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a b s t r a c t

This paper deals with the problem of parameter estimation based on certain eigenspaces
of the empirical covariancematrix of an observedmultidimensional time series, in the case
where the time series dimension and the observation window grow to infinity at the same
pace. In the area of large randommatrix theory, recent contributions studied the behavior
of the extreme eigenvalues of a random matrix and their associated eigenspaces when
this matrix is subject to a fixed-rank perturbation. The present work is concerned with
the situation where the parameters to be estimated determine the eigenspace structure
of a certain fixed-rank perturbation of the empirical covariance matrix. An estimation
algorithm in the spirit of the well-known MUSIC algorithm for parameter estimation is
developed. It relies on an approach recently developed by Benaych-Georges andNadakuditi
(2011) [8,9], relating the eigenspaces of extreme eigenvalues of the empirical covariance
matrix with eigenspaces of the perturbation matrix. First and second order analyses of the
new algorithm are performed.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Parameter estimation algorithms based on the estimation of an eigenspace of the autocorrelation matrix of an observed
multivariate time series are very popular in the areas of statistics and signal processing. Applications of such algorithms
include the estimation of the angles of arrival of plane waves impinging on an array of antennas, the estimation of the
frequencies of superimposed sine waves, or the resolution of multiple paths of a radio signal. Denoting by N the signal
dimension (e.g., the number of antennas) and by n the length of the time observation window, the observed time series is
represented by aN×n randommatrixΣn = Xn+Pn where Xn and Pn are respectively the so-called noise and signalmatrices.
In many applications, Pn is represented as

Pn = B(ϕ1, . . . , ϕr)S∗

n , (1)

where (ϕ1, . . . , ϕr) are the r ≤ min(N, n) deterministic parameters to be estimated, B is a N × r matrix of the form
B(ϕ1, . . . , ϕr) =


b(ϕ1) · · · b(ϕr)


where b(ϕ) is a known CN -valued function of ϕ, and the Sn is an unknown n × r

matrix with rank r representing the signals transmitted by the r emitting sources. As usual (and unless stated otherwise),
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A∗ stands for the Hermitian adjoint of matrix A. It will be assumed in this work that this matrix is deterministic. Often, the
noise matrix Xn is a complex random matrix such that the real and imaginary parts of its elements are 2Nn independent
random variables with common probability law N (0, 1/(2n)). In this case, we shall say that

√
nXn is a standard Gaussian

matrix.
We shall consider here ‘‘direction of arrival’’ vector functions b(ϕ) that are typicallymet in the field of antenna processing.

These functions are written as
b(ϕ) = N−1/2 exp(−ıDℓϕ)

N−1
ℓ=0

with domain ϕ ∈ [0, π/D] where D is a positive real constant and ı2 = −1. Assuming that the angular parameters ϕk
are all different, the well-known MUSIC (MUltiple SIgnal Classification, [27,11]) algorithm for estimating these parameters
from Σn relies on the following simple idea. Assume that

√
nXn is standard Gaussian and let Π be the orthogonal projection

matrix on the eigenspace of EΣnΣ
∗
n = BS∗

nSnB
∗
+ IN associated with the r largest eigenvalues, where IN is the N ×N identity

matrix. Obviously, Π is the orthogonal projector on the column space of B(ϕ1, . . . , ϕr). As a consequence, the angles ϕk
coincide with the zeros of the function b(ϕ)∗(I − Π)b(ϕ) on [0, π/D]. Since ∥b(ϕ)∥ = 1, they equivalently coincide with
the maximum values (at one) of the so-called localization function χ(ϕ) = b(ϕ)∗Πb(ϕ).

In practice, Π is classically replaced with the orthogonal projection matrix Π on the eigenspace associated with the r
largest eigenvalues of ΣnΣ

∗
n . Assuming N is fixed and n → ∞, and assuming furthermore that S∗

nSn converges to some
matrix O > 0 in this asymptotic regime, the ΣΣ∗

a.s.
−→ BOB∗

+ IN by the Law of Large Numbers (a.s. stands for almost
surely). Hence, the random variable χclassical(ϕ) = b(ϕ)∗Πb(ϕ) a.s. converges to χ(ϕ), and it is standard to estimate the
arrival angles as local maxima of χclassical(ϕ).

However, in many practical situations, the signal dimension N and the window length n are of the same order of
magnitude in which case the spectral norm of Π − Π is not small, as we shall see below. In these situations, it is often
more relevant to assume that both N and n converge to infinity at the same pace, while the number of parameters r is kept
fixed. The subject of this paper is to develop a new estimator better suited to this asymptotic regime, and to study its first
and second order behavior with the help of large randommatrix theory.

In large random matrix theory, much has been said about the spectral behavior of XnX∗
n in this asymptotic regime, for a

wide range of statistical models for Xn. In particular, it is frequent that the spectral measure of this matrix converges to a
compactly supported limiting probability measure π , and that the extreme eigenvalues of XnX∗

n a.s. converge to the edges
of this support. Considering that Σn is the sum of Xn and a fixed-rank perturbation, it is well-known that ΣnΣ

∗
n also has the

limiting spectral measure π [1, Lemma 2.2]. However, the largest eigenvalues of ΣnΣ
∗
n have a special behavior. Under some

conditions, these eigenvalues leave the support of π , and in this case, their related eigenspaces give valuable information
on the eigenspaces of Pn. This paper shows how the angles ϕk can be estimated from these eigenspaces.

The problem of the behavior of the extreme eigenvalues of large randommatrices subjected to additive or multiplicative
low rank perturbations (often called ‘‘spikedmodels’’) has received a great deal of interest in the recent years. In this regard,
the authors of [4,5,25] study the behavior of the extreme eigenvalues of a sample covariance matrix when the population
covariance matrix has all but finitely many eigenvalues equal to one, a problem described in [20]. Ref. [13] is devoted to the
extreme eigenvalues of a Wigner matrix that incurs a fixed-rank additive perturbation. Fluctuations of these eigenvalues
are studied in [4,26,25,3,13,12,6].

Recently, Benaych-Georges and Nadakuditi have proposed in [8,9] a powerful technique for characterizing the behavior
of extreme eigenvalues and their associated eigenspaces for three generic spikedmodels. Themodels Xn+Pn and (In+Pn)Xn
when both Xn and Pn are Hermitian and Pn is low-rank, and the model that encompasses ours (Xn + Pn)(Xn + Pn)∗ where Xn
and Pn are rectangular. One feature of this approach is that it uncovers simple relations between the extreme eigenvalues
and their associated eigenspaces on the one hand, and certain quadratic forms involving resolvents related with the non-
perturbed matrix Xn on the other hand. This makes the method particularly well-suited (but not limited to) the situation
where Xn is unitarily or bi-unitarily invariant, a situation that we shall consider in this paper. Indeed, in this situation, these
quadratic forms exhibit a particularly simple behavior in the considered large dimensional asymptotic regime.

In this paper, we make use of the approach of [8,9] to develop a new subspace estimator of the angles ϕk based on the
eigenspaces of the isolated eigenvalues of ΣnΣ

∗
n . We perform the first and second order analyses of this estimator that we

call the ‘‘Spike MUSIC’’ estimator. Our mathematical developments differ somehow from those of [8,9] and could have their
own interest. They are based on two simple ingredients: the first is an analogue of the Poincaré–Nash inequality for the Haar
distributed unitary matrices which has been recently discovered by Pastur and Vasilchuk [24], and the second is a contour
integrationmethod bymeans ofwhich the first and second order analyses are done. The key step of the second order analysis
of our estimator lies in the establishment of a Central Limit Theorem on the quadratic forms b(ϕi)

∗Πib(ϕi) where the Πi are
the orthogonal projection matrices on certain eigenspaces of ΣnΣ

∗
n associated with the isolated eigenvalues. The employed

technique can easily be used to study the fluctuations of projections of other types of vectors on these eigenspaces.
We now state our general assumptions and introduce some notations.

Assumptions and notations

We now state the general assumptions of the paper. Consider the sequence of N × n matrices Σn = Xn + Pn where the
following assumption holds.
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Assumption A1. The dimensions N, n satisfy: N ≤ n, n → ∞ and

N
n

→ c ∈ (0, 1]

(notation for this asymptotic regime: n → ∞).

The following assumption on Xn is widely used in the randommatrix literature [18,23].

Assumption A2. Matrices Xn are random N × n bi-unitarily invariant matrices, i.e., each Xn admits the singular value
decomposition Xn = LnΓnR∗

n where Ln, the N × N matrix Γn and Rn are independent, Ln is Haar distributed on the group
U(N) of unitary N × N matrices, and Rn is a n × N submatrix of a Haar distributed matrix on U(n).

We recall that the Stieltjes transform of a probability measure π on the real line is the complex function

m(z) =


1

t − z
π(dt),

analytic on C+ = {z : ℑ(z) > 0}.

Assumption A3. Let Qn(z) = (XnX∗
n − zIN)−1 be the resolvent associated with XnX∗

n and let αn(z) = N−1trQn(z). For every
z ∈ C+, αn(z) a.s. converges to a deterministic function m(z) which is the Stieltjes transform of a probability measure π
supported by the compact interval [λ−, λ+].

Assumption A4. The quantity ∥XnX∗
n ∥ a.s. converges to λ+ as n → ∞, where ∥ · ∥ denotes the spectral norm.

Let Qn(z) = (X∗
n Xn − zIn)−1 and α̃n(z) = n−1trQn(z). Equivalently to the convergence assumed by Assumption A3, one

may assume that α̃n(z) a.s. converges on C+ to a deterministic function m̃(z)which is the Stieltjes transform of a probability
measure π̃ . In that case, m̃(z) = cm(z) − (1 − c)/z and π̃ = cπ + (1 − c)δ0.

Remark 1. In the areas of signal processing and communication theory, the noise matrix Xn satisfying Assumptions A2–A4
is such that

√
nXn is standard Gaussian—see for instance [21,15].

We first make a general assumption on matrices Pn; it will be specified later, and adapted to the context of the MUSIC
algorithm.

Assumption A5. Matrices Pn are deterministic with a fixed rank equal to r for all n large enough. Denoting by Pn = UnΩnV ∗
n

a singular value decomposition of Pn, thematrix of singular valuesΩn = diag(ω1,n, . . . , ωr,n)withω1,n ≥ ω2,n ≥ · · · ≥ ωr,n
converges to

O =

ω1Ij1
. . .

ωsIjs

 , (2)

where ω1 > · · · > ωs > 0 and j1 + · · · + js = r .

Notations
As usual, if z ∈ C, we shall denote by ℜ(z) and ℑ(z) its real and imaginary parts. We shall denote by

a.s.
−→ (resp.

P
−→,

D
−→)

the almost sure convergence (resp. convergence in probability, in distribution). We denote by δi,j the Kronecker delta (= 1
if i = j and 0 otherwise).

The eigenvalues of ΣnΣ
∗
n are λ̂1,n ≥ λ̂2,n ≥ · · · ≥ λ̂N,n. Associated eigenvectors will be denoted by û1,n, û2,n, . . . , ûN,n.

For k ∈ {1, . . . , r}, we shall denote by i(k) the index i ∈ {1, . . . , s} such that j1+· · ·+ji−1 < k ≤ j1+· · ·+ji. For i = 1, . . . , s,
we shall denote by Πi,n the orthogonal projection matrix on the eigenspace of ΣnΣ

∗
n associated with the eigenvalues λ̂k,n

such that i(k) = i, i.e., Πi,n =


k:i(k)=i ûk,nû∗

k,n when this eigenspace is defined. Columns of Un (see A5) will be denoted by
u1,n, . . . , ur,n. Given i, the orthogonal projection matrix on the eigenspace of PnP∗

n associated with the eigenvalues ω2
k,n such

that i(k) = i will be Πi,n =


k:i(k)=i uk,nu∗

k,n. Indices n and N will often be dropped for readability.

Paper organization

The paper is organized as follows. Section 2 is devoted to the mathematical preliminaries. The general approach is
described in Section 3. The Spike MUSIC algorithm is presented in Section 4 along with a first order study of this algorithm.
Fluctuations of the estimates of the ϕk are studied in Section 5 under the form of a Central Limit Theorem.



430 W. Hachem et al. / Journal of Multivariate Analysis 114 (2013) 427–447

2. Preliminary mathematical results

We shall need the two following results. The first one is well-known [24]. The second result, due to Pastur and Vasilchuk,
is the unitary analogue of the well-known Poincaré–Nash inequality.

Lemma 1. Let W = [wij] be a random matrix Haar distributed on U(n). Then

E

wijw

∗

i′j′


=

1
n
δi,i′δj,j′ .

Lemma 2 ([24,23]). Let Φ : U(n) → C be a function that admits a C1 continuation to an open neighborhood of U(n) in the
whole algebra of n × n complex matrices. Then

varΦ(Wn) = E |Φ(Wn)|
2
− |EΦ(Wn)|

2
≤

1
n

n
j,k=1

E
Φ ′(Wn) ·


ejeTkWn

2
where E is the expectation with respect to the Haar measure on U(n), where Φ ′ is the differential of Φ as a function on R2n2

acting on the matrix ejeTkWn seen as an element of R2n2 , and where ej = [0 · · · 0 1 0 · · · 0]∗ is the jth canonical vector of Cn.

Given a small ε1 > 0, let On be the probability event

On =

∥XnX∗

n ∥ ≤ λ+ + ε1

. (3)

By Assumption A4, 1On
a.s.
−→ 1 as n → ∞.

Lemma 3. Let Assumption A2 hold true and let u, v be two unit norm deterministic N × 1 vectors such that u∗v = 0. Then for
any z with ℜ(z) > λ+ + ε1,

E
1On × u∗ (Q (z) − α(z)I) u

p ≤
Kp

Np/2d(z, λ+ + ε1)p
,

E
1On × u∗Q (z)v

p ≤
Kp

Np/2d(z, λ+ + ε1)p
,

where the constant Kp only depends on p, and where d(z, z ′) is the Euclidean distance between z and z ′ in C.

Proof. Recall that X = LΓ R∗ by Assumption A2; let D = (Γ 2
− zI)−1; write:

u∗

v∗


(Q − αI)


u v


=


w∗

1
w∗

2


D −

trD
N

I
 

w1 w2

.

Thanks to A2, w1 and w2 are the first two columns of a N × N unitary Haar distributed matrixW = [wij] independent of D.
Let M = 1On ×


D − N−1(trD)I


and Φi(W ) = w∗

1Mwi for i = 1, 2. Then EΦ1(W ) = EΦ2(W ) = 0 by Lemma 1. Applying
Lemma 2 to Φi after noticing that Φ ′

i (W ) · A = eT1A
∗Mwi + w∗

1MAei for any N × N matrix A, we obtain:

E|Φi|
2

= var(Φi) ≤
1
N

N
j,k=1

E
w∗

k1[MW ]ji + [W ∗M]1jwki
2 ,

≤
2
N

E

∥Mwi∥

2
+ ∥Mw1∥

2 ,
≤

8
Nd(z, λ+ + ε1)2

.

We now proceed by induction; assume that the result is true until p ≥ 1. Applying Lemma 2 to Φ
(p+1)/2
i , we obtain:

var

Φ

p+1
2

i


≤

1
N

N
j,k=1

E
p + 1

2
Φ

p−1
2

i Φ ′

i (W ) ·

ejeTkW

2 ,

≤
(p + 1)2

2N
E

|Φi|

p−1 
∥Mwi∥

2
+ ∥Mw1∥

2 ,
≤

2(p + 1)2Kp−1

d(z, λ+ + ε1)p+1N (p+1)/2
.
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Using again the induction hypothesis, we get:

E |Φi|
p+1

= var

Φ

p+1
2

i


+

EΦ
p+1
2

i

2
≤

2(p + 1)2Kp−1 + K 2
(p+1)/2

d(z, λ+ + ε1)p+1N (p+1)/2
=

Kp+1

d(z, λ+ + ε1)p+1N (p+1)/2
,

which concludes the proof. �

Lemma 4. Let Assumption A2 hold true; let u, v be two unit norm deterministic vectors with respective dimensions N × 1 and
n × 1. Then for any z such as ℜ(z) > λ+ + ε1,

E
1On × u∗XQ (z)v

p ≤
Kp

np/2d(z, λ+ + ε1)p
.

Proof. Let C = Γ (Γ 2
− zI)−1. By Assumption A2, u∗XQ (z)v = w∗Cw̃ = Φ(w) where w is a vector uniformly distributed

on the unit sphere of CN , w̃ is a vector uniformly distributed on the unit sphere of Cn and truncated to its first N elements,
and w, w̃ and C are independent. The lemma is proved as above by applying Lemma 2 to Φ and by taking the expectation
with respect to the law of w. �

Lemma 5. Let Assumptions A1–A4 hold true. Let C be a closed path of C such that minz∈C ℜ(z) > λ+. Fix the integer r ≤ N
and let Un and Vn be two deterministic isometry matrices with dimensions N × r and n × r respectively. Then

sup
z∈C

∥U∗

n (Qn(z) − m(z)IN)Un∥
a.s.

−−−→
n→∞

0,

sup
z∈C

∥V ∗

n

Qn(z) − m̃(z)In

Vn∥

a.s.
−−−→
n→∞

0,

sup
z∈C

∥U∗

nXnQn(z)Vn∥
a.s.

−−−→
n→∞

0.

Proof. Recall the definition (3) of the set On and assume that ε1 is chosen such that minz∈C ℜ(z) > λ+ + ε1; let

hn(z) = 1On × U∗

n (Qn(z) − αn(z)IN)Un.

For any ℓ, s ≤ r, [hn]ℓ,s is a holomorphic function on C − [0, λ+ + ε1]. Consider a denumerable sequence of points (zk) in
C−[0, λ+ + ε1]with an accumulation point in that set. By Lemma 3with p = 3, the Markov inequality and Borel–Cantelli’s
lemma, there exists a probability one set on which [hn(zk)]ℓ,s → 0 for every k. Moreover, the

[hn(zk)]ℓ,s
 are uniformly

bounded on any compact set of C − [0, λ+ + ε1]. By the normal family theorem, every n-sequence of [hn]ℓ,s contains a
further subsequence which converges uniformly on the compact set C ⊂ C − [0, λ+ + ε1] to a holomorphic function that
we denote h∗. Since h∗(zk) = 0 for all k, h∗(z) = 0 on C, then

[hn(z)]ℓ,s
 converges uniformly to zero on C with probability

one, and thanks to Assumption A4, ∥U∗ (Q (z) − α(z)I)U∥ → 0 uniformly on C with probability one. The same argument,
used in conjunction with Assumption A3, shows that with probability one, α(z) − m(z) → 0 uniformly on C, and the
first assertion is proven. The second and third assertions are proven similarly, the third being obtained with the help of
Lemma 4. �

3. Fixed rank perturbations: first order behavior

We first recall a result on matrix analysis that can be found in [19, Theorem 7.3.7].

Lemma 6. Given a N × n matrix A with N ≤ n, let A be the matrix:

A =


0 A
A∗ 0


.

Then σ1, . . . , σN are the singular values of A if and only if σ1, . . . , σN , −σ1, . . . ,−σN in addition to n − N zeros are the
eigenvalues of A. Furthermore, a pair (u, v) of unit norm vectors is a pair of (left, right) singular vectors of A associated with

the singular value σ if and only if

u/

√
2

v/
√
2


is a unit norm eigenvector of A associated with the eigenvalue σ .

Along the ideas in [8,9], we now characterize the behavior of the largest eigenvalues of ΣΣ∗, and then focus on their
eigenspaces.
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Asymptotic behavior of the largest eigenvalues of ΣΣ∗

We start with an informal description of the approach. By Lemma 6, λ is an eigenvalue of ΣΣ∗ if and only if det(Σ −
√

λI) = 0 where Σ =


0 Σ

Σ∗ 0


. Writing:

Σ =


0 X
X∗ 0


+


U 0
0 VΩ

 
0 Ir
Ir 0

 
U∗ 0
0 ΩV ∗


△
= X + BJB∗, (4)

and assuming that x > 0 is not a singular value of X , we have:

det(Σ − xI) = det(X − xI + BJB∗) = det(J) det(X − xI) det(J + B∗(X − xI)−1B),

after noticing that J = J−1. Using the formula for the inversion of a partitioned matrix (see [19])
A11 A12
A∗

12 A22

−1

=


(A11 − A12A−1

22 A
∗

12)
−1

−A−1
11 A12(A22 − A∗

12A
−1
11 A12)

−1

−(A22 − A∗

12A
−1
11 A12)

−1A∗

12A
−1
11 (A22 − A∗

12A
−1
11 A12)

−1


,

we obtain:

Q(x) = (X − xI)−1
=


−xI X
X∗

−xI

−1

=


xQ (x2) XQ (x2)Q (x2)X∗ xQ (x2)


. (5)

Therefore,

det(Σ − xI) = det(J) det(X − xI) detH(x),

whereHn(x) =


xU∗Q (x2)U Ir + U∗XQ (x2)VΩ

Ir + ΩV ∗Q (x2)X∗U xΩV ∗Q (x2)VΩ


whence for n large enough, the isolated eigenvalues of ΣΣ∗ above λ+ will coincide with the zeros of detH(

√
x) that lie

above λ+. Under Assumptions A1–A5, Lemma 5 shows thatH(x) a.s. converges to

H(x) =


xm(x2)Ir Ir

Ir xm̃(x2)O2


.

Consider the equation

detH(
√
x) = det


xm(x)m̃(x)O2

− Ir


= 0,

and notice that the function

g(x) = xm(x)m̃(x) = x


1
t − x

π(dt)


c


1
t − x

π(dt) −
1 − c

x


(6)

decreases from g(λ+

+) = limx↓λ+
g(x) to zero on (λ+, ∞). Let ω2

1 > · · · > ω2
q be those among the diagonal elements of

O2 that satisfy ω2
i > 1/g(λ+

+). Equation g(x) = ω−2
i will have a unique solution x = ρi > λ+ for any i = 1, . . . , q, while

it will have no solution larger than λ+ for i > q. It is then expected that any eigenvalue λ̂k,n of ΣnΣ
∗
n for which i(k) ≤ q

(remember the definition of i(k) provided in the paragraph ‘‘Assumptions and Notations’’ in Section 1), will converge to ρi,
while λ̂j1+···+jq+1,n → λ+ almost surely.

These facts are formalized in the following theorem, shown in [7,9].

Theorem 1. Let Assumptions A1–A5 hold true; let q be the maximum index such that ω2
q > 1/g(λ+

+). Let ρi be the unique real
number >λ+ satisfying ω2

i g(ρi) = 1 for i = 1, . . . , q. Then

λ̂j1+···+ji−1+ℓ,n
a.s.

−−−→
n→∞

ρi

for i = 1, . . . , q and ℓ = 1, . . . , ji while

λ̂j1+···+jq+1,n
a.s.

−−−→
n→∞

λ+.

In the case where
√
nX is a standard Gaussian matrix, π is the Marčenko–Pastur distribution with support supp(π) =

[λ−, λ+] = [(1 −
√
c)2, (1 +

√
c)2], and

m(x) =
1
2cx


1 − c − x +


(1 − c − x)2 − 4cx


(7)

for x ∈ (λ+, ∞). After a few derivations, we obtain the following.
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Corollary 1. Assume that
√
nX is standard Gaussian. Let q be the maximum index such that ω2

q >
√
c. Then

λ̂j1+···+ji−1+ℓ,n
a.s.

−−−→
n→∞

(ω2
i + 1)(ω2

i + c)
ω2

i
for i = 1, . . . , q,

and λ̂j1+···+jq+1,n
a.s.

−−−→
n→∞

(1 +
√
c)2.

We now turn our attention to the eigenspaces of the isolated eigenvalues.

Asymptotic behavior of certain bilinear forms

Recall the definition of s as provided in Assumption A5. Given i ≤ s, assume that ω2
i > 1/g(λ+

+). Given two N × 1
deterministic sequences of vectors b1,n and b2,n with bounded norms, we shall find here a simple asymptotic relation
between b∗

1,n
Πi,nb2,n and b∗

1,nΠi,nb2,n, that will be at the basis of the Spike MUSIC algorithm. A close problem has been
considered in [9]. We consider here a different technique, based on a contour integration and on the use of Lemmas 3 and
4. This method lends itself easily to the first and second order analyses of the Spike MUSIC algorithm that we shall develop
in the following sections.

Writing bi =


bi
0


with i = 1, 2, we have by virtue of Lemma 6:

b∗

1
Πib2 =

−1
ıπ


Ci,n

b∗

1 (Σ − zI)−1 b2 dz,

where Ci,n is a positively oriented circle that encloses the only singular values


λ̂k,n of Σn for which i(k) = i. Recalling (4)
and using Woodbury’s identity [19, Section 0.7.4] together with the fact that J = J−1, we obtain:

b∗

1
Πib2 =

−1
ıπ


Ci

b∗

1Q(z)b2 dz +
1
ıπ


Ci

b∗

1Q(z)B

J + B∗Q(z)B

−1 B∗Q(z)b2 dz.

Using (5), we obtain after a straightforward calculation:

b∗

1,n
Πi,nb2,n =

−1
ıπ


Ci,n

b∗

1,nQn(z)b2,n dz +
1
ıπ


Ci,n

â∗

1,n(z)Hn(z)−1â2,n(z) dz (8)

where1

âℓ,n(z) =


zU∗

nQn(z2)
ΩnV ∗

n
Qn(z2)X∗

n


bℓ,n,

â∗

ℓ,n(z) = b∗

ℓ,n


zQn(z2)Un XnQn(z2)VnΩn


. (9)

Intuitively, the first integral is zero for n large enough and the second is close to

Ti,n =
1
ıπ


γi

a∗

1,n(z)H(z)−1a2,n(z) dz,

where γi is a small enough positively oriented circle which does not meet the image of supp(π) by x →
√
x nor any of the

√
ρℓ and such that only

√
ρi ∈ Int(γi), the interior of the disk defined by γi (see Fig. 1), a∗

ℓ,n(z) = b∗

ℓ,n


zm(z2)Un 0


, and

aℓ,n(z) =


zm(z2)U∗

n
0


bℓ,n.

The approximation b∗

1
Πib2 ≃ Ti will be justified rigorously below. For the moment, let us develop the expression of Ti.

Defining the r × r matrices:

Ii =

0
Iji

0


,

where the integers ji are defined in Assumption A5, we have

H(z)−1
=

s
i=1

1
z2m(z2)m̃(z2)ω2

i − 1


zm̃(z2)ω2

i −1
−1 zm(z2)


⊗ Ii, (10)

1 Notice that â∗

ℓ,n(z) as defined is not the Hermitian adjoint of âℓ,n(z). Despite this ambiguity, we introduce this notation which remains natural and
widespread in Signal Processing.
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Fig. 1. The contour γi w.r.t. the support of the limit singular value distribution of Xn and the other
√

ρℓ .

which leads to

Ti =
1
ıπ

s
ℓ=1

b∗

1Πℓb2


γi

z3m(z2)2m̃(z2)ω2
ℓ

z2m(z2)m̃(z2)ω2
ℓ − 1

dz

=
1

2ıπ

s
ℓ=1

b∗

1Πℓb2


γ ′
i

wm(w)2m̃(w)ω2
ℓ

wm(w)m̃(w)ω2
ℓ − 1

dw

bymaking the change of variablew = z2. Observe that the path γ ′

i now encloses ρi only. Recall thatwm(w)m̃(w)ω2
ℓ −1 = 0

if and only if w = ρℓ for every ℓ such that ω2
ℓ > 1/g(λ+

+), and since g(w) = wm(w)m̃(w) is decreasing on (λ+, ∞), these
zeros are simple. As a result, the integrals above are equal to zero for ℓ ≠ i, and the integrand has a simple pole at w = ρi
for ℓ = i. By the Residue Theorem, we have:

Ti =
1
ıπ


γi

a∗

1(z)H(z)−1a2(z) dz =
ρim(ρi)

2m̃(ρi)

(ρim(ρi)m̃(ρi))′
b∗

1Πib2 (11)

where the denominator at the right hand side is the derivative of the function λ → λm(λ)m̃(λ) at λ = ρi. We now make
this argument more rigorous.

Theorem 2. Let Assumptions A1–A5 hold true. For a given i ≤ s, assume that ω2
i > 1/g(λ+

+). Let (b1,n) and (b2,n) be two
sequences of deterministic vectors with bounded norms. Then

b∗

1,n
Πi,nb2,n −

ρim(ρi)
2m̃(ρi)

(ρim(ρi)m̃(ρi))′
b∗

1,nΠi,nb2,n
a.s.

−−−→
n→∞

0.

Proof. Write

Ti =
1
ıπ


γi

â∗

1(z)H(z)−1â2(z) dz.

Then, with probability one, b∗

1
Πib2 = Ti for n large enough. Indeed, on the set On (as defined in (3)), the singular values of

Σ greater than
√

λ+ + ε1 coincide with the poles of H(z) which are greater than
√

λ+ + ε1 by the argument preceding
Theorem 1. On this set, the first integral on the right hand side (r.h.s.) of (8) is zero, and by Theorem 1, the second integral
can be replaced with


γi
with probability one for n large enough. By Lemma 5, the differencesH(z) − H(z), â1(z) − a1(z),

and â2(z) − a2(z) a.s. converge to zero, uniformly on γi. HenceTi − Ti
a.s.
−→ 0. �

4. The spike MUSIC estimation algorithm

Algorithm description

We now consider the application context described in the introduction, and assume that Pn = Bn(ϕ1, . . . , ϕr)S∗
n where

Bn(ϕ1, . . . , ϕr) =

bn(ϕ1) · · · bn(ϕk)


, and bn(ϕ) = N−1/2


exp(−ıDℓϕ)

N−1
ℓ=0 with domain ϕ ∈ [0, π/D]. When the ϕk are

different, one can check that B∗
nBn → Ir as n → ∞. In most practical cases of interest, S∗

nSn → O2 where O is given by
Eq. (2). In these conditions, due to B∗

nBn → Ir , the diagonal elements of O are the limits of the singular values of Pn and
Assumption A5 holds true.

In the area of signal processing, the positive real numbers ω2
i are called the Signal to Noise Ratios (SNRs) associated with

the r sources. Assumption A5 becomes the following.
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Assumption A6. Matrices Pn of dimension N × n are deterministic and are written as

Pn = Bn(ϕ1, . . . , ϕr)S∗

n

where r is a fixed integer, Bn(ϕ1, . . . , ϕr) =

bn(ϕ1) · · · bn(ϕr)


is a N × r matrix, bn(ϕ) = N−1/2


exp(−ıDℓϕ)

N−1
ℓ=0 on

ϕ ∈ [0, π/D], and the ϕk are all different. Matrix Sn of dimensions n × r satisfies:
√
n(S∗

nSn − O2) = O(1)

as n → ∞, where O is defined in Assumption A5, and O is the classical Landau notation.

The assumption over the speed of convergence of S∗S will be needed only for the purpose of the second order analysis. It is
satisfied by most practical systems met in the field of signal processing. Wemoreover observe that it is possible to relax the
assumption that O is diagonal at the expense of a more complicated second order analysis.

In order for the algorithm to be able to estimate the r angles, it is necessary that the perturbation P gives rise to r isolated
eigenvalues, a fact that is stated in the following assumption.

Assumption A7. Recall the definition (6) of function g , let λ+ as defined in A3 and let g(λ+

+) = limx↓λ+
g(x). Let the ωi’s as

defined in A5, then:

ω2
r >

1
g(λ+

+)
.

The Spike MUSIC algorithm goes like this. The localization function χ(ϕ) defined in the introduction is also written as
χ(ϕ) =

s
i=1 b(ϕ)∗Πib(ϕ). Given ϕ, the results of the previous section (Theorems 1 and 2 with b1 = b2 = b(ϕ)) show us

that:

χ̂n(ϕ) =

r
k=1

|bn(ϕ)∗ûk,n|
2ζ (λ̂k,n), (12)

where

ζ (λ) =
(λm(λ)m̃(λ))′

λm(λ)2m̃(λ)
(13)

is a consistent estimator of χn(ϕ) in the asymptotic regime described by A1. By searching for the maxima of χ̂(ϕ), we
infer that we obtain consistent estimates of the angles or arrival. Observe that this algorithm requires the knowledge of the
Stieltjes Transform of the limit spectral measure of XX∗ (available if the statistical description of the noise is known) and
the number r of emitting sources. Notice that when this number is unknown, it can be estimated along the ideas described
in e.g. [10,22].

We now perform the first order analysis of this algorithm.

First order analysis of the spike MUSIC algorithm

We now formalize the argument of the previous paragraph and we push it further to show the consistency ‘‘up to the
order n’’ of the Spike MUSIC estimator. We shall need this speed to perform the second order analysis (Lemma 9).

Theorem 3. Let Assumptions A1–A6 hold true. Then for all k = 1, . . . , r, there exists a local maximum ϕ̂k,n of χ̂n(ϕ) such that

n(ϕ̂k,n − ϕk)
a.s.

−−−→
n→∞

0.

The proof of this theorem is performed in two steps. With an approach similar to the one used in Section 3, we first prove
that χ̂(ϕ) − χ(ϕ)

a.s.
−→ 0, and the convergence is uniform on ϕ ∈ [0, π/D] (Proposition 1). Next, following the technique

of [16,17], we prove that this uniform a.s. convergence leads to Theorem 3.
In the sequel, we write:

â(z, ϕ) =


zU∗Q (z2)

ΩV ∗Q (z2)X∗


b(ϕ) and a(z, ϕ) =


zm(z2)U∗

0


b(ϕ), (14)

â∗(z, ϕ) = b∗(ϕ)[zQ (z2)U XQ (z2)VΩ],

a∗(z, ϕ) = b(ϕ)[zm(z2)U 0].

Beware that â∗ and a∗ are not the Hermitian adjoints of â and a (see the footnote associated to Eq. (9)).
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Proposition 1. In the setting of Theorem 3,

max
ϕ∈[0,π/D]

χ̂n(ϕ) − χn(ϕ)
 a.s.
−−−→
n→∞

0.

Proof. Write

χ̂(ϕ) − χ(ϕ) =

r
k=1

(ζ (λ̂k) − ζ (ρi(k)))|b(ϕ)∗ûk|
2
+

s
i=1


ζ (ρi)b(ϕ)∗Πib(ϕ) − b(ϕ)∗Πib(ϕ)


.

By Theorem 1 and the continuity of ζ on (λ+, +∞), the first term at the r.h.s. goes to zero a.s. and uniformly in ϕ. Consider
the second term. Let γi be a small enough positively oriented circle which does not meet supp(π) ∪ {

√
ρ1, . . . ,

√
ρs} and

such that only
√

ρi ∈ Int(γi). Since λ̂k
a.s.
−→ ρi(k),

max
i

max
ϕ

b(ϕ)∗Πib(ϕ) −Ti(ϕ)
 = 0

a.s. for n large enough, where

Ti(ϕ) =
1
ıπ


γi

â∗(z, ϕ)H(z)−1â(z, ϕ) dz.

Recalling Eq. (11), it will therefore be enough to prove that

max
1≤i≤s

max
ϕ∈[0,π/D]

|Zi(ϕ)|
a.s.

−−−→
n→∞

0,

where

Zi(ϕ) =
1
ıπ


γi


â∗(z, ϕ)H(z)−1â(z, ϕ) − a∗(z, ϕ)H(z)−1a(z, ϕ)


dz.

We have

max
ϕ

|Zi(ϕ)| ≤ 2R
 1

0
max

ϕ
e(

√
ρi + Re2ıπθ , ϕ) dθ

where R is the radius of γi and where

e(z, ϕ) =
â∗(z, ϕ)H(z)−1â(z, ϕ) − a∗(z, ϕ)H(z)−1a(z, ϕ)


≤
(â∗

− a∗)H−1â
+ aH−1(â − a)

+ â∗(H−1
− H−1)â

 .
Since ∥H−1

∥,maxϕ ∥a∥ and maxϕ ∥â∥ are bounded on γi, e(z, ϕ) satisfies on this path

e(z, ϕ) ≤ K

∥â(z, ϕ) − a(z, ϕ)∥ + ∥H(z)−1

− H(z)−1
∥

.

By Lemma 5 and the fact that ∥H−1
∥ is bounded on γi, the term ∥H−1

− H−1
∥ = ∥H−1(H − H)H−1

∥ converges to zero
uniformly on γi with probability one. To obtain the result, we prove that ∥â−a∥

a.s.
−→ 0 and that this convergence is uniform

on (z, ϕ) ∈ γi ×[0, π/D]. Let us focus on the first term zu∗

1(Q (z2)−m(z2)I)b(ϕ) of â− a, where we recall that u1 is the first
column of U . Since ∥b(ϕ)∥ = ∥u1∥ = 1,

|zu∗

1(Q (z2) − m(z2)I)b(ϕ)| ≤ |zu∗

1(Q (z2) − α(z2)I)b(ϕ)| + |z(α(z2) − m(z2))|.

With probability one, the second term converges to zero on γi, and the convergence is uniform (along the principle of the
proof of Lemma 5). Since

sup
n

max
ϕ

∥n−1b′(ϕ)∥ = sup
n

max
ϕ

n−1N−1/2 ℓD exp(−ıℓDϕ)
N−1
ℓ=0

 < ∞,

the term

ξ(z, ϕ) = 1On × zu∗

1(Q (z2) − α(z2)I)b(ϕ)

satisfies

|ξ(z1, ϕ1) − ξ(z2, ϕ2)| ≤ K(n|ϕ1 − ϕ2| + |z1 − z2|)

for every (z1, ϕ1), (z2, ϕ2) in γi × [0, π/D]. Therefore, it will be enough to prove that

max
(z,ϕ)∈An×Bn

ξ(z, ϕ)
a.s.

−−−→
n→∞

0
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where An contains n regularly spaced points in γi and Bn contains n2 regularly spaced points in [0, π/D]. This can be obtained
from Lemma 3 with p = 9, the Markov inequality and Borel–Cantelli’s lemma. The other terms of â − a can be handled
similarly. �

We now prove Theorem 3 by following the ideas of [16,17]. To that end, we need the following lemma, proven in [14].

Lemma 7. Let (cN) be a sequence of real numbers belonging to a compact of [−1/2, 1/2] and converging to c. Let

qN(cN) =
1
N

N−1
k=0

exp(−2ıπkcN).

Then the following hold true:

qN(cN) −−−→
N→∞

0 if c ≠ 0,

qN(cN) −−−→
N→∞

0 if c = 0 and N|cN − c| → ∞,

qN(cN) −−−→
N→∞

exp(−ıπd)sinc(d) if c = 0 and N|cN − c| → d,

where sinc stands as usual for sine cardinal.

Proof of Theorem 3. We start by observing that χ(ϕ) = d(ϕ)∗(B∗B)−1d(ϕ) where B is the matrix defined in A6 and where
d(ϕ) =


b(ϕk)

∗b(ϕ)
r
k=1. By Lemma 7, B∗B → Ir ; hence χ(ϕ) − ∥d(ϕ)∥2

→ 0.
In the remainder of the proof, we shall stay in the probability one set where the uniform convergence in the statement

of Proposition 1 holds true. Taking k = 1 without loss of generality, we shall show that any sequence ϕ̂1,n for which χ̂(ϕ̂1,n)
attains its maximum in the closure of a small neighborhood of ϕ1 satisfies N(ϕ̂1,n − ϕ1) → 0. Given a sequence of such
ϕ̂1,n, assume we can extract a subsequence ϕ̂1,n∗ such that N|ϕ̂1,n∗ − ϕ1| → ∞. In this case, Lemma 7 and the observations
made above on the structure of χ(ϕ) show that χ(ϕ̂1,n∗) → 0. Since maxϕ |χ̂(ϕ) − χ(ϕ)| → 0, χ̂(ϕ̂1,n∗) → 0. But
χ̂(ϕ1) → χ(ϕ1) = 1, which contradicts the fact that ϕ̂1,n∗ maximizes χ̂ . Hence the sequence N(ϕ̂1,n∗ − ϕ1) belongs to a
compact. Assume that N(ϕ̂1,n∗ − ϕ1) ↛ 0. If we take a further subsequence of the latter that converges to a constant d ≠ 0,
then by Lemma 7, χ̂ converges to sinc(d)2 < 1 along this subsequence, which also raises a contradiction. This proves the
theorem. �

5. Second order analysis of the spike MUSIC estimator

In order to perform the second order analysis, we also assume the following.

Assumption A8. Let λ−, λ+, α andm be as in A3. Then for any z ∈ C−[λ−, λ+],
√
n (α(z) − m(z)) converges in probability

to zero.

Remark 2. If
√
nX is standard Gaussian and if cn = N/n satisfies

√
n(cn − c) → 0, then Assumption A8 is satisfied. Indeed,

callmn(z) the Stieltjes Transformof theMarčenko–Pastur distribution, i.e., the analytic continuation of (7),when c is replaced
with cn, and let πn be the associated probability measure. For z ∈ C − [λ−, λ+], function f (x) = (x − z)−1 is analytic
outside the support of πn for n large, and [2, Theorem 1.1] can be applied to show that

√
n(αn(z) − mn(z))

P
−→ 0. When√

n(cn − c) → 0, it is furthermore clear that
√
n(mn(z) − m(z)) → 0.

The main result of this section is the following.

Theorem 4. Let Assumptions A1–A8 hold true. Then the estimates ϕ̂k,n satisfy

n3/2

ϕ̂1,n − ϕ1
...

ϕ̂r,n − ϕr

 D
−−−→
n→∞

N

0,

σ 2
1 Ij1

. . .

σ 2
s Ijs


 (15)

where

σ 2
i =

6
c2D2


m′(ρi) − m(ρi)

2

cm(ρi)2
+ ω2

i


m(ρi) + ρim′(ρi)


, 1 ≤ i ≤ s.

When
√
nX is standard Gaussian, plugging the r.h.s. of (7) into this expression leads after some derivations to the following

corollary.
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Fig. 2. Spike MUSIC algorithm, variance vs. N .

Corollary 2. If
√
nX is standard Gaussian and if

√
n(cn − c) → 0, the convergence (15) holds true with

σ 2
i =

6
c2D2

ω2
i + 1

ω4
i − c

.

This corollary calls for some comments.

Remark 3 (Efficiency at High SNR). Recalling that ω2
i >

√
c is the condition for the existence of a corresponding isolated

eigenvalue (Corollary 1), we observe that the estimator variance for ϕk goes to infinity as the corresponding ω2
i decreases

to
√
c. At the other extreme, this variance behaves like 6c−2D−2ω−2

i as ω2
i → ∞. It is useful to notice that this asymptotic

variance coincides with the Cramér–Rao bound for estimating ϕk [28]. In other words, the SpikeMUSIC estimator is efficient
at high SNR when the noise matrix is standard Gaussian.

A numerical illustration

In order to illustrate the convergence and the fluctuations of the Spike MUSIC algorithm, we simulate a radio signal
transmission satisfying Assumptions A1–A8. We consider r = 2 emitting sources located at the angles 0.5 and 1 rad.,
and a number of receiving antennas ranging from N = 5 to N = 50. The observation window length is set to n = 2N
(hence c = 0.5). The noise matrix Xn is such that

√
nXn is standard Gaussian. The source powers are assumed equal,

so that the matrix O given by Eq. (2) is written O = ωI2, and the Signal to Noise Ratio for any source is SNR =

10 log10 ω2 decibels. In Fig. 2, the SNR is set to 10 dB, and the empirical variance of ϕ̂1,n − ϕ1 (red curve) is computed
over 2000 runs. The variance provided by Corollary 2 is also plotted versus N . We observe a good fit between the
variance predicted by Corollary 2 and the empirical variance after N = 15 antennas. In Fig. 3, the variance is plotted
as a function of the SNR, the number of antennas being fixed to N = 20. The empirical variance is computed over
5000 runs. The Cramér–Rao Bound is also plotted. The empirical variance fits the theoretical one from SNR ≈ 6 dB
upwards.

Proof of Theorem 4. We start with some additional notations and definitions. Matrix B =

b(ϕ1), . . . , b(ϕr)


will be often

written as B = [b1, . . . , br ] or in block form as B =

B1, . . . , Bs


where Bi has ji columns. We shall also write B′

=
b′(ϕ1), . . . , b′(ϕr)


and B′′

=

b′′(ϕ1), . . . , b′′(ϕr)


where b′(ϕ) and b′′(ϕ) are respectively the first and second derivatives

of b(ϕ). We shall also use the short hand notations B′
= [b′

1, . . . , b
′
r ] and B′′

= [b′′

1, . . . , b
′′
r ]. Matrix B⊥

= [b⊥

1 , . . . , b⊥
r ] will

be defined by the equation

1
n
B′

= −
ıcD
2

B +
cD

2
√
3
B⊥. (16)

Finally, if xn, yn are random sequences, we denote by xn ≍ yn the convergence xn − yn
P
−→ 0.
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Fig. 3. Spike MUSIC algorithm, variance vs. the SNR.

We now state some preliminary results. In the following, we say that the complex random vector η is governed by the
law CN (0, R) where R is a nonnegative Hermitian matrix if the real vector


ℜ(η)
ℑ(η)


has the law N


0, 1

2


ℜ(R) −ℑ(R)
ℑ(R) ℜ(R)


. The

following proposition, whose proof is postponed to Appendix A, is crucial. �

Proposition 2. Let Assumptions A1–A4 hold true. Let t ≤ N be a fixed integer, let W =

w1, . . . , wt


and W =


w̃1, . . . , w̃t


be deterministic isometry matrices with dimensions N × t and n × t respectively. Let ρ be a real number such that ρ > λ+.
Then

ξn =
√
n

W ∗


Q (ρ) − α(ρ)IN


W , W ∗

Q (ρ) − α̃(ρ)In
W , W ∗XQ (ρ)W

is tight.
Assume that t is even. Given real numbers ρ1, . . . , ρt/2 all strictly greater than λ+, the t × 1 random vector

ηn =

√
N

w∗

kQ (ρk)wt/2+k

1≤k≤t/2 ,

√
n

w∗

kXQ (ρk)w̃k

1≤k≤t/2

T
converges in distribution towards CN (0, R) with

R =


diag


m′(ρk) − m(ρk)

2t/2
k=1 0

0 diag

m(ρk) + ρkm′(ρk)

t/2
k=1


.

Writing Q − mI = (Q − αI) + (α − m)I , and similarly forQ , we obtain the following.

Corollary 3. Assume in addition that Assumption A8 is satisfied. Then

ξn =
√
n

W ∗


Q (ρ) − m(ρ)IN


W , W ∗

Q (ρ) − m̃(ρ)In
W , W ∗XQ (ρ)W

is tight.

Intuitively, tightness of ξn leads to the tightness of the
√
n(λ̂k,n − ρi(k)). This is formalized by the following proposition,

proven in Appendix B.

Proposition 3. Assume the setting of Theorem 4. Then the sequences
√
n(λ̂k,n − ρi(k)) are tight for 1 ≤ k ≤ r.

The following lemma is proven in Appendix C.
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Lemma 8. Let Assumptions A5 and A6 hold true. Then the following convergences hold true:

B∗B −−−→
n→∞

Ir ,

1
n2

B∗B′′
−−−→
n→∞

−


c2D2

3


Ir ,

(B⊥)∗B⊥
−−−→
n→∞

Ir ,

(B⊥)∗B −−−→
n→∞

0,

∥Πi − ΠBi∥ −−−→
n→∞

0 for all i = 1, . . . , s

where ΠBi is the orthogonal projection matrix on the column space of Bi.

We now enter the proof of Theorem 4.
Recall the definitions (12) and (13) of χ̂ and ζ . In most of the proof, we shall focus on

√
n(ϕ̂1,n − ϕ1). Recalling that

χ̂ ′(ϕ̂1) = 0 and performing a Taylor–Lagrange expansion of χ̂ ′ around ϕ1, we obtain

0 = χ̂ ′(ϕ̂1) = χ̂ ′(ϕ1) + (ϕ̂1 − ϕ1)χ̂
′′(ϕ1) +

(ϕ̂1 − ϕ1)
2

2
χ̂ (3)(ϕ̄1),

where χ̂ (3) is the third derivative of χ̂ and where ϕ̄1 ∈ [ϕ1 ∧ ϕ̂1, ϕ1 ∨ ϕ̂1]. Hence

n3/2(ϕ̂1 − ϕ1) = −
n−1/2χ̂ ′(ϕ1)

n−2χ̂ ′′(ϕ1) + 0.5n−2(ϕ̂1 − ϕ1)χ̂ (3)(ϕ̄1)
.

We start by characterizing the asymptotic behavior of the denominator of this equation.

Lemma 9. Assume that the setting of Theorem 4 holds true. Then,

χ̂ ′′(ϕ1)

n2
+ (ϕ̂1 − ϕ1)

χ̂ (3)(ϕ̄1)

2n2
a.s.

−−−→
n→∞

−
c2D2

6
.

Proof. We have

χ̂ ′′(ϕ1)

n2
=

2
n2

r
k=1

ζ (λ̂k)|(b′

1)
∗uk|

2
+

2
n2

r
k=1

ℜ


ζ (λ̂k)b∗

1uku∗

kb
′′

1


,

χ ′′(ϕ1)

n2
=

2
n2

(b′

1)
∗UU∗b′

1 +
2
n2

ℜ

b∗

1UU
∗b′′

1


. (17)

Theorem 1 along with the continuity of ζ on (λ+, ∞), and Theorem 2 show that

1
n2

χ̂ ′′(ϕ1) −
1
n2

χ ′′(ϕ1)
a.s.

−−−→
n→∞

0.

Writing

1
n2

χ ′′(ϕ1) =
2
n2

s
i=1


(b′

1)
∗Πib′

1 + ℜ(b∗

1Πib′′

1)

,

we have

1
n2

(b′

1)
∗Πib′

1 =


−

ıcD
2

b1 +
cD

2
√
3
b⊥

1

∗

Πi


−

ıcD
2

b1 +
cD

2
√
3
b⊥

1


,

−−−→
n→∞

c2D2

4
δi,0

by the first, fourth and fifth assertions of Lemma 8. By the same lemma,

1
n2

b∗

1Πib′′

1 −
δi,0

n2
b∗

1b
′′

1 → 0 and
1
n2

b∗

1b
′′

1 → −
c2D2

3
.

Hence n−2χ̂ ′′(ϕ1) → −c2D2/6.
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Furthermore, it is easily seen that n−3χ̂ (3)(ϕ̄1) is bounded. Since n(ϕ̂1−ϕ1)
a.s.
−→ 0 by Theorem3, n−2(ϕ̂1−ϕ1)χ̂

(3)(ϕ̄1)
a.s.
−→

0, which establishes the result. �

We now turn to the numerator n−1/2χ̂ ′(ϕ1) = 2n−1/2r
k=1 ζ (λ̂k)ℜ


b∗

1ûkû∗

kb
′

1


, and start with the following lemma.

Lemma 10. Assume that the setting of Theorem 4 holds true. Then

1
√
n
χ̂ ′(ϕ1) − 2ℜ(ξ)

P
−→ 0,

where

ξ =

s
i=1

ζ (ρi)

ıπ
√
n


γi


â∗(z, ϕ1)H(z)−1â′

ϕ(z, ϕ1) − a∗(z, ϕ1)H(z)−1a′

ϕ(z, ϕ1)

dz, (18)

and where the deterministic circle γi encloses ρ
1/2
i only and:

â′

ϕ(z, ϕ) =
∂ â(z, ϕ)

∂ϕ
=


zU∗Q (z2)

ΩV ∗Q (z2)X∗


b′(ϕ),

a′

ϕ(z, ϕ) =
∂a(z, ϕ)

∂ϕ
=


zm(z2)U∗

0


b′(ϕ).

Proof. Recall the definition of χ̂ as given in (12). A direct computation yields:

χ̂ ′(ϕ) = 2
r

k=1

ζ (λ̂k,n)ℜ

b∗

1(ϕ)ûkû∗

kb
′

1(ϕ)

,

= 2
s

i=1


k:i(k)=i

ζ (λ̂k,n)ℜ

b∗

1(ϕ)ûkû∗

kb
′

1(ϕ)

.

Recall that r and s are fixed and independent from n by A5. We start by showing that

1
√
n
χ̂ ′(ϕ1) −

2
√
n

s
i=1

ζ (ρi)ℜ

b∗

1
Πib′

1

 P
−−−→
n→∞

0. (19)

Since
√
n(ζ (λ̂k,n) − ζ (ρi(k))) is tight as a corollary of Proposition 3, it will be enough to prove that n−1

ℜ

b∗

1ûkû∗

kb
′

1


→ 0 in

probability for every k. By the definition (16) of B⊥, we have

1
n

ℜ

b∗

1ûkû∗

kb
′

1


=

cD

2
√
3

ℜ

b∗

1ûkû∗

kb
⊥

1


.

By the Cauchy–Schwarz inequality,b∗

1ûkû∗

kb
⊥

1

2 ≤ b∗

1
Πi(k)b1 (b⊥

1 )∗Πi(k)b⊥

1 .

By Theorem 2,

b∗

1
Πi(k)b1(b⊥

1 )∗Πi(k)b⊥

1 − ζ (ρi(k))
−2 b∗

1Πi(k)b1(b⊥

1 )∗Πi(k)b⊥

1
a.s.
−→ 0,

and by Lemma 8, b∗

1Πi(k)b1(b⊥

1 )∗Πi(k)b⊥

1 → 0 (consider alternatively the cases i(k) = 1 and i(k) > 1) which proves (19).
Now, applying (8) and (14), and taking up an argument used in the proof of Theorem 2, we have

2
s

i=1

ζ (ρi)
√
n

ℜ

b∗

1
Πib′

1


= 2

s
i=1

ℜ


−ζ (ρi)

ıπ
√
n


Ci


b∗

1 0

Q(z)


b′

1
0


dz


+ 2
s

i=1

ℜ


ζ (ρi)

ıπ
√
n


Ci

â∗(z, ϕ1)H(z)−1â′

ϕ(z, ϕ1) dz


= 2
s

i=1

ℜ


ζ (ρi)

ıπ
√
n


γi

â∗(z, ϕ1)H(z)−1â′

ϕ(z, ϕ1) dz

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with probability one for n large. On the other hand, recalling (11), we have

0 = χ ′(ϕ1) = 2
s

i=1

ℜ


ζ (ρi)

ıπ


γi

a∗(z, ϕ1)H(z)−1a′

ϕ(z, ϕ1) dz


,

which proves the result. �

WriteH(z) = H(z) + E(z) and â(z, ϕ) = a(z, ϕ) + e(z, ϕ). To be more specific,

E(z) =


zU∗(Q (z2) − m(z2)IN)U U∗XQ (z2)VΩ

ΩV ∗Q (z2)X∗U zΩV ∗(Q (z2) − m̃(z2)In)VΩ


(20)

and

e(z, ϕ) =


zU∗


Q (z2) − m(z2)I


ΩV ∗Q (z2)X∗


b(ϕ).

Write e′
ϕ(z, ϕ) = ∂e(z, ϕ)/∂ϕ. For a given z ∈ γi,H−1

= H−1
− H−1EH−1

+ O(∥E∥
2). This suggests the following

development

ξ =

s
i=1


ζ (ρi)

ıπ
√
n


γi

a∗(z, ϕ1)H(z)−1e′

ϕ(z, ϕ1) dz +
ζ (ρi)

ıπ
√
n


γi

e∗(z, ϕ1)H(z)−1a′

ϕ(z, ϕ1) dz

−
ζ (ρi)

ıπ
√
n


γi

a∗(z, ϕ1)H(z)−1E(z)H(z)−1a′

ϕ(z, ϕ1) dz + qi


=

s
i=1

(X1,i + X2,i + X3,i + qi)

where the terms qi are ‘‘higher order terms’’ that appear when we expand the r.h.s. of (18). We first handle the terms Xk,i’s,
then qi.

The terms X1,i

Writing Un =

U1,n · · ·Us,n


and Vn =


V1,n · · · Vs,n


where both Ui,n and Vi,n have ji columns, and recalling (10), we have

X1,i =
ζ (ρi)

ıπ
√
n

s
ℓ=1


γi


zm(z2)b∗

1Uℓ 0

×


zm̃(z2)ω2

ℓ −1
−1 zm(z2)


⊗ Ijℓ

z2m(z2)m̃(z2)ω2
ℓ − 1


zU∗

ℓ


Q (z2) − m(z2)I


b′

1
ωℓV ∗

ℓ
Q (z2)X∗b′

1


dz

=
ζ (ρi)

ıπ
√
n

s
ℓ=1


γi

z3ω2
ℓm(z2)m̃(z2)b∗

1Πℓ


Q (z2) − m(z2)I


b′

1

z2m(z2)m̃(z2)ω2
ℓ − 1

dz

−
ζ (ρi)

ıπ
√
n

s
ℓ=1


γi

ωℓzm(z2)b∗

1UℓV ∗

ℓ
Q (z2)X∗b′

1

z2m(z2)m̃(z2)ω2
ℓ − 1

dz

=
ζ (ρi)

2ıπ
√
n

s
ℓ=1


γ ′
i

wω2
ℓm(w)m̃(w)b∗

1Πℓ (Q (w) − m(w)I) b′

1

wm(w)m̃(w)ω2
ℓ − 1

dw

−
ζ (ρi)

2ıπ
√
n

s
ℓ=1


γ ′
i

ωℓm(w)b∗

1UℓV ∗

ℓ
Q (w)X∗b′

1

wm(w)m̃(w)ω2
ℓ − 1

dw

where γ ′

i encloses ρi only. These integrals are zero for ℓ ≠ i. For large n and with probability one, none of the numerators
has a pole within γ ′

i ; hence by the Residue Theorem

X1,i =
b∗

1Πi (Q (ρi) − m(ρi)I) b′

1
√
nm(ρi)

−
ωib∗

1UiV ∗

i
Q (ρi)X∗b′

1
√
n

a.s. for n large enough.
Due to the bounded character of ∥n−1b′

∥ and to Corollary 3, X1,i is tight for every i. By Lemma 8,

X1,i ≍ δi−1,0


b∗

1 (Q (ρ1) − m(ρ1)I) b′

1
√
nm(ρ1)

−
ω1b∗

1U1V ∗

1
Q (ρ1)X∗b′

1
√
n


.
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The terms X2,i

We have here

X2,i =
ζ (ρi)

ıπ
√
n

s
ℓ=1


γi


zb∗

1


Q (z2) − m(z2)I


Uℓ ωℓb∗

1XQ (z2)Vℓ



×


zm̃(z2)ω2

ℓ −1
−1 zm(z2)


⊗ Ijℓ

z2m(z2)m̃(z2)ω2
ℓ − 1

×


zm(z2)U∗

ℓ b
′

1
0


dz

=
ζ (ρi)

2ıπ
√
n

s
ℓ=1


γ ′
i

wm(w)m̃(w)ω2
ℓb

∗

1 (Q (w) − m(w)I) Πℓb′

1

wm(w)m̃(w)ω2
ℓ − 1

dw

−
ζ (ρi)

2ıπ
√
n

s
ℓ=1


γ ′
i

ωℓm(w)b∗XQ (w)VℓU∗

ℓ b
′

1

wm(w)m̃(w)ω2
ℓ − 1

dw

=
b∗

1 (Q (ρi) − m(ρi)I) Πib′

1
√
nm(ρi)

−
ωib∗

1XQ (ρi)ViU∗

i b
′

1
√
n

w.p. 1 for large n

≍ δi−1,0


b∗

1 (Q (ρi) − m(ρi)I) Π1b′

1
√
nm(ρi)

−
ωib∗

1XQ (ρi)V1U∗

1 b
′

1
√
n



by Corollary 3 and Lemma 8.

The terms X3,i

From (10) and (20), we have

X3,i = −
ζ (ρi)

ıπ
√
n


γi

s
p,ℓ=1


zm(z2)b∗

1U 0


×


zm̃(z2)ω2

p −1
−1 zm(z2)


⊗ Ip


E(z)


zm̃(z2)ω2

ℓ −1
−1 zm(z2)


⊗ Iℓ


(z2m(z2)m̃(z2)ω2

p − 1)(z2m(z2)m̃(z2)ω2
ℓ − 1)


zm(z2)U∗b′

1
0


dz

= −
ζ (ρi)

ıπ
√
n


γi

s
p,ℓ=1


ω2

pz
2m(z2)m̃(z2) −zm(z2)



×


zb∗

1Πp(Q (z2) − m(z2)I)Πℓb′

1 ωℓb∗

1ΠpXQ (z2)VℓU∗

ℓ b
′

1
ωpb∗

1UpV ∗

p
Q (z2)X∗Πℓb′

1 zωpωℓb∗

1UpV ∗

p (Q (z2) − m̃(z2))VℓU∗

ℓ b
′

1


(z2m(z2)m̃(z2)ω2

p − 1)(z2m(z2)m̃(z2)ω2
ℓ − 1)


ω2

ℓz
2m(z2)m̃(z2)
−zm(z2)


dz

= −
ζ (ρi)

2ıπ


γ ′
i

s
p,ℓ=1

Gp,ℓ(w)

(wm(w)m̃(w)ω2
p − 1)(wm(w)m̃(w)ω2

ℓ − 1)
dw

where

Gpℓ(w) = n−1/2 ω2
pω

2
ℓw

2m(w)2m̃(w)2 b∗

1Πp(Q (w) − m(w)I)Πℓb′

1

− ωpω
2
ℓwm(w)2m̃(w) b∗

1UpV ∗

p
Q (w)X∗Πℓb′

1 − ω2
pωℓwm(w)2m̃(w) b∗

1ΠpXQ (w)VℓU∗

ℓ b
′

1

+ ωpωℓwm(w)2 b∗

1UpV ∗

p (Q (w) − m̃(w)I)VℓU∗

ℓ b
′

1


.

For large n and with probability one, the Gpℓ(w) are holomorphic functions in a domain enclosing γ ′

i , and Gpℓ(w) does not
cancel any of the terms of the denominator. The integrals of all terms in the sum such that p ≠ i and ℓ ≠ i are zero. Each
of the integrands of the terms p = i, ℓ ≠ i or p ≠ i, ℓ = i has a pole with degree one, and the corresponding integrals
are of the form KiℓGiℓ(ρi) or KpiGpi(ρi) where the Kiℓ and Kpi are real constants. By inspecting the expression of Gpℓ and by
using Corollary 3 and Lemma 8, it can be seen that these terms converge to zero in probability. It remains to study the term
p = ℓ = i, which has a degree 2 pole. Recalling that the residue of ameromorphic function f (z) that has a pole with degree 2
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at z0 is limz→z0 d

(z − z0)2f (z)


/dz and letting gℓ(z) = zm(z)m̃(z)ω2

ℓ − 1, the integral of this term is

ζ (ρi)


Gii(ρi)g ′′

i (ρi)

g ′

i (ρi)3
−

G′

ii(ρi)

g ′

i (ρi)2


.

Thanks to Corollary 3 and Lemma 8, ℜ(Gii(ρi))
P
−→ 0. The same can be said about G′

ii(ρi) after a simple modification of
Proposition 2 and Corollary 3. In conclusion,

∀i = 1, . . . , s, ℜ(X3,i)
P
−→ 0.

The terms qi

These are the higher order terms that appear when we expand the right hand side of (18). We shall work here on one of
these terms, namely

ε =
ζ (ρi)

ıπ
√
n


γi

a∗(z, ϕ1)
H(z)−1

− H(z)−1
+ H(z)−1E(z)H(z)−1 a′

ϕ(z, ϕ1) dz

and show that ε
P
−→ 0. The other higher order terms can be handled similarly. Writing z =

√
ρi + R exp(2ıπθ) on the circle

γi, we have

|ε| ≤ K
√
n
 1

0
∥H(z)−1

− H(z)−1
+ H(z)−1E(z)H(z)−1

∥ dθ

where K is a constant whose value can change from line to line, but which remains independent from n. Let φ be a function
from [0, 1] to a normed vector space. If φ is twice differentiable on (0, 1), then it is known that ∥φ(1) − φ(0) − φ′(0)∥ ≤

supt∈(0,1) 0.5∥φ′′(t)∥.
Setting φ(t) = (H + tE)−1 and recalling that Ĥ = H + E, we have φ(1) = Ĥ, φ(0) = H and φ′′(t) = (H + tE)−1E(H +

tE)−1E(H + tE)−1; hence

∥H(z)−1
− H(z)−1

+ H(z)−1E(z)H(z)−1
∥ ≤ K∥E(z)∥2

for z ∈ γi. Write Q − mI = (Q − αI) + (α − m)I andQ − m̃I = (Q − α̃I) + (α̃ − m̃)I , and decompose E as defined in (20)
as E = E1 + E2 where

E1(z) =


zU∗(Q (z2) − α(z2)IN)U U∗XQ (z2)VΩ

ΩV ∗Q (z2)X∗U zΩV ∗(Q (z2) − α̃(z2)In)VΩ


,

E2(z) =


zU∗((α(z2) − m(z2))IN)U 0

0 zΩV ∗(α(z2) − m̃(z2))InVΩ


.

Consider any element of E1, for instance zu∗

1(Q (z2) − α(z2)I)u1. By Lemma 3,

√
nE
 1

0
1On

u∗

1(Q − α)u1
2 dθ =

√
n
 1

0
E1On

u∗

1(Q − α)u1
2 dθ ≤

K
√
n

which shows that
√
n
 1
0 ∥E1∥2dθ

P
−→ 0.

We now prove that
√
n
 1
0 ∥E2∥2dθ

P
−→ 0. In the space of probability measures on R endowedwith theweak convergence

metric, in order to prove that a sequence converges weakly to µ, it is enough to prove that from any sequence, we
can extract a subsequence along which the weak convergence to µ holds true. We shall show along this principle that
√
n
 1
0 ∥E2∥2dθ

P
−→ 0. Consider the term

√
n(α − m). Let (zk) be a denumerable sequence of points in C − [0, λ+] with an

accumulation point in that set. By A8, from every sequence, there is subsequence nℓ such that
√
nℓ(αnℓ

(z1) − m(z1)) → 0
almost surely (recall that the convergence in probability implies the a.s. convergence along a subsequence). By Cantor’s
diagonal argument, we can extract a subsequence (call it again nℓ) such that

√
nℓ(αnℓ

(zk) − m(zk)) → 0 almost surely
for every k. By the normal family theorem, there is a subsequence along which the function

√
nℓ(αnℓ

− m) → 0
uniformly on γi a.s. Repeating the argument for

√
n(α̃ − m̃), there is a subsequence nℓ along which

√
nℓ

 1
0 ∥E2∥2dθ

a.s.
−→ 0,

hence weakly. Necessarily,
√
nℓ

 1
0 ∥E2∥2dθ converges weakly to zero. Now since the weak convergence to a constant is

equivalent to the convergence in probability to the same constant, we obtain the desired result. We have finally shown
that:

∀i = 1, . . . , s, qi
P
−→ 0.
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Final derivations

Write χ̂
′
=

χ̂ ′(ϕ1), . . . , χ̂

′(ϕr)

. Generalizing the previous argument to all the ϕk and gathering the results, we obtain

n−1/2χ̂
′
≍ 2ℜ


b∗

k


Q (ρi(k)) − m(ρi(k))I


b′

k
√
nm(ρi(k))

+
b∗

k


Q (ρi(k)) − m(ρi(k))I


Πi(k)b′

k
√
nm(ρi(k))

−
ωi(k)b∗

kUi(k)V ∗

i(k)
Q (ρi(k))X∗b′

k
√
n

−
ωi(k)b∗

kXQ (ρi(k))Vi(k)U∗

i(k)b
′

k
√
n

r

k=1

≍
cD
√
3

√
nℜ


b∗

kQ (ρi(k))b⊥

k

m(ρi(k))
− ωi(k)b∗

kUi(k)V ∗

i(k)
Q (ρi(k))X∗b⊥

k

r
k=1

.

By Lemma 8, matrix A =

Vi(k)U∗

i(k)bk
r
k=1 satisfies A

∗A → Ir . Recall from the same lemma that B∗B → Ir , (B⊥)∗B⊥
→ Ir and

(B⊥)∗B → 0. Hence, Proposition 2 can be applied to the r.h.s. of this expression, and n−1/2χ̂
′ converges in law to

N


0,

c2D2

6
diag


m′(ρi(k)) − m(ρi(k))

2

cm(ρi(k))2
+ ω2

i(k)


m(ρi(k)) + ρi(k)m′(ρi(k))

r

k=1


.

It remains to recall Lemmas 9 and 10 to terminate the proof of Theorem 4.

Appendix A. Proof of Proposition 2

The tightness of ξn follows from Lemmas 3 and 4 with p = 2 and from the application of Chebyshev’s inequality.
Let Z = [zi,k]

N,t
i,k=1 andZ = [z̃i,k]

n,t
i,k=1 be N × t and n × t standard Gaussian random matrices chosen such that Z,Z and

the N × N matrix Γ of singular values of X are independent. For k = 1, . . . , t/2, let Dk = diag(di,k)Ni=1 = (Γ 2
− ρk)

−1 and
Ck = diag(ci,k)Ni=1 = Γ (Γ 2

− ρk)
−1. Then

ηn
D
=

√
N


(Z∗Z)−1/2Z∗


Dk −

trDk

N


Z(Z∗Z)−1/2


k,k+t/2


k=1,...,t/2

,

×
√
n


(Z∗Z)−1/2Z∗CkZ[1;N](Z∗Z)−1/2
k,k


k=1,...,t/2

T

whereZ[1;N] isZ truncated to its first N rows. By the Law of Large Numbers, N−1Z∗Z → It and n−1Z∗Z → It almost surely.
Hence, ifwe show that themultidimensional randomvariablesAk,n = N−1/2Z∗(Dk−N−1trDk)Z andBk,n = N−1/2Z∗CkZ[1;N]

are tight for k = 1, . . . , t/2, and

η̄n =
1

√
N

Z∗


Dk −

trDk

N


Z

k,k+t/2


k=1,...,t/2

,


Z∗CkZ[1;N]

k,k


k=1,...,t/2

T

converges in law towards CN (0, R), the second result of Proposition 2 is proven. From A3 and A4,

1
N

N
i=1


di,k −

trDk

N

2
=

1
N
trQ (ρk)

2
−


1
N
trQ (ρk)

2
a.s.

−−−→
n→∞

m′(ρk) − m(ρk)
2, and

1
N

N
i=1

c2i,k =
1
N
trQ (ρk) +

ρk

N
trQ (ρk)

2 a.s.
−−−→
n→∞

m(ρk) + ρkm′(ρk)

for all k = 1, . . . , t/2. Recalling that Z and Z are standard Gaussian, it results that lim supn E

∥Ak,n∥

2
∥ Γn


and

lim supn E

∥Bk,n∥

2
∥ Γn


are bounded w.p. 1 by a constant. Tightness of the Ak,n and Bk,n follows. Now we have

η̄n =
1

√
N

N
i=1


(di,k − N−1trDk)z∗

i,kzi,k+t/2

k=1,...,t/2 ,


ci,kz∗

i,kz̃i,k

k=1,...,t/2

T
=

1
√
N

N
i=1

ui,n.
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Observe that the covariance matrix of η̄n conditional to Γn converges almost surely to R. Moreover, thanks to A4, it is easy
to see that the Lyapunov condition

1
N1+a

n
i=1

E

∥ui,n∥

2(1+a)
∥ Γn

 a.s.
−−−→
n→∞

0

is satisfied for any a > 0; hence η̄n
L
−→ CN (0, R) which completes the proof of Proposition 2.

Appendix B. Sketch of the proof of Proposition 3

For k = 1, . . . , r , let ρ̄k,n be the solutions of the equation ω2
k,ng(ρ) = 1, where we recall that the ω2

k,n are the diagonal
elements of matrixΩn. Then, by a simple extension to the case r ≥ 1 of the proof of [9, Theorem 2.15], one can show that the
sequences

√
n(λ̂k,n − ρ̄k,n) are tight. To obtain the result, we show that

√
n(ρ̄k,n − ρi(k)) = O(1). Since g is decreasing, this

amounts to showing that
√
n(ω2

k,n − ω2
i(k)) = O(1). Since the non-zero eigenvalues of PP∗ coincide with those of B∗B S∗S,

it will be enough to prove that
√
n(B∗B S∗S − O) = O(1). It is clear that B∗B = Ir + n−1A where supn ∥A∥ < ∞; hence√

n(B∗BO − O) → 0. By the last item in Assumption A6,
√
nB∗B(S∗S − O) = O(1), and the proposition is shown.

Appendix C. Proof of Lemma 8

Observing that

b′(ϕ) =
−ıD
√
N


ℓ exp(−ıDℓϕ)

N−1
ℓ=0 and b′′(ϕ) =

−D2

√
N


ℓ2 exp(−ıDℓϕ)

N−1
ℓ=0 ,

and using the fact that N−(K+1)N−1
ℓ=0 ℓK exp(ıαℓ) → δα,0/(K + 1) for α ∈ [−π, π], we have B∗B → Ir , n−1B∗B′

→

−(ıcD/2)Ir , n−2(B′)∗B′
→ (c2D2/3)Ir , and n−2B∗B′′

→ −(c2D2/3)Ir .
Writing B⊥

= 2
√
3(ncD)−1B′

+ ı
√
3B and replacing in the above convergences, the stated properties of B⊥ become

straightforward.
We now show the last convergence. Assume without loss of generality that i = 1 and recall that S∗S → O2. Consider

the isometry matrices W = B(B∗B)−1/2 and Z = S(S∗S)−1/2, and let A = (B∗B)1/2(S∗S)1/2, resulting in P = WAZ∗.
Notice that the singular values of A coincide with those of P apart from the zeros. Let π1 be the orthogonal projection
matrix on the eigenspace of AA∗ associated with the eigenvalues ω2

1,n, . . . , ω
2
j1,n

. With these notations, Π1 = Wπ1W ∗ and

ΠB1 = B1(B∗

1B1)
−1B∗

1 . We have A → O; hence π1 →


Ij1 0
0 0


. Since B∗B → I , for any vector x such that ∥x∥ = 1, we have

x∗Π1x − x∗B1B∗

1x → 0, and x∗ΠB1x − x∗B1B∗

1x → 0. Therefore, x∗(Π1 − ΠB1)x → 0, which proves the last result.

References

[1] Z.D. Bai, Methodologies in spectral analysis of large-dimensional randommatrices, a review, Statist. Sinica 9 (3) (1999) 611–677. With comments by
G.J. Rodgers and Jack W. Silverstein; and a rejoinder by the author.

[2] Z.D. Bai, J.W. Silverstein, CLT for linear spectral statistics of large-dimensional sample covariance matrices, Ann. Probab. 32 (1A) (2004) 553–605.
[3] Z. Bai, J.-f. Yao, Central limit theorems for eigenvalues in a spiked population model, Ann. Inst. H. Poincaré Probab. Statist. 44 (3) (2008) 447–474.
[4] J. Baik, G. Ben Arous, S. Péché, Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices, Ann. Probab. 33 (5) (2005)

1643–1697.
[5] J. Baik, J.W. Silverstein, Eigenvalues of large sample covariance matrices of spiked population models, J. Multivariate Anal. 97 (6) (2006) 1382–1408.
[6] F. Benaych-Georges, A. Guionnet, M. Maïda, Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices, January 2010.

Arxiv Preprint arXiv:1009.0145.
[7] F. Benaych-Georges, R.R. Nadakuditi, The eigenvalues and eigenvectors of finite, low rank perturbations of large randommatrices (v1), October 2009.

ArXiv e-prints.
[8] F. Benaych-Georges, R.R. Nadakuditi, The eigenvalues and eigenvectors of finite, low rank perturbations of large randommatrices, Adv. Math. (2011).
[9] F. Benaych-Georges, R.R. Nadakuditi, The singular values and vectors of low rank perturbations of large rectangular random matrices, March 2011.

ArXiv e-prints.
[10] P. Bianchi, M. Debbah, M. Maida, J. Najim, Performance of statistical tests for single-source detection using randommatrix theory, IEEE Trans. Inform.

Theory 57 (4) (2011) 2400–2419.
[11] G. Bienvenu, L. Kopp, Adaptivity to background noise spatial coherence for high resolution passive methods, in: IEEE Int. Conf. on Acoustics, Speech,

and Signal Processing, ICASSP’80, vol. 5, April 1980, pp. 307–310.
[12] M. Capitaine, C. Donati-Martin, D. Féral, Central limit theorems for eigenvalues of deformations of Wigner matrices, March 2009. Arxiv Preprint

arXiv:0903.4740.
[13] M. Capitaine, C. Donati-Martin, D. Féral, The largest eigenvalues of finite rank deformation of largeWignermatrices: convergence and nonuniversality

of the fluctuations, Ann. Probab. 37 (1) (2009) 1–47.
[14] P. Ciblat, P. Loubaton, E. Serpedin, G.B. Giannakis, Asymptotic analysis of blind cyclic correlation-based symbol-rate estimators, IEEE Trans. Inform.

Theory 48 (7) (2002) 1922–1934.
[15] S. Geman, A limit theorem for the norm of randommatrices, Ann. Probab. 8 (2) (1980) 252–261.
[16] E.J. Hannan, Non-linear time series regression, J. Appl. Probab. 8 (1971) 767–780.
[17] E.J. Hannan, The estimation of frequency, J. Appl. Probab. 10 (1973) 510–519.
[18] Fumio Hiai, Dénes Petz, The Semicircle Law, Free Random Variables and Entropy, in: Mathematical Surveys and Monographs, vol. 77, American

Mathematical Society, Providence, RI, 2000.

http://arxiv.org/1009.0145
http://arxiv.org/0903.4740


W. Hachem et al. / Journal of Multivariate Analysis 114 (2013) 427–447 447

[19] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 2007.
[20] I.M. Johnstone, On the distribution of the largest eigenvalue in principal components analysis, Ann. Statist. 29 (2) (2001) 295–327.
[21] V.A. Marčenko, L.A. Pastur, Distribution of eigenvalues in certain sets of randommatrices, Mat. Sb. (NS) 72 (114) (1967) 507–536.
[22] Boaz Nadler, On the distribution of the ratio of the largest eigenvalue to the trace of a Wishart matrix, J. Multivariate Anal. 102 (2) (2011) 363–371.
[23] Leonid Pastur, Mariya Shcherbina, Eigenvalue Distribution of Large RandomMatrices, in: Mathematical Surveys and Monographs, vol. 171, American

Mathematical Society, Providence, RI, 2011.
[24] L. Pastur, V. Vasilchuk, On the law of addition of randommatrices: covariance and the central limit theorem for traces of resolvent, in: Probability and

Mathematical Physics, in: CRM Proc. Lecture Notes, vol. 42, Amer. Math. Soc., Providence, RI, 2007, pp. 399–416.
[25] D. Paul, Asymptotics of sample eigenstructure for a large dimensional spiked covariance model, Statist. Sinica 17 (4) (2007) 1617–1642.
[26] S. Péché, The largest eigenvalue of small rank perturbations of Hermitian randommatrices, Probab. Theory Related Fields 134 (1) (2006) 127–173.
[27] R. Schmidt, Multiple emitter location and signal parameter estimation, IEEE Trans. Antennas and Propagation 34 (3) (1986) 276–280.
[28] P. Stoica, A. Nehorai, MUSIC, maximum likelihood, and Cramer–Rao bound, IEEE Trans. Acoust. Speech Signal Process. 37 (5) (1989) 720–741.


	A subspace estimator for fixed rank perturbations of large random matrices
	Introduction
	Preliminary mathematical results
	Fixed rank perturbations: first order behavior
	The spike MUSIC estimation algorithm
	Second order analysis of the spike MUSIC estimator
	Proof of Proposition 2
	Sketch of the proof of Proposition 3
	Proof of Lemma 8
	References


