have

(43)

To deal with , we apply the results of proposition 2-b,
with and . In this case, is written as:

. Using Cauchy–Schwartz
inequality, we get

where . Therefore

(44)

The term can be dealt with in the same way, thus proving

(45)

Since is of order , we shall expand

to at least the order , and

thus, and cannot be separated in the same
way as previously.
Indeed, we shall first take the sum over in (42), thus yielding

(46)

Using the fact that

(46) becomes:

(47)
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Solving in (47) and using the relation
, we obtain

(48)

Multiplying both sides in (48) by and summing over , we
get

Using the approximating expressions in proposition 2, we obtain

Hence

(49)

Plugging (49) into (45), the term can be written as

(50)

Finally, it remains to deal with . Using proposition 1, we get

(51)

Summing (43), (44), (50) and (51), we obtain after some
calculations

(52)

Hence, the differential of with respect to satisfies

Following the same lines as in [12], one can prove that

(53)

Moreover, from the system of (50) in [12], one can find that

(54)

Using (53) and (54), we finally get

Let and

. Therefore, satisfies

where it can be proven that , for every in .
On the other hand, we have

Hence
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The characteristic function can be thus approximated
as

(55)
The characteristic function satisfies the same equation as in [12].
The single difference is that the variance given by

(56)

has two additive terms accounting for the variance of and
the correlation between and . The CLT can be thus
established by using the same arguments in [12], provided that
we show that . For that, we need only to
prove that

Deriving with respect to , one can easily see that

It has been shown in [12, eq. (67)] that satisfies

where . This fact combined with

implies that . It

remains thus to express the variance using the original
notations. One can easily show that

(57)

Then, from (57), we can prove that is solution in
of

(58)

Since is the unique solution of (58), we have

or equivalently

Therefore
(59)

In the same way, one can prove that can be expressed in terms
of the original notations as

(60)

Substituting (60) and (59) into (56), becomes

APPENDIX E
PROOF OF THEOREM 3

1) Denote by and the functionals given by

where . According to
Poincaré–Nash inequality, we have

(61)

We only deal with the first sum in the previous inequality; the
second one can be handled similarly. By the implicit function
theorem, if , then writes

(62)

As will be shown later, to conclude that ,

we need to establish that is lower bounded away

from zero, which is a much stronger requirement than .

This can be proved by noticing that . Hence

(63)

On the other hand, one can prove by straightforward calcula-
tions that which, plugged into (63), yields

(64)
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which is eventually uniformly lower bounded away from 0 due
to Assumption A2 and to the fact that by mere defini-
tion. Therefore

To prove 2), we rely on the resolvent identity which states

(65)

Using (65), we obtain

where satisfies . Note that equality fol-
lows from the fact that

Both estimates can be established with the help of
Poincaré–Nash inequality. Therefore

(66)

Using the mere definition of and (66), we obtain

(67)

Following the same lines as in Appendix B, we can prove that
for every real positives and , we have

where and are given by

Moreover, we can easily notice that .
This allows us to express as

Using this relation, we obtain from (67)

where

(68)

(69)
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To conclude, we shall establish that . This is
true, since using the relation , we prove
after some calculations that

where and are given by (68) and (69), shown at the
bottom of the previous page.
Since , and

which implies that
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