
Asynchronous CDMA Systems with Random

Spreading–Part I: Fundamental Limits

Laura Cottatellucci, Ralf R. M̈uller, and Merouane Debbah

Abstract

Spectral efficiency for asynchronous code division multiple access (CDMA) with random spreading is calculated

in the large system limit. We allow for arbitrary chip waveforms and frequency-flat fading. Signal to interference

and noise ratios (SINRs) for suboptimal receiver structures, such as the linear minimum mean square error (MMSE)

detector and various linear multistage detectors are derived. The approach is general and optionally allows even for

statistics obtained by under-sampling the received signal.

All performance measures are given as a function of the chip waveform and the delay distribution of the users in

the large system limit. It turns out that synchronizing users on a chip level impairs performance for all chip waveforms

with bandwidth greater than the Nyquist bandwidth, e.g. positive roll-off factors. The benefits of asynchronism stem

from the finding that the excess bandwidth of chip waveforms actually spans additional dimensions in signal space, if

the users are de-synchronized on the chip-level.

The analysis of linear MMSE detectors shows that the limiting interference effects can be decoupled both in the

user domain and in the frequency domain such that the conceptof spectrum of the effective interference arises. This

generalizes and refines Tse and Hanly’s concept of effectiveinterference.

In Part II, the analysis is extended to any linear detector that admits a representation as multistage detector and

guidelines for the design of low complexity multistage detectors with universal weights are provided.

Index Terms- Asynchronous code division multiple access (CDMA), channel capacity, multiuser detection, ran-

dom matrix theory, effective interference, linear minimummean square error (MMSE) detector, multistage detector,

random spreading sequences, spectral efficiency, excess bandwidth, pulse shaping.
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I. INTRODUCTION

The fundamental limits of synchronous code-division multiple-access (CDMA) systems and the loss in-

curred by the imposition of suboptimal receiving structures have been thoroughly studied in different scenar-

ios and from different perspectives. On the one hand, significant efforts have been devoted to characterize

the optimal spreading sequences and the corresponding capacities [1], [2], [3]. On the other hand, very in-

sightful analysis [4], [5], [6], [7], [8] resulted from modelling the spreading sequences by random sequences

[9]. In fact, as both theK transmitted signals and the spreading factorN tend to infinity with a fixed ratio,

CDMA systems with random spreading show self-averaging properties. These enable the description of the

system in terms of few macroscopic system parameters and thus provide a deep understanding of the system

behavior.

In the literature, the fundamental limits of CDMA systems and the asymptotic analysis of linear multiuser

detectors under the assumption of random spreading sequences is overwhelmingly focused on synchronous

CDMA systems. While the assumption of user synchronizationallowed for accurate large-system analysis,

it is not realistic for the received signal on the uplink of a cellular CDMA system, in particular if users

move and cause varying delays. Therefore, it is of theoretical and practical interest to extend the analysis of

CDMA systems with random spreading to asynchronous users. This holds in particular, as we will see that

from a viewpoint of system performance, asynchronous usersare beneficial.

The analysis of asynchronous CDMA systems using a single-user matched filter as receiver was first given

in [10]. A rich field of analysis of asynchronous CDMA systemswith conventional detection at the receiver

is based on Gaussian approximation methods. An exhaustive overview of these approaches exceeds the

scope of this work, which is focused on the analysis of asynchronous CDMA systems withoptimal joint

decoding or linear multiuser detection. The interested reader is referred to [11] [12] and references therein

for asynchronous CDMA with single-user receivers.

The analysis and design of asynchronous CDMA systems with linear detectors is predominantly restricted

to consider symbol-asynchronous but chip-synchronous signals, i.e. the time delays of the signals are mul-

tiples of the chip interval. The effect of chip-asynchronism is eventually analyzed independently [13]. In

this stream are works that optimize the spreading sequencesto maximize the sum capacity [14] and analyze

the performance of linear multiuser detectors [13], [15], [16], [17]. In [13], [15], the linear MMSE detec-

tor for symbol-asynchronous but chip-synchronous systemsis shown to attain the performance of the linear

MMSE detector for synchronous systems as the size of the observation window tends to infinity by empirical
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and analytical means, respectively. However, they verify numerically that the performance of linear MMSE

detectors is severely impaired by the use of short observation windows. Additionally, [15] provides the

large-system SINR for a symbol whose chips are completely received in an observation window of length

equal to the symbol intervalTs. In [16], [17], the analysis of linear multistage and MMSE detectors is ex-

tended to observation windows of arbitrary length. Furthermore, a multistage detector structure that does

not suffer from windowing effects and performs as well as themultistage detector for synchronous systems

is proposed.

In [13], [18], the effects of chip asynchronism are analyzedassuming bandlimited chip pulses. In [18],

the chip waveform is assumed to be an ideal Nyquist sinc function, i.e. a sinc function with bandwidth equal

to half of the chip rate. The received signal is filtered by a lowpass filter (or, equivalently, a filter matched

to the chip waveform) and subsequently sampled at the time delay of the signal of the user of interest with

a frequency equal to the chip rate1. Reference [18] proves that the SINR at the output of the linear MMSE

detector converges in the mean-square sense to the SINR in anequivalent synchronous system. In [13] the

wider class of chip pulses which are inter-chip interference free at the output of the chip matched filter is

considered. In the following we will refer to this class of chip pulses as square root Nyquist chip pulses.

In [19], [20], the performance of the linear MMSE detector with completely asynchronous users and

chip waveforms limited to a chip interval is analyzed. However, the observation window in [19] spanned

only a single symbol interval not yielding sufficient discrete-time statistics; the resulting degradation in

performance was pointed out later in [13], [15].

As discussed above, previous approaches to the analysis of asynchronous CDMA with multiuser detection

were only concerned with, if and how asynchronism can be prevented from causing performance degrada-

tion. However, asynchronism is known to be beneficial for CDMA systems with demodulation by single-user

matched filters (e.g. [10]). It is the main contribution of this paper to show that benefits from asynchronism

are not inherent to single-user matched filters but a generalproperty of CDMA systems and to quantify those

benefits in the large-system limit.

Compared to synchronous systems, the analysis of asynchronous CDMA raises two additional issues:

(i) the way statistics are formed, trading complexity against performance, and (ii) the effects of excess

bandwidth, chip-pulse shaping and the users’ delay distribution.

The optimum multiuser detector in [21] is based on the sufficient statistics obtained as output samples of
1The chip rate satisfies the condition of the sampling theoremin this case.
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a bank of filters matched to the symbol spreading waveforms ofall users. The decorrelating detector in [22]

and the linear MMSE detector in [23] benefit from the same sufficient statistics. A method to determine

the eigenvalue moments of a correlation matrix in asynchronous CDMA systems using such statistics and

square root Nyquist chip pulse waveforms is proposed in [24].

An alternative approach to generate useful statistics, which in general are not sufficient is borrowed from

synchronous systems. The received signals are processed bya filter matched to the chip waveform and

sampled at the chip rate. This approach is optimum for single-user communications and chip-synchronous

multi-user communications, but causes aliasing to the signals of de-synchronized users if the chip wave-

form has non-zero excess bandwidth. Discretization schemes using chip matched filters and sampling at

the Nyquist rate are studied in [25]. There, the notion of approximate sufficient statistics was introduced.

Furthermore, conventional CDMA systems with chip waveforms that approximate sinc pulses were shown

to outperform systems using rectangular pulse shaping. Moreover, it was conjectured that sinc pulses are

optimal for CDMA systems with linear MMSE multiuser detection.

In systems with bandlimited waveforms, sampling at a rate faster than the Nyquist rate leads to the same

performance as the optimal time-discretization proposed in [21], [22], [23] if the condition of the sampling

theorem is satisfied [13]. In contrast to the bank of symbol matched filters in [21], this approach has the

advantage that the time delays of the users’ signals need notbe known before sampling.

The impact of the shape and excess bandwidth of the chip pulses received attention in [26], [27], [25].

In [26], [27] an algorithm for the design of chip-pulse waveforms for CDMA systems withconventional

detectionhas been proposed. The design criterion consists of minimizing the bit error rate at the output of

asingle user matched filterin asynchronous CDMA systems while enforcing certain constraints on the chip

waveforms.

This work is organized in six additional sections. Section II, gives a brief overview of the main results

found in this work. Sections III and IV introduce notation and the system model for asynchronous CDMA,

respectively. Section V focuses on the analysis of linear MMSE detectors and introduces the main math-

ematical tools for analysis of the fundamental limits of asynchronous CDMA. In Section VI, the spectral

efficiency of optimal joint decoding is derived on the basis of the results for the linear MMSE detector

exploiting the duality between mutual information and MMSE. Section VII addresses the extension of the

presented results to more general settings. Some conclusions are drawn in Section VIII.
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II. M AIN RESULTS

Before going into the main results of this work, it is helpfulto get some intuition on asynchronous CDMA

systems. First of all, one might be interested in the question which chip waveform gives the highest spectral

efficiency for otherwise arbitrary system parameters, likepulse shape, pulse width in time and frequency,

system load, etc. There is a surprisingly easy answer to thisquestion that does not require any sophisticated

mathematical tools:

Proposition 1 Nyquist sinc-pulses maximize spectral efficiency for otherwise free system parameters.

Proof: The proof is by contradiction. First, it is well-known that the spectral efficiency of a single user

channel is maximized by Nyquist sinc-pulses. Further, we know from [4] that the spectral efficiency of a

synchronous CDMA system with Nyquist sinc-pulses becomes identical to the spectral efficiency of a single

user channel, as the load converges to infinity. Finally, themultiuser system can never outperform the single

user system, since we could otherwise improve a single user system by virtually splitting the single user into

many virtual users. Thus, the Nyquist sinc pulse is optimum also for the multi-user system.

Note that, from the previous proof, the Nyquist sinc pulse isoptimum for an infinite system load. How-

ever, we cannot judge whether the optimum is unique from the line of thought proposed in our proof. In

fact, a straightforward application of a more general result in this paper (shown in the Appendix VI) is the

following:

Proposition 2 Asynchronous CDMA systems with any sinc-pulses, no matter whether they are constrained

to the Nyquist bandwidth or to a larger, or even to a smaller bandwidth, and users whose empirical delays

are uniformly distributed within a colorred symbol interval achieve the same spectral efficiency as a single

user channel, if the load converges to infinity.

The optimization of the system load neither gives the theoretically most interesting cases to consider

nor the practically most relevant. Let us, thus, look at which chip waveforms achieve the highest spectral

efficiency for a fixed load. Surprisingly, the result is not a little bit more useful for practical applications:
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Corollary 1 The chip waveform that maximizes the spectral efficiency fora given finite load and given chip

rate has vanishing bandwidth. Furthermore, the maximum spectral efficiency is the same as the one for the

single user channel.

Proof: The corollary follows directly from Proposition 2. Note that Proposition 2 holds for an arbitrary

chip rate and an arbitrary bandwidth of the chip waveform andstates that the single user bound is reached

at infinite load. Though, the corollary is stated for a given finite load, we are free to split each physical user

intoM virtual users and letM increase to infinity such that the virtual load becomes infinite. Therefore, we

take a user’s signal and divide it intoM data streams that are time-multiplexed in such a way as to result in

the same physical transmit signal for that user. Applying this idea to each of theK physical users, we have

createdMK virtual users. Furthermore, the chip interval has grown fromTc toMTc and the virtual users are

asynchronous with a discrete uniform distribution of delays within the virtual chip interval of lengthMTc.

Consider now a sinc pulse of bandwidth1/(2MTc) as chip waveform. If we take the limitM → ∞ for the

system of virtual users, the delay distribution converges to the uniform distribution within the virtual chip

interval and the number of virtual users converges to infinity. Thus, Proposition 2 applies and the single user

bound is reached. Therefore, this choice of chip waveforms whose bandwidth vanishes is optimal.

Optimizing chip waveforms to maximize spectral efficiency has proven to hardly aid the practical design

of CDMA systems, since the optima are achieved for system parameters, e.g. infinite load and/or vanish-

ing bandwidth, that are far from the limits of practical implementation. Furthermore, the choice of the

chip waveform is influenced by many other factors than spectral efficiency like the difficulty to implement

steeply decaying frequency filters and the need to keep the peak-to-average power ratio of the continuous-

time transmit signal moderate. Therefore, many commercialCDMA systems, e.g. the Universal Mobile

Telecommunication System (UMTS), use chip waveforms with excess bandwidth. The UMTS standard

uses root-raised cosine pulses with roll-off factor 0.22. Motivated by the theoretical findings above and the

practical constraints on the design of chip waveforms, the rest of this paper puts the focus on the perfor-

mance analysis of CDMA system with a given fixed chip waveform. As will be seen, this gives rise to a rich

collection of insights into CDMA systems with asynchronoususers. The main results are summarized in the

following.

CDMA systems using chip pulse waveforms with bandwidthB not greater than half of the chip rate1
Tc
,

i.e.B ≤ 1
2Tc
, perform identically irrespective of whether the users are synchronized or not for a large class

AUGUST 18, 2009



of performance measures.The conjecture in the conclusions of [18] is a corollary to our general result.

Ralf: I would like to remove this sentence. I do not see that weprove the conjecture in [18]. The

conjecture is ’under equal symbol rate and bandwidth constraints’. Furthermore, our result generalizes

the equivalence result for the ideal Nyquist sinc waveform (with bandwidth 1
2Tc

) in [18] to any chip pulse

satisfying the mentioned bandwidth constraint and to any linear multistage detector and the optimal capacity-

achieving joint decoder. Note that the performance is independent of the time delay distribution. Increasing

the bandwidth of the chip waveform above1
2Tc

, i.e. allowing for some excess bandwidth as it is customary

in all implemented systems, the behaviors of CDMA systems change substantially. They depend on the time

delay distribution and the equivalence between synchronous and asynchronous systems is lost.

For any choice of chip waveform, we capture the performance of a large CDMA system with linear MMSE

detection by a positive definite frequency-dependent Hermitian matrixΥ(Ω) whose size is the ratio of sam-

pling rate to chip rate(the sampling rate is a multiple of the chip rate). We require neither the absence of

inter-chip interference, nor that the samples provide sufficient statistics, nor a certain delay distribution. Un-

like for synchronous users, the multiuser efficiency [28] inthe large-system limit is not necessarily unique

for all users. The matrixΥ(Ω) reduces to a scalarη(ω) in cases where oversampling is not needed. In-

terestingly, the same holds true even in cases with excess bandwidth if the delay distribution is uniform.

The scalarη(ω) can be understood as a multiuser efficiency spectral densitywith the multiuser efficiency

being its integral over frequencyω. We find that in large systems, the effects of interference from different

users and interference at different frequencies decouple.We, thus, generalize Tse and Hanly’s [5] concept

of effective interference to the concept of effective interference spectral density which decouples the effects

of interference in both user and frequency domain.

Excess bandwidth can be utilized if users are asynchronous.While excess bandwidth is useless for syn-

chronized systems in terms of multiuser efficiency, i.e. allsquare root Nyquist pulses perform the same

regardless of their bandwidth, desynchronizing users improves the performance of any system with non-

vanishing excess bandwidth.

III. N OTATION AND SOME USEFUL DEFINITIONS

Throughout this work, upper and lower boldface symbols are respectively used for matrices and vectors

spanning a single symbol interval. Matrices and vectors describing signals spanning more than a symbol

interval are denoted by upper boldface calligraphic letters.
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In the following, we utilizeunitary Fourier transforms both in the continuous time and in the discrete

time domain. The unitary Fourier transform of a signals(t) in the continuous time domain is given by

S(ω) = 1√
2π

∫ +∞
−∞ s(t)e−jωtdt. The unitary Fourier transform of a sequence{. . . , c−1, c0, c1, . . .} in the

discrete time domain is given byc(Ω) = 1√
2π

∑+∞
n=−∞ cne

−jΩn. We will refer to them shortly as Fourier

transform.

For further studies it is convenient to define the concept ofr-block-wise circulant matrices of orderN :

Definition 1 Let r andN be positive integers. Anr-block-wise circulant matrix of orderN is anrN × N

matrix of the form

C =




c1,0 c1,1 · · · c1,N−1

...
...

...

cr,0 cr,1 · · · cr,N−1

c1,N−1 c1,0 · · · c1,N−2

...
...

...

cr,N−1 cr,0 · · · cr,N−2

...

c1,1 c1,2 · · · c1,0

...
...

...

cr,1 cr,2 · · · cr,0




. (1)

In the matrixC, anr × N block row is obtained by a circular right shift of the previous block. Since the

matrixC is univocally defined by the unitary Fourier transforms of the sequences

cs(Ω) =
1√
2π

N−1∑

k=0

cs,ke
−jΩk s = 1, . . . , r, (2)

there exists a bijectionF from the frequency dependent vectorc(Ω) = [c1(Ω), c2(Ω), . . . , cr(Ω)] to C. Thus,

F{c(Ω)} = C. (3)

Furthermore, the superscripts·T and ·H denote the transpose and the conjugate transpose of the matrix

argument, respectively.In is the identity matrix of sizen × n andC, Z, Z+,N, andR are the fields of
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complex, integer, nonnegative integer, positive integer,and real numbers, respectively.tr(·), ‖ · ‖, and| · | are

the trace, the Frobenius norm, and the spectral norm of the argument, respectively, i.e.‖A‖ =
√

tr(AA
H),

|A| = max
x
H

x≤1
x
H
AA

H
x. diag(·) : Cn 7→ Cn×n transforms ann-dimensional vector into a diagonal matrix of

sizen× n having as diagonal elements the components of the vector in the same order.E{·} andPr{·} are

the expectation and probability operators, respectively.δij is the Kronecker symbol andδ(λ) is Dirac’s delta

function.X = (xij)
j=1,...,n2

i=1,...,n1
is then1 × n2 matrix whose(i, j)-element is the scalarxij . X = (X ij)

j=1,...,n2

i=1,...,n1

is then1q1 × n2q2 block matrix whose(i, j)-block is theq1 × q2 matrixX ij . The notation⌊·⌋ is adopted for

the operator that yields the maximum integer not greater than its argument andxmody denotes the modulus,

i.e. xmody = x−
⌊
x
y

⌋
x. Furthermore,χ(x ∈ A) denotes the indicator function of the variablex on the set

A andχ(x ∈ A) = 1 if x ∈ A and zero otherwise.

IV. SYSTEM MODEL

Let us consider an asynchronous CDMA system withK users in the uplink channel. Each user and the

base station are equipped with a single antenna. The channelis flat2 fading and impaired by additive white

Gaussian noise. Then, the signal received at the base station, in complex base-band notation, is given by

y(t) =

K∑

k=1

aksk(t− τk) + w(t) t ∈ (−∞,+∞). (4)

Here,ak is the received signal amplitude of userk, which takes into account the transmitted amplitude, the

effects of the flat fading, and the carrier phase offset;τk is the time delay of userk; w(t) is a zero mean

white, complex Gaussian process with two-sided power spectral densityN0; andsk(t) is the spread signal

of userk. We have

sk(t) =
+∞∑

m=−∞
bk[m]c

(m)
k (t), (5)

wherebk[m] is themth transmitted symbol of userk and

c
(m)
k (t) =

N−1∑

n=0

sk,m[n]ψ(t−mTs − nTc) (6)

is its spreading waveform at timem. Here,sk,m is the spreading sequence of userk in themth symbol

interval with elementssk,m[n], n = 0, . . . , N − 1. Ts andTc = Ts
N

are the symbol and chip interval,

respectively.
2Flat fading is no restriction of generality here as long as the excess delay is much smaller than the symbol intervalTs. This is, as the effect

of multi-path can be incorporated into the shape of the chip waveform.
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The users’ symbolsbk[m] are independent and identically distributed (i.i.d.) random variables with

E{|bk[m]|2} = 1 andE{bk[m]} = 0. The elements of the spreading sequencessk,m[n] are assumed to

be i.i.d. random variables withE{|sk,m[n]|2} = 1
N

andE{sk,m[n]} = 0. This assumption properly models

the spreading sequences of some CDMA systems currently in use, such as the long spreading codes of the

FDD (Frequency Division Duplex) mode in the UMTS uplink channel.

The chip waveformψ(t) is limited to bandwidthB and energyEψ =
∫ +∞
−∞ |ψ(t)|2dt. Because of the

constraint on the variance of the chips, i.e.E{|sk,m[k]|2} = 1
N

, the mean energy of the signature waveform

satisfiesE
{∫ +∞

−∞ |c(m)
k (t)|2dt

}
= Eψ. We assume

1) user 1 as reference user so thatτ1 = 0,

2) the users are ordered according to increasing time delay with respect to the reference user,

3) the time delay to be, at most, one chip interval so thatτk ∈ [0, Tc).

Assumptions 1 and 2 are without loss of generality [29]. Assumption 3 ismade for the sake of clarity and

it will be removed in Section VII where the results are extended to the general case withτk ∈ [0, Ts). The

generality of this last assumption is discussed in [29].

At the receiver front-end, the base band signal is passed through a filter with impulse responseg(t) and

corresponding transfer functionG(ω) normalized such that
∫ +∞
−∞ |g(t)|2dt = 1. We denote byφ(t) the

response of the filter to the inputψ(t), i.e.φ(t) = g(t) ∗ ψ(t) and byΦ(ω) its Fourier transform. The filter

output is sampled at rater
Tc

with r ∈ N. For further convenience, we also defineEφ =
∫ +∞
−∞ |φ(t)|2dt.

Throughout this work we assume that the filtered chip pulse waveform φ(t) is much shorter than the

symbol waveform, i.e.φ(t) becomes negligible for|t| > t0 andt0 ≪ Ts. This technical assumption is usually

verified in the systems with large spreading factor we are considering. It allows to neglect intersymbol

interference. Thus, focusing on a given symbol interval, wecan omit the symbol indexm and the discrete-

time signal at the front-end output is given by

y[p] =

K∑

k=1

akbkck

(p
r
Tc − τk

)
+ w[p] (7)

with sampling timep ∈ {0, . . . , rN−1} and

ck =

N−1∑

n=0

sk[n]φ (t− nTc) . (8)

Here,w[p] is discrete-time, complex-valued noise. In general,w[p] is not white. However, itis white, if

g(t) ∗ g(−t) is Nyquist with respect to the sampling rate.
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In order to cope with the effects of oversampling, we consider an extended signal space with virtual

spreading sequences of lengthrN . The virtual spreading sequence of userk is given by theNr-dimensional

vector

Φksk (9)

wheresk = (sk[0] . . . sk[N − 1])T and

Φk =




φ(−τk) φ(−Tc−τk) . . . φ((−N+1)Tc−τk)
...

...
...

...

φ( (r−1)Tc
r

−τk) φ(( (r−1)
r

−1)Tc−τk) . . . φ(( (r−1)
r

−N+1)Tc−τk)

φ(Tc−τk) φ(−τk) . . . φ((−N+2)Tc−τk)
...

...
...

...

φ( (r−1)Tc
r

+Tc−τk) φ(( (r−1)
r

)Tc−τk) . . . φ̃(( (r−1)
r

−N+2)Tc−τk)
...

...
...

...

φ((N−1)Tc−τk) φ((N−2)Tc−τk) · · · φ(−τk)
...

...
...

...

φ(r−1
r
Tc+ (N − 1)Tc −τk) φ(( r−1

r
+N −2)Tc−τk) · · · φ̃(( r−1

r
)Tc−τk)




. (10)

is aNr×N matrix taking into account the effects of delay and pulse shaping. In that way, we have described

userk’s continuous-time channel with continuous delays canonically by the discrete-time channel matrixΦk.

Note thatΦk solely depends on the delay of userk, the oversampling factorr, the chip waveform, and the

receive filter.

Structuring the matrixΦk in blocks of dimensionsr × 1, it is block-wise Toeplitz. As well known [30],

[31], block-Toeplitz and block-circulant matrices are asymptotically equivalent in terms of spectral distribu-

tion. This asymptotic equivalence is sufficient for us, since our only concern in this work are performance

measures of CDMA systems which depend only on the asymptoticeigenvalue distribution. Similar asymp-

totically tight approximations are used in the large systemanalysis of CDMA in frequency-selective fading

[32], [33], [34].

The equivalent block-circulant matrix is given by

Φk = F

{[
φ(Ω, τk), φ

(
Ω, τk − Tc

r

)
, . . . , φ

(
Ω, τk − (r−1)Tc

r

)]}
, (11)
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where

φ(Ω, τ)
△
=

1

Tc

+∞∑

ν=−∞
ej

τ
Tc

(Ω+2πν)Φ∗
(
j
Tc

(Ω + 2πν)
)

(12)

is the spectrum of the chip waveform delayed byτ and sampled at rate1/Tc. Thus, we replace the block-

Toeplitz matrixΦk for our asymptotic analysis by the block-circulant matrixΦk, in the following and use

the virtual spreading sequences

vk = Φksk. (13)

Let S be therN × K matrix of virtual spreading, i.e.S = (Φ1s1,Φ2s2, . . .ΦKsK), A theK × K

diagonal matrix of received amplitudes,H = SA, andb and

y = Hb + w (14)

the vectors of transmitted and received signals, respectively. Additionally,hk denotes thekth column of the

matrixH . Finally, we define the correlation matricesT = HHH , R = HHH and the system loadβ = K
N

.

V. L INEAR MMSE DETECTION

The linear MMSE detectordk generates a soft decisionb̂k = dHk y of the transmitted symbolbk based on

the observationy. It can be derived from the Wiener-Hopf theorem [35] and is given by

dk = E{yyH}−1E{b∗ky} (15)

with the expectation taken over the transmitted symbolsb and the noise. Specializing the Wiener-Hopf

equation to the system model (14) yields

dk = (HHH + σ2I)−1hk (16)

= c · (HkH
H
k + σ2I)−1hk (17)

for somec ∈ R. Here,Hk is the matrix obtained fromH suppressing columnhk. The second step follows

from the matrix inversion lemma.

The performance of the linear MMSE detector is measured by the signal-to-interference-and-noise ratio

at its output [28]

SINRk = hH
k (HkH

H
k + σ2I)−1hk. (18)

The SINR can be conveniently expressed in terms of the multiuser efficiencyηk [28]

SINRk =
|ak|2Eφ
N0

ηk. (19)
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The multiuser efficiency is a useful measure, since for largesystems it is identical for all users in special

cases [7] and it is related to the spectral efficiency [7], [36], [37].

The SINR depends on the spreading sequences, the received powers of all users, the chip pulse shaping,

and the time delays of all users. To get deeper insight on the linear MMSE detector it is convenient to analyze

the performance for random spreading sequences in the largesystem limits, i.e. asK,N → ∞ with the ratio

K
N

→ β kept fixed. The large-system analysis will identify the macroscopic parameters that characterize a

chip-asynchronous CDMA system and the influences of chip pulse shaping and delay distribution.

In this section we present the large system analysis of a linear MMSE detector for chip-asynchronous

CDMA systems with random spreading. Provided that the noiseat the output of the front end is white,

the analysis applies to CDMA systems using either optimum orsuboptimum statistics, any chip pulse wave-

forms, and any set of time delays in[0, Tc) if their empirical distribution function converges to a deterministic

limit.

In Appendix II, we derive the following theorem on the large-system performance of chip-asynchronous

CDMA:

Theorem 1 LetA ∈ CK×K be a diagonal matrix withkth diagonal elementak andTc a positive real. Given

a functionΦ(ω) : R → C, let φ(Ω, τ) be as in (12). Given a positive integerr, let Φk, k = 1, . . . , K, ber-

block-wise circulant matrices of orderN defined in (11). LetH = SA with S = [Φ1s1,Φ2s2, . . . ,ΦKsK ]

with sk ∈ CN×1.

Assume that the function|Φ(ω)| is upper bounded and has finite support. The receive filter is such that the

sampled discrete-time noise process is white. The vectorssk are independent with i.i.d. circularly symmetric

Gaussian elements. Furthermore, the elementsak of the matrixA are uniformly bounded for anyK. The

sequence of the empirical joint distributionsF (K)

|A|2,T (λ, τ) = 1
K

∑K
k=1 χ(λ > |ak|2)χ(τ > τk) converges

almost surely, asK → ∞, to a non-random distribution functionF|A|2,T (λ, τ).

Then, given the received power|ak|2, the time delayτk and the variance of the white noiseσ2 = rN0

Tc
,

the SINR of userk at the output of a linear MMSE detector for a CDMA system with transfer matrixH

converges in probability asK,N → ∞ with K
N

→ β andr fixed to
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lim
K=βN→∞

SINRk =
|ak|2
2π

π∫

−π

∆
H
φ,r(Ω, τk)Υ(Ω)∆φ,r(Ω, τk)dΩ (20)

whereΥ(Ω) is the unique positive definiter × r matrix solution of the fixed point matrix equation

Υ
−1(Ω) = σ2Ir + β

∫
λ∆φ,r(Ω, τ)∆

H
φ,r(Ω, τ)dF|A|2,T (λ, τ)

1 + λ
2π

∫ π
−π ∆

H
φ,r(Ω, τ)Υ(Ω)∆φ,r(Ω, τ)dΩ

− π < Ω ≤ π (21)

and

∆φ,r(Ω, τ) =




φ(Ω, τ)

φ(Ω, τ − Tc
r
)

...

φ(Ω, τ − Tc(r−1)
r

)




. (22)

The performance of the linear MMSE detector operating on notnecessarily sufficient statistics is com-

pletely characterized by

1) anr × r matrix-valued transfer functionΥ(Ω) and

2) the frequency and delay dependent vector∆φ,r(Ω, τ)

The multiuser efficiency varies from user to user and dependson the time delay of the user of interest only

through∆φ,r(Ω, τk). We can define an SINR spectrum

SINRk(Ω) =
|ak|2
2π

∆
H
φ,r(Ω, τk)Υ(Ω)∆φ,r(Ω, τk) (23)

in the normalized frequency domain−π < Ω ≤ π, or, equivalently, a spectrum of the multiuser efficiency.

The system performance is in both cases obtained by integration over the spectral components.

The fixed point equation (21) clearly reveals how and why synchronous users are the worst case for a given

chip waveform. We know from [37] that to each large multiusersystem, there is an equivalent single user

system with enhanced noise, but otherwise identical performance. In the present case with oversampling

factorr, the equivalent single user system is a frequency-selective MIMO (multiple-input multiple-output)

system withr transmit andr receive antenna and governed by ther × r channel transfer matrix

β

∫
λ∆φ,r(Ω, τ)∆

H
φ,r(Ω, τ)dF|A|2,T (λ, τ)

1 + λ
2π

∫ π
−π ∆

H
φ,r(Ω, τ)Υ(Ω)∆φ,r(Ω, τ)dΩ

. (24)

Note that this matrix is an integral of an outer product over the delay distribution. Thus, for constant delay,

i.e. chip-synchronization, the matrix has rank one. No additional dimensions in signal space can be spanned.
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For distributed delays, the rank of the matrix can be as largeas the oversampling factorr. Driving the

equivalence even further, the equivalent MIMO system can betransformed into an equivalent CDMA system

with spreading factorr and spreading sequences∆φ,r(Ω, τk). In this model, equal delays in the real CDMA

system correspond to users with identical signature sequences in the equivalent CDMA system.

One cannot increase performance unboundedly by faster oversampling, as not all modes of the equivalent

r-dimensional MIMO system can be excited with a chip waveformof limited excess bandwidth due to the

projection onto the spectral support of the chip waveform in(20). In order to utilize the excess bandwidth

of the system, we need two ingredients: 1) Time delays separating the users by making the signatures in

the equivalent system differ. 2) A receiver that transformsthe continuous-time receive signal into sufficient

discrete-time statistics, e.g. by oversampling. A lack of different delays leads to a system where only a single

eigenmode of the equivalent MIMO system is excited. A lack ofoversampling leads to a system where more

eigenmodes are excited, but are not converted into discretetime.

Additional intuitive insight into the behavior of the asynchronus CDMA systems can be gained by focus-

ing on CDMA system with uniformly distributed delay. In thiscase, Theorem 1 can be formulated with a

single scalar fixed point equation by moving from the frequency Ω that is normalized to the chip rate to the

unnormalized frequencyω. This yields the following corollary:

Corollary 1 Let us adopt the same definitions as in Theorem 1 and let the assumptions of Theorem 1 be

satisfied. Additionally, assume that the random variablesλ andτ in F|A|2,T (λ, τ) are statistically indepen-

dent and the random variableτ is uniformly distributed in[0, Tc]. Furthermore, letΦ(ω) vanish outside the

interval [−B; +B] with B ≤ r
2Tc

. Then, the multiuser efficiency of the linear MMSE detector for CDMA

converges in probability asK,N → ∞ with K
N

→ β andr fixed to

lim
K=βN→∞

ηk = η =
1

2π

+πB∫

−πB

η (ω) dω (25)

where the multiuser efficiency spectral densityη (ω) is the unique solution to the fixed point equation

1

η (ω)
=

Tc
|Φ (ω) |2 + β

∫
λdF|A|2(λ)
N0

Eφ
+ λη

(26)

and is zero for|ω| > πB.

Theorem 1 is specialized to Corollary 1 in Appendix III.
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Under the conditions of Corollary 1 the multiuser efficiencyof the linear MMSE detector in asynchronous

systems is the same for all users.

Rewriting (25) and (26) in terms of SINRs, these equations can be interpreted similarly to the correspond-

ing equations in [5] for synchronous systems when the concept of effective interference is generalized to the

concept of effective interference spectral density. LetP (ω, λ) = λ
Tc

|Φ (ω)|2 be the power spectral density

of the sampled received signal for a user having received power λ. Then, the result in Corollary 1 can be

expressed as

SINRk =
1

2π

+πB∫

−πB

sinrk(ω)dω (27)

where the SINR spectral densitysinrk(ω) is given by

sinrk(ω) =
P (ω, |ak|2)

N0 + βEλ{I(P (ω, |ak|2), P (ω, λ), SINRk)}
(28)

with the effective interference spectral density

I(P (ω, |ak|2), P (ω, λ), SINRk) =
P (ω, |ak|2)P (ω, λ)

P (ω, |ak|2) + P (ω, λ)SINRk

. (29)

Heuristically, this means that for large systems the SINR spectral density is deterministic and given by

sinrk(ω) ≈ P (ω, |ak|2)
N0 + 1

N

∑
j 6=k I(P (ω, |ak|2), P (ω, |ajj|2), SINRk)

. (30)

This result yields an interpretation of the effects of each of the interfering users on the SINR of userk similar

to the case of synchronous systems in [5]. The impairment at frequencyω can be decoupled into a sum of the

background noise and an interference term from each of the users at the same frequency. The cumulated in-

terference spectral density at frequencyω depends only on the received power density of the user of interest at

this frequency, the received power spectral density of the interfering users at this frequency, and the attained

SINR of userk. In asynchronous systems we have a decoupling of the effectsof interferers like in syn-

chronous systems and an additional decoupling in frequency. The termI(P (ω, |ak|2), P (ω, |ajj|2), SINRk)

is the effective interference spectral density of userj onto userk at frequencyω for a given SINR of userk.

Sinc waveforms have a particular theoretical interest. In the following we specialize Corollary 1 to this

case.

Corollary 2 Let us adopt the definitions in Theorem 1 and let the assumptions of Corollary 1 be satisfied.
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Given a positive realα, we assume that

Φ(ω) =





√
Tc
α

for | ω
2π
| ≤ α

2Tc
,

0 otherwise.

(31)

corresponding to a sinc waveform with bandwidthB = α
2Tc

and unit energy. Then, the multiuser efficiency

of the linear MMSE detector converges in probability asK,N → ∞ with K
N

→ β to

lim
K=βN→∞

ηk = ηsinc (32)

where the multiuser efficiencyηsinc is the unique positive solution to the fixed point equation

1

ηsinc
= 1 +

β

α

∫
λdF|A|2(λ)

N0Tc + ληsinc
. (33)

We recall that the multiuser efficiency of a linear MMSE detector for a synchronous CDMA system

satisfies [5]
1

ηsyn

= 1 + β

∫
λdF|A|2(λ)

N0Tc + ληsyn

. (34)

This result holds for synchronous CDMA systems using any chip pulse waveform with bandwidthB ≥ 1
2Tc

and satisfying the Nyquist criterion. Thus, it also appliesto sinc pulses whose bandwidth is an integer

multiple of 1
2Tc

. Then, Corollary 2 shows the interesting effect that an asynchronous CDMA system using a

sinc function with bandwidthB = α
2Tc

as chip pulse waveform performs as well as a synchronous CDMA

system with bandwidthr
2Tc
, r ∈ N, with system loadβ ′ = β

α
. This implies that only asynchronous CDMA

has the capability to trade the excess bandwidth of the chip pulse waveform against the spreading factor

while synchronous CDMA has not. In other words, asynchronous CDMA offers to trade degrees of freedom

in the frequency domain provided by the excess bandwidth of the chip pulse waveform against degrees of

freedom in the time domain provided by spreading.

This phenomenon is similar to the resource pooling in CDMA systems with spatial diversity discovered

in [38]. There, the degrees of freedom in space provided by multiple antennas at the receiver could be traded

against degrees of freedom in time provided by the spreading. In order to make resource pooling happen, it

is necessary that the steering vectors of the antenna arrayspoint into different directions. This condition is

equivalent to requiring de-synchronization among users. If all users experience the same delay, this is like

having totally correlated antenna elements.
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In Corollary 2, the bandwidth of the sinc waveform may be either larger or smaller than the Nyquist band-

width. For larger bandwidth, we get a resource pooling effect, for smaller bandwidth we create inter-chip

interference and what could be calledanti-resource pooling. Inter-chip interference is no particular cause of

concern. In contrast, the effect of anti-resource pooling is to virtually increase the load, i.e. squeezing the

same number of data into a smaller spectrum or equivalently squeezing more users into the same spectrum.

Since spectral efficiency of optimum joint decoding is an increasing function of the load [4], anti-resource

pooling is beneficial for spectral efficiency, though its implementation may cause some practical challenges.

In the following theorem, we extend anti-resource pooling to arbitrary delay distributions:

Theorem 2 LetA ∈ CK×K be a diagonal matrix withkth diagonal elementak andTc a positive real. Given

a functionΦ(ω) : R → C, let φ(Ω, τ) be as in (12). Given a positive integerr, let Φk, k = 1, . . . , K, ber-

block-wise circulant matrices of orderN defined in (11). LetH = SA with S = [Φ1s1,Φ2s2, . . . ,ΦKsK ]

with sk ∈ CN×1.

Assume that the function|Φ(ω)| is upper bounded and has supportcontained in the interval
[
− π
Tc
, π
Tc

]
.

The receive filter is such that the sampled discrete-time noise process is white. The vectorssk are indepen-

dent with i.i.d. circularly symmetric Gaussian elements. Furthermore, the elementsak of the matrixA are

uniformly bounded for anyK. The sequence of the empirical distributionsF (K)
|A|2(λ) = 1

K

∑K
k=1 1(λ− |ak|2)

converges in law almost surely, asK → ∞, to a non-random distribution functionF|A|2(λ).

Then, the multiuser efficiency of the linear MMSE detector for CDMA with transfer matrixH converges

in probability asK,N → ∞ with K
N

→ β andr fixed to

lim
K=βN→∞

ηk = η =
1

2π

+π/Tc∫

−π/Tc

η (ω) dω (35)

where the multiuser efficiency spectral densityη(ω) is the unique solution to the fixed point equation

1

η (ω)
=

Tc
|Φ(ω)|2 + β

∫
λdF|A|2(λ)
N0

Eφ
+ λη

(36)

for all ω in the support ofΦ(ω) and zero elsewhere.

Theorem 2 is proven in Appendix IV.
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No constraint is imposed on the set of time delays in Theorem 2. It holds for any set{τ1, τ2 . . . τK} and

we conclude that linear MMSE detectors for synchronous and asynchronous CDMA systems have the same

performance if the bandwidth of the chip pulse waveforms satisfies the constraintB ≤ 1
2Tc
.

VI. SPECTRAL EFFICIENCY

There exists a close relation between the total capacity of aCDMA system and the multiuser efficiency of a

linear MMSE detector for the same system [7], [36], [37]. Therationale behind this relation is a fundamental

connection between mutual information and minimum mean-squared error in Gaussian channels [39]. In the

following, we extend the results in Section V to get insight into the spectral efficiency of an asynchronous

CDMA system.

The capacity of the CDMA channel was found in [40] for synchronous CDMA systems. The total capacity

per chip for large synchronous CDMA systems with square rootNyquist pulses and random spreading in the

presence of AWGN (additive white Gaussian noise) is [4]

C(syn)(β, SNR) = β log2

(
1 + SNR − 1

4
̥(SNR, β)

)
+ log2

(
1 + βSNR − 1

4
̥(SNR, β)

)

− log2 e

4
SNR ̥(SNR, β) (37)

with

̥(y, z) =

(√
y(1 +

√
z)2 + 1 −

√
y(1 −

√
z)2 + 1

)2

. (38)

With the normalizations adopted in the system model, we haveSNR = Eψ/N0.

The spectral efficiency of a synchronous CDMA system is equalto C(syn)(β, SNR) for any Nyquist sinc

waveform. For other chip waveforms, we need to take into account the excess bandwidth and calculate

spectral efficiency as

Γ =
C
TcB

(39)

whereC denotes the total capacity per chip andB denotes the bandwidth of the chip pulse. Note that for

Nyquist sinc pulsesTcB = 1, while in generalTcB can be either larger, e.g. for root-raised cosine pulses, or

smaller, i.e. for anti-resource pooling, than 1.

The expression of the total capacity per chip for asynchronous CDMA systems constrained to a given

chip pulse waveformψ(t) of bandwidthB and a given receive filterg(t) can be obtained by making use of

the results in Section V and the fundamental relation between mutual information and MMSE in Gaussian

channels provided in [39].
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Corollary 3 Let us adopt the same definitions as in Theorem 2 and let the assumptions of Corollary 1

or Theorem 2 be satisfied. Additionally, let the receive filter and sampling process be such that sufficient

discrete-time statistics are provided. Then, asK,N → ∞ with K
N

→ β the total capacity per chip con-

strained to the chip pulse waveformψ(t) converges to the deterministic value

C(asyn)

(
β,
Eψ
N0

, ψ

)
=

β

ln 2

Eψ
N0∫

0

∫
ληγdF|A|2(λ)

1 + λγηγ
dγ (40)

whereηγ is the multiuser efficiency at signal-to-noise ratioγ given in (25) and (35), respectively.

The proof of this corollary is discussed in Appendix VII.

Let us consider again the case of sinc chip waveforms as defined in (31) and uniform distribution of the

time delays. Letα denote the bandwidth of the since pulse relative to the Nyquist bandwidth. As noticed in

Section V, the multiuser efficiencyηsinc of an asynchronous system with such sinc waveforms given by (33)

and loadβ equals the multiuser efficiencyηsyn of a synchronous system with Nyquist sinc pulses given by

(34) and loadβ ′ = β
α
. Since the load enters capacity per chip (40) only via the multiuser efficiency except for

the linear pre-factor to the integral, we immediately find the following equation relating the two capacities

per chip

C(sinc)(β,SNR, α) = α C(syn)

(
β

α
,SNR

)
. (41)

It is apparent from (41) that synchronous and asynchronous systems have the same capacity forα = 1.

In order to compare different systems (with possibly different spreading gains and data rates), spectral

efficiency has to be given as a function ofEb
N0
, the level of energy per bit per noise level equal to [4] [7]

Eb
N0

=
βSNR

C(∗)(β,SNR, ·) . (42)

In Figure 1, we compare the spectral efficiency of asynchronous CDMA with the spectral efficiency of

synchronous CDMA. The spectral efficiencies are plotted against the bandwidth normalized to the Nyquist

bandwidth with Eb
N0

= 10 dB and unit loadβ = 1. Recall from earlier discussions that for synchronous

systems all Nyquist chip waveforms perform identical. So there is no need to specify a particular Nyquist

pulse except for the Nyquist pulse having the same bandwidththan the sinc pulse in the asynchronous case.

We see further that the smaller the normalized bandwidth, the higher spectral efficiency. This is, as anti-

resource pooling improves spectral efficiency by emulatinga higher load.
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C(sinc)(β, SNR, α)

C(syn)(β, SNR)

Fig. 1. Spectral efficiency of random CDMA with unit load versus

the normalized bandwidthα and Eb

N0
= 10 dB.

C(sinc)(β, SNR, α)

C(syn)(β, SNR)

Fig. 2. Spectral efficiency of random CDMA versus the loadβ for the

root-raised cosine chip pulse used in the UMTS standard andEb

N0
= 10

dB.

In Figure 2 the spectral efficiency is plotted against the load β with Eb
N0

= 10 dB for the chip waveform

used in the UMTS standard. When the loadβ increases the gap in spectral efficiency between synchronous

and asynchronous systems increases.

VII. EXTENSION TO GENERAL ASYNCHRONOUSCDMA SYSTEMS

In this section we extend the previous results to any distribution of the time delays for CDMA systems.

Without loss of generality we can assume that the time delaysτk ∈ [0, Ts] [28]. In this case, intersymbol

interference is not negligible and an infinite observation window is necessary to obtain sufficient statistics.

Equation (14) for the system model is extended to a general asynchronous system by

y[p] =

K∑

k=1

ak

+∞∑

m=−∞
bk[m]c

(m)
k

(p
r
Tc − τk

)
+ w[p] (43)

with p ∈ Z and

c
(m)
k =

N−1∑

u=0

sk,m[u]φ(t− (u+mN)Tc) . (44)

By assuming the same approximation as in (14), the virtual spreading sequence of userk in the symbol

intervalm has nonzero elements in the time intervalm andm + 1. Let τk denote the delay of the signalk
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in terms of the chip intervals and̃τk the delay within a chip, i.e.τk =
⌊
τk
Tc

⌋
andτ̃k = τkmodTc respectively.

The virtual spreading sequence of userk is obtained by computingΦk as in (11) forτ = τ̃k to account for

the delay within a chip and then by shifting the virtual spreading vector down byτ k r-dimensional blocks to

account for the delay multiple of the chip interval. More precisely, the virtual spreading in them-th symbol

interval is given by the2rN-dimensional vector




0τk

F(c(τ̃k)

0N−τk


 s

(m)
k = Φ̃ks

(m)
k (45)

with

c(τ̃k) =

[
Φ(Ω, τ̃k),Φ

(
Ω, τ̃k −

Tc
r

)
, . . .Φ

(
Ω, τ̃k −

(r − 1)Tc
r

)]
,

0τk and0N−τk column vectors with zero entries and dimensionτ k andN − τk, respectively. The2rN ×K

virtual spreading matrix for the symbols transmitted at time intervalm is then

S(m) =
[
Φ̃1s

(m)
1 , Φ̃2s

(m)
2 , . . . Φ̃Ks

(m)
K

]
.

For further study, we introduce the upper and lower part of the matrixS(m), S(m)
u andS

(m)
d of sizerN × rK

such that

S(m) =


 S(m)

u

S
(m)
d


 .

and the matricesH(m)
u = S(m)

u A andH
(m)
d = S

(m)
d A. Then, the baseband discrete-time asynchronous

system in matrix notation is given by

Y = HB + N (46)

whereY = [. . . ,y(m−1)T ,y(m)T ,y(m+1)T . . .]T andB = [. . . , b(m−1)T , b(m)T , b(m+1)T . . .]T are the infinite-

length vectors of received and transmitted symbols respectively; W is an infinite-length white Gaussian

noise vector; andH is a bi-diagonal block matrix with infinite block rows and block columns

H =




. . . . . . . . . . . . . . . . . . . . .

. . . 0 H
(m−1)
d H(m)

u 0 . . . . . .

. . . . . . 0 H
(m)
d H(m+1)

u 0 . . .

. . . . . . . . . . . . . . . . . . . . .




. (47)
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We denote withhk,m the column of the matrixH which contains thekth column of the matrixH [m]. Finally,

we define the correlation matricesT = HHH , R = HHH.

The following theorem shows that a linear MMSE detector for aCDMA system with transfer matrix̃H

and time delaysτ1, τ2, . . . τK has the same limiting performance as a linear MMSE detector for symbol

quasi-synchronous but chip asynchronous CDMA systems withtime delays̃τ1, τ̃2, . . . τ̃K .

Theorem 3 Given{τ1, τ2, . . . τK} a set of delays in[0, Ts) let us consider the set of delays in[0, Tc) defined

as{τ̃k : τ̃k = τk mod Tc, k = 1, . . .K} .Given a positive integerr, lt Φk, k = 1, . . .K, be ther-blockwise

circulant matrix of orderN defined in (11) withτ = τ̃k. Let A, Φ(ω), S, andH be defined as in Theorem

1. Furthermore,Φ̃k, k = 1 . . .K are 2rN × N matrices such that̃Φk = [0Tτk , Φ̃
T
k , 0

T
N−τk ]

T with τk =
⌊
τk
Tc

⌋
, 0τk and0N−τk zero matrices of dimensionsrτk × N and (N − rτk) × N, respectively. Let̃S

(m)
=

(
Φ̃1s

(m)
1 , Φ̃2s

(m)
2 . . . Φ̃Ks

(m)
K

)
, H̃

(m)
= [H̃

(m)T

u , H̃
(m)T

d ]T = S̃A andH̃ the infinite block row and block

column matrix of the same form as in (47). Let the same assumptions as in Theorem 1 hold.

Then, asymptotically, asK,N → ∞ with K
N

→ β the CDMA systems with linear MMSE detectors and

transfer matrices̃H andH are equivalent in terms of multiuser efficiency and spectralefficiency.

This theorem is shown in Appendix V.

Interestingly, the system performance depends on the time delaysτk only through the offsets̃τk−
⌊
τk
Tc

⌋
Tc.

Therefore, any shift of the signal multiple ofTc does not affect the performance of the system. We conjecture

the asymptotic equivalence between a CDMA system with transfer matrix H and a CDMA system with

transfer matrixH̃. In some special cases this conjecture is proven [15], [17], [16]. In the general case it is

supported by numerical results. Some simulations validating this conjecture are in part II Section IV.

I propose to substitute the following paragraph: The considerations is this paper have been restricted to

frequency-flat fading. This may look like a restriction of generality. However, we conjecture that the opposite

is the case: Frequency-selective fading implies that the impulse response of the channel is random and spans

several chip intervals. This implies that the mean delay among the users is random and approximately

uniformly distributed. Since the impulse response of the channel can be easily taken care of by a modified

chip waveform, we conjecture that the case of frequency-selective fading breaks down to flat fading with

uniform delay distribution and thus is not more but less general than the case considered here.with this

one which is softer and does not require any conjecture:The analysis presented in this contribution has
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been restricted to frequency flat fading for the sake of clarity. The extension to multipath fading channels is

straightforward. In fact, we can consider a system with an equivalent chip pulse waveform obtained from the

convolution of the original chip pulse waveform with the channel impulse response instead of the original

transmitted chip pulse waveform. Then, the analysis of a system with frequency selective fading reduces to

the proposed analysis.

VIII. C ONCLUSIONS

In this work gives a general framework for the analysis of asynchronous CDMA systems with random

spreading using sufficient or suboptimum statistics and anychip pulse waveform. Furthermore, it includes

several optimum or suboptimum receiver structures of practical and theoretical interest. Therefore, it pro-

vides insight into both the fundamental limits of asynchronous CDMA systems and the performance loss of

implementations where suboptimum receiver structures, suboptimum statistics, and/or non-ideal chip pulses

are utilized.

For the receiver structures investigated in Part I, the performance of a CDMA system is independent of

the time delay distribution if the bandwidth of the chip pulse waveform is not greater than half of the chip

rate, i.e.B ≤ 1
2Tc
. This also implies that synchronous and asynchronous CDMA systems have the same

performance and generalizes the equivalence result in [18]for Nyquist sinc (B = 1
2Tc

) pulses and linear

MMSE detectors to any chip pulse waveform. The behavior of CDMA system changes substantially as

the bandwidth gets larger. In this case, the system performance is significantly affected by the distribution

of the time delays and the performance of linear detectors may depend on the specific time delay of the

signal of interest. If the receiver is fed by sufficient statistics and the time delay distribution is uniform the

performance of optimum or suboptimum receivers is independent of the time delays. In the following, we

summarize the most interesting aspects pointed out by the large system analysis, for each class of receivers.

A. Optimum Receiver

The spectral efficiency constrained to a given chip pulse waveform characterizes the performance of a

CDMA channel with optimum receiver. The spectral efficiencyis expressed in terms of the multiuser effi-

ciency spectral densityη(ω).When the chip-modulation is based on sinc pulses whose bandwidth isα times

the Nyquist bandwidth, the spectral efficiency of asynchronous CDMA systems is identical to the spectral

efficiency of synchronous systems with loadβ ′ = β
α

and Nyquist sinc pulses. Spectral efficiency is a strictly
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decreasing function of the relative pulse bandwidthα and forα → 0, the spectral efficiency of a single user

AWGN channel is reached.

Forα > 1 an asynchronous CDMA system with modulation based on a sinc function can compensate to

some extent for the loss in spectral efficiency of synchronous CDMA systems with equal bandwidth. For

β → ∞ it attains the maximum spectral efficiency for any finite bandwidthB = α
2Tc
.

B. Linear MMSE Detector

The output SINR of a linear MMSE detector can be obtained fromthe solution to a system of fixed point

equations in the general case. In the two cases (i) chip pulses with bandwidthB ≤ 1
2Tc

and (ii) chip pulses

with bandwidthB > 1
2Tc

, sufficient statistics and uniform time delay distributionthe fixed point system

of equation reduces to a single equation. In those cases, theperformance of a linear MMSE detector in

asynchronous CDMA systems is characterized by a unique value of multiuser efficiency. Furthermore, the

measure of multiuser efficiency can be refined by the concept of spectrum of the multiuser efficiency that is

also unique for all the users. Furthermore, for those CDMA systems the limiting interference effects, as the

system grows large, can be decoupled into user domain and frequency domain such that we can define an

effective interference spectral density similarly to the effective interference in [5] for synchronous systems.

In the special case that the modulation is based on sinc functions with bandwidthB = α
2Tc

a linear

MMSE detector in asynchronous CDMA channels performs identically to a synchronous CDMA system

with square root Nyquist chip pulses [5] and loadβ ′ = β
α
. This effect is similar to the resource pooling effect

for synchronous CDMA systems with spatial diversity in [38]and shows the possibility to trade degrees of

freedom in the frequency domain against degrees of freedom in the time domain.

Though this work focussed on performance measures for CDMA,similar results hold for asynchronous

MIMO systems due to the mathematical analogy between CDMA and MIMO systems when described as

a discrete-time vector channel. This means, that MIMO systems with excess bandwidth and desynchro-

nized modulators for the different antenna elements benefitin a similar manner than CDMA systems with

desynchronized users.
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APPENDIX I

USEFUL MATHEMATICAL TOOLS

Let Φ(f) be the unitary Fourier transform of a pulse waveformφ(t) with bandwidthB ≤ r
2Tc
. Then, in

the normalized frequency intervalx ∈
[
−1

2
, 1

2

]
the unitary Fourier transform (12) of the sequence obtained

by samplingφ(t) at time instantτ and rate r
Tc

is given by

φ(x, τ) =
1

Tc
ej2π

τ
Tc
x

sign(x)⌊ r2⌋∑

s=−sign(x)⌊ r−1
2 ⌋

ej2π
τ
Tc
sΦ∗

(
j2π

Tc
(x+ s)

)
for |x| ≤ 1

2
. (48)

The matrix

Q(x, τ) = ∆φ,r(x, τ)∆φ,r(x, τ)
H , (49)

with ∆φ,r(x, τ) defined in (22), can be decomposed in the sum of two matrices

Q(x, τ) = Q(x) + Q(x, τ) (50)

where the(k, ℓ)-elements of the matricesQ(x) andQ(x, τ) are given by

(Q(x))k,ℓ =
1

T 2
c

sign(x)⌊ r2⌋∑

s=−sign(x)⌊ r−1
2 ⌋

∣∣∣∣Φ
(
j2π

Tc
(x+ s)

)∣∣∣∣
2

e−j2π
k−ℓ
r

(x+s) for |x| ≤ 1

2
, (51)

and

(Q(x, τ))k,ℓ =
1

T 2
c

sign(x)⌊ r2⌋∑

s,u=−sign(x)⌊ r−1
2 ⌋

s 6=u

Φ

(
j2π

Tc
(x+ u)

)
Φ∗
(
j2π

Tc
(x+ s)

)
e−j2π

τ
Tc

(s−u)e−j2π(
k−1
r

(x−s)− ℓ−1
r

(x−u))

for |x| ≤ 1

2
, (52)

respectively.

Useful properties of the matricesQ(x) andQ(x, τ) are stated in the following lemmas.

Lemma 1 LetB be anr × r matrix of the form

B = B(x) =




b0 b1e
j 2π
r
x . . . . . . br−1e

j 2π(r−1)
r

x

br−1e
−j 2π

r
x b0 b1e

j 2π
r
x . . . br−2e

j
2π(r−2)

r
x

. . .
. . . . . . . . . . . .

b1e
−j 2π(r−1)

r
x . . . . . . br−1e

−j 2π
r
x b0




, (53)

AUGUST 18, 2009



i.e. givenb0 = b0(x), b1 = b1(x), . . . br−1 = br−1(x), eventually functions ofx, (B)ℓ,k, the element(ℓ, k) of

the matrixB satisfies(B)ℓ,k = ej
2π
r

(k−ℓ)xb(r+k−ℓ)modr. Let Q(x, τ) be ther × r matrix with element(k, ℓ)

defined in (52). Then,

tr(BQ(x, τ)) = 0.

Proof: Let qus(x) = 1
T 2
c
Φ
(
j2π
Tc

(x+ u)
)

Φ∗
(
j2π
Tc

(x+ s)
)
. Then,

tr(BQ(x, τ)) =
r∑

k=1

r∑

ℓ=1

(Q(x, τ))k,ℓ(B)ℓ,k

=

sign(x)⌊ r2⌋∑

s,u=−sign(x)⌊ r−1
2 ⌋

s 6=u

quse
j2π τ

Tc
(s−u)

r∑

k=1

r∑

ℓ=1

(B)ℓ,ke
−j2π x

r
(k−ℓ)e−j

2π
r

(−s(k−1)+u(ℓ−1))

=

sign(x)⌊ r2⌋∑

s,u=−sign(x)⌊ r−1
2 ⌋

s 6=u

quse
j2π( τ

Tc
− 1
r )(s−u)

r∑

k=1

r∑

ℓ=1

b(r+k−ℓ)modre
−j 2π

r
(u−s)kej

2π
r
u(k−ℓ)

=

sign(x)⌊ r2⌋∑

s,u=−sign(x)⌊ r−1
2 ⌋

s 6=u

quse
j2π( τ

Tc
− 1
r )(s−u)(η1 + η2)

with

η1 =

r∑

k,ℓ=1
k≥ℓ

b(r+k−ℓ)modre
−j 2π

r
(u−s)kej

2π
r
u(k−ℓ) (54)

and

η2 =

r∑

k,ℓ=1
k<ℓ

b(r+k−ℓ)modre
−j 2π

r
(u−s)kej

2π
r
u(k−ℓ). (55)

Substitutingv = k − ℓ in (54) andv = r + k − ℓ in (55) we obtain

η1 =

r∑

k=1

k−1∑

v=0

bve
−j 2π

r
(u−s)kej

2πuv
r

and

η2 =

r∑

k=1

r−1∑

v=k

bve
−j 2π

r
(u−s)kej

2πuv
r ,

respectively. Fors, t ∈ [−sign(x)
⌊
r−1
2

⌋
. . . 0 . . . sign(x)

⌊
r
2

⌋
] ands 6= t, |s− t| ∈ [1, . . . , r − 1]. Therefore,

∑r
k=1 e−j

2π
r

(u−s)k = 0 andη1 + η2 = 0 for all x. Then, alsotr(BQ(x, τ)) = 0 and this concludes the proof

of Lemma 1.
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It follows immediately from Lemma 1 thattrQ(x, τ) = 0 since the identity matrixI is of the form (53) with

b0 = 1 andbi = 0 for i = 1, . . . r − 1.

Lemma 2 LetB = B(x) be a matrix defined as in Lemma 1 and letQ(x) be ther× r matrix with element

(k, ℓ) defined in (51). Then, the matrixC(x) = Q(x)B(x) is of the form (53).

Proof: The element(k, ℓ) of the matrixC = C(x), (C)ℓ,k is given by

(C)ℓ,k =
r∑

t=1

(B)ℓ,t(Q(x))t,k

= ej
2π
r

(k−ℓ)xκ(ℓ, k) (56)

with

κ(ℓ, k) =
1

T 2
c

sign(x)⌊ r2⌋∑

s=−sign(x)⌊ r−1
2 ⌋

∣∣∣∣Φ
(
j
2π

Tc
(x+ s)

)∣∣∣∣
2

η(ℓ, k, s)

and

η(ℓ, k, s) =

r∑

t=1

b(r+t−ℓ)modre
−j2π( t−kr )s. (57)

In order to prove Lemma 2 it is sufficient to prove that

κ(ℓ, k) = κ((ℓ+ 1)modr, (k + 1)modr). (58)

In fact, in this caseCℓ,k = ej
2π
r

(k−ℓ)xκ(r+k−ℓ)modr with κ(r+k−ℓ)modr = κ(ℓ, k). The property (58) is implied

by a similar property onη(ℓ, k, s)

η(ℓ, k, s) = η((ℓ+ 1)modr, (k + 1)modr, s). (59)

It is straightforward to verify that (59) is satisfied since both factorsb(r+t−ℓ)modr ande−j2π(
t−k
r ) are periodical

in their argumentsℓ andk, respectively, with periodr andk andℓ are simultaneously increased by a unit.

This concludes the proof of Lemma 2.

The following lemma provides the eigenvalue decompositionof the matrixQ(x).

Lemma 3 Let Q(x) be anr × r matrix with element(k, ℓ) defined in (51). Then, the matrixQ(x) can be

decomposed as follows

Q(x) = U (x)D(x)UH(x) (60)
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where

U(x) =

(
e

(
x− sign(x)

⌊
r − 1

2

⌋)
, . . .e (x) . . .e

(
x+ sign(x)

⌊r
2

⌋))
, (61)

e (x) is an r-dimensional column vector defined by

e (x) =
1√
r

(
1, e−j2π

1
r
x, . . . e−j2π

r−1
r
x
)T

,

andD(x) is the diagonal matrix whosesth diagonal element is given by

(D(x))ss =
r

T 2
c

∣∣∣∣Φ
(
j
2π

Tc

(
x− sign(x)

(⌊
r − 1

2

⌋
− s + 1

)))∣∣∣∣
2

. (62)

Proof: Decomposition (60) can be immediately derived by noting that

Q(x) =

sign(x)⌊ r2⌋∑

s=−sign(x)⌊ r−1
2 ⌋

r

T 2
c

∣∣∣∣Φ
(
j
2π

Tc
(x+ s)

)∣∣∣∣
2

e(x+ s)eH(x+ s).

This expression can be rewritten as (60) and Lemma 3 is proven.

The following lemma shows that the matrixQ(x) and any other matrix with the same basis of eigenvectors

is of the form (53).

Lemma 4 Let C(x) = U(x)M (x)UH(x) with U(x) unitary matrix defined in (61) andM(x) diagonal

matrix with elementsmkk(x). Then,C(x) is of the form (53).

Proof: Theℓth row of the matrixU(x) is given by

uℓ(x) =
1√
r

(
e−j2π

ℓ−1
r (x−sign(x)⌊ r−1

2
⌋), . . . e−j2π

ℓ−1
r (x+sign(x)⌊ r

2
⌋)
)

andcℓk(x), the element(ℓ, k) of the matrixC satisfies

cℓk(x) =
1

r

r∑

i=1

miie
−j2π ℓ−k

r (x−sign(x)⌊ r−1
2

⌋+i−1)

= b̃ℓke
−j2π (ℓ−k)

r
x (63)

with b̃ℓk =
∑r

i=1
mii
r

ej2π
ℓ−k
r (sign(x)⌊ r−1

2
⌋−i+1). It is straightforward to verify that̃bℓk = b̃(ℓ+1)modr,(k+1)modr.

This concludes the proof of Lemma 4.

The following lemmas state results from random matrix theory developed along the lines of the REFORM

method proposed by Girko in [41] and [42].
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Lemma 5 [41], [43] Let Ξ = (ξij)
j=1,...Kq2
i=1,...Nq1

be anNq1 × Kq2 matrix of complex random elementsξij

structured inNK blocks of sizeq1 × q2, Ξij, i.e.

Ξ = (Ξij)
j=1,...K
i=1,...N

andK = βN withβ > 0. LetP̃ = (P ij)ij=1,...p1 = [ΞΞ
H+αI]−1 andG̃ = (Gij)ij=1,...p2 = [ΞH

Ξ+αI]−1,

whereP ij andGij are complex blocks of sizeq1 × q1 andq2 × q2, respectively.

Additionally, assume

H-1 Ξks, k = 1, . . . , N , s = 1, . . . , K, the random blocks of the matrixΞ are independent.

H-2 All the elements of the matrixΞ are zero mean, i.e.E{Ξ} = 0.

H-3 supK,N maxi=1,...,N

∑K
j=1 E‖Ξij‖2 + supK,N maxj=1,...,K

∑N
i=1 E‖Ξij‖2 < +∞,

H-4 Lindeberg condition:∀τ > 0

lim
K=βN→∞

(
max

i=1,...,N

K∑

j=1

E
(
‖Ξij‖2χ{‖Ξij‖ > τ}

)
+ max

j=1,...,K

N∑

i=1

E
(
‖Ξij‖2χ{‖Ξij‖ > τ}

)
)

= 0.

(64)

Then, forα ∈ C\R−

lim
K=βN→∞

E|P pℓ(α) − T pℓ(α)| = 0 p, ℓ = 1, . . . , p1

and

lim
K=βN→∞

E|Gpℓ(α) − α−1Rpℓ(α)| = 0 p, ℓ = 1, . . . , p2

i.e. the blocks of the matrices̃Q andG̃ converge in the first mean to the corresponding blocks of the matrices

T̃ = diag((C(1)
nn(α))−1)n=1,...,N

and

R̃ = diag((C
(2)
kk (α))−1)k=1,...,K
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respectively. The matrix blocksC(1)
nn(α) of sizeq1 × q1 andC

(2)
kk (α) of sizeq2 × q2 are equal to

C(1)
nn(α) = αI +

K∑

j=1

E
(
Ξnj(X)jjΞ

H
nj

)
X=αG̃

n = 1, . . . , N (65)

C
(2)
kk (α) = I +

p1∑

j=1

E
(
Ξ
H
jk(Y )jjΞ

H
jk

)
Y =P̃

k = 1, . . . , K, (66)

respectively.

Lemma 6 [41], [43] Let us assume that the definitions of Lemma 5 hold and the conditions of Lemma 5 are

satisfied.

Then, theq1×q1 matricesC(1)
nn(α), n = 1, . . . , N and theq2×q2 matricesC(2)

kk (α), k = 1, . . . , K, defined

in (65) and (66), respectively, converge asK = βN → ∞ to the limit matrices

lim
K=βN→+∞

C(1)
nn=Ψ

(1)
nn n = 1, . . . , N

lim
K=βN→+∞

C
(2)
kk=Ψ

(2)
kk k = 1, . . . , K

whereΨ(1)
nn, k = 1, . . . , N andΨ

(2)
kk , k = 1, . . . , K satisfy the canonical system of equations

Ψ
(1)
nn= αI+

K∑

j=1

E

{
Ξnj

[
Ψ

(2)
jj

]−1

Ξ
H
nj

}
, n=1, . . . ,N, (67)

Ψ
(2)
kk = I+

N∑

j=1

E

{
Ξ
H
jk

[
Ψ

(1)
jj

]−1

Ξjk

}
, k=1, . . . , K. (68)

The following Lemma states the existence and uniqueness of the solution of the system of canonical equa-

tions in the class of definite positive Hermitian matrices.

Lemma 7 [41] Let us adopt the definitions of Lemma 5 and let us assume that the conditions of Lemma

5 are satisfied. Let us consider the system of canonical equations (67) and (68). Then, the solution of

the canonical system of equations (67) and (68) exists and itis unique in the class of nonnegative definite

analytic matrices forRe(α) > 0.

The following lemma due to Girko provides convergence of theeigenvalue distribution of the matrixΞΞ
H

with Ξ defined in Lemma 5 to a deterministic distribution function and the corresponding Stieltjes transform.
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Lemma 8 [41] Let us adopt the definitions in Lemma 5 and let the assumptions of Lemma 5 hold. Further-

more, letµq1N(x,ΞΞ
H) denote the normalized spectral function of the squareq1N × q1N matrix argument,

i.e. the empirical eigenvalue distribution of the matrixΞΞ
H . Then, for almost allx with probability one,

lim
N→∞

|µq1N (x,ΞΞ
H) − Fq1N (x)| = 0

whereFq1N(x) is the distribution function whose Stieltjes transform is equal to

∫ +∞

0

(x+ α)−1dFq1N(x) = (q1N)−1tr[Ψ̃]−1 (69)

with Ψ̃ = diag(Ψnn)n=1...N nonnegative definite analytic matrix forRe(α) > 0 and Ψnn satisfying the

canonical system of equations (67) and (68).

Lemma 9 [44] Let x = (x1, x2, . . . , xN) be anN-dimensional column vector of complex i.i.d. elements

with zero mean and unit variance andC be anN ×N complex matrix. Then, for anyp ≥ 2

E|xHCx − trC|p ≤ Kp

((
E|x1|4trCCH

)p
2 +

(
E|x1|2ptr(CCH)

p
2

))
(70)

withKp positive constant independent ofN.

APPENDIX II

PROOF OFTHEOREM 1

Let us consider ther-block-wise circulant matrices of orderN , Cφ,r(τ̃k), k = 1, . . .K defined in Theorem

1, and let us denote withFH
N the unitary Fourier transform matrix of dimensionsN ×N

FN =
1√
N




1 1 1 · · · 1

1 ω1 ω2 · · · ωN−1

...
...

...
. . .

...

1 ω(N−1) ω2(N−1) · · · ω(N−1)(N−1)




with ω = e
j2π
N . We can extend the well known results on the diagonalization of circulant matrices3 [31] to

decompose ther-block-wise circulant matricesCφ,r(τ̃k), k = 1, . . .K as

Cφ,r(τ̃k) = (FN ⊗ Ir)∆φ,r(τ̃k)FN

3A circulant matrixC(f(x)) of orderN can be decomposed asC(f(x)) = FNDFH
N , with D = diag(f(0), f( 1

N
), . . . , f(N−1

N
)).

AUGUST 18, 2009



where∆φ,r(τ̃k) is anrN×N block diagonal matrix withℓth block defined in (??) and(FN⊗Ir) is a unitary

matrix.

The matrixS can then be rewritten as

S = (FN ⊗ Ir)(∆φ,r(τ̃1)s̃1,∆φ,r(τ̃2)s̃2, . . . ,∆φ,r(τ̃K)s̃K),

with s̃k = FH
Nsk. Assuming the elements of the spreading sequencesk i.i.d. Gaussian distributed,̃sk is

also a vector with i.i.d. Gaussian distributed elements having the same distribution as the elements ofsk.

Since the eigenvalues of any matrixX are invariant with respect to left multiplication by a unitary matrix

U and right multiplication byUH , i.e. the eigenvalues of the matrixX coincides with the eigenvalues of

the matrixUXUH , then the singular values of the matricesS andS̃ coincide. The same properties holds

for the matricesH andĤ = ŜA. It is straightforward to verify that alsoSINRk is invariant with respect to

such a transform. In fact,

SINRk = h
H

k

(
HkH

H

k + σ2I
)−1

hk

= |akk|2s̃Hk
(
ĤkĤ

H

k + σ2I
)−1

s̃k

with Ĥk andHk obtained from the matriceŝH andH , respectively, by suppressing thekth column. There-

fore, in the following we focus on the analysis of the system with transfer matrix̂H .

The matrixĤ is a matrix structured in blocks of dimensionsr × 1. The block(n, k) ĥn,k, n = 1, . . .N

andk = 1, . . .K, is given by

ĥn,k = |akk|2(∆φ,r(τ̃k))nns̃n,k

wheres̃n,k is a Gaussian random variable with zero mean and varianceE{|s̃n,k|2} = 1
N
. Additionally, the

variables̃sn,k are i.i.d.. Therefore, conditions H-1 and H-2 for the applicability of Lemma 5 and Lemma 6

are satisfied. Condition H-3 of Lemma 5 is satisfied. In fact,

ζ = sup
N

[
max

n=1,...N

K∑

k=1

E{‖ĥnk‖2} + max
k=1,...K

N∑

n=1

E{‖ĥnk‖2}
]

≤ sup
N

[
max
n=1...N

K∑

k=1

|akk|2
N

‖(∆φ,r(τ̃k))nn‖2 + max
k=1...K

|akk|2
N

N∑

n=1

‖(∆φ,r(τ̃k))nn‖2

]
.

Since the functionΦ(j2πf) is bounded in absolute value with finite support also|Φ(x, τ)| is upper bounded

for anyx andτ. Then, there exists a constantCMAX > 0 that satisfies‖(∆φ,r(τ̃k))nn‖2 < CMAX for any

k andn. Additionally, the elements|akk| are uniformly bounded for anyk, i.e. ∃aMAX > 0 such that

AUGUST 18, 2009



|akk|2 ≤ a2
MAX for all k. Then,

ζ ≤ sup
K=βN

a2
MAXCMAX

(
K

N
+ 1

)
< +∞. (71)

In order to verify the Lindeberg condition H-4 we focus on thelimit

η = lim
K=βN→∞

max
N

K∑

k=1

E
(
‖ĥnk‖2χ

(
‖ĥnk‖ > δ

))

for anyδ > 0. Let us observe that∀n, k

E
(
‖ĥnk‖2χ(‖ĥnk‖ > δ)

)
= |akk|2‖(∆φ,r(τ̃k))nn‖2

∫
{
|snk|2> δ2

|akk|2‖∆φ,r(τ̃k)‖2

} |snk|2dF (snk)

≤ |akk|4‖(∆φ,r(τ̃k))nn‖4

δ2

∫

{|snk|≥0}
|snk|4dF (snk).

By using the fact thatsnk is a complex Gaussian variable with varianceE{|snk|2} = 1
N

and forth moment

E{|snk|4} = 2
N2 and the bounds on|akk|2 and‖(∆φ,r(τ̃k))nn‖ it holds

max
n=1,...N

E
(
‖ĥnk‖2χ(‖ĥnk‖ > δ)

)
≤ 2a4

MAXC
4
MAX

δ2N2
. (72)

Then,η = 0 since

0 ≤ η ≤ 2a4
MAXC

4
MAX

δ2
lim

K=βN→∞

K∑

k=1

1

N2
= 0.

Similarly it can be shown that

lim
K=βN→∞

max
k=1,...,K

N∑

n=1

E
(
‖ĥnk‖2χ(‖ĥnk‖2 > δ)

)
= 0

and the Lindeberg condition H-4 is satisfied.

From Lemma 5U pℓ(α), p, ℓ = 1, . . . , N the blocks of the matrixU(α) = (ĤkĤ
H

k + αI)−1 converge in

the first mean tor× r matricesV pℓ = (C
(1)
ℓℓ )−1δpℓ, p, ℓ = 1, . . .N, andC

(1)
ℓℓ defined similarly as in Lemma

5. Additionally, from Lemma 6 the matricesC(1)
ℓℓ can be obtained as solution of the canonical system of

equations (67) and (68) asymptotically asK = βN → ∞. Equations (67) can be rewritten as

Υ
(1)
nn = αIr +

K∑

k=1

E
{
ĥnk[Υ̃

(2)

kk ]−1ĥ
H

nk

}

= αIr +
1

N

K∑

k=1

[Υ̃
(2)

kk ]−1|akk|2∆φ,r

(
n− 1

N
, τ̃k

)
∆

H
φ,r

(
n− 1

N
, τ̃k

)
n = 1, . . .N (73)
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with ∆φ,r (x, τ) defined in (22) and taking into account in (73) that(∆φ,r (τ̃k))nn = ∆φ,r

(
n−1
N
, τ̃k
)
. Equa-

tions (68) specialize to

Υ
(2)
kk = 1 +

N∑

n=1

E
{
h̃
H

nk[Υ̃
(1)

nn ]
−1ĥnk

}

= 1 +
|akk|2
N

N∑

n=1

∆
H
φ,r

(
n− 1

N
, τ̃k

)
[Υ̃

(1)

nn ]
−1

∆φ,r

(
n− 1

N
, τ̃k

)
k = 1, . . .K. (74)

By substituting (74) in (73) and considering the canonical system of equations asK = βN → ∞ we obtain

Υ
(1)(x) = αIr + β

∫

S

λ∆φ,r (x, τ)∆
H
φ,r (x, τ) dF|A|2,T (λ, τ)

1 + λ
∫
X ∆

H
φ,r (x, τ) [Υ(1)(x)]−1∆φ,r (x, τ) d x

with x ∈ [0, 1], or since∆φ,r(x, τ) is periodical inx with unit period,x can equivalently varies in the

intervalX =
[
−1

2
, 1

2

]
. Here,S denotes the support of the distribution functionF|A|2,T (λ, τ). By defining

Υ(x) = [Υ(1)(x)]−1 we obtain (21). It follows from Lemma 6

lim
K=βN→+∞

C(1)
nn = Υ

−1
( n
N

)
.

The convergence in the first mean and thus in probability ofSINRk = ĥ
H

k U(σ2)ĥk to the quantity̺ =

|akk|2
∫

∆
H
φ,r(x, τ̃k)Υ(x)∆φ,r(x, τ̃k)dx is proven ifη1 = E

∣∣∣ĥ
H

k U(σ2)ĥk − ̺
∣∣∣ vanishes asymptotically, i.e.

lim
K,N→∞
K
N
→β

η1 = 0. (75)

The rest of the proof is focused on showing (75). Let us observe

η1 ≤ E
∣∣∣ĥ

H

k U (σ2)ĥk − ĥ
H

k V ĥk

∣∣∣+ E|ĥH

k V ĥk − ̺| (76)

where the triangular inequality4 of the spectral norm is applied andV = diag([C
(1)
kk (σ2)]−1)k=1,...,N is

defined in Lemma 6

By applying the submultiplicative inequality for spectralnorms and the triangular inequality to the first

term of (76) we obtain
4Given two matricesA andB with consistent dimensions the following inequalities hold:

|AB| ≤ |A||B| Submultiplicative inequality of spectral norms;

|A + B| ≤ |A| + |B| Triangular inequality of spectral norms.
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E|ĥH

k (U(σ2) − V )ĥk| = E

∣∣∣∣∣
∑

i,ℓ

s̃∗ik∆
H
φ,r

(
i− 1

N
, τ̃k

)
(U(σ2) − V )iℓ∆φ,r

(
ℓ− 1

N
, τ̃k

)
s̃ℓk

∣∣∣∣∣

≤
∑

i,ℓ

E(|(U(σ2))iℓ − V iℓ|)E|s̃∗iks̃ℓk|∆H
φ,r

(
i− 1

N
, τ̃k

)
∆φ,r

(
ℓ− 1

N
, τ̃k

)

=
∑

i

E|(U(σ2))ii − V ii|
∥∥∆φ,r

(
i−1
N
, τ̃k
)∥∥2

N

≤
∑

i

‖∆φ,r

(
i−1
N
, τ̃k
)
‖2

N
max
i

E|(U (σ2))ii − V ii|.

Thanks to Lemma 5 and the fact that‖∆φ,r

(
i−1
N
, τ̃k
)
‖2 ≤ KMAX for all i = 1, . . . N andτ̃k

lim
K,N→∞
K
N
→β

E|ĥH

k (U(σ2) − V )ĥk| = 0.

In order to prove the convergence to zero ofη2 = E|ĥH

k V ĥk − ̺| we consider

η2

2
≤ E|ĥH

k V ĥk − ̺|2

= E((ĥ
H

k V ĥk)2 − 2̺ĥ
H

k V ĥk + ̺2)

= E


|akk|4

∑

ij

∆
H
φ,r

(
i − 1

N
, τ̃k

)
V ii∆φ,r

(
i − 1

N
, τ̃k

)
∆

H
φ,r

(
j − 1

N
, τ̃k

)
V jj∆φ,r

(
j − 1

N
, τ̃k

)
|s̃ik|2|s̃jk|2

−2̺|akk|2
∑

i

∆
H
φ,r

(
i − 1

N
, τ̃k

)
V ii∆φ,r

(
i − 1

N
, τ̃k

)
|s̃ik|2 + ̺2

)
(77)

=
2|akk|4

N2

∑

i

(
∆

H
φ,r

(
i − 1

N
, τ̃k

)
V ii∆

H
φ,r

(
i − 1

N
, τ̃k

))2

+
|akk|4
N2

∑

i,j
i6=j

∆
H
φ,r

(
i − 1

N
, τ̃k

)
V ii∆

H
φ,r

(
i − 1

N
, τ̃k

)

× ∆
H
φ,r

(
j − 1

N
, τ̃k

)
V jj∆

H
φ,r

(
j − 1

N
, τ̃k

)
− 2̺

N

∑

i

∆
H
φ,r

(
i − 1

N
, τ̃k

)
V ii∆φ,r

(
i − 1

N
, τ̃k

)
+ ̺2. (78)

From (77) to (78) we make use of the assumption thats̃ij is a complex Gaussian variable circularly invariant

with varianceN−1. Let us observe that the spectral norm ofΥ(x) and V ii, for any i, are bounded by

|Υ(x)| < σ2 and|V ii| < σ2. Then, the first term in (78) vanishes asN → ∞. By appealing Lemma 6, for

any i, V ii → Υ
(
i
N

)
asK,N → ∞ with K

N
→ β. Then, the second and third terms in (78) converge to̺2

and−2̺2, respectively. We can conclude that

lim
K,N→∞
K
N
→β

η2
2 = 0
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andη2 → 0 asK,N → ∞ asK
N

→ β. Therefore, (75) and thus the convergence in the first mean ofSINRk

is proven. The Markov inequality implies that,∀ε > 0

lim
K,N→∞
K
N
→β

Pr{|ĥH

k U(σ2)ĥk − ̺| > ε} ≤ 1

ε
lim

K,N→∞
K
N
→β

E|ĥH

k U(σ2)ĥk − ̺| = 0

and the convergence in probability stated in Theorem 1 is proven.

This concludes the proof of Theorem 1.

APPENDIX III

PROOF OFCOROLLARY 1

In order to prove Corollary 1 we rewrite the limitSINRk in (20) as

lim
K,N→∞

SINRk = |akk|2
∫ 1

2

− 1
2

tr (Υ(x)Q(x, τ̃k)) dx (79)

and the fixed point equation (21) as

Υ
−1(x) = σ2Ir + β

∫ +∞

0

∫ Tc

0

λQ(x, τ)dF|A|2,T (λ, τ)

1 + λ
∫ 1

2

− 1
2

tr (Υ(x)Q(x, τ)) dx
− 1

2
≤ x ≤ 1

2
(80)

with Q(x, τ) defined in (49). The matrixQ(x, τ) can be decomposed as in (50). Thanks to the assumptions

on Φ(j2πf) in Corollary 1, the conditions onQ(x) andQ(x, τ) in Lemma 1 and Lemma 2 are satisfied.

First we show thatΥ(x), the unique solution of (80) in the class of nonnegative definite analytic functions

in Re(σ2) > 0, is an r × r matrix with eigenbasisU(x) defined in (61). Let us assume thatΥ(x) =

U(x)Υ̃(x)UH(x) with elements of̃Υ(x) nonnegative for allx ∈
[
−1

2
, 1

2

]
. By appealing to Lemma 4Υ(x)

is of form 53. Then, by applying Lemma 1 it resultstr
(
Υ(x)Q(x, τ)

)
= 0 for all x ∈

[
−1

2
, 1

2

]
. Therefore,

∫ 1
2

− 1
2

tr (Υ(x)Q(x, τ)) dx =

∫ 1
2

− 1
2

tr (Υ(x)Q(x)) dx

=

∫ 1
2

− 1
2

tr
(
Υ̃(x)D(x)

)
dx ≥ 0

with D(x) defined as in Lemma 3. Let us notice that
∫ Tc
0

Q(x, τ)dFT (τ) = 0 for all x. Thanks to this

property, the assumption of independence of the random variablesλ andτ and to the uniform distribution of

τ (80) can be rewritten as

Υ̃
−1

(x) = σ2Ir + β



∫ +∞

0

λdF|A|2(λ)

1 + λ
∫ 1

2

− 1
2

tr
(
Υ̃(x)D(x)

)
dx


 − 1

2
≤ x ≤ 1

2
. (81)

AUGUST 18, 2009



SinceΥ̃(x) andD are diagonal matrices the matrix equation (80) reduces to a system ofL scalar equations.

Furthermore, all the quantities that appears in the right hand side of the system of equations (81) are non

negative under the assumption thatΥ̃(x) is a nonnegative definite matrix and (81) admits a nonnegative

definite solution forRe(σ2) > 0. The existence of a nonnegative definite solution of the system of equations

(81) implies also a solution of the fixed point matrix equation (80) given byΥ(x) = U(x)Υ̃(x)UH(x). Let

υ̃s(x) be thesth diagonal element of̃Υ(x) and let us recall that thesth diagonal element ofD(x) is given in

(62). Then, (81) reduces to

υ̃−1(x) = σ2 + β
r

T 2
c

∣∣∣∣Φ
(
j
2π

T 2
c

(
x− sign(x)

(⌊
r − 1

2

⌋
− s+ 1

)))∣∣∣∣
2

×
∫ +∞

0

λdF|A|2(λ)

1 + λr
T 2
c

∫ 1
2

− 1
2

∑r
s=1 υ̃s(x)

∣∣∣Φ
(
j 2π
T 2
c

(
x− sign(x)

(⌊
r−1
2

⌋
− s+ 1

)))∣∣∣
2

dx

− 1

2
≤ x ≤ 1

2
ands = 1, . . . r. (82)

By changing the variabley = x − sign(x)
(⌊

r−1
2

⌋
− s+ 1

)
and defining the functionυ(y) in the interval

(
− r

2
, r

2

)
as follows

υ(x) =





υ̃s
(
y −

⌊
r−1
2

⌋
+ s− 1

) ⌊
r−1
2

⌋
− s+ 1

2
≤ y ≤

⌊
r−1
2

⌋
− s+ 1,

υ̃s
(
y +

⌊
r−1
2

⌋
− s+ 1

)
s− 1 −

⌊
r−1
2

⌋
≤ y ≤ s− 1

2
−
⌊
r−1
2

⌋ s = 1, . . . , r (83)

the system of equations (82) can be rewritten as

υ−1(x) = σ2 + β
r

T 2
c

∣∣∣∣Φ
(
j
2π

T 2
c

y

)∣∣∣∣
2 ∫ +∞

0

λdF|A|2(λ)

1 + λr
T 2
c

∫ r
2

− r
2
υ(y)

∣∣∣Φ
(
j 2π
T 2
c
y
)∣∣∣

2

dy
|y| ≤ r

2
. (84)

A similar approach applied to (79) yields

lim
K,N→∞

SINRk =
|akk|2r
T 2
c

r∑

s=1

∫ 1
2

− 1
2

∣∣∣∣Φ
(
x− sign(x)

(⌊
r − 1

2

⌋
− s+ 1

))∣∣∣∣
2

υ̃(x)dx

=
|akk|2r
T 2
c

∫ r
2

− r
2

∣∣∣∣Φ
(
j
2π

Tc
y

)∣∣∣∣
2

υ(y)dy. (85)

By substituting (19) in (84) and (85) we obtain the fixed pointequation (26) and the limit (25), respectively.

This concludes the proof of Corollary 1.
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APPENDIX IV

PROOF OFTHEOREM 2

The proof of Theorem 2 follows along the line of the proof of Theorem 1. In this case∆φ,r(x, τ) =

e
j
2π

√
r

Tc
τx

Tc
Φ∗
(
j 2π
Tc
x
)

e(x) and the matrixQ(x, τ) is independent ofτ. Specifically,

Q(x, τ) =
r

T 2
c

∣∣∣∣Φ
(
j
2π

Tc
x

)∣∣∣∣
2

e(x)eH(x).

Then, applying the same approach as in Theorem 1 Lemma 5 and Lemma 6 yield

lim
K,N→∞

SINRk =
|akk|2r
T 2
c

∫ 1
2

− 1
2

∣∣∣∣Φ
(
j
2π

Tc
x

)∣∣∣∣
2

eH(x)Υ̃(σ2, x)e(x)dx

with

Υ̃
−1

(σ2, x) = σ2Ir + β
r

T 2
c

∣∣∣∣Φ
(
j
2π

Tc
x

)∣∣∣∣
2

e(x)eH(x)

∫ +∞

0

λdF|A|2(λ)

1 + λ
∫ 1

2

− 1
2

r
T 2
c

∣∣∣Φ
(
j 2π
Tc
x
)∣∣∣

2

eH(x)Υ̃(σ2, x)e(x)dx

= σ2Ir + β

∫ +∞

0

U(x)D′(x)UH(x)λdF|A|2(λ)

1 + λ
∫ 1

2

− 1
2

r
T 2
c

∣∣∣Φ
(
j 2π
Tc
x
)∣∣∣

2

eH(x)Υ̃(σ2, x)e(x)dx
(86)

with U(x) defined in (61) andD′(x) diagonal matrix with all zero elements except the
(⌊

r−1
2

⌋
+ 1
)th

element, corresponding to the eigenvectore(x) and equal tor
T 2
c

∣∣∣Φ
(
j 2π
Tc
x
)∣∣∣

2

. Then, it is apparent that the

solution of the fixed point matrix equation (86) is a matrix with the basis of eigenvectorsU (x) and (86)

reduces to the equation corresponding to the
(⌊

r−1
2

⌋
+ 1
)th

elementυ(x) of Υ(x) = UH(x)Υ̃(x)U (x)

υ−1(x) = σ2 + β
r

T 2
c

∣∣∣∣Φ
(
j
2π

Tc
x

)∣∣∣∣
2 ∫ λdF|A|2(λ)

1 + λr
T 2
c

∫ 1
2

− 1
2

∣∣∣Φ
(
j 2π
Tc
x
)∣∣∣

2

υ(x)dx
(87)

sinceυs(x), s = 1, . . . , r ands 6=
(⌊

r−1
2

⌋
+ 1
)
, the other components of the diagonal matrixΥ(x) are

simply given byυ−1
s (x) = σ2. The identityeH(x)Υ̃(x)e(x) = υ(x) yields

lim
K=βN→∞

SINRk =
|akk|2r
T 2
c

∫ 1
2

− 1
2

∣∣∣∣Φ
(
j
2π

Tc
x

)∣∣∣∣
2

υ(x)dx. (88)

The convergence (88) in probability or in the first mean can beproven as in Theorem 1. By substituting (19)

in (87) and (88) we obtain the fixed point equation (36) and thelimit (35), respectively.

This concludes the proof of Theorem 2.
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APPENDIX V

PROOF OFTHEOREM 3

The proof of Theorem 3 follows the same arguments of the proofof Theorem 1 and it is based on the

results in Lemmas 5, 6, 7.

The proof that the assumptions of Lemmas 5, 6, 7 are satisfied for the matrixH̃ in Theorem 3 follows the

same lines as in Theorem 1.

Let us observe that for the matrix̃T = H̃H̃
H

the system of canonical equations is unlimited also for

finiteN. By specializing (67) and (68) to this case, it is straightforward to recognize the following properties

of the system of canonical equations:

• The equations obtained by specializing (67) to are periodical with periodN and they coincide with

(73);

• The equations obtained by specializing (68) toT̃ are periodical with periodK and they coincide with

(74).

Then, asK,N → ∞ with constant ratio,̃Υ(x), the solution of the canonical system of equations for the

matrix T̃ is the periodical continuation with unit period ofΥ(x), the solution of the fixed point equation

(21) in Theorem 1, i.e.̃Υ(x) = Υ
(
x−

⌊
x+ 1

2

⌋)
for x ∈ (−∞,+∞).

Lemma 2 guaranties that̃U i+mN,j+nN with i, j = 0, 1, . . .N − 1 andm,n ∈ Z, the r × r blocks

of the matrix Ũ =
(
T̃ + αI

)−1

converge in the first mean to the correspondent blocks of the matrix

Ṽ = diag
(
(C

(1)
i+mN,i+mN )−1

)
i=0,...N−1, m∈Z

with C
(1)
i+mN,i+mN defined in Lemma 2. Furthermore, Lemma

6 implies that

lim
K=βN→∞

C
(1)
i+mN,i+mN = Υ

−1

(
n+ 1

N

)
.

Let h̃k,m be the unlimited column vector of the matrix̃H containing the vector̃Φkskm. By applying the

same approach as in Theorem 1 we can show the convergence in the first mean ofSINRkm = h̃
H

kmŨh̃km to

̺ = |akk|2
∫

∆
H
φ,r(x, τ̃k)Υ(x)∆φ,r(x, τ̃k)dx, the same quantity as in Theorem 1, thanks to the fact that

Υ̃(x) is periodical with unit period and the definition ofΦ̃k.

This concludes the proof of Theorem 3.
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APPENDIX VI

PROOF OFPROPOSITION2

Proposition 2 follows immediately from Corollary 2. In fact, from (33) it is apparent that the multiuser ef-

ficiency of a system with loadβ and sinc pulses having roll-off equal toγ is equal to the multiuser efficiency

of a system with loadβ
γ

and sinc pulses having zero roll-off. Thanks to the fundamental relations between

multiuser efficiency and capacity [39] we obtain (41). Sincethe spectral efficiency is obtained as the ratio
C(sinc)(β,SNR, γ)

∣∣
SNR=N−1

0

γ
, it is apparent from (41) that it is constant asβ → ∞ for any finite bandwidthγ.

APPENDIX VII

PROOF OFCOROLLARY 3

Let MMSEbk[m](ρ) be the achievable MMSE by an estimator of the symbolbk[m] transmitted by userk

in them-th symbol interval when the transmitted signalB in (14) is Gaussian andρ = σ−2. Furthermore,

let SINRbk[m](ρ) be the SINR at the output of the same MMSE estimator for the transmitted symbolbk[m].

Then,

MMSEbk[m](ρ) =
1

1 + SINRbk [m](ρ)
. (89)

Furthermore, letI(B; Y, ρ) be the mutual information in nats between the inputB and the outputY . From

Theorem 2 in [39] the following relation holds

d

dρ
I(B; Y , ρ) = E{‖HB − HB̂‖2} (90)

beingB the conditional mean estimate. We recall here that for Gaussian signals conditional mean estimate

and MMSE estimate coincide (see e.g. [35]) and

E{‖HB − HB̂‖2} = trσ2HH(HHH + σ2I)−1H

=
∑

m,k

SINRbk[m](ρ)

ρ(1 + SINRbk [m](ρ))
. (91)

ForK,N,m → ∞ with K
N

→ β, SINRbk[m](ρ) converges with probability one to deterministic values.

More specifically, SINRbk[m](ρ) =
|akk|2Eψ

N0
η
(
Eψ
N0

)∣∣∣Eψ
N0

= ρ
κ

andη
(
Eψ
N0

)
as in Corollary 1 or Theorem 2.

Then, the total capacity per chip constrained to a given chippulse waveform is given by
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C(asyn)

(
β,
Eψ
N0

, φ

)
=

β

ln 2
E
∫ κ

Eψ
N0

0

∫ +∞

0

λ s
κ
η
(
s
κ

)
dF|A|2(λ) ds

1 + λ s
κ
η
(
s
κ

) (92)

=
β

ln 2
E
∫ Eψ

N0

0

dt

∫ +∞

0

λη(t)dF|A|2(λ)

1 + λtη(t)
(93)

This concludes the proof of Corollary 3.
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