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Fluctuations of an Improved Population Eigenvalue
Estimator in Sample Covariance Matrix Models

Jianfeng Yao, Romain Couillet, Jamal Najim, and Mérouane Debbah

Abstract—This paper provides a central limit theorem for a con-
sistent estimator of population eigenvalues with large multiplici-
ties based on sample covariance matrices. The focus is on limited
sample size situations, whereby the number of available observa-
tions is comparable in magnitude to the observation dimension. An
exact expression as well as an empirical, asymptotically accurate,
approximation of the limiting variance is derived. Simulations are
performed that corroborate the theoretical claims.

Index Terms—Central limit theorem, eigenvalue estimators,
G-estimation, random matrix theory, Stieltjes transform.

I. INTRODUCTION

P ROBLEMS of statistical inference based on indepen-
dent observations of an -variate random variable ,

with and , have drawn the attention of
researchers from many fields for years: Portfolio optimization
in finance [1], gene coexistence in biostatistics [2], channel
capacity in wireless communications [3], power estimation in
sensor networks [4], distance of targets in array processing [5],
etc.
In particular, retrieving spectral properties of the popu-

lation covariance matrix , based on the observation of
independent and identically distributed (i.i.d.) samples

, is paramount to many questions of general
science. If is large compared to , then it is known that
almost surely , as , for any
standard matrix norm, where is the sample covariance

matrix . However, one cannot
always afford a large number of samples. In order to cope with
this issue, random matrix theory [6], [7] has proposed new
estimators, mainly spurred by the G-estimators of Girko [8].
Other works include convex optimization methods [9], [10],
free probability tools [11], [12], and regularized estimation
(banding, tapering, thresholding, etc.) [13]–[15], when the
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structure of is known. Many of those estimators are con-
sistent in the sense that they are asymptotically unbiased as ,
grow large at the same rate. Nonetheless, only recently have

techniques been unveiled which allow to estimate individual
eigenvalues and functionals of eigenvectors of . The first
contributor is Mestre [16], [17] who studied the case where

with having eigenvalues with
large multiplicities and unknown eigenvectors, and with
i.i.d. entries. For this model, he provides an estimator for
every eigenvalue of with large multiplicity under some
separability condition (see also [4] and [18] for more elaborate
models).
These estimators, although proven asymptotically unbiased,

have nonetheless not been fully characterized in terms of their
asymptotic performances. It is in particular fundamental to eval-
uate the variance of these estimators for not-too-large , .
The purpose of this paper is to study the asymptotic fluctuations
of the population eigenvalue estimator of [17] in the case of
structured population covariance matrices. A central limit the-
orem (CLT) is provided to describe the asymptotic fluctuations
of the estimators with exact expression for the variance as ,
tend to infinity. An empirical, asymptotically accurate, ap-

proximation is also derived. For an application of these results
in a cognitive radio context, see for instance [19].
The remainder of this paper is structured as follows. In

Section II, the system model is introduced and the main results
from [16] and [17] are recalled. In Section III, the CLT for the
estimator in [17] is stated and the asymptotic variance derived.
In Section IV, an empirical approximation for the variance is
derived. Some simulation results are shown in this section.
Technical proofs are postponed to the appendixes.

II. ESTIMATION OF THE POPULATION EIGENVALUES

A. Notations

In this paper, lowercase (respectively, boldface lowercase,
boldface uppercase) symbols stand for scalars (respectively,
vectors, matrices); represents the Euclidean norm of
vector and stands for the spectral norm of . The
superscripts and , respectively, stand for the transpose
and transpose conjugate; the trace of is denoted by ;
the mathematical expectation operator, by . If is an
vector, then is the matrix with diagonal ele-
ments constituted from the components of . If , then

and , respectively, stand for ’s real and imaginary
parts, while stands for ; stands for ’s conjugate; and

denotes Kronecker’s symbol (whose value is 1 if ,
0 otherwise). For two sequences such that ,
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if and if
when .
If the support of a probability measure over is the finite

union of disjoint closed compact intervals for ,
we will refer to each compact interval as a cluster of .
If is a Hermitian matrix with eigenvalues

, we denote by the
set of its eigenvalues and by the empirical distribution of
its eigenvalues (also called spectral distribution of ), i.e.,

where stands for the Dirac probability measure at .
Convergence in distribution will be denoted by , in proba-

bility by , and almost sure convergence, by .

B. Matrix Model

Consider an matrix whose entries are
i.i.d. random variables, with distribution , i.e.,

, where , are both i.i.d. real Gaussian random vari-
ables . Let be an Hermitian matrix with
( being fixed) distinct eigenvalues with

respective multiplicities (so that ).
Consider now

The matrix is the concatenation of in-
dependent observations , where each observation
writes with . In particular,
the (population) covariance matrix of each observation is

. In this paper, we are interested in recovering
information on based on the observation

commonly referred to as the sample covariance matrix of the
’s.
It is, in general, a complicated task to infer the spectral prop-

erties of based on for all finite , . Instead, in the
following, we assume that and are large, and consider the
following asymptotic regime.
Assumption A1: The dimensions , and sat-

isfy the following conditions: when

(1)
This assumption will be shortly referred to as .

Fig. 1. Empirical and asymptotic eigenvalue distribution of for ,
, , , , , and
.

Assumption A2: The limiting support of the eigenvalue
distribution of is formed of compact disjoint subsets

, often referred to as clusters in the sequel.
From [17], one can also reformulate this condition in math-

ematical terms: the limiting support of is formed of dis-
joint clusters if and only if for ,
, where is defined in (2) at the bottom of the page, and

are the distinct real ordered solutions
of the equation:

This condition is also called the separability condition.
Fig. 1 depicts the eigenvalues of a realization of the random

matrix and the associated limiting distribution as ,
grow large, for , , and ,
with . The separability condition is illus-
trated there. Fig. 2 shows another situation where the separa-
bility condition is not satisfied for , , , and

, with .

C. Mestre’s Estimator of the Population Eigenvalues

In [17], an estimator of the population eigenvalues
based on the observations is proposed.

Theorem 1 [17, Th. 3]: Let Assumptions A1 and A2 hold true
and denote by the ordered eigenvalues of .
Then, the following convergence holds true:

(3)

(2)
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Fig. 2. Empirical and asymptotic eigenvalue distribution of for ,
, , , , , and
.

where

(4)

with and the ’s defined1

as follows.
1) If , then are the real ordered
solutions of

(5)

2) If , for and
are the real solutions of the above

equation.

D. Integral Representation of Estimator —Stieltjes
Transforms

The proof of Theorem 1 relies on large random matrix theory
and, in particular, on the Stieltjes transform of a probability dis-
tribution. The Stieltjes transform of a probability distribu-
tion over is a -valued function defined by

There also exists an inverse formula to recover the probability
distribution associated with a Stieljes transform: Let be
two continuity points of the cumulative distribution function as-
sociated with ; then

1Another characterization of interest of the ’s is the fact that they are the

eigenvalues of , where (see for
instance [7, Ch. 8]).

In the case where is the spectral distribution associated
with a Hermitian matrix with eigenvalues

, the Stieltjes transform of takes the particular
form:

which is the normalized trace of the resolvent .
Since the seminal paper of Marcenko and Pastur [20], the
Stieltjes transform has proved to be extremely efficient to
describe the limiting spectrum of large-dimensional random
matrices.
In the following, we recall some elements of the proof of The-

orem 1, necessary for the remainder of the paper. The following
important result is due to Bai and Silverstein [21] (see also [20]).

Theorem 2 [21]: Let Assumption A1 hold true and denote by
the limiting spectral distribution of , i.e.,

Then, the spectral distribution of the sample covariance
matrix converges (weakly and almost surely) to a proba-
bility distribution as , whose Stieltjes transform

satisfies

for and where is defined
as the unique solution in of

Note that is also the Stieltjes transform of a probability
distribution , which turns out to be the limiting spectral distri-
bution of , where is defined as

Denote by and the Stieltjes transforms of

and . Note, in particular, that

Remark 1: This relation associated with (5) readily implies
that for , . Otherwise stated, the (non-null)
’s are the zeros of . This fact will be of importance in

the sequel.
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Denote by and the finite-dimensional counter-
parts of and , respectively, defined by the relations

(6)

where is the unique solution of (6) satisfying
if . It can be shown that and are Stieltjes

transforms of probability measures and , respectively
(cf., [7, Th. 3.2]).
With these notations at hand, we can now provide some ele-

ments of the proof of Theorem 1.
Elements of Proof For Theorem 1: By Cauchy’s formula,

write

where is a negatively oriented contour taking values on
and only enclosing . With the change of vari-

able , the condition that the limiting support
of the eigenvalue distribution of is formed of distinct
clusters (cf., Assumption A2), and standard
properties of contour integrals, we can write

(7)

where denotes a negatively oriented, rectangular and sym-
metric with respect to the abcissa axis, contour which only en-
closes the corresponding cluster . Defining

(8)

dominated convergence arguments ensure that ,
almost surely. The integral form of can then be explicitly
computed thanks to residue calculus, and this finally yields (4).

Remark 2 (About the Contour Integrals): If is another
(rectangular and symmetric with respect to the abcissa axis)
contour which only encloses the th cluster, then the value of
the contour integrals in (7) and (8) remains unchanged. In par-
ticular, we can arbitrarily choose two nonoverlapping contours

and of the same cluster in the sequel.
The main objective of this paper is to study the performance

of the estimators . More precisely, we will
establish a CLT for as
, explicitly characterize the limiting covariance matrix

, and finally provide an estimator for .

III. FLUCTUATIONS OF THE POPULATION
EIGENVALUE ESTIMATORS

A. CLT

The main result of this paper is the following CLT which
expresses the fluctuations of .

Theorem 3: Let Assumptions A1 and A2 hold true and recall
the definitions of the ’s and ’s. Then

where refers to a real -dimensional Gaussian distribution,
and is an matrix whose entries are given by (9)
at the bottom of the page. The contours in (9) are defined as
follows. The contours and
are negatively oriented rectangles, symmetric with respect to the
abcissa axis, and only enclosing the cluster . They also verify

In particular, the families and are nonoverlapping.

Remark 3: In Theorem 3, the separability assumption A2 can
be relaxed to some extent. For example, if only the cluster asso-
ciated with satisfies the separability condition, one can study
the fluctuations of by relying on the same techniques.

B. Proof of Theorem 3

We first outline the main steps of the proof and then provide
the details.
Using the integral representation of and , we get

Let be the union of the ’s and the ’s; denote by
the set of continuous functions from to a Banach space
endowed with the supremum norm . Consider
the process

where

(9)
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Then, from [22] (see also Proposition 1),
almost surely belongs to for , large enough and

writes

where

(10)

Remark 4: Note that is a real random variable; if needed,
we shall explicitly indicate the dependence on the contour
and write .

Remark 5: Note that, due to formulas (7) and(8) and to Re-
mark 2, the following equality holds true:

if and are two contours which only contain the th
cluster. This fact will be of importance later.
The main idea of the proof of the theorem lies in three steps.
i) To prove the convergence in distribution of the process

to a Gaussian process.
ii) To transfer this convergence to the quantity

with the help of the
continuous mapping theorem [23].

iii) To check that the limit (in distribution) of
is Gaussian and to compute the

limiting covariance between
and .

Remark 6: Note that the convergence in step (i) is a distribu-
tion convergence at a process level; hence, one has to first estab-
lish the finite-dimensional convergence of the process and then
to prove that the process is tight over (see, for instance [24,
Th. 13.1]). Tightness turns out to be difficult to establish due to
the lack of control over the eigenvalues of whenever the
contour crosses the real line. In order to circumvent this issue,
we shall introduce, following Bai and Silverstein [25], a process
that approximates and .
Let us now start the proof of Theorem 3.
We begin by simple considerations on complex Gaussian

random vectors. Consider a -valued, centered, random
vector . If is, as an -valued vector, Gaussian,
then its distribution is fully characterized with the quantities

Lemma 1: Let be the support of the distribution .
1) The function defined by

is continuous and admits partial derivatives up to order 2
over .

2) Let Assumptions A1 and A2 hold true and consider a com-
pact set , symmetric with respect to the real axis
(i.e., ) which does not intersect . Then,
the process

converges in distribution to a stochastic process ,
satisfying and . As an
-valued real process, the process is a centered

Gaussian process with mean function zero and covariance
function defined as follows, for

(11)

Remark 7: Due to the properties of the process ,
(and similarly for the other cross-con-

jugate quantities , etc.); moreover, the quantities
and can be computed by considering

the limits and . The covari-
ance structure of the process is hence fully described.
Lemma 1 is the cornerstone to the proof of Theorem 3; its

proof is postponed to Appendix B and relies on the following
proposition, of independent interest.

Proposition 1: Assume that Assumptions A1 and A2 hold
true and denote by the support of the probability distribution
associated with the Stieltjes transform . Then, for every ,

where .
The proof of Proposition 1 is postponed to Appendix A.
As , a straightforward corol-

lary of Lemma 1 yields the convergence in distribution of
to . This concludes the proof

of step (i).
Consider two families of contours and as de-

scribed in Theorem 3. Denote by

(12)

A direct consequence of Lemma 1 yields that
converges in distribu-

tion to the Gaussian process with mean
and covariance structure inherited from the

Gaussian process . We are now in position to transfer the
convergence of to
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via the continuous mapping theorem, whose statement is
reminded below.

Theorem 4 [23, Th. 4.27]: For any metric spaces and ,
let , be random elements in with and
consider some measurable mappings , : and
a measurable set with a.s. such that

as . Then . It remains to
apply Theorem 4 to the process and to the
function as defined in (10). Denote by2

and consider the set

It is obvious that , , and are continuous over .
Then, it is shown in [6, Sec. 9.12.1] that ,
and, by a dominated convergence theorem argument,
that implies that

. Therefore, Theorem
4 applies to and the following conver-
gence holds true:

and step (ii) is established.
It now remains to prove step (iii), i.e., to check the

Gaussianity of the random variable and to
compute the covariance between and

. In order to propagate the Gaussianity of
the deviations in the integrands of(8) to the fluctuations of
the integral which defines , it suffices to notice that the
integral can be written as the limit of a finite Riemann sum
and that a finite Riemann sum of Gaussian random variables
is still Gaussian. Therefore, converges to a real
Gaussian distribution (notice that , being
the limiting distribution of the real random variable , is
real as well). The same argument applies to the whole vector

, which hence converges toward a
Gaussian vector

...
...

where is an vector and is an covari-
ance matrix.
As , a straightforward application of Fu-

bini’s theorem together with the fact that
yields

Hence, .

2As previously, we shall explicitly indicate the dependence on the contour
if needed and write .

It remains to compute the covariance between
and . As

, write

where follows from Remark 2 and enforces the fact that the
contours are nonoverlapping.
Choosing nonoverlapping contours will help us to compute

the ’s by evaluating contour integrals with no singularities
on the contours. Write

where follows from Lemma 1 and the fact that
together with Fubini’s theorem, and , ,

, respectively, stand for , , and . The
above double integral is also well defined as is well
defined and -differentiable over . By integration
by parts, we obtain

Similarly

Hence

Another integration by parts yields
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Finally, we obtain

and (9) is established.

IV. ESTIMATION OF THE COVARIANCE MATRIX

Theorem 3 describes the limiting performance of the esti-
mator of Theorem 1, with an exact characterization of its vari-
ance. Unfortunately, the variance depends upon unknown
quantities. We provide hereafter consistent estimates for
based on the observation .

Theorem 5: Assume that Assumptions A1 and A2 hold true,
and recall the definition of given in (9) and Theorem 3. Let

be defined by (14), where and are defined in
Theorem 1; then

as .
Theorem 5 is useful in practice as one can obtain simultane-

ously an estimate of the values of as well as an estimation
of the degree of confidence for each .

Proof: In view of formula (9), taking into account the fact
that and are consistent estimates for and , it

is natural to define by replacing the unknown quantities
and in (9) by their empirical counterparts and ,

hence the definition of in (13) at the bottom of the page.
The proof of Theorem 5 now breaks down into two steps:

the convergence of to , which relies on the definition
(13) of and on a dominated convergence argument, and
the effective computation of the integral in (13) which relies on
Cauchy’s residue theorem [26], and yields (14) at the bottom of
the page.
We first address the convergence of to . Due to [22]

and [27], almost surely, the eigenvalues of will eventually

belong to any -blow-up of the support of the probability mea-
sure associated with , i.e., the set .
Hence, if is small enough, the distance between these eigen-
values and any will be eventually uniformly lower-
bounded. By [17, Lemma 1], the same holds true for the zeros
of (which are real). In particular, this implies that
is eventually uniformly lower-bounded on (if not, then by
compacity, there would exist such that
which yields a contradiction because all the zeroes of are
strictly within any contour). With these arguments at hand, one
can easily apply the dominated convergence theorem and con-
clude that a.s. We now evaluate the integral (13)
by computing the residues of the integrand within and .
There are two cases to discuss depending on whether and

. Denote by the integrand in (13), i.e.,

(15)

Note that, when is fixed, for

Then, when . Same result holds for
. That is to say, and 0 are not poles of .
To apply the residue theorem, we first consider the case where

.
In this case, the two integration contours are different and

never intersect (in particular, is always different from ).
Let be fixed, and denote by the zeros (labeled in in-
creasing order) of , then the computation of the residue

of at a zero of which is
located within is straightforward and yields (16) at the
bottom of the page.

(13)

(14)

(16)
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Similarly, if one computes at a zero of
located within , one obtains

As stated in the following proposition, let , the set
is

eventually empty a.s. for all , large, and if ,
this set is not empty; however, the integration with respect to
for this residue is zero because the set only contains two
points; hence, the residue in this set has not to be counted.

Proposition 2: Let Assumptions A1 and A2 hold true, then
for , almost surely

for all , large.
The proof of Proposition 2 is postponed to Appendix C.
It remains to count the number of within each contour.

By [17, Lemma 1], eventually, there are exactly as many as
eigenvalues within each contour, hence the result in the case

:

We now compute the integral(13) in the case where , and
begin by the computation of the residues at . The definition
(16) of and the computation of still hold true in the
case where is within but different from . It remains to
compute . Taking , we get

Finally

Hence, the residue

Fig. 3. Comparison of empirical against theoretical variances, based on The-
orem 3, for three eigenvalues, , , ,
, , , and .

There are two other cases that should be taken into account for
the computation of the integral: the set and the residue for

. The first case can be handled as before. For ,
note that

is not the residue for this term. It remains to compute
for the residue . The integra-

tion by parts formula yields that

Then, the residue for is

This is the derivative function of ; then, the integration

with respect to is zero.
Finally, both have a null contribution, hence the formula

In Fig. 3, the performance of Theorem 3 is compared against
Monte Carlo simulations of a scenario of three eigen-

values, with , , , ,
, and . It appears that the limiting distribution

is very accurate for these values of , . We also performed
simulations to obtain empirical estimates of from The-
orem 5, which suggest that is an accurate estimator as well.
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APPENDIX

A. Proof of Proposition 1

Let us first begin by considerations related to the supports of
the probability distributions associated with and .
Denote by and these supports and recall that is the union
of disjoint clusters: For

The following lemma clarifies the relations between and .

Lemma 2: Under Assumptions A1 and A2, for large
enough, the support of the probability distribution associ-
ated with the Stieltjes transform is the union of clus-
ters: For

Moreover, the following convergence holds true:

for .
Remark 8: If the support contains zero, (ex: ),

. By Assumption A1, the multiplicity corre-
sponding to zero satisfies ; hence, zero is also in
the support . In this case, we will get that , and
the conclusion still holds true.

Proof of Lemma 2: Recall the relations:

(17)

and

(18)

As the Stieltjes transform of (the Dirac mass at 0) is
and is a continuous function over , for , with

, by the inverse formula of Stieltjes transform, one gets

So it suffices to study the support associated with .
From the definition of [see formula (17)], we obtain

Denote by .
In [28, Ths. 4.1 and 4.2], Silverstein and Choi show that for a
real number , and

with and .
Then, if , or with

. Now we will show that . In [28, Th. 5.1],
. If , as is discrete, we get that

. So on the neighborhood to the

left and to the right of , which contradicts [28, Th.
5.1].
Hence, . By the continuity, we get

This is equivalent to the following equation:

(19)

By multiplying the common denominator, one gets a polyno-
mial of the degree 2L in . Let us now prove that these 2L
roots are real. At first, note that

and

So has one and only one zero in the open set
for . Then, for

such that , it suffices to show that
in order to prove that there will be two zeros for in
the set . From the separability condition (cf.,

Assumption A2), , and

Thus, we obtain roots. Besides, in the open set

there exists another root in this set. In the open set

and

Hence, the last root in this open set. This proves that
.

To prove and , note that
satisfy the same type of equation by replacing by and
by . As and , the roots of (19) converge to
those of the limiting equation (see [29] for instance). Hence, the
conclusion.

We are now in position to establish the proof of Proposition 1.



1158 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 2, FEBRUARY 2013

Denote by the -blow-up of , i.e.,
. Let be small enough and consider

a smooth function equal to zero on , equal to 1 if
, equal to zero again if (as we shall see, will

be chosen to be large), and smooth in-between with :

Notice that if and is large enough,
then by Lemma 2, for all . Now
if is an Hermitian matrix with spectral de-
composition , where

is unitary and , write
.

We have

for every , where follows from Markov’s inequality.
The fact that for large enough and
every is well known (see, for instance, [6, Sec. 9.7]). We
shall, therefore, establish estimates over . Take

; we prove the following statement by induction: For
and for every integer and for every smooth

function with compact support whose value on is zero

First note that, due to Lemma 2,
(where is the probability distribution associated with )
for , large enough . A minor modification of
[30, Lemma 2] (whose model is slightly different) with the help
of [31, Proposition 5] yields that for and large
enough, , and the property is verified
for .
Let be fixed and assume that the result holds true for

. We want to show that .
At step , the expectation writes

The second term of the right-hand side (r.h.s.) of the equation
can be handled by the induction hypothesis:

We now rely on Poincaré–Nash inequality (see, for instance,
[31, Sec. II-B]) to handle the first term of the r.h.s. Applying
this inequality, we obtain

(20)

where is a constant which does not depend on , and
which is greater than ’s eigenvalues. In order to compute
the derivatives of the r.h.s., we rely on [32, Lemma 4.6]. This
yields

Plugging these derivatives into (20), we obtain

where the last inequality is a consequence of Hölder’s in-
equality.
As the function satisfies the induction hy-

pothesis, we have for every

Plugging this estimate into (A), we obtain

(21)

where is a constant independent of , , . Notice
that inequality (21) involves twice the quantity of interest

that we want to upper bound by .
We shall proceed iteratively.
Notice that because is

bounded on ; hence the rough estimate:

Plugging this into (21) yields
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where and . Iterating the
procedure, we obtain

where and stands for .
Now, in order to conclude the proof, it remains to prove that 1)
the sequence converges to some limit , and 2) for some
well-chosen , . Write

Hence, converges to which readily belongs
to for a well-chosen . Finally,

which ends the induction.
It remains to apply this estimate to in order to

get the desired result.

B. Proof of Lemma 1

Notice that for

. So it suffices to verify the arguments for . As
can converge to infinity if is close to the real axis, the process

might be large when is close to the real axis. Thus, we
begin the proof by considering a truncated version of the process

. More precisely, let be a real sequence decreasing to
zero satisfying for some :

With the same notations as in Lemma 2, denote by
; and take such that

and for with conventions
and , i.e., only contains the th cluster. Let

. Consider

and let . The process is defined
by

This partition of is identical to that used in [25, Sec. 1].
With probability one (see [22] and [27]), for all

with the Euclidean distance of to the set . Notice that

Furthermore, with probability 1, for all large

and

where . Thus, with probability 1

where is a constant which does not depend on , . A sim-
ilar result can be achieved for the derivative functions
and . One can get

With probability 1, for all , large

and

where . So with probability 1, for all
, large

(22)

(23)

for some constants and . Both terms converge to zero
as . Then, by Slutsky’s lemma [33], it suffices to
establish the arguments for and .
As mentioned in Section III, there are two conditions to prove

(see, for instance, Billingsley [24, Th. 13.1]) to establish the
convergence in distribution of the process to the
process over the compact :
1) finite-dimensional convergence of the process
over the compact .

2) tightness on the compact .
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1) Finite-Dimensional Convergence: In [25], Bai and Sil-
verstein establish a CLT for with the complex Gaussian
entries . We recall below their main result.

Proposition 3 (cf., [25]): With the notations introduced in
Section II, for , analytic on an open region containing

1) forms a tight se-

quence on ;
2)

where and

with

where the integration is over positively oriented contours
and which are supposed to be nonoverlapping and

both circle around the support .

Now we apply this proposition to establish the finite-dimen-
sional convergence. For all , note that

with the contour which contains the support . As
, Proposition 3 directly implies that for

every finite , the random vector

converges to a centered Gaussian vector by considering the
functions:

where for all , and
. Hence, the finite-dimensional convergence.

The proof of the tightness is based on Poincaré–Nash in-
equality (see, for instance, [30] and [31]). In Appendix A, it is
proved that for all and all

Following the same idea as Bai and Silverstein [25, Sections 3
and 4], it is indeed a tight sequence. The details of the proof are
in Appendix B2. Thus, Lemma 1 is proved.

2) Tightness: We will show the tightness of the se-
quence and by using

Poincaré–Nash’s inequality [31] on the compact . As the
compact is the union of contours and , it is
sufficient to prove the tightness on every contour (or

equivalently ). First, denote by

with

and .
We now prove tightness based on [24, Th. 13.1], i.e.,
1) tightness at any point of the contour (here );
2) satisfaction of the condition

Condition 1 is achieved by an immediate application of
Proposition 3. We now verify the second condition.

We evaluate . Denote by

, the eigenvalues of . Note that

with . We have

and

Then, by the Poincaré–Nash inequality and the fact that is
uniformly bounded in spectral norm almost surely, one gets

with

and a constant which does not depend on or . For the
first term, is bounded on the set
. For the second term, since for all and all ,

, it leads to
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Then

As ,
take , one obtains

The second condition to establish the tightness is achieved.
For , following exactly the same method as in [6,

Sec. 9.11], one can prove that is bounded and forms an
equicontinuous family that converges to 0. Hence, the tightness
for .
The next step is to prove the tightness of

We have

Following the same method as derived before, one obtains

and

with

Then, Poincaré–Nash inequality yields that

with the same constant defined as before. The term
is bounded on the set . For the second term,

. As

and

The proof of the tightness of is achieved as before.
The final task consists in verifying that for is

bounded and forms an equicontinuous family and converges to
0. We will use the same method for the process (see [6,
Sec. 9.11]).
By Formula (9.11.1) in [6, Sec. 9.11], it is proved that

(24)

where

If one differentiates (24) with respect to , the equation becomes

In the work of Bai and Silverstein[6, Sec. 9.11], it is proved that
when , tend to infinity
1) and

;

2) converges;

3) , . With the same method, one can
show easily that

4) ;

5) ;

6) converges.
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With these results, it suffices to show that and is
equicontinuous.
In [6, Sec. 9.9], they show that for and a nonrandom

matrix and , we have

(25)

We have also that for any positive

(26)
and

(27)

where is a constant which depends only on .
With all these preliminaries, as , by the dominated

convergence theorem of derivation, it suffices to show that
is bounded over . In [6, Sec. 9.11], it is sufficient to show
that is bounded where

With the help of (25)–(27), is indeed bounded in .
Now we will show that is equicontinuous. With the light

work as before, it is sufficient to show that is bounded.
Using (25), we obtain

Thanks to (26) and (27), the right side is indeed bounded. This
ends the proof of the tightness.

C. Study of the Set

For fixed, denote
. We will show that this set is empty a.s. for all ,

large. Suppose that . We first use [6, Formula (9.11.4)]
that

By Formula (17), we get

As

Take . For sufficiently high

and

Finally

which implies, along with that for
all large , , almost surely.
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