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Abstract

Spectral efficiency for asynchronous code division mudtgtcess (CDMA) with random spreading is calculated
in the large system limit. We allow for arbitrary chip wavefes and frequency-flat fading. Signal to interference
and noise ratios (SINRs) for suboptimal receiver strugusach as the linear minimum mean square error (MMSE)
detector and various linear multistage detectors are erithe approach is general and optionally allows even for
statistics obtained by under-sampling the received signal

All performance measures are given as a function of the chieform and the delay distribution of the users in
the large system limit. It turns out that synchronizing sser a chip level impairs performance for all chip waveforms
with bandwidth greater than the Nyquist bandwidth, e.gitpesroll-off factors. The benefits of asynchronism stem
from the finding that the excess bandwidth of chip waveforotsally spans additional dimensions in signal space, if
the users are de-synchronized on the chip-level.

The analysis of linear MMSE detectors shows that the lirgititerference effects can be decoupled both in the
user domain and in the frequency domain such that the con€spectrum of the effective interference arises. This
generalizes and refines Tse and Hanly’s concept of effeictieeference.

In Part I, the analysis is extended to any linear detectat éldlmits a representation as multistage detector and
guidelines for the design of low complexity multistage a#des with universal weights are provided.

Index Terms Asynchronous code division multiple access (CDMA), ctelmapacity, multiuser detection, ran-
dom matrix theory, effective interference, linear minimumean square error (MMSE) detector, multistage detector,
random spreading sequences, spectral efficiency, excedwluth, pulse shaping.
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. INTRODUCTION

The fundamental limits of synchronous code-division npldtiaccess (CDMA) systems and the loss in-
curred by the imposition of suboptimal receiving structumave been thoroughly studied in different scenar-
ios and from different perspectives. On the one hand, sggmtiefforts have been devoted to characterize
the optimal spreading sequences and the correspondingitapél], [2], [3]. On the other hand, very in-
sightful analysis [4], [5], [6], [7], [8] resulted from motimg the spreading sequences by random sequences
[9]. In fact, as both thé( transmitted signals and the spreading factotend to infinity with a fixed ratio,
CDMA systems with random spreading show self-averaginggmees. These enable the description of the
system in terms of few macroscopic system parameters asgtbuide a deep understanding of the system
behavior.

In the literature, the fundamental limits of CDMA systems &éime asymptotic analysis of linear multiuser
detectors under the assumption of random spreading seegienaverwhelmingly focused on synchronous
CDMA systems. While the assumption of user synchronizaitowed for accurate large-system analysis,
it is not realistic for the received signal on the uplink of@lalar CDMA system, in particular if users
move and cause varying delays. Therefore, it is of thealkdied practical interest to extend the analysis of
CDMA systems with random spreading to asynchronous uséiis.hblds in particular, as we will see that
from a viewpoint of system performance, asynchronous wmerbeneficial.

The analysis of asynchronous CDMA systems using a singleruatched filter as receiver was first given
in [10]. A rich field of analysis of asynchronous CDMA systewith conventional detection at the receiver
is based on Gaussian approximation methods. An exhaustereiew of these approaches exceeds the
scope of this work, which is focused on the analysis of asyoratus CDMA systems witlptimal joint
decoding or linear multiuser detectioffhe interested reader is referred to [11] [12] and refezsrtherein
for asynchronous CDMA with single-user receivers.

The analysis and design of asynchronous CDMA systems wiglatidetectors is predominantly restricted
to consider symbol-asynchronous but chip-synchronousatsgi.e. the time delays of the signals are mul-
tiples of the chip interval. The effect of chip-asynchronis eventually analyzed independently [13]. In
this stream are works that optimize the spreading sequéaceaximize the sum capacity [14] and analyze
the performance of linear multiuser detectors [13], [1&B][ [17]. In [13], [15], the linear MMSE detec-
tor for symbol-asynchronous but chip-synchronous sysisrsisown to attain the performance of the linear

MMSE detector for synchronous systems as the size of thenadigen window tends to infinity by empirical
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and analytical means, respectively. However, they venfynarically that the performance of linear MMSE
detectors is severely impaired by the use of short observatindows. Additionally, [15] provides the
large-system SINR for a symbol whose chips are completelgived in an observation window of length
equal to the symbol intervdl,. In [16], [17], the analysis of linear multistage and MMSEealtdors is ex-
tended to observation windows of arbitrary length. Furtihae, a multistage detector structure that does
not suffer from windowing effects and performs as well asrthdtistage detector for synchronous systems
is proposed.

In [13], [18], the effects of chip asynchronism are analyasduming bandlimited chip pulses. In [18],
the chip waveform is assumed to be an ideal Nyquist sinc fomgte. a sinc function with bandwidth equal
to half of the chip rate. The received signal is filtered bywadass filter (or, equivalently, a filter matched
to the chip waveform) and subsequently sampled at the tinasy dé the signal of the user of interest with
a frequency equal to the chip rateReference [18] proves that the SINR at the output of thealindMSE
detector converges in the mean-square sense to the SINRequaralent synchronous system. In [13] the
wider class of chip pulses which are inter-chip interfeeefree at the output of the chip matched filter is
considered. In the following we will refer to this class ofipulses as square root Nyquist chip pulses.

In [19], [20], the performance of the linear MMSE detectottwcompletely asynchronous users and
chip waveforms limited to a chip interval is analyzed. Hoeg\vhe observation window in [19] spanned
only a single symbol interval not yielding sufficient disterdime statistics; the resulting degradation in
performance was pointed out later in [13], [15].

As discussed above, previous approaches to the analysgrflaonous CDMA with multiuser detection
were only concerned with, if and how asynchronism can begmted from causing performance degrada-
tion. However, asynchronism is known to be beneficial for Gb8§stems with demodulation by single-user
matched filters (e.g. [10]). It is the main contribution ofstpaper to show that benefits from asynchronism
are not inherent to single-user matched filters but a gepevpkerty of CDMA systems and to quantify those
benefits in the large-system limit.

Compared to synchronous systems, the analysis of asyrmisd@DMA raises two additional issues:
() the way statistics are formed, trading complexity agaiperformance, and (ii) the effects of excess
bandwidth, chip-pulse shaping and the users’ delay digigh.

The optimum multiuser detector in [21] is based on the sefficstatistics obtained as output samples of

!The chip rate satisfies the condition of the sampling thedretinis case.
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a bank of filters matched to the symbol spreading wavefornadl okers. The decorrelating detector in [22]
and the linear MMSE detector in [23] benefit from the same cefiit statistics. A method to determine
the eigenvalue moments of a correlation matrix in asynabusrCDMA systems using such statistics and
square root Nyquist chip pulse waveforms is proposed in [24]

An alternative approach to generate useful statisticsghvim general are not sufficient is borrowed from
synchronous systems. The received signals are processadilbyr matched to the chip waveform and
sampled at the chip rate. This approach is optimum for stinge¥ communications and chip-synchronous
multi-user communications, but causes aliasing to theassgof de-synchronized users if the chip wave-
form has non-zero excess bandwidth. Discretization schamimg chip matched filters and sampling at
the Nyquist rate are studied in [25]. There, the notion ofrapipnate sufficient statistics was introduced.
Furthermore, conventional CDMA systems with chip wavefetimt approximate sinc pulses were shown
to outperform systems using rectangular pulse shaping.eMae@r, it was conjectured that sinc pulses are
optimal for CDMA systems with linear MMSE multiuser detexti

In systems with bandlimited waveforms, sampling at a radéefathan the Nyquist rate leads to the same
performance as the optimal time-discretization propoed@1], [22], [23] if the condition of the sampling
theorem is satisfied [13]. In contrast to the bank of symbdichred filters in [21], this approach has the
advantage that the time delays of the users’ signals neduakriatown before sampling.

The impact of the shape and excess bandwidth of the chip pdseived attention in [26], [27], [25].
In [26], [27] an algorithm for the design of chip-pulse waweths for CDMA systems witltonventional
detectionhas been proposed. The design criterion consists of mimgthe bit error rate at the output of
asingle user matched filten asynchronous CDMA systems while enforcing certain aamsts on the chip
waveforms.

This work is organized in six additional sections. Sectiprgives a brief overview of the main results
found in this work. Sections Il and IV introduce notationdahe system model for asynchronous CDMA,
respectively. Section V focuses on the analysis of linear 3BWletectors and introduces the main math-
ematical tools for analysis of the fundamental limits ofradyronous CDMA. In Section VI, the spectral
efficiency of optimal joint decoding is derived on the basighe results for the linear MMSE detector
exploiting the duality between mutual information and MMS&ection VII addresses the extension of the

presented results to more general settings. Some conatuaie drawn in Section VIII.
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II. MAIN RESULTS

Before going into the main results of this work, it is helpfulget some intuition on asynchronous CDMA
systems. First of all, one might be interested in the questiosich chip waveform gives the highest spectral
efficiency for otherwise arbitrary system parameters, fikése shape, pulse width in time and frequency,
system load, etc. There is a surprisingly easy answer tajtlgstion that does not require any sophisticated

mathematical tools:

Proposition 1 Nyquist sinc-pulses maximize spectral efficiency for etlesr free system parameters.

Proof: The proof is by contradiction. First, it is well-known thagetspectral efficiency of a single user
channel is maximized by Nyquist sinc-pulses. Further, wankfrom [4] that the spectral efficiency of a
synchronous CDMA system with Nyquist sinc-pulses becomestical to the spectral efficiency of a single
user channel, as the load converges to infinity. Finallyntiaiiuser system can never outperform the single
user system, since we could otherwise improve a single yst&ra by virtually splitting the single user into

many virtual users. Thus, the Nyquist sinc pulse is optimigsa tor the multi-user system. |

Note that, from the previous proof, the Nyquist sinc pulsepimum for an infinite system load. How-
ever, we cannot judge whether the optimum is unique fromitreedf thought proposed in our proof. In
fact, a straightforward application of a more general iteisuthis paper (shown in the Appendix VI) is the

following:

Proposition 2 Asynchronous CDMA systems with any sinc-pulses, no mahtether they are constrained
to the Nyquist bandwidth or to a larger, or even to a smallendaidth, and users whose empirical delays
are uniformly distributed within a colorred symbol intehachieve the same spectral efficiency as a single

user channel, if the load converges to infinity.

The optimization of the system load neither gives the themaky most interesting cases to consider
nor the practically most relevant. Let us, thus, look at \Wwhsbip waveforms achieve the highest spectral

efficiency for a fixed load. Surprisingly, the result is nottdd bit more useful for practical applications:
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Corollary 1 The chip waveform that maximizes the spectral efficiencg gpven finite load and given chip
rate has vanishing bandwidth. Furthermore, the maximunctsaleefficiency is the same as the one for the

single user channel.

Proof: The corollary follows directly from Proposition 2. Note tiRroposition 2 holds for an arbitrary
chip rate and an arbitrary bandwidth of the chip waveform states that the single user bound is reached
at infinite load. Though, the corollary is stated for a giverté load, we are free to split each physical user
into M virtual users and let/ increase to infinity such that the virtual load becomes itdinTherefore, we
take a user’s signal and divide it infid data streams that are time-multiplexed in such a way as tidt ias
the same physical transmit signal for that user. Applying itthea to each of th&™ physical users, we have
createdV/ K virtual users. Furthermore, the chip interval has growmfiiQ to M1 and the virtual users are
asynchronous with a discrete uniform distribution of delaythin the virtual chip interval of length/T..
Consider now a sinc pulse of bandwidti(2MT.) as chip waveform. If we take the limit/ — oo for the
system of virtual users, the delay distribution convergethé uniform distribution within the virtual chip
interval and the number of virtual users converges to infiffihus, Proposition 2 applies and the single user
bound is reached. Therefore, this choice of chip waveforimsse bandwidth vanishes is optimal. B

Optimizing chip waveforms to maximize spectral efficien@glproven to hardly aid the practical design
of CDMA systems, since the optima are achieved for systerampeaters, e.g. infinite load and/or vanish-
ing bandwidth, that are far from the limits of practical irapientation. Furthermore, the choice of the
chip waveform is influenced by many other factors than speefficiency like the difficulty to implement
steeply decaying frequency filters and the need to keep thie-joeaverage power ratio of the continuous-
time transmit signal moderate. Therefore, many commefiaVA systems, e.g. the Universal Mobile
Telecommunication System (UMTS), use chip waveforms wibess bandwidth. The UMTS standard
uses root-raised cosine pulses with roll-off factor 0.22tiMated by the theoretical findings above and the
practical constraints on the design of chip waveforms, #st of this paper puts the focus on the perfor-
mance analysis of CDMA system with a given fixed chip wavefofmwill be seen, this gives rise to a rich
collection of insights into CDMA systems with asynchronogsrs. The main results are summarized in the
following.

CDMA systems using chip pulse waveforms with bandwi@timot greater than half of the chip raf,?,

L.e.B < ﬁ, perform identically irrespective of whether the users grechronized or not for a large class
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of performance measureg.he conjecture in the conclusions of [18] is a corollary ta ganeral result.
Ralf: | would like to remove this sentence. | do not see that werove the conjecture in [18]. The
conjecture is 'under equal symbol rate and bandwidth constaints’. Furthermore, our result generalizes
the equivalence result for the ideal Nyquist sinc wavefowih bandwidthziTc) in [18] to any chip pulse
satisfying the mentioned bandwidth constraint and to argdr multistage detector and the optimal capacity-
achieving joint decoder. Note that the performance is iedépnt of the time delay distribution. Increasing
the bandwidth of the chip waveform abo%, i.e. allowing for some excess bandwidth as it is customary
in all implemented systems, the behaviors of CDMA systenasgh substantially. They depend on the time
delay distribution and the equivalence between synchr®@aod asynchronous systems is lost.

For any choice of chip waveform, we capture the performahedarge CDMA system with linear MMSE
detection by a positive definite frequency-dependent H&mmatrix Y (2) whose size is the ratio of sam-
pling rate to chip ratéthe sampling rate is a multiple of the chip rat&Yye require neither the absence of
inter-chip interference, nor that the samples provide @efiit statistics, nor a certain delay distribution. Un-
like for synchronous users, the multiuser efficiency [28fha large-system limit is not necessarily unique
for all users. The matrixX((Q2) reduces to a scalar(w) in cases where oversampling is not needed. In-
terestingly, the same holds true even in cases with excesbaidih if the delay distribution is uniform.
The scalam(w) can be understood as a multiuser efficiency spectral dewditythe multiuser efficiency
being its integral over frequency. We find that in large systems, the effects of interferenomfdifferent
users and interference at different frequencies decoMgée.thus, generalize Tse and Hanly’s [5] concept
of effective interference to the concept of effective ifegeznce spectral density which decouples the effects
of interference in both user and frequency domain.

Excess bandwidth can be utilized if users are asynchrondire excess bandwidth is useless for syn-
chronized systems in terms of multiuser efficiency, i.e.sgliare root Nyquist pulses perform the same
regardless of their bandwidth, desynchronizing users awgs the performance of any system with non-

vanishing excess bandwidth.

IIl. NOTATION AND SOME USEFUL DEFINITIONS

Throughout this work, upper and lower boldface symbols aspectively used for matrices and vectors
spanning a single symbol interval. Matrices and vectorsrit@ag signals spanning more than a symbol

interval are denoted by upper boldface calligraphic lstter
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In the following, we utilizeunitary Fourier transforms both in the continuous time and in therdie
time domain. The unitary Fourier transform of a sigr@l) in the continuous time domain is given by
Sw) = 7= [ s(t)e~7*dt. The unitary Fourier transform of a sequence.,c_1, ¢, c1, ...} in the

discrete time domain is given byQ) = ——=5""° ¢,/ We will refer to them shortly as Fourier

21 n=—oo

transform.

For further studies it is convenient to define the conceptlatbck-wise circulant matrices of ordéy:

Definition 1 Letr and NV be positive integers. Anblock-wise circulant matrix of ordeN is anrN x N

matrix of the form

C1,0 Ci1 °° CIN-1
Cr.0 Cr1 ° CpN-1
Ci,N—-1 C1p0 *°° CiIN-2
C = : 1)
CrN—-1 Cro *°° CrN-2
C1,1 Cl2 - C1,0
Cr1 Cro - Cro

In the matrixC, anr x N block row is obtained by a circular right shift of the prevéoblock. Since the

matrix C' is univocally defined by the unitary Fourier transforms &f sequences

N-1
1 ,
S(Q) = — Tty =1,...,m 2
cs(92) Nor kz:% Cs k€ s r (2)
there exists a bijectiof from the frequency dependent vectdf)) = [¢; (1), c2(R2), ..., ()] to C. Thus,
§{c(Q)} = C. 3)

Furthermore, the superscripfs and- denote the transpose and the conjugate transpose of thix matr

argument, respectivelyl,, is the identity matrix of sizev x n andC, Z, Z*,N, andR are the fields of

AuGuUsT18, 2009



complex, integer, nonnegative integer, positive integied, real numbers, respectivety(-),

.||, and|-| are
the trace, the Frobenius norm, and the spectral norm of thevant, respectively, i.d Al = /tr(AAT),
|A| = erl}ili(l xHPAAFx. diag(-) : C" — C™*" transforms am-dimensional vector into a diagonal matrix of
sizen x n having as diagonal elements the components of the vectbeisame ordeiZ{-} andPr{-} are
the expectation and probability operators, respectivelys the Kronecker symbol anti \) is Dirac’s delta
function. X = (z;;)/= 11 "n2is then, x ny matrix whoseg(s, j)-element is the scalar;. X = (Xij){;l;.f.‘;ﬁf

is then;q; x nage block matrix whosé, j)-block is theg; x ¢, matrix X ;;. The notation - | is adopted for
the operator that yields the maximum integer not greater itisaargument andmody denotes the modulus,
l.e.zmody = x — EJ x. Furthermorey(x € .A) denotes the indicator function of the variabi®n the set

Aandy(x € A) = 1if x € A and zero otherwise.

IV. SYSTEM MODEL

Let us consider an asynchronous CDMA system withusers in the uplink channel. Each user and the
base station are equipped with a single antenna. The chianifetf fading and impaired by additive white
Gaussian noise. Then, the signal received at the baserstaticomplex base-band notation, is given by

K

= st — 1) +w(t)  t € (—o00,+00). (4)

k=1
Here,a, is the received signal amplitude of ugemwhich takes into account the transmitted amplitude, the
effects of the flat fading, and the carrier phase offsgtis the time delay of usek; w(t) is a zero mean
white, complex Gaussian process with two-sided power sgladénsity/Ny; ands(t) is the spread signal

of userk. We have

> bilmle™ (@), (5)

m=—0oQ

whereb,[m] is them'™ transmitted symbol of usérand

Z Skm[n)Y(t —mTs — nT,) (6)
is its spreading waveform at time. Here, s, ,, is the spreading sequence of ugein the m' symbol
interval with elementsy, ,,[n], n = 0,...,N — 1. T, and7, = TW are the symbol and chip interval,
respectively.

2Flat fading is no restriction of generality here as long @sekcess delay is much smaller than the symbol intéfvalThis is, as the effect

of multi-path can be incorporated into the shape of the clapefiorm.
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The users’ symbol$,[m| are independent and identically distributed (i.i.d.) ramdvariables with
E{|or[m]]?} = 1 andE{bx[m|} = 0. The elements of the spreading sequenggs[n] are assumed to
be i.i.d. random variables with{|s.[n]|*} = + andE{s..[n]} = 0. This assumption properly models
the spreading sequences of some CDMA systems currentlyeinsush as the long spreading codes of the
FDD (Frequency Division Duplex) mode in the UMTS uplink chah

The chip waveformy(t) is limited to bandwidthB and energyE, = [ [y(t)|?dt. Because of the
constraint on the variance of the chips, E/s:.[k]|*} = =, the mean energy of the signature waveform
satisfiest {ff;" B (t)|2dt} — E,. We assume

1) user 1 as reference user so that 0,

2) the users are ordered according to increasing time datayr@spect to the reference user,

3) the time delay to be, at most, one chip interval so that [0, 7).

Assumptions 1 and 2 are without loss of generality [29]. Aggtion 3 ismade for the sake of clarity and
it will be removed in Section VII where the results are exthtb the general case with € [0, 7). The
generality of this last assumption is discussed in [29].

At the receiver front-end, the base band signal is passedghra filter with impulse respongét) and
corresponding transfer functiaf(w) normalized such thaf_JroC;O lg(t)]?dt = 1. We denote byp(t) the
response of the filter to the input(t), i.e. ¢(t) = g(t) * ¥ (t) and by®(w) its Fourier transform. The filter
output is sampled at ratg with r € N. For further convenience, we also defifig = ff:f |o(t)|2dt.

Throughout this work we assume that the filtered chip pulseefeam ¢(¢) is much shorter than the
symbol waveform, i.ep(t) becomes negligible fat| > t, andt, < 7. This technical assumptionis usually
verified in the systems with large spreading factor we aresicening. It allows to neglect intersymbol
interference. Thus, focusing on a given symbol interval case omit the symbol index. and the discrete-

time signal at the front-end output is given by

K
y[p] = Z CLkbkEk <§TC — Tk> + U)[p] (7)
k=1

with sampling timep € {0,...,7N—1} and

i

se[n]o (t —nTe) . (8)

al
Bl
|
I
=)

n

Here,w|p] is discrete-time, complex-valued noise. In genetdh] is not white. However, its white, if

g(t) * g(—t) is Nyquist with respect to the sampling rate.
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In order to cope with the effects of oversampling, we consate extended signal space with virtual

spreading sequences of lengtN. The virtual spreading sequence of uses given by theNVr-dimensional

vector

gksk
wheres;, = (s;[0] ...sx[N —1])T and
O(—Tk) (=Te—k) P((=N+1)Te—7)
o= ) o((SHL=1)T. ) S(CH =N+ 1)T.—7)

Qb(Tc_Tk)

S T —m)

(=N +2)Te—7)

(L - N4+2T.—7)

T

(N =1)To—)

¢(7%Tc—|— (N —=1T.—m)

(N =2)Te—)

(A +N —2)T,—7)

o (=x)

S((ZAT~ )

9)

(10)

isaNr x N matrix taking into account the effects of delay and pulsestta In that way, we have described

userk’s continuous-time channel with continuous delays carailyiby the discrete-time channel matib,.

Note that®;, solely depends on the delay of ugerthe oversampling factor, the chip waveform, and the

receive filter.

Structuring the matrix®;, in blocks of dimensions x 1, it is block-wise Toeplitz. As well known [30],

[31], block-Toeplitz and block-circulant matrices are mgyotically equivalent in terms of spectral distribu-

tion. This asymptotic equivalence is sufficient for us, sicir only concern in this work are performance

measures of CDMA systems which depend only on the asympigenvalue distribution. Similar asymp-

totically tight approximations are used in the large syssgralysis of CDMA in frequency-selective fading

[32], [33], [34].

The equivalent block-circulant matrix is given by

@k:g{[gﬁ(ﬁ,rk)@(ﬁ,m—%),...,gb(Q,Tk—%)”,
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where
—+o00

(0, 7) A Ti Z o 7 (Q+2m) gy <%(Q + Qyw)) (12)

V=—0o

is the spectrum of the chip waveform delayed7bgnd sampled at rate/T... Thus, we replace the block-
Toeplitz matrix®,, for our asymptotic analysis by the block-circulant maty, in the following and use
the virtual spreading sequences
v, = P85 (13)
Let S be ther N x K matrix of virtual spreading, i.eS = (®;s;, ®28s,... Pxsk), Athe K x K

diagonal matrix of received amplituded, = S A, andb and
y=Hb+w (14)

the vectors of transmitted and received signals, respgtiddditionally, ), denotes thé' column of the

matrix H . Finally, we define the correlation matric&s= HH"”, R = H" H and the system load = %

V. LINEAR MMSE DETECTION

The linear MMSE detectadl,, generates a soft decisifip = d,fy of the transmitted symba}, based on

the observationy. It can be derived from the Wiener-Hopf theorem [35] and v@giby

d, = BE{yy"} 'E{bjy} (15)

with the expectation taken over the transmitted symlbotgsd the noise. Specializing the Wiener-Hopf

equation to the system model (14) yields

d. = (HH" +5*1)7'h, (16)

= c- (HH{ +7°I) 'hy (17)

for somec € R. Here,H, is the matrix obtained fronff suppressing columhy. The second step follows
from the matrix inversion lemma.
The performance of the linear MMSE detector is measured &itdnal-to-interference-and-noise ratio
at its output [28]
SINRy, = hil (H,HY + o°I) ' h,.. (18)

The SINR can be conveniently expressed in terms of the nseitiefficiencyy,. [28]

|a|>Ey

SINRy, = N
0

(19)
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The multiuser efficiency is a useful measure, since for layggems it is identical for all users in special
cases [7] and it is related to the spectral efficiency [7]],[B&5/].

The SINR depends on the spreading sequences, the receiwedspaf all users, the chip pulse shaping,
and the time delays of all users. To get deeper insight onrtbad MMSE detector it is convenient to analyze
the performance for random spreading sequences in thedgstem limits, i.e. a&’, N — oo with the ratio
% — [ kept fixed. The large-system analysis will identify the neaciopic parameters that characterize a
chip-asynchronous CDMA system and the influences of chipegpsihaping and delay distribution.

In this section we present the large system analysis of aliMMSE detector for chip-asynchronous
CDMA systems with random spreading. Provided that the naigke output of the front end is white,
the analysis applies to CDMA systems using either optimusuboptimum statistics, any chip pulse wave-
forms, and any set of time delays|[in T..) if their empirical distribution function converges to aelehinistic
limit.

In Appendix I, we derive the following theorem on the larggstem performance of chip-asynchronous

CDMA:

Theorem 1 Let A € CK*X be a diagonal matrix witit'" diagonal elemeni;, and7, a positive real. Given
a function®(w) : R — C, let¢(Q2, 7) be as in (12). Given a positive integerlet®,, &k = 1,..., K, ber-
block-wise circulant matrices of ordéyY defined in (11). LeH = SA with S = [®,s1, Psso, ..., Py sk]
with s, € CV*1,

Assume that the functidf®(w)| is upper bounded and has finite support. The receive filtardh shat the
sampled discrete-time noise process is white. The vegtage independent with i.i.d. circularly symmetric
Gaussian elements. Furthermore, the elemeptsf the matrixA are uniformly bounded for ani'. The
sequence of the empirical joint distributioﬂ#j;T(A,r) = %Z,ﬁil XA > |ar|?)x(r > 7) converges
almost surely, a#{ — oo, to a non-random distribution functiof 42 (A, 7).

2, the time delayr, and the variance of the white noisé = e,

Then, given the received power; B

the SINR of usek at the output of a linear MMSE detector for a CDMA system widmgfer matrix H

converges in probability a&’, N — oo with % — # andr fixed to
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9 K
lim SINR; = %/AI{T(Q,Tk)r(Q)AW(Q,Tk)dQ (20)

K=pN—c0
whereY () is the unique positive definitex » matrix solution of the fixed point matrix equation

A (Q,7)AL(Q, 7)dF a2 7(A, 7)
1+ 2 [T AL(QT)Y(Q)A,,(Q,7)dQ

T HQ) =01, +ﬁ/ —r<Q<m (21)

and

o(8,7)

Cb(Qv - %)
Ay (27) = . 22

o(Q, 7 — 1)
The performance of the linear MMSE detector operating onnegessarily sufficient statistics is com-
pletely characterized by
1) anr x r matrix-valued transfer functioff (2) and
2) the frequency and delay dependent vediqr, (2, 7)
The multiuser efficiency varies from user to user and dependkbe time delay of the user of interest only

throughA (€2, 7). We can define an SINR spectrum

|ak|®

SINR.(Q) = 5

AL (7)Y () Ay, (2, 7r) (23)

in the normalized frequency domairr < 2 < 7, or, equivalently, a spectrum of the multiuser efficiency.
The system performance is in both cases obtained by integrater the spectral components.

The fixed point equation (21) clearly reveals how and why Bymigous users are the worst case for a given
chip waveform. We know from [37] that to each large multiusgstem, there is an equivalent single user
system with enhanced noise, but otherwise identical pmidoce. In the present case with oversampling
factorr, the equivalent single user system is a frequency-seeMiMO (multiple-input multiple-output)

system withr transmit and- receive antenna and governed by the  channel transfer matrix

(24)

/ A (Q,7)AL(Q,7)dF a2 7(A, 7)
1+ 2 [T AL(Q 7)Y (Q)A,,(Q,7)dQ

Note that this matrix is an integral of an outer product overdelay distribution. Thus, for constant delay,

i.e. chip-synchronization, the matrix has rank one. No @amitl dimensions in signal space can be spanned.
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For distributed delays, the rank of the matrix can be as lasyéhe oversampling facter Driving the
equivalence even further, the equivalent MIMO system canaresformed into an equivalent CDMA system
with spreading factor and spreading sequencas ,.(€2, 7). In this model, equal delays in the real CDMA
system correspond to users with identical signature segsean the equivalent CDMA system.

One cannot increase performance unboundedly by fastesawgling, as not all modes of the equivalent
r-dimensional MIMO system can be excited with a chip wavefofrimited excess bandwidth due to the
projection onto the spectral support of the chip waveforrn(2). In order to utilize the excess bandwidth
of the system, we need two ingredients: 1) Time delays sépgrthe users by making the signatures in
the equivalent system differ. 2) A receiver that transfothescontinuous-time receive signal into sufficient
discrete-time statistics, e.g. by oversampling. A lackiiecent delays leads to a system where only a single
eigenmode of the equivalent MIMO system is excited. A lac&arsampling leads to a system where more
eigenmodes are excited, but are not converted into distnete

Additional intuitive insight into the behavior of the asymonus CDMA systems can be gained by focus-
ing on CDMA system with uniformly distributed delay. In thiase, Theorem 1 can be formulated with a
single scalar fixed point equation by moving from the freaquyein that is normalized to the chip rate to the

unnormalized frequency. This yields the following corollary:

Corollary 1 Let us adopt the same definitions as in Theorem 1 and let therggBns of Theorem 1 be
satisfied. Additionally, assume that the random variablesd 7 in £} 42 r()\, 7) are statistically indepen-
dent and the random variabteis uniformly distributed irf0, 7.]. Furthermore, letb(w) vanish outside the
interval [—B; +B] with B < . Then, the multiuser efficiency of the linear MMSE deteaoiCDMA

converges in probability a&’, N — oo with £ — 3 andr fixed to

+nB

i m=n=p- [ n)ds (25)

K=BN—oco 2
—nB

where the multiuser efficiency spectral densifyw) is the unique solution to the fixed point equation

1 AdFlap (V)
n(w) ﬁ/ =+ An (20)

and is zero fojw| > 7B.

Theorem 1 is specialized to Corollary 1 in Appendix Ill.
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Under the conditions of Corollary 1 the multiuser efficiernéyhe linear MMSE detector in asynchronous
systems is the same for all users.

Rewriting (25) and (26) in terms of SINRs, these equatiomdueginterpreted similarly to the correspond-
ing equations in [5] for synchronous systems when the cdrafegifective interference is generalized to the
concept of effective interference spectral density. Péb, \) = Ti |® (w)|* be the power spectral density
of the sampled received signal for a user having receivecep@wThen, the result in Corollary 1 can be

expressed as
+nB

SINRy, = % / sinry (w)dw (27)
—nB

where the SINR spectral densitinr, (w) is given by

: P(w, |ax|?)
pu— 2
) = N T BB (P, arl?), P, V), SINR,)) 9
with the effective interference spectral density
P Hp
I(P(w, |ak|2), P(w, )\)7 SINRk) _ e (wa |Clkz| ) (W, )\) (29)

(wv |ak|2) + P(wv )‘)SINRR .
Heuristically, this means that for large systems the SINEBpl density is deterministic and given by

~ P(w, |ax|*)
NO + % Zj;ék: I(P(w7 |ak|2)7 P<W7 ‘ajj‘z), SINRk)

(30)

sinrg (w)

This result yields an interpretation of the effects of eaidime interfering users on the SINR of ugesimilar

to the case of synchronous systems in [5]. The impairmen¢gtiencyw can be decoupled into a sum of the

background noise and an interference term from each of #ws a$ the same frequency. The cumulated in-

terference spectral density at frequenayepends only on the received power density of the user aEsitat

this frequency, the received power spectral density ofritexfiering users at this frequency, and the attained

SINR of userk. In asynchronous systems we have a decoupling of the eftéatderferers like in syn-

chronous systems and an additional decoupling in frequertay termI (P (w, |ax|*), P(w, |a;;]*), SINR)

is the effective interference spectral density of ysento user: at frequencyw for a given SINR of usek.
Sinc waveforms have a particular theoretical interesthinfollowing we specialize Corollary 1 to this

case.

Corollary 2 Let us adopt the definitions in Theorem 1 and let the assungtidCorollary 1 be satisfied.
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Given a positive real, we assume that

c i (e}
< for |3 §2Tc

O(w) = (31)

0 otherwise.

corresponding to a sinc waveform with bandwidth= 57- and unit energy. Then, the multiuser efficiency

of the linear MMSE detector converges in probability/asN — oo with % — [ to

K:léll;fn—»oo Nk = Tsinc (32)

where the multiuser efficieney;,.. is the unique positive solution to the fixed point equation

1 0 / AdFjap()) @3

NOT + )\nsmc

T]Sinc

We recall that the multiuser efficiency of a linear MMSE dé&bedor a synchronous CDMA system

AdFlae(N)
34
48 | e =

satisfies [5]

nsyn

This result holds for synchronous CDMA systems using ang phise waveform with bandwidtB > %

and satisfying the Nyquist criterion. Thus, it also appliessinc pulses whose bandwidth is an integer
multiple ofziTc. Then, Corollary 2 shows the interesting effect that an elssgnous CDMA system using a
sinc function with bandwidtiB = ;2 as chip pulse waveform performs as well as a synchronous CDMA
system with bandwidthz-, r € N, with system load?’ = g. This implies that only asynchronous CDMA
has the capability to trade the excess bandwidth of the chigepvaveform against the spreading factor
while synchronous CDMA has not. In other words, asynchrer@DMA offers to trade degrees of freedom
in the frequency domain provided by the excess bandwidthethip pulse waveform against degrees of
freedom in the time domain provided by spreading.

This phenomenon is similar to the resource pooling in CDMAtsms with spatial diversity discovered
in [38]. There, the degrees of freedom in space provided hyipleiantennas at the receiver could be traded
against degrees of freedom in time provided by the spreadiingrder to make resource pooling happen, it
is necessary that the steering vectors of the antenna groaysinto different directions. This condition is
equivalent to requiring de-synchronization among usdrall lsers experience the same delay, this is like

having totally correlated antenna elements.
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In Corollary 2, the bandwidth of the sinc waveform may beeitlarger or smaller than the Nyquist band-
width. For larger bandwidth, we get a resource pooling éfflec smaller bandwidth we create inter-chip
interference and what could be calladti-resource poolinginter-chip interference is no particular cause of
concern. In contrast, the effect of anti-resource poolsmtpivirtually increase the load, i.e. squeezing the
same number of data into a smaller spectrum or equivalegtigezing more users into the same spectrum.
Since spectral efficiency of optimum joint decoding is arré@asing function of the load [4], anti-resource

pooling is beneficial for spectral efficiency, though its Ierpentation may cause some practical challenges.

In the following theorem, we extend anti-resource poolmgrbitrary delay distributions:

Theorem 2 Let A € C**¥ be a diagonal matrix wittt"" diagonal elemeni,, and7, a positive real. Given
a function®(w) : R — C, let¢(Q2, 7) be as in (12). Given a positive integerlet®,, k= 1,..., K, ber-
block-wise circulant matrices of ordéyY defined in (11). LeH = SA with S = [®,s1, Pssa, ..., Py sk]
with s, € CV*1,

Assume that the functid®(w)| is upper bounded and has suppotntained in the mterva[ T ;]
The receive filter is such that the sampled discrete-timsenpiocess is white. The vectafsare indepen-
dent with i.i.d. circularly symmetric Gaussian elementsartkermore, the elements, of the matrixA are
uniformly bounded for an¥". The sequence of the empirical distributioﬂg(‘g()\) =% SOF LI = Jaxl?)
converges in law almost surely, & — oo, to a non-random distribution functiof 42 ().

Then, the multiuser efficiency of the linear MMSE detectoCIDMA with transfer matrixH converges

in probability askK’, N — oo with £ — 3 andr fixed to

+7T/Tc
. 1
dm m=n=o [ n@de (35)
—7/Te

where the multiuser efficiency spectral density) is the unique solution to the fixed point equation

AdFjaz())
ﬁ/ NO + A\ (36)

n(w)
for all w in the support ofb(w) and zero elsewhere.

Theorem 2 is proven in Appendix IV.
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No constraint is imposed on the set of time delays in Theoremtilds for any se{r, ... 7x} and
we conclude that linear MMSE detectors for synchronous agdaronous CDMA systems have the same

performance if the bandwidth of the chip pulse waveformsgas the constrainB < %

VI. SPECTRAL EFFICIENCY

There exists a close relation between the total capacityC@ieA system and the multiuser efficiency of a
linear MMSE detector for the same system [7], [36], [37]. Tagonale behind this relation is a fundamental
connection between mutual information and minimum mearaggg error in Gaussian channels [39]. In the
following, we extend the results in Section V to get insigitbithe spectral efficiency of an asynchronous
CDMA system.

The capacity of the CDMA channel was found in [40] for synctoos CDMA systems. The total capacity
per chip for large synchronous CDMA systems with square Xyofuist pulses and random spreading in the

presence of AWGN (additive white Gaussian noise) is [4]

M (3,SNR) = Blog, (1 +SNR — %F(SNR, ﬁ)) +log (1 + OSNR — iF (SNR, ﬁ>)

log, e

SNR f (SNR, 3) (37)

with

2
Fivs) = (Vo e var 1 - i - var ) (38)
With the normalizations adopted in the system model, we B&ii¢ = £, /Nj.
The spectral efficiency of a synchronous CDMA system is etué@l®" (3, SNR) for any Nyquist sinc
waveform. For other chip waveforms, we need to take into actthe excess bandwidth and calculate

spectral efficiency as
_ C
- T.B

whereC denotes the total capacity per chip aBdlenotes the bandwidth of the chip pulse. Note that for

r (39)

Nyquist sinc pulse¥,.B = 1, while in generall,. B can be either larger, e.g. for root-raised cosine pulses, or
smaller, i.e. for anti-resource pooling, than 1.

The expression of the total capacity per chip for asynchuem@DMA systems constrained to a given
chip pulse waveformy(¢) of bandwidthB and a given receive filtey(¢) can be obtained by making use of
the results in Section V and the fundamental relation betweetual information and MMSE in Gaussian

channels provided in [39].
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Corollary 3 Let us adopt the same definitions as in Theorem 2 and let themgns of Corollary 1
or Theorem 2 be satisfied. Additionally, let the receiverféted sampling process be such that sufficient
discrete-time statistics are provided. Then,/dsN — oo with % — (3 the total capacity per chip con-

strained to the chip pulse wavefornit) converges to the deterministic value

)\77 dFap
(asyn) 2 |A‘
C (57 ,@D) ln2// 1+)‘7777 dry (40)

wheren, is the multiuser efficiency at signal-to-noise ratigiven in (25) and (35), respectively.

The proof of this corollary is discussed in Appendix VII.

Let us consider again the case of sinc chip waveforms as defin@1) and uniform distribution of the
time delays. Letv denote the bandwidth of the since pulse relative to the Nstdpaindwidth. As noticed in
Section V, the multiuser efficieney;,,. of an asynchronous system with such sinc waveforms giveB83) (
and loads equals the multiuser efficienay,,, of a synchronous system with Nyquist sinc pulses given by
(34) and loady’ = g. Since the load enters capacity per chip (40) only via theinsét efficiency except for
the linear pre-factor to the integral, we immediately find tbllowing equation relating the two capacities
per chip

CEM)(3, SNR o) = e CY (g SNR) . (41)

It is apparent from (41) that synchronous and asynchrongaiess have the same capacity o« 1.
In order to compare different systems (with possibly dédfeérspreading gains and data rates), spectral

efficiency has to be given as a function%o!f, the level of energy per bit per noise level equal to [4] [7]

E, BSNR
Ny CW(B,SNR )’ 42)

In Figure 1, we compare the spectral efficiency of asynchusr@DMA with the spectral efficiency of
synchronous CDMA. The spectral efficiencies are plottedrasgjghe bandwidth normalized to the Nyquist
bandwidth with]’i—g = 10dB and unit loadd = 1. Recall from earlier discussions that for synchronous
systems all Nyquist chip waveforms perform identical. Seréhis no need to specify a particular Nyquist
pulse except for the Nyquist pulse having the same bandwhditnthe sinc pulse in the asynchronous case.
We see further that the smaller the normalized bandwid#n higher spectral efficiency. This is, as anti-

resource pooling improves spectral efficiency by emulatiiigher load.
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CE"(3,SNR @)
C(Sinc)(ﬁ7 SNR7 Oé)
C(3, SNR)

C™(3, SNR)

Fig. 1. Spectral efficiency of random CDMA with unit load vess Fig. 2. Spectral efficiency of random CDMA versus the Igsfdr the
the normalized bandwidth and% — 10 dB. root-raised cosine chip pulse used in the UMTS standard%nd: 10
0

dB.

In Figure 2 the spectral efficiency is plotted against thel Idavith f,—g = 10dB for the chip waveform
used in the UMTS standard. When the lgathcreases the gap in spectral efficiency between synchsonou

and asynchronous systems increases.

VIlI. EXTENSION TO GENERAL ASYNCHRONOUSCDMA SYSTEMS

In this section we extend the previous results to any digiion of the time delays for CDMA systems.
Without loss of generality we can assume that the time detays [0, 7;] [28]. In this case, intersymbol
interference is not negligible and an infinite observationdew is necessary to obtain sufficient statistics.

Equation (14) for the system model is extended to a geneyathsonous system by

K +00
ylpl =Y a Y blmle” (];)T ¢~ Tk) + wip] (43)
k=1 m=—00
with p € Z and
N—-1
™ =N spmluldlt — @+mN)T,) . (44)
u=0

By assuming the same approximation as in (14), the virtuaapng sequence of useiin the symbol

intervalm has nonzero elements in the time interwabndm + 1. Let 7, denote the delay of the signal
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in terms of the chip intervals angl the delay within a chip, i.et;, = H—kJ and7, = 7,modT, respectively.
The virtual spreading sequence of usas obtained by computin@,. as in (11) forr = 7, to account for
the delay within a chip and then by shifting the virtual splieg vector down by, r-dimensional blocks to
account for the delay multiple of the chip interval. More@sely, the virtual spreading in the-th symbol

interval is given by th&r N-dimensional vector

0-,

~ (m):(i (m) 45
S(e(T) | Sk kS, (45)
On_=,

with
o= [w 70 (0= Z) o (07— C2UE)]

0-, and0,_=, column vectors with zero entries and dimensiQrand N — 7, respectively. Th&rN x K

virtual spreading matrix for the symbols transmitted attimtervalm is then
S(m) = [‘ilsgm), ‘iQSém), . %ng?')} .

For further study, we introduce the upper and lower part efttatrixS™, ™ andS\™ of sizer N x rK
such that

(m)
Sm) — S,

(m)
Sd
and the matrice "™ = S A and H]” = SU" A. Then, the baseband discrete-time asynchronous

system in matrix notation is given by

Y=HB+N (46)

wherey = [...,ym=D" ym" ym)" T andB = ... b D" p" pm+DT T are the infinite-
length vectors of received and transmitted symbols res@dgt VV is an infinite-length white Gaussian

noise vector; an@{ is a bi-diagonal block matrix with infinite block rows and blkocolumns

.0 H"™Y H™ o
H = . (47)
o H{ H™Y 0
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We denote withh,, ,,, the column of the matrigt which contains thé*™ column of the matrix [m]. Finally,
we define the correlation matricgs = HH", R = H"H.

The following theorem shows that a linear MMSE detector f@RMA system with transfer matrisgt
and time delays, 7, ... 7, has the same limiting performance as a linear MMSE detectosymbol

guasi-synchronous but chip asynchronous CDMA systemstimith delaysr, 7, . . . Tk

Theorem 3 Given{r, 7, ... 7 } a set of delays if0, ;) let us consider the set of delays[in7.) defined
as{7,: 7. =7 modT., k=1,... K}.Givena positiveinteger, It &, k = 1, ... K, be ther-blockwise
circulant matrix of orderN defined in (11) with- = 7. Let A, ®(w), S, and H be defined as in Theorem

1. Furthermore®,, k = 1...K are 2rN x N matrices such tha®, = [0Z , &7, 0%_. " with 7, =

Tk’

L;—kJ , 07, andO0y_-, zero matrices of dimensions;, x N and (N — r7;) x N, respectively. Leg’(m) =

e [ﬁ(m)T, ﬁ;m)T]T — S A and'H the infinite block row and block

u

(5153’”), igsgm) o ing)> H
column matrix of the same form as in (47). Let the same assomg@s in Theorem 1 hold.
Then, asymptotically, a8, N — oo with % — (3 the CDMA systems with linear MMSE detectors and

transfer matricesH and H are equivalent in terms of multiuser efficiency and spedftatiency.

This theorem is shown in Appendix V.

Interestingly, the system performance depends on the tatag sk, only through the offsets, — L;—kJ T..
Therefore, any shift of the signal multiple ©f does not affect the performance of the system. We conjecture
the asymptotic equivalence between a CDMA system with teamsatrix H and a CDMA system with
transfer matrixH. In some special cases this conjecture is proven [15], [1H]. [In the general case itis
supported by numerical results. Some simulations vahdatiis conjecture are in part Il Section IV.

| propose to substitute the following paragraph The considerations is this paper have been restricted to
frequency-flat fading. This may look like a restriction ohgeality. However, we conjecture that the opposite
is the case: Frequency-selective fading implies that thpeile® response of the channel is random and spans
several chip intervals. This implies that the mean delay ragthe users is random and approximately
uniformly distributed. Since the impulse response of thenctel can be easily taken care of by a modified
chip waveform, we conjecture that the case of frequenagesige fading breaks down to flat fading with
uniform delay distribution and thus is not more but less gaininan the case considered heweth this

one which is softer and does not require any conjectureThe analysis presented in this contribution has
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been restricted to frequency flat fading for the sake of glafihe extension to multipath fading channels is
straightforward. In fact, we can consider a system with amvadent chip pulse waveform obtained from the
convolution of the original chip pulse waveform with the nohal impulse response instead of the original
transmitted chip pulse waveform. Then, the analysis of gegysvith frequency selective fading reduces to

the proposed analysis.

VIII. CONCLUSIONS

In this work gives a general framework for the analysis ofra$yonous CDMA systems with random
spreading using sufficient or suboptimum statistics andchiy pulse waveform. Furthermore, it includes
several optimum or suboptimum receiver structures of pralcand theoretical interest. Therefore, it pro-
vides insight into both the fundamental limits of asyncloesn CDMA systems and the performance loss of
implementations where suboptimum receiver structurdsystimum statistics, and/or non-ideal chip pulses
are utilized.

For the receiver structures investigated in Part I, thegoerdnce of a CDMA system is independent of

the time delay distribution if the bandwidth of the chip puisaveform is not greater than half of the chip

1

rate, i.e. B < T

. This also implies that synchronous and asynchronous CDMsesys have the same

performance and generalizes the equivalence result infft8Ylyquist sinc B = pulses and linear

or)
MMSE detectors to any chip pulse waveform. The behavior oM@Dsystem changes substantially as
the bandwidth gets larger. In this case, the system perfucenss significantly affected by the distribution
of the time delays and the performance of linear detectong sceepend on the specific time delay of the
signal of interest. If the receiver is fed by sufficient statis and the time delay distribution is uniform the
performance of optimum or suboptimum receivers is indepenhdf the time delays. In the following, we

summarize the most interesting aspects pointed out by the system analysis, for each class of receivers.

A. Optimum Receiver

The spectral efficiency constrained to a given chip pulseefeawn characterizes the performance of a
CDMA channel with optimum receiver. The spectral efficiemcgxpressed in terms of the multiuser effi-
ciency spectral density(w). When the chip-modulation is based on sinc pulses whose hdtidis o times
the Nyquist bandwidth, the spectral efficiency of asyncbhtsnCDMA systems is identical to the spectral

efficiency of synchronous systems with load= g and Nyquist sinc pulses. Spectral efficiency is a strictly
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decreasing function of the relative pulse bandwidtand fora. — 0, the spectral efficiency of a single user
AWGN channel is reached.

Fora > 1 an asynchronous CDMA system with modulation based on a amttibn can compensate to
some extent for the loss in spectral efficiency of synchrem@DMA systems with equal bandwidth. For

8 — oo it attains the maximum spectral efficiency for any finite baitth B = 7.

B. Linear MMSE Detector

The output SINR of a linear MMSE detector can be obtained fitoensolution to a system of fixed point
equations in the general case. In the two cases (i) chip pulgh bandwidthB < % and (ii) chip pulses
with bandwidthB > % sufficient statistics and uniform time delay distributittre fixed point system
of equation reduces to a single equation. In those casegettiermance of a linear MMSE detector in
asynchronous CDMA systems is characterized by a unique\@lmultiuser efficiency. Furthermore, the
measure of multiuser efficiency can be refined by the condeggextrum of the multiuser efficiency that is
also unique for all the users. Furthermore, for those CDM#teys the limiting interference effects, as the
system grows large, can be decoupled into user domain agdeiney domain such that we can define an
effective interference spectral density similarly to tffe&ive interference in [5] for synchronous systems.

In the special case that the modulation is based on sincifursctvith bandwidthB = 57 a linear
MMSE detector in asynchronous CDMA channels performs idalty to a synchronous CDMA system
with square root Nyquist chip pulses [5] and lg&d= g. This effect is similar to the resource pooling effect
for synchronous CDMA systems with spatial diversity in [28)d shows the possibility to trade degrees of
freedom in the frequency domain against degrees of freeddheitime domain.

Though this work focussed on performance measures for CDdAiJar results hold for asynchronous
MIMO systems due to the mathematical analogy between CDMAMIMO systems when described as
a discrete-time vector channel. This means, that MIMO systeith excess bandwidth and desynchro-

nized modulators for the different antenna elements beineditsimilar manner than CDMA systems with

desynchronized users.
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APPENDIX |

USEFUL MATHEMATICAL TOOLS

Let ©(f) be the unitary Fourier transform of a pulse wavefasfn) with bandwidthB < 7. Then, in

the normalized frequency intervale [—%, %] the unitary Fourier transform (12) of the sequence obtained

by samplingy(¢) at time instant and rater- is given by

1 sign(z) LéJ o 1
o(z,7) = iejzwﬁr Z oI2T TS (‘%(m + s)) for |z < 5 (48)
s=—sign(z) L'ElJ
The matrix
Qx,7) = Ay (7, 7) Ay (7, 7)7, (49)
with A, . (z, 7) defined in (22), can be decomposed in the sum of two matrices
Q(z,7) = Q(z) + Q(z,7) (50)
where the(k, ¢)-elements of the matrice@(z) andQ(z, 7) are given by
ol jor 2 1
—j2rm = (x+s
Qe = 75 0 (9| et e o <y G
s=—sign(z) L%J
and
ol jor jor
al _ * —j2n 4 (s—u) —j27 k;l(:v—s)—e:1 (z—u)
(Q(l’,T))k,g—T—g Z (I)<TC (x+u))<1> (TC (l’—l—s))e] Te eJ ( )
s,u=—sign(z) |_T51J
s#u
1
for |z| < 3 (52)
respectively.
Useful properties of the matric€3(x) andQ(x, 7) are stated in the following lemmas.
Lemma 1 Let B be anr x r matrix of the form
bo blejQTﬂx . e br_lej%r(:il)m
b,n_le_j?%‘rx bo blej%rx Ce br_geij
B=B() = : (53)
ble_ij br_le—j27”m bo
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i.e. givenby = by(x), by = by(x),...b,—1 = b,_1(x), eventually functions of, (B),, the element/, k) of
the matrixB satisfie B),;, = ej?(k‘f)xb(r+k_g)modr. Let Q(z, 7) be ther x r matrix with elementk, ¢)
defined in (52). Then,

tr(BQ(z,7)) = 0.

Proof: Letg,,(z) = 5@ (3;—“(9: + u)) O (LI (x + s)) . Then,

tr(BQ(r, 7)) = (Q(2, 7))o (B) ok

= > gt (B o275 =0 i 2 (sl u(e-1)
s,u=—sign(z) |_T51J k=1 (=1
s#u
sign(z) L%J ., .
- Z qus ]27T(TLC_%)(S_U) b(T’-‘rk—Z)modre_]_(u s)kejzlu(k 6
s,u=—sign(z) | 75" | k=1 (=1
s#u
sign(z) L%J
= X @ E 0 )
s,u=—sign(z) L 7-51 J
s#uU

with

T

- 27 - 27
= Z b(r—l—k—é)modre_JT(u_s)keJTU(k_Z) (54)

k=1
k>¢

and
T2 = Z b(r+k—5)modre_j277'r(u_s)kej%ru(k_e)- (55)

k=1
k<t

Substitutingy = k£ — ¢ in (54) andv = r + k — ¢ in (55) we obtain

= 30D e

k=1 v=0

and

_s2my, - 2T uv
1 bye (u=s)k oj =5 ’

B
Il
—
S
I
B

respectively. Fos, ¢ € [—sign(z) | 52| ...0.. .sign(z) |5]] [1,...,7 — 1]. Therefore,
> et e~ =)k — 0 andp, + n, = 0 for all z. Then, alsar(BQ(z, 7)) = 0 and this concludes the proof

of Lemma 1. [}
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It follows immediately from Lemma 1 thatQ(x, 7) = 0 since the identity matri{ is of the form (53) with

bp =1andb, =0fori=1,...r — 1.

Lemma 2 Let B = B(x) be a matrix defined as in Lemma 1 and@@tx) be ther x r matrix with element

(k, ) defined in (51). Then, the matiX(z) = Q(z)B(z) is of the form (53).

Proof: The elementk, ¢) of the matrixC' = C(z), (C) is given by

=T B0 (0 k) (56)
with
1 sign(x) L%J o 9
=g X [o(ies) atks)
s=—sign(x) |_T51J
and

Nk, s) =3 bytigmoare 2T, (57)
t=1
In order to prove Lemma 2 it is sufficient to prove that
k(L k) = k((¢ + 1)modr, (k + 1)modr). (58)

In fact, in this case€”, ;, = eJ'QT”(’“—f):”/-c(Hk_g)modT With K4 - pmodr = K(¢, k). The property (58) is implied
by a similar property om(¢, k, s)
n(l, k,s) =n((¢ + 1)modr, (k + 1)modr, s). (59)

t—k

Itis straightforward to verify that (59) is satisfied sinagtvfactorsh(, .+ smodr ande‘jz’r( =) are periodical

in their argumentg andk, respectively, with period andk and/ are simultaneously increased by a unit.

This concludes the proof of Lemma 2. [ |

The following lemma provides the eigenvalue decomposititthe matrixQ ().

Lemma 3 Let Q(x) be anr x r matrix with elementk, ¢) defined in (51). Then, the matr@(x) can be
decomposed as follows
Q(z) = U(2)D(2)U" (x) (60)
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where

Ulz) = <e (x _ sign(x) V . 1D ee)..e(r+sign(a) ED) , (61)

e (x) is an r-dimensional column vector defined by

1 . AT
e(r) = NG <1,e_]2ﬂ%x, . .e_327r7"1x) ;

and D(z) is the diagonal matrix whos€" diagonal element is given by

r 2 i r—1 2

(D). = 750 (37 (o= simio) (|25 | = 5+1) ) 62

Proof: Decomposition (60) can be immediately derived by noting tha

sign(x) L%J 9
- r o 27 I
Qlx)= > 7 [P UT @ t9) )| eleto)e@s).
s=—sign(z) L%J

This expression can be rewritten as (60) and Lemma 3 is proven [ |

The following lemma shows that the matGXx) and any other matrix with the same basis of eigenvectors

is of the form (53).

Lemma 4 Let C(z) = U(z)M (z)U" (x) with U (z) unitary matrix defined in (61) and/ (x) diagonal
matrix with elementsn, (x). Then,C(x) is of the form (53).

Proof: The/('" row of the matrixU () is given by

1 o — . e
) = - (e o 5)

| e_ﬂwe;l (w+sign(z) L%D)

P

andcg(z), the element?, k) of the matrixC' satisfies

T
cop(z) = % Z miie—j%@(:c—sign(z)y'glJH_l)
i=1

k),

= bye I (63)

r—1

with by, = 7, musei2n 5 (sien@) 5t —41) 1t is straightforward to verify thaby, = Do 1)modr, (k+1)mods-

=1 r

This concludes the proof of Lemma 4. [ |
The following lemmas state results from random matrix themveloped along the lines of the REFORM

method proposed by Girko in [41] and [42].
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Lemma5 [41], [43] Let E = (&j){:ll;:ﬁgf be anNg; x Kg, matrix of complex random elemenrds

structured inN K blocks of size; x g¢», 2, i.e.

andK = SN with 3 > 0. LetP = (Py;)ij-1.. p, = B2 +aI] ™ andG = (Gy))ij-1..p, = [EFE+ad] ™,
whereP;; andG;; are complex blocks of sizg x ¢; andg, x ¢., respectively.

Additionally, assume

H-1 E.,k=1,...,N,s=1,..., K, the random blocks of the matr& are independent.

H-2  All the elements of the matr& are zero mean, i.&2{=} = 0.

H-3  supg ymaxi—i v 350y El[Eyl|? + sup gy maxj—1 k3o, E|Ei* < +o0,

H-4 Lindeberg condition¥7 > 0

K=BN—00 \ i=1,..,N 4 Lo K 4
]:1 =1

K N
lim ( max > E(|E;]*x{IE;] > ) + max Y E(IEslPx{IEs] > T})> =0.
(64)

Then, fora € C\R~

K:B]IVH_)OOE|P])Z(Q) _Tpé(a)| =0 p’gz 17"'7p1

and

lim  E|Gp(a) —a 'Ry(a)l=0  pl=1,...,p

K=8N—00

i.e. the blocks of the matric€3 andG converge in the first mean to the corresponding blocks of titeices

.....

and

R = diag((C%) (a)) etk

.....
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respectively. The matrix blocks'! (o) of sizeg; x ¢, andC,fk)(oz) of sizegs x ¢, are equal to

K
C(e)=al +) E(8,(X);EY) & n=1,...,N (65)
j=1
P1
2 — —
Cla)=I+Y EELY);,EL, » k=1,... K, (66)

respectively.

Lemma 6 [41], [43] Let us assume that the definitions of Lemma 5 hold #re conditions of Lemma 5 are
satisfied.
Then, they, x ¢; matricesC ") (a), n = 1,..., N and theg, x ¢, matricesC\>) (a), k = 1,.. ., K, defined

in (65) and (66), respectively, convergelds= 3N — oo to the limit matrices

lim CU)=wl) n=1,...,N
K=pBN—+oc0

. 2 2
I(:gkg£+ao(7kgzipég k=1,....K

where® () =1 ... Nand®!” k=1, .. K satisfy the canonical system of equations

K -1
o~ aI+ZE{EW- o] Efj} n=1,....N, (67)
j=1
N -1
‘I’ﬁ):”ZE{Eﬁ k2 Ejk}> k=1,..., K. (68)

The following Lemma states the existence and uniquenesgeddlution of the system of canonical equa-

tions in the class of definite positive Hermitian matrices.

Lemma 7 [41] Let us adopt the definitions of Lemma 5 and let us assumetiie conditions of Lemma
5 are satisfied. Let us consider the system of canonical ems{67) and (68). Then, the solution of
the canonical system of equations (67) and (68) exists aisduihique in the class of nonnegative definite

analytic matrices foRRe(a) > 0.

The following lemma due to Girko provides convergence ofdlyenvalue distribution of the matr&="
with = defined in Lemma 5 to a deterministic distribution functiowl &he corresponding Stieltjes transform.
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Lemma 8 [41] Let us adopt the definitions in Lemma 5 and let the assionpiof Lemma 5 hold. Further-
more, letu,, v (z, ==") denote the normalized spectral function of the squané x ¢, N matrix argument,

i.e. the empirical eigenvalue distribution of the ma@E” . Then, for almost all: with probability one,
]\}l_rgo ‘:u(hN(x? EEH) - FQ1N(5E>| =0
whereF, y(z) is the distribution function whose Stieltjes transformdsial to
o0 -
| e @) aE (@) = @N) (@) (69)
0

with & = diag(¥,,)n=1..y NONNegative definite analytic matrix fée(«) > 0 and ¥,,,, satisfying the

canonical system of equations (67) and (68).

Lemma 9 [44] Let x = (21,9, ...,xy) be an N-dimensional column vector of complex i.i.d. elements

with zero mean and unit variance aiddbe anN x N complex matrix. Then, for any> 2
Elz"Ca — 1O’ < K, ((E|g;1|4trccﬂ)g + (E|x1|2ptr(ccH)%)) (70)

with K, positive constant independent.sf

APPENDIX Il

PROOF OFTHEOREM 1

Let us consider the-block-wise circulant matrices of ordé¥f, C, ,(7;), k = 1, ... K defined in Theorem

1, and let us denote witR'y the unitary Fourier transform matrix of dimensiaNsx N

11 1 1
1 1 Wl w? w1
Fy=—
VN
1 w1 2N L (NN

with w = e’¥. We can extend the well known results on the diagonalizatfasiroulant matrice$[31] to

decompose the-block-wise circulant matrice€'y . (7,), k = 1,... K as

Csr(Th) = (Fy @ I,)A,(Th)Fn

3A circulant matrixC (f(z)) of order N can be decomposed @5 f(z)) = FyDF §, with D = diag(f(0), f(%),.--, fF(22)).
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whereA, ,(7;) is anrN x N block diagonal matrix withf™" block defined in??) and(Fy ® I,.) is a unitary
matrix.

The matrixS can then be rewritten as

S=(FyI,)( Ay, (T1)81,8¢,(T2)82,. .., Ay, (TK)SK),

with 5, = Ffs,. Assuming the elements of the spreading sequepde.d. Gaussian distributed;, is
also a vector with i.i.d. Gaussian distributed elementsritathe same distribution as the elementsspf
Since the eigenvalues of any matX are invariant with respect to left multiplication by a umytanatrix

U and right multiplication byU?, i.e. the eigenvalues of the matrX coincides with the eigenvalues of
the matrixU XU , then the singular values of the matric&snd S coincide. The same properties holds
for the matricedT andH = SA. Itis straightforward to verify that alSBINR}, is invariant with respect to

such a transform. In fact,

_ S -1__
SINR, = Ry (HkaH + 021) R
= |ag |23 (Hka +02I> 3

with /ﬁk andH ;, obtained from the matricell andH, respectively, by suppressing thé column. There-
fore, in the following we focus on the analysis of the systeitnwansfer matrix .

The matrixH is a matrix structured in blocks of dimensions: 1. The block(n, k) ﬁnvk, n=1...N
andk = 1,... K, is given by

hn,kz - |a'k:k |2(A¢,r(7’:k))nn§n,k

wheres,, ; is a Gaussian random variable with zero mean and variBf(®, ,|*} = +. Additionally, the
variabless, ;, are i.i.d.. Therefore, conditions H-1 and H-2 for the apgiidity of Lemma 5 and Lemma 6

are satisfied. Condition H-3 of Lemma 5 is satisfied. In fact,

K N
¢ = sup ngllfi_?fN;E{thkHQ} +k2%<;E{Hh"kH2}]

- a

K 2 2 N
ok | - 2 [ - 2
< sup | max ;—1 N (A, (7e) Jnn|” + max N E_l (A () Jun | ] :

Since the functio® (527 f) is bounded in absolute value with finite support 8i8or, 7)| is upper bounded
for any z andr. Then, there exists a constafi;ax > 0 that satisfies|(A,,(7x))unl|? < Cuax for any

k andn. Additionally, the elementsa,,| are uniformly bounded for an¥, i.e. Jayax > 0 such that
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lagk|? < a?;ax for all k. Then,

K
(< KsugNalz\/[AXCMAX (N + 1) < +00. (71)

In order to verify the Lindeberg condition H-4 we focus on Lineit

n= lim max 3 E(thk” X(Hh"kH = 6))

K=BN—oco N
k=1

for anyé > 0. Let us observe thatn, k

E (ool > 9)) = (Do (F)hl? (S P (s1)

2
{|5nk‘2>m}
4 A - 4
< ol (B )] / [kl (5,)-
) {|snk|>0}

By using the fact that,,;, is a complex Gaussian variable with variaitfs,.|*} = % and forth moment
E{|sn|*} = == and the bounds ofay,|? and||(Ag,(7k))nn]| it holds
E (1R 2v(llh 5)) < Qaﬁmxcﬁmx 72
ngaXN [Pk "X [Pkl > 9) S TN (72)

Then,n = 0 since

0 <y 2oxCiax g i L
02 K=BN—00 £ N2

Similarly it can be shown that
N

lim  max E<||hnk|| x(||hnk||2>6)> 0

K=pN—00 k=1,...K £

and the Lindeberg condition H-4 is satisfied.
From Lemma 2 ¢(a), p, ¢ =1, ..., N the blocks of the matri¥/ («) = (ﬁkﬁf + aI)~! converge in
the first mean te x r matricesV ,, = (C’ﬁ))‘ldpg, p,t=1...N, andcﬁ) defined similarly as in Lemma
5. Additionally, from Lemma 6 the matric@'g? can be obtained as solution of the canonical system of

equations (67) and (68) asymptoticallyds= SN — oo. Equations (67) can be rewritten as
~H
T = oI, + ZE{ T B}

K
1 ~(2). n—1 _ n—1 _
:aIT+N§ (X ) Haw? Ay, (—N ,rk) Ag{T (—N ,Tk) n=1,...N (73)
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with A, (z, 7) defined in (22) and taking into account in (73) that, . (7)), = Asr (%, 7%) - EQua-

tions (68) specialize to
AN
e = 1+ZE{ ]~ Pk |

- = —1
|akk| ZAHT (n ~) [TS;]_IA(W« (%,ﬁg) k=1,...K. (74)

By substituting (74) in (73) and considering the canonigatam of equations a& = N — oo we obtain

Ay, (x T) Agr (z,7)d Flap (X T)

1) =
T (SL’) aIT + 6 s1l+ )‘fX 1’ ’7‘) [T(l)(l')]_lAqﬁ,r (1’,7‘) dz

with z € [0, 1], or sinceA,,(z, ) is periodical inz with unit period,z can equivalently varies in the
interval ¥ = [—1, 1]. Here,S denotes the support of the distribution functiBim: (), 7). By defining
Y(z) = [XYW ()]~ we obtain (21). It follows from Lemma 6

lim Cl =17 ().

K=BN—+oco ™ N

The convergence in the first mean and thus in probabilityldiR, = ﬁkHU(az)ka to the quantityp =

| [ AL (2, 7)Y (2) Ay, (2, 7)dx is proven ify, = E ‘ﬁkHU(o—z)ﬁk — g‘ vanishes asymptotically, i.e.

lim n =0. (75)

K,N—oo
——’,3

The rest of the proof is focused on showing (75). Let us oleserv
~H DN ~H_ _~ ~H ~
m < E|h, U(c°)hy — h;, Vhy| + Elh, Vh, — | (76)

where the triangular inequalityof the spectral norm is applied afld = diag([C\}) (02)] )k=1...v IS

defined in Lemma 6

By applying the submultiplicative inequality for spectradrms and the triangular inequality to the first

term of (76) we obtain

1Given two matricesA and B with consistent dimensions the following inequalitieschol

|AB| < |A||B| Submultiplicative inequality of spectral norms;

|A+ B| < |A|+|B| Triangular inequality of spectral norms.
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~H
Elh, (U(0%) = V)hy| =

~ —1 (—1 _
< ZE Jie — Vi E[s5.5m| A, (ZT,Tk) Ay ( N >Tk)
|as, (57

Thanks to Lemma 5 and the fact thah;, (52, 7%) ||* < Kuax foralli =1,... N and7,

lim Elh, (U(0?) — V)hy| = 0.

K,N—oo
__)5

~H_ _~ .
In order to prove the convergence to zero)pt= E|h, V h; — o| we consider

~H ~
5 < Elhy, Vhy, — o

~H __~ ~H ~
= E((h;, Vhi)? — 20h,, Vhy + 0°)
=E | |aw*>_Al, (L )V”AW(
iJ
—2g|akk|2 Z AH,T <Z; > V”A¢ r <
- 2|akk|4 AH i— V A
- N2 Z o,r Tk W

%

Q

)

j—1 F=1 Y\ = o
) AL, ( k) ViiAgr (Tﬂc> B NEE
1—1
> |3k |2 +9> (77)

4 — 1 ,—1
)) |Gkk| ZAHT (Z Tk) V”Agr (ZT,Tk)

1#]
=1 _ =1 _ 2 1—1 _ 1—1 _
X Ag,r (JTaTk) ijAf,r (]T,Tk) - NQ ZAfﬂ" (T,Tk> ViiAqﬁ,r (T,Tk) + QQ, (78)

From (77) to (78) we make use of the assumption#has a complex Gaussian variable circularly invariant

2

=

with variance N~!. Let us observe that the spectral norm¥fx) and V;;, for any i, are bounded by
|Y(x)| < 0? and|V ;| < o2 Then, the first term in (78) vanishes &s— oo. By appealing Lemma 6, for
anyi, V; — Y (£) asK, N — oo with £ — 3. Then, the second and third terms in (78) converge*to

and—20?, respectively. We can conclude that

KIJ{/IEoonz =0

__)5
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andn, — 0asK, N — oo as% — (3. Therefore, (75) and thus the convergence in the first me&hN\R
is proven. The Markov inequality implies thats > 0
lim Pr{|h, U(c®h < dim BRU R — o = 0
i Prilh, U(o)hy — o > e} < - lim Elhy U(o")hy, — of =
ks k-5
and the convergence in probability stated in Theorem 1 iggiro

This concludes the proof of Theorem 1.

APPENDIX III

PROOF OFCOROLLARY 1

In order to prove Corollary 1 we rewrite the linHINR,, in (20) as

lim SINRy = |a|? /_ L (Y(0)Q(x, 7)) da (79)

K,N—oo
and the fixed point equation (21) as

B too rTe AQ(z, 7)dF a2 (A, T) 1
Y 1 —02I +ﬁ/ / ~ 3
1+)\f 1tr Y(2)Q(x, 7)) dx

(80)

with Q(z, 7) defined in (49). The matri®(z, 7) can be decomposed as in (50). Thanks to the assumptions
on ®(j2x f) in Corollary 1, the conditions o (x) andQ(z, 7) in Lemma 1 and Lemma 2 are satisfied.
First we show tha®’(z), the unique solution of (80) in the class of nonnegative difianalytic functions

in Re(c?) > 0, is anr x r matrix with eigenbasi€/ (z) defined in (61). Let us assume tHf{z) =

U ()Y (2)U" () with elements off () nonnegative for alt: [—% 1] . By appealing to Lemma & (z)

is of form 53. Then, by applying Lemma 1 it results(Y (2)Q(z, 7)) = 0 for all z € [—3, 1] . Therefore,

1

/_2 tr (Y(@)Q(z, 7)) dz — /_ r (Y (2)Q(x)) dz

y

with D(x) defined as in Lemma 3. Let us notice tfngf Q(x,7)dFr(7) = 0 for all x. Thanks to this

[SIECT N

tr (T(x)p(x)) dz >0

(NI

property, the assumption of independence of the randorablag) andr and to the uniform distribution of

7 (80) can be rewritten as

(81)

~ 1 ) oo AAE| a2 (N) 1
Y (z)=0"1, - - _ -
) o /0 L+ 2 tr (T(x)D(x)) dz 2
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Since‘f‘(x) and D are diagonal matrices the matrix equation (80) reducesystam of scalar equations.
Furthermore, all the quantities that appears in the rightltede of the system of equations (81) are non
negative under the assumption tﬁﬁ(m) IS a nonnegative definite matrix and (81) admits a nonnegativ
definite solution folRe(a?) > 0. The existence of a nonnegative definite solution of the systieequations
(81) implies also a solution of the fixed point matrix equat{80) given by (z) = U (z)X (z)U" (z). Let
7,(z) be thes™ diagonal element o (z) and let us recall that the" diagonal element ab(z) is given in

(62). Then, (81) reduces to

o (2) = o +BTL02 ® (j% (:c— sign(z) Q%J s 1)))

. /+°° AdJﬂAP(A)
0

ands=1,...r. (82)

By changing the variable = = — sign(z) (|%5*| — s + 1) and defining the functiom(y) in the interval

(—%, %) as follows

the system of equations (82) can be rewritten as

T 27 2
ﬁ o ]ﬁy

oo AdF 412()) r

- p) |y| < 5 (84)
"1 % h o) e (23y)| ay
A similar approach applied to (79) yields

lim SINR |a"f’“|2 Z x — sign(z) i B
K,N—o BT T2 % & 2

|akk|2 27‘(‘ 2
P

) v(y)dy. (85)
By substituting (19) in (84) and (85) we obtain the fixed p@qtiation (26) and the limit (25), respectively.

viz) = o+ p

O(z)dx

This concludes the proof of Corollary 1.
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APPENDIX IV
PROOF OFTHEOREM 2

The proof of Theorem 2 follows along the line of the proof ofebhem 1. In this cas&,,(z,7) =

L 2my/T
& Te

T

T

o (g%—”x) e(x) and the matrixQ(z, 7) is independent of. Specifically,

2
*(7)

Then, applying the same approach as in Theorem 1 Lemma 5 anoh&& yield

9 1
lim SINR, — |%* T/Q ® (]?—Wx)

K,N—o0 T2
2 o
Y (0% ) =01, +ﬁ% d (jQ_Wx) e(x)e (z) /+ : )\dﬂA‘;()\) §
T T, 0 1+ )\ffl TLCQ ) (j%x)) eH($)T(0'2,x)e(x)dx
—ono [ U (2)D' (1)U (x)AdFl iz ()
o 1AL g [0 (i) e @ T (02 el)da

1
2

r

= i3 e(z)e(x).

Q(z,7)

2

e ()Y (0% z)e(r)dx

1
2
with

~—1

(86)

with U (z) defined in (61) andD'(x) diagonal matrix with all zero elements except gL | +1)"

2
element, corresponding to the eigenveetor) and equal to}? d (jo—’Tx)‘ . Then, it is apparent that the

solution of the fixed point matrix equation (86) is a matrixtwihe basis of eigenvectots(z) and (86)

reduces to the equation corresponding to(thie | + 1)th elementy(z) of Y (z) = U (2)Y (2)U (2)

2 \ |’ AdFj a2 (A
viz) =0 + ﬂ% > <j?ﬂx> / - 42() 5 (87)
¢ c 1+ %—g f_ﬁé o (jo—Zl’)‘ v(z)dx
sincev,(z), s = 1,...,r ands # (|5'] + 1), the other components of the diagonal maffixz) are

simply given byv;!(x) = o2. The identitye (2) Y (z)e(z) = v(z) yields

2
*(77)

The convergence (88) in probability or in the first mean caprogen as in Theorem 1. By substituting (19)

1

2
lm  SINR, — |97 / i

K=8N—0o0 T2

2
v(z)de. (88)

1
2

in (87) and (88) we obtain the fixed point equation (36) andithi (35), respectively.

This concludes the proof of Theorem 2.
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APPENDIX V
PROOF OFTHEOREM 3

The proof of Theorem 3 follows the same arguments of the pobdtheorem 1 and it is based on the
results in Lemmas 5, 6, 7.

The proof that the assumptions of Lemmas 5, 6, 7 are satisfi¢tié matrixH in Theorem 3 follows the
same lines as in Theorem 1.

Let us observe that for the matrfik — HH  the system of canonical equations is unlimited also for
finite V. By specializing (67) and (68) to this case, it is straightfard to recognize the following properties
of the system of canonical equations:

« The equations obtained by specializing (67) to are peradisth period N and they coincide with

(73);
« The equations obtained by specializing (68)ffcare periodical with period{ and they coincide with
(74).
Then, ask, N — oo with constant ratioY (z), the solution of the canonical system of equations for the
matrix 7 is the periodical continuation with unit period &f(x), the solution of the fixed point equation
(21)in Theorem 1,i.X (z) = Y (z — |z + £]) for 2 € (—o0, +00).

Lemma 2 guaranties thﬂHmNdMN with i,5 = 0,1,...N — 1 andm,n € Z, ther x r blocks

of the matrixt4 = <7~’+ aI) - converge in the first mean to the correspondent blocks of thgixn

V = diag ((CgmeﬂmN with CgmeﬂmN defined in Lemma 2. Furthermore, Lemma
6 implies that

)
i=0,..N—1, meZ

: (1) a1 (ntl
Kzlﬁl]r\}l_)oo Ci+mN,i+mN =7 < N )

Let flk,m be the unlimited column vector of the matrk containing the Vecto® ;. sy, By applying the

same approach as in Theorem 1 we can show the convergenesfirsttmean oSINR,,,,, = ﬁkaﬁfzkm to
0 = |aw|* [ AL (2, 7)Y (2) Ay, (2, 7)dz, the same quantity as in Theorem 1, thanks to the fact that
Y () is periodical with unit period and the definition @f,.

This concludes the proof of Theorem 3.
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APPENDIX VI
PROOF OFPROPOSITIONZ2

Proposition 2 follows immediately from Corollary 2. In fafitom (33) it is apparent that the multiuser ef-
ficiency of a system with load and sinc pulses having roll-off equaltds equal to the multiuser efficiency
of a system with Ioacg and sinc pulses having zero roll-off. Thanks to the fundamaierlations between

multiuser efficiency and capacity [39] we obtain (41). Sitlve spectral efficiency is obtained as the ratio
CE(3 SNR ) ‘SNR:NO*I

Y

, itis apparent from (41) that it is constant/@s— oo for any finite bandwidthy.

APPENDIX VII
PROOF OFCOROLLARY 3

Let MMSE,, 1, (p) be the achievable MMSE by an estimator of the synthoh| transmitted by usek
in the m-th symbol interval when the transmitted sigiiin (14) is Gaussian and = o~2. Furthermore,
let SINRy, 1, (p) be the SINR at the output of the same MMSE estimator for thestratted symbob;, [m].

Then,
1

- 1+ SINRbk [m)] (p)

Furthermore, lef (B; Y, p) be the mutual information in nats between the inBuand the outpud’. From

(89)

MMSEy, fm (p)

Theorem 2 in [39] the following relation holds

d _
d—pI(B; Y.p) = E{||HB - HB|*} (90)

beingB the conditional mean estimate. We recall here that for Ganssgnals conditional mean estimate

and MMSE estimate coincide (see e.g. [35]) and

E{|HB — HB|]*} = tra*H" (HH" + o*T) " "H

= SINRy, ] (p) (o1)
o=

1+ SINRy, 1y (p))

For K, N, m — oo with % — 3, SINRy, 1) (p) converges with probability one to deterministic values.
More specifically, SINR ;. (p) = %n (i—ﬁ) s, , andy (%) as in Corollary 1 or Theorem 2.
No

Then, the total capacity per chip constrained to a given phlpe waveform is given by
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@ (5 Ev )_i A () dFjap(A) ds

‘ (ﬁ’ N 2 / / 1+ A2 (2) (92)
s )
In2 / (93)

/+°° An(t)dF] 412 (A
0 1+ Atn(t)

This concludes the proof of Corollary 3.
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