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Abstract

Totally asynchronous code-division multiple-access (CDMA) systems are addressed. In part I, the fundamen-

tal limits of asynchronous CDMA systems were analyzed in terms of total capacity and SINR at the output of the

optimum linear detector. The focus of Part II, is the design of low-complexity implementations of linear multiuser de-

tectors in systems with many users that admit a multistage representation, e.g. reduced rank multistage Wiener filters,

polynomial expansion detectors, weighted parallel interference cancellers.

The effects of the excess bandwidth, chip-pulse shaping, and time delay distribution on CDMA with suboptimum

linear receiver structures are investigated. Recursive expressions for universal weight design are given. The perfor-

mance in terms of SINR is derived in the large-system limit and the performance improvement over synchronous

systems is quantified. The considerations distinguish between two ways of forming discrete-time statistics: chip-

matched filtering and oversampling.
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I. INTRODUCTION

In part I of this paper [1], we analyzed asynchronous CDMA systems with random spreading sequences

in terms of capacity per chip constrained to a given chip pulse waveform and in terms of SINR at the

output of an optimum linear multiuser detector. The analysis showed that under realistic conditions, chip-

asynchronous CDMA systems significantly outperform chip-synchronous CDMA systems. In order to uti-

lize the benefits from chip-asynchronous CDMA, we need efficient algorithms to cope with multiuser detec-

tion for chip-asynchronous users. In part II of this work we, therefore, focus on the generalization of known

design rules for low-complexity multiuser detectors to chip-asynchronous CDMA.

A unified framework for the design and analysis of multiuser detectors that admit a multistage repre-

sentation for synchronous users was given in [2]. The class of multiuser detectors that admit a multistage

representation is large and includes popular linear multiuser detectors like linear MMSE detectors (e.g. [3]),

reduced rank multistage Wiener filters [4], [5], polynomial expansion detectors [6] or conjugate gradient

methods (e.g. [7]), linear parallel interference cancellers (PIC, e.g. [8], [9]), eventually weighted (e.g. [10]),

and the single-user matched filters. Multistage detectors are constructed around the matched filter concept.

They consist of a projection of the signal onto a subspace of the whole signal space by successive matched

filtering and re-spreading followed by a linear filter in the subspace.

Multistage detectors based on universal weights have been proposed in [11], [12] for CDMA systems in

AWGN channels and extended to more realistic scenarios in [13], [14], [2]. These references make use of the

self-averaging properties of large random matrices to find universal weighting coefficients for the linear filter

in the subspace. More specifically, the universal weights are obtained by approximating the precise weights

designed according to some optimality criterion with asymptotically optimum weights, i.e. the optimum

weights for a CDMA system whose number of users and spreading factor tend to infinity with constant ratio.

Thanks to the properties of random matrices, asymptotically these weights become independent of the users’

spreading sequences and depend only on few macroscopic system parameters, as the system load or number

of transmitted symbols per chip, the variance of the noise, and the distribution of the fading. In this way, the

weight design for long-code CDMA simplifies considerably, its complexity becomes independent of both

the number of users in the system and the spreading factor. Moreover, the weights need updating only when

the macroscopic system parameters change.

The fact that users are not received in a time-synchronized manner at the receiver causes two main prob-

lems from a signal processing perspective: (i) the need for an infinite observation window to implement a
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linear MMSE detector and (ii) the potential need for oversampling to form sufficient discrete-time statistics.

The need for an infinite observation window is primarily related to asynchronism on the symbol-level, not

the chip-level. It was addressed in [15], [16] where it was found that multistage detectors need not have

infinite observation windows and can be efficiently implemented without windowing at all. The question

of how to form sufficient statistics was addressed in Part I of this paper [1] where a distinction between the

following two cases was made:

(A) Sufficient statistics obtained by filtering the received signal by a lowpass filter with bandwidth BLOW

larger than the chip-pulse bandwidth and subsequent sampling at rate 2BLOW.

(B) Statistics obtained by sampling the output of a filter matched to the chip waveform at the chip rate (chip

rate sampling). In this case the chip pulses at the output of matched filter need to satisfy the Nyquist

criterion. In the following we refer to them as square root Nyquist chip-pulse waveforms.

General results for the design of linear multistage detectors with both kind of statistics are provided in this

work. The chip pulse waveforms are assumed to be identical for all users.

For asynchronous CDMA, low-complexity detectors with universal weights are conveniently obtained

formed from statistics (A). In fact, these observables enable a joint processing of all users without loss

of information. Multistage detectors with universal weights and statistics (A) have a complexity order per

bit equal to O(rK) if the sampling rate is r
Tc

. On the contrary, discretization scheme (B) provides different

observables for each user and does not allow for simultaneous joint detection of all users. An implementation

of multistage detectors with universal weights using such statistics implies a complexity order per bit equal

to O(K2). This approach is still interesting from a complexity point of view if detection of a single user is

required. However, it suffers from a performance degradation due to the sub-optimality of the statistics.

This work is organized in six additional sections. Section II and III introduce the notation and the system

model for asynchronous CDMA, respectively. In Section IV, multistage detectors for asynchronous CDMA

are reviewed and a implementation which does not suffer from truncation effects is given. The design of

universal weighting is addressed in Section V. Finally, the analytical results are applied to gain further

insight into the system in Section VI where methods for pulse-shaping, forming sufficient statistics and

synchronization are compared. Conclusions are summed up in Section VII.
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II. NOTATION AND SOME USEFUL DEFINITIONS

Throughout Part II we adopt the same notation and definitions already introduced in Part I of this work

[1]. In order to make Part II self-contained we repeat here definitions useful in this part. Upper and lower

boldface symbols are used respectively for matrices and vectors corresponding to signals spanning a specific

symbol interval m. Matrices and vectors describing signals spanning more than a symbol interval are denoted

by upper boldface calligraphic letters.

In the following, we utilize unitary Fourier transforms both in the continuous time and in the discrete

time domain. The unitary Fourier transform of a function f(t) in the continuous time domain is given by

F (j2πf) = 1√
2π

∫
f(t)e−j2πftdt. The unitary Fourier transform of a sequence {. . . , c−1, c0, c1, . . .} in the

discrete time domain is given by c(ej2πx) = 1√
2π

∑+∞
n=−∞ cne−j2πxn. We will refer to them shortly as Fourier

transform. We denote the argument of a Fourier transform of a continuous function by f and the argument

of a Fourier transform of a sequence by x.

For further studies it is convenient to define the concept of r-block-wise circulant matrices of order N :

Definition 1 Let r and N be positive integers. An r-block-wise circulant matrix of order N is an rN × N

matrix of the form

C =




c1,0 c1,1 . . . c1,N−1

...
... . . .

...

cr,0 cr,1 . . . cr,N−1

c1,N−1 c1,0 . . . c1,N−2

...
... . . .

...

cr,N−1 cr,0 . . . cr,N−2

. . . . . . . . . . . .

c1,1 c1,2 . . . c1,0

...
... . . .

...

cr,1 cr,2 . . . cr,0




.

In the matrix C an r ×N block row is obtained by circularly right shifting of the previous block. Since the

matrix C is univocally defined by the unitary Fourier transforms of the sequences {cs,0, cs,1, . . . cs,N−1}, for
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s = 1...r,

fs(x) =
1√
2π

N−1∑

k=0

cske
−j2πxk s = 1, . . . , r,

we will denote an r-block-wise circulant matrix of order N by C(f1(x), f2(x), . . . fr(x)).

Furthermore, the superscripts ·T and ·H denote the transpose and the conjugate transpose of the matrix

argument, respectively. In is the identity matrix of size n×n and C, Z, Z+, and R are the fields of complex,

integer, nonnegative integers, and real numbers, respectively. tr(·) is the trace of the matrix argument and

span(v1,v2, . . . , vs) denotes the vector space spanned by the s vectors v1,v2, . . . vs. diag(. . .) : Cn →
Cn×n transforms an n-dimensional vector v into a diagonal matrix of size n having as diagonal elements

the components of v in the same order. E{·} and Pr{·} are the expectation and probability operators,

respectively. δij is the Kronecker symbol and δ(λ) is the Dirac’s delta function. mod denotes the modulus

and b·c is the operator that yields the maximum integer not greater than its argument.

III. SYSTEM MODEL

In this section we recall briefly the system model for asynchronous CDMA derived in Section IV of Part

I of this work [1]. The reader interested in the details of the derivation can refer to [1].

Let us consider an asynchronous CDMA system with K active users in the uplink (reverse link) channel

with spreading factor N . Each user and the base station are equipped with a single antenna. The channel

is flat fading and impaired by additive white Gaussian noise with two sided power spectral density N0. The

symbol interval is denoted with Ts and Tc = Ts

N
is the chip interval. The modulation of all users is based on

the same chip pulse waveform ψ(t) bandlimited with bandwidth B and energy Eψ =
∫∞
−∞ |ψ(t)|2dt.

The time delays of the K users are denoted with τk, k = 1, . . . , K. Without loss of generality we can

assume (i) user 1 as reference user so that τ1 = 0, (ii) the users ordered according to increasing time delay

with respect to the reference user, i.e. τ1 ≤ τ2 ≤ . . . ≤ τK ; (iii) the time delay to be, at most, one symbol

interval so that τk ∈ [0, Ts).1

As in Part I of this work [1] we assume the use of one of the following front-ends:

Front-end Type A consists of

• An ideal lowpass filter with cut-off frequency f = r
2Tc

where r ∈ Z+ satisfies the constraint B ≤ r
2Tc

such that the sampling theorem applies. The filter is normalized to obtain a unit overall amplification
1For a thorough discussion on this assumption the reader can refer to [3].
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factor, i.e. the transfer function is

G(f) =





1√
Eψ

|f | ≤ r
2Tc

0 |f | > r
2Tc

.

(1)

• A subsequent continuous-discrete time conversion by sampling at rate r
Tc

.

This front-end satisfies the conditions of the sampling theorem and, thus, provides sufficient discrete-time

statistics. For convenience, the sampling rate is an integer multiple of the chip rate. Additionally, the

discrete-time noise process is white with zero mean and variance σ2 = N0r
EψTc

.

Front-end Type B consists of

• A filter G(f) matched to the chip pulse and normalized to the chip pulse energy, i.e. G(f) = Ψ∗(f)E
− 1

2
ψ ;

• Subsequent sampling at the symbol rate.

When used with square root Nyquist chip pulses, the discrete time noise process {n[p]} is white with variance

N0

EψTc
. For synchronous systems with square root Nyquist chip pulses, this front end provides sufficient

statistics whereas the observables are not sufficient if the system is asynchronous.

Let us denote with b[m] and y[m] the vectors of transmitted and received signals at time instants m ∈ Z.

The baseband discrete-time asynchronous system is given by

Y = HB + N (2)

where Y = [. . . , yT [m − 1],yT [m],yT [m + 1] . . .]T and B = [. . . , bT [m − 1], bT [m], bT [m + 1] . . .]T are

infinite-dimensional vectors of received and transmitted symbols respectively; N is an infinite-dimensional

noise vector; and H is a bi-diagonal block matrix of infinite size given by

H =




. . . . . . . . . . . . . . . . . . . . .

. . . 0 Hd[m−1] Hu[m] 0 . . . . . .

. . . . . . 0 Hd[m] Hu[m+1] 0 . . .

. . . . . . . . . . . . . . . . . . . . .




. (3)

Here, Hu[m] and Hd[m] are matrices of size rN×K obtained by the decomposition of the 2rN×K matrix

H [m] into two parts such that H [m] = [HT
u [m], HT

d [m]]T . For H [m] the relation

H [m] = S[m]A (4)
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holds where A is the K×K diagonal matrix of the received amplitudes akk and S[m] is the 2rN×K matrix

of virtual spreading. The matrix S[m] of virtual spreading is given by

S[m] = (Φ1s1m,Φ2s2m, . . .ΦKsKm) (5)

where skm is the N -dimensional column vector of the spreading sequence of user k for the transmitted

symbol m and Φk is the 2rN ×N matrix taking into account the effects of the chip pulse shape and the time

delay τk of user k. The matrix Φk is of the form

Φk =




0k,0

Cφ,r

(
τk − b τk

Tc
cTc

)

0k,1




(6)

where 0k,0 and 0k,1 are matrices of dimensions b rτk

Tc
c × N and

(
N − b rτk

Tc
c
)
× N , respectively, with zero

elements; Cφ,r(τk) is an r-block-wise circulant matrix of order N defined by

Cφ,r(τ)
4
= C(φ(x, τ), φ(x, τ − Tc

r
), . . . , φ(x, τ − (r−1)Tc

r
)), (7)

with

φ(x, τ)
4
=

1

Tc

+∞∑
s=−∞

ej2π τ
Tc

(x+s)Φ∗
(

j2π
Tc

(x + s)
)

. (8)

Thus, the virtual spreading sequences are the samples of the delayed continuous-time spreading waveforms

at sampling rate r/Tc.

Throughout this work we assume that the transmitted symbols are uncorrelated and identically distributed

random variables with unitary variance and zero mean, i.e. E(B) = O and E(BBH) = I being O and

I an unlimited zero vector and the unlimited identity matrix, respectively. The elements of the spreading

sequences sk,m are assumed to be zero mean i.i.d. random variables over all the users, chips, and symbols

with E{skmsH
km} = 1

N
IN . Finally, hk,m denotes that column of the matrix H containing the kth column of

the matrix H [m]. We define the correlation matrices T = HHH and R = HHH. The system load β = K
N

is the number of transmitted symbols per chip.

IV. MULTISTAGE STRUCTURES FOR ASYNCHRONOUS CDMA

We consider the large class of linear multistage detectors for asynchronous CDMA. Let χL,k(H) be the

Krylov subspace [17] of rank L ∈ Z+ given by

χL,k,m(H) = span(T `hk,m)|L−1
`=0 . (9)
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Fig. 1. Multistage detector for asynchronous CDMA systems. Here, }(1 : K, r) = [h1r, h2r, . . . hKr]

A multistage detector of rank L ∈ Z+ for user k is given by

b̂k =
L−1∑

`=0

(wk,m)`h
H
k,mT `Y (10)

where wk,m is the L-dimensional vector of weight coefficients.

It has been shown in [16] that, given the weight vector wk,m the detection of the symbol bk[m] by the

multistage detector of rank L in (10) can be performed with finite delay L using the implementation scheme

in Figure 1. Although infinite length vectors and infinite dimension matrices appear in (10), the multistage

detector in Figure 1 implements exactly (10) and does not suffer from truncation effects. Equivalently, the

multistage detector in Figure 1 can be considered as a multistage detector with sliding observation window

of size 2L. The projection of the received vector Y onto the subspaces χL,k,m(H), for k = 1 . . . K, is

performed jointly for all users and requires only multiplications between vectors and matrices. The size of

those vectors and matrices does not depend on the observation window. For further details the interested

reader is referred to [16], [18].

The class of multistage detectors includes many popular multiuser detectors:

• the single-user matched filter for L = 1,

• the linear parallel interference canceller (PIC) [19], [20] for weight coefficients chosen irrespective of

the properties of the transfer matrix H,

• the polynomial expansion detector [6] and the conjugate gradient method [7], if the weight coefficients

are identical for all users and chosen to minimize the mean square error.
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• the (reduced rank) multistage Wiener filter [5] if the weight coefficients are chosen to minimize the

mean square error, but are allowed to differ from user to user.

Throughout this work we refer to detectors that minimize the MSE in the projection subspace of the user of

interest as optimum detectors in MSE sense. More specifically this class of multistage detectors includes the

linear MMSE detector and the multistage Wiener filter but not the polynomial expansion detector.

In the following we focus on the design of multistage Wiener filters implemented as in Figure 1. This

reduces the problem to the design of the filter coefficients wk,m. The multistage Wiener filter for the detection

of the symbol m transmitted by user k reads

Mk,m =
L−1∑

`=0

(wk,m)`−1h
H
k,mT `. (11)

The weight vector wk,m that minimizes the MSE E{‖Mk,mY − bk,m‖2} is given by

wk,m = argmin
wk,m

E





∥∥∥∥∥
L−1∑

`=0

(wk,m)`h
H
k,mT `Y − bk,m

∥∥∥∥∥

2


 (12)

= argmin
wk,m

E
{∥∥wH

k,mxk,m − bk,m

∥∥2
}

(13)

where xk,m is an L-dimensional vector with j th element (xk,m)j = hH
k,mT j−1Y . This optimization problem

is solved by the Wiener-Hopf theorem [21] and wk,m is given by

wk,m = Ξ−1
k,mξk,m (14)

where Ξk,m = E{xk,mxH
k,m} and ξ = E{b∗k,mxk,m}. It is straightforward to verify that in this case

Ξk,m =




(R2)k,m + σ2(R)k,m · · · (RL+1)k,m + σ2(RL)k,m

(R3)k,m + σ2(R2)k,m · · · (RL+2)k,m + σ2(RL+1)k,m

... . . . ...

(RL+1)k,m + σ2(RL)k,m · · · (R2L)k,m + σ2(R2L−1)k,m




ξk =
(
(R)k,m, (R2)k,m, . . . , (RL)k,m

)T
. (15)

where (Rs)k,m = hH
k,mT s−1hk,m is the diagonal element of the matrix Rs corresponding to the mth symbol

transmitted by user k.

V. UNIVERSAL WEIGHT DESIGN

Consider the SINR of any linear detector that admits a multistage representation. Let wk,m be the weight

vector for the detection of the mth symbol transmitted by user k, then the SINR at the output of the multistage
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detector is given by

SINRk =
wH

k,mξk,mξT
k,mwk,m

wH
k,m(Ξk,m − ξk,mξT

k,m)wH
k,m

. (16)

The performance of multistage Wiener filters simplifies to

SINRk =
ξT

k,mΞ−1
k,mξk,m

1− ξT
k,mΞ−1

k,mξk,m

. (17)

From (14), (16), and (17) it is apparent that the diagonal elements of the matrix Rs play a fundamental role

in the design and analysis of multistage detectors.

It has been shown in [2] that, if the spreading sequences are random and the CDMA system is synchronous,

the diagonal elements of the matrix Rs, s ∈ Z+, converge to deterministic values as K,N → ∞ with

constant ratio. This asymptotic convergence holds for some classes of random matrices and is a stronger

property than the convergence of the eigenvalue distribution. The Stieltjes transform of the asymptotic

eigenvalue distribution of R is related to the SINR at the output of the linear MMSE detector, as pointed

out first in [22] for synchronous CDMA systems. The asymptotic eigenvalue moments of R enable the

asymptotic performance analysis of reduced rank multistage Wiener filters [23] and the design of multistage

detectors with quadratic complexity order per bit [14], [13]. The convergence of the diagonal elements

of Rs has been utilized in [2] for the design of multistage detectors with linear complexity order per bit

in synchronous CDMA systems and for the asymptotic analysis of any multistage detector not necessarily

optimum in a MSE sense. In the following we extend the results in [2] to the case of asynchronous CDMA

systems making use of the asymptotic properties of the random matrix R for asynchronous CDMA systems.

The design of low complexity multistage detectors is based on the approximation of the weight vectors

wk,m by their asymptotic limit when K,N →∞ with constant ratio β

w∞
k = lim

K=βN→∞
Ξ−1

k,mξk,m. (18)

Thanks to the fact that the diagonal elements of Rs can be computed by a polynomial in few macroscopic

system parameters, the computation of the weight vectors becomes independent of the size of R and inde-

pendent of m. Thus, the effort for the computation of the weights becomes negligible and the complexity

of the detector is dominated by the joint projection of the received signal Y onto the subspaces χk,m(H),

k = 1 . . . K and m ∈ Z. This projection has linear complexity per bit if the multistage detector in Figure 1

is utilized.

In order to present asymptotic results useful for the design of linear multistage detectors in asynchronous

CDMA systems with random spreading we follow the same line as in Section IV of Part I of this article [1].
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More specifically, we introduce a matrix H̃ as follows. Let ∆φ,r(τ̃), with τ̃ ∈ [0, Tc] be an rN × N block

diagonal matrix with `th block

(∆φ,r(τ̃))`` =




φ( `−1
N

, τ̃)

φ( `−1
N

, τ̃ − Tc

r
)

...

φ( `−1
N

, τ̃ − (r−1)Tc

r
)




(19)

and φ(x, τ) defined in (8). Similarly to the matrix Φk in (6), we define a matrix Φ̃k as

Φ̃k =




0k,0

∆̃φ,r (τk)

0k,1


 (20)

where 0k,0 and 0k,1 are defined as in (6) and ∆̃φ,r(τ) is obtained by the diagonal circular down shift of the

diagonal elements of the matrix ∆φ,r

(
τ −

⌊
τ
Tc

⌋
Tc

)
by

⌊
τ
Tc

⌋
positions, i.e. the ˜̀th diagonal block of ∆̃φ,r(τ)

is given by
(
∆̃φ,r(τ)

)
˜̀̀̃ =

(
∆φ,r

(
τ −

⌊
τ
Tc

⌋
Tc

))
``

with ` =
(
N + ˜̀+

⌊
τ
Tc

⌋)
modN + 1. The matrix H̃

is defined as the matrix H replacing the 2rN×K matrices of virtual spreading S[m] in H with the matrices

of virtual spreading S̃[m] = (Φ̃1s̃1m, Φ̃2s̃2m . . . Φ̃K s̃Km), where s̃km are N -dimensional vectors with the

same statistical properties of skm.

When the delays of the received signals τk, k = 1, . . . , K are not greater than the chip interval Tc, i.e.

τk ≤ Tc, k = 1, . . . , K, the matrices Φk and Φ̃k are of the form

Φk =


 Cφ,r(τk)

0N


 and Φ̃k =


 ∆φ,r(τk)

0N


 ,

respectively, being 0N an N×N zero matrix. The matrices H in (3) and H̃ reduce to block diagonal matrices

with blocks of dimensions rN ×K and we can focus on the transmission in a single symbol interval. The

virtual spreading matrices in the mth symbol interval are given by

S[m] = [Cφ,r(τ1)s1m,Cφ,r(τ2)s2m . . . Cφ,r(τK)sKm] (21)

and

Ŝ[m] = [∆φ,r(τ1)s̃1m,∆φ,r(τ2)s̃2m . . .∆φ,r(τK)s̃Km]. (22)

Let H [m] = S[m]A (Ĥ [m] = Ŝ[m]A) be the transfer matrix of the system at time instant m and let

R = H
H

H (R̂ = Ĥ
H

Ĥ). Without ambiguity we can drop the index m in the following. The convergence
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of the diagonal elements of R
`

and of R̂
`

to deterministic values is established in the following theorem. The

definitions and the assumptions in the statement of Theorem 1 summarize and formalize the characteristics

of system model (2) for τ̃k ∈ [0, Tc].

Theorem 1 Let A ∈ CK×K be a diagonal matrix with kth diagonal element akk and Tc a positive real.

Given a function Φ(j2πf) : R → C, let φ(x, τ) be as in (8). Given {τ̃1, τ̃2 . . . τ̃K} a set of reals in [0, Tc]

and a positive integer r, let Cφ,r(τ̃k), k = 1, . . . , K, be r-block-wise circulant matrices of order N defined

in (7) and ∆φ,r(τ̃k), k = 1, . . . , K, be rN × N block diagonal matrices with `th block defined as in (19).

Let H = SA with S = (Cφ,r(τ̃1)s1, Cφ,r(τ̃2)s2, . . . , Cφ,r(τ̃K)sK) with sk ∈ CN×1. Furthermore, let

Ĥ = ŜA with Ŝ = (∆φ,r(τ̃1)s1,∆φ,r(τ̃2)s2, . . . ,∆φ,r(τ̃K)sK).

We assume that the function Φ(j2πf) is upper bounded and has finite support. The vectors sk are in-

dependent with i.i.d. circularly symmetric Gaussian elements. Furthermore, the elements akk of the matrix

A are uniformly bounded for any K. The sequence of the empirical joint distributions F
(K)

|A|2,T (λ, τ) =

1
K

∑K
k=1 1(λ− |akk|2)1(τ − τ̃k) converges almost surely, as K →∞, to a non-random distribution function

F|A|2,T (λ, τ).

Then, conditioned on (|akk|2, τ̃k), the corresponding diagonal elements of the matrices R
`

and R̂
`

con-

verge in probability to the deterministic value

lim
K=βN→∞

(R
`
)kk = lim

K=βN→∞
(R̂

`
)kk

P
= R`(|akk|2, τ̃k) (23)

with R`(|akk|2, τ̃k) determined by the following recursion

R`(λ, τ) =
`−1∑
s=0

g(T `−s−1, λ, τ)Rs(λ, τ) (24)

and

T `(x) =
`−1∑
s=0

f(R`−s−1, x)T s(x) −1

2
≤ x ≤ 1

2
(25)

f(R`, x) = β

∫
λ∆φ,r(x, τ)∆H

φ,r(x, τ)R`(λ, τ)d F|A|2,T (λ, τ) −1

2
≤ x ≤ 1

2
(26)

g(T `, λ, τ) = λ

∫ 1
2

− 1
2

∆H
φ,r(x, τ)T `(x)∆φ,r(x, τ)d x (27)
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with

∆φ,r(x, τ) =




φ(x, τ)

φ(x, τ − Tc

r
)

...

φ(x, τ − Tc(r−1)
r

)




. (28)

The recursion is initialized by setting T 0(x) = Ir and R0(λ, τ) = 1.

Theorem 1 is proven in Appendix I.

From Theorem 1 we can obtain m
(`)

R
, the asymptotic eigenvalue moment of the matrix R of order ` by

using the relation

m
(`)

R
= E{R`(λ, τ)}

where the expectation is taken over the limiting eigenvalue distribution F|A|2,T (λ, τ). For r = 1 and F|A|2,T (λ, τ) =

F|A|2(λ)δ(τ), i.e. for synchronous systems sampled at the chip rate, and φ(x) satisfying the Nyquist criterion

the recursive equations (25), (26), and (27) reduce to the recursion in [2] Theorem 1.

This theorem is very general and holds for all chip pulses of practical interest. Furthermore, no constraint

is imposed on the time delay distribution and on the front end. The choice of the front end in this work is

restricted only by the applicability of (16) or (17), which imply white noise at the front end.

Now, we specialize Theorem 1 to a case of theoretical and practical interest, where sufficient statistics

are utilized in the detection, the chip pulse waveform φ(t) is band-limited, and the empirical distribution

function of the time delays converges to a uniform distribution function.

Corollary 1 Let us adopt the same definitions as in Theorem 1 and let the same assumptions of Theorem

1 be satisfied. Additionally, assume that the random variables λ and τ in F|A|2,T (λ, τ) are statistically

independent and the random variable τ is uniformly distributed in [0, Tc]. Furthermore, Φ(j2πf) is bounded

in absolute value, and bandlimited with bandwidth B ∈ [n−1
2Tc

, n
2Tc

] and r ≥ n. Then, given (|akk|2, τk),

the corresponding diagonal element of the matrix R
`

or of the matrix R̂
`

converges in probability to a

deterministic value, conditionally on |akk|2,

lim
K=βN→∞

(R)`
kk = lim

K=βN→∞
(R̂)`

kk
P
= R`(|akk|2)
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with R`(λ)|λ=|akk|2 determined by the following recursion:

R`(λ) =
`−1∑
s=0

λRs(λ)ν`−s−1

and

T`(x) =
r

Tc

`−1∑
s=0

βf(R`−s−1)
1

Tc

∣∣∣∣Φ
(

j2π
x

Tc

)∣∣∣∣
2

Ts(x) −n ≤ x ≤ n

f(R`) =

∫
λR`(λ)d F|A|2(λ)

ν` =
r

Tc

∫ n

−n

1

Tc

∣∣∣∣Φ
(

j2π
x

Tc

)∣∣∣∣
2

T`(x)d x.

The recursion is initialized by setting T0(x) = 1 and R0(λ) = 1.

Corollary 1 is derived in Appendix II.

The eigenvalue moments of R or of R̂ can be expressed in terms of the auxiliary quantities f(Rs) and νs

in the recursion of Corollary 1 by the following expression:

m
(`)

R
= E{R`(λ)} =

`−1∑
s=0

f(Rs)ν`−s−1.

Applying Corollary 1 we obtain the following algorithm to compute the asymptotic limits of the diagonal

elements of R (R̂) and the eigenvalue moments.

Algorithm 1

Initialization: Let ρ0(z) = 1 and µ0(y) = 1.

lth step: • Define u`−1(y) = r
Tc

yµ`−1(y) and write it as a polynomial in y.

• Define v`−1(z) = zρ`−1(z) and write it as a polynomial in z.

• Define

Es =
1

T s
c

∫ B

−B

Tc|Φ(j2πf)|2sd f (29)

and replace all monomials y, y2, . . . , y` in the polynomial u`−1(y) by E1, E2, . . . , E`,

respectively. Denote the result by U`−1.
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• Define ms
|A|2 = E{|akk|2s} and replace all monomials z, z2, . . . , z` in the polynomial

v`−1(z) by the moments m
(1)

|A|2 , m
(2)

|A|2 ,. . . , m
(`)

|A|2 , respectively. Denote the result by

V`−1.

• Calculate

ρ`(z) =
`−1∑
s=0

zU`−s−1ρs(z)

µ`(y) =
r

Tc

`−1∑
s=0

βyV`−s−1µs(y).

• Assign ρ`(λ) to R`(λ).

Replace all monomials z, z2, . . . , z` in the polynomial ρ`(z) by the moments m
(1)

|A|2 ,

m
(2)

|A|2 ,. . . , m
(`)

|A|2 , respectively, and assign the result to m
(`)

R
.

Algorithm 1 is derived in Appendix III.

Interestingly, the recursive equations in Corollary 1 do not depend on the time delay τk of the signal of

user k, i.e. the performance of a CDMA system with multistage detection is independent of the sampling

instants and time delays if the assumptions of Corollary 1 on the chip waveforms and on the time delays are

satisfied.

Additionally, the dependence of R`(λ) on the chip pulse waveforms becomes clear from Algorithm 1:

R`(λ) depends on Φ(j2πf) through the quantities Es, s = 1, 2, . . ., defined in (29).

By applying Algorithm 1 we compute the first five asymptotic eigenvalue moments

m
(1)

R
=

r

Tc

m
(1)

|A|2E1

m
(2)

R
=

(
r

Tc

)2

[β(m
(1)

|A|2)
2E2 + m

(2)

|A|2E2
1 ]

m
(3)

R
=

(
r

Tc

)3

[β2E3(m
(1)

|A|2)
3 + 3m

(2)

|A|2E2βm
(1)

|A|2E1 + m
(3)

|A|2E3
1 ]

m
(4)

R
=

(
r

Tc

)4

[2β2E2
2m

(2)

|A|2(m
(1)

|A|2)
2 + 4βE2

1E2m
(3)

|A|2m
(1)

|A|2 + 4β2E1E3m
(2)

|A|2(m
(2)

|A|2)
2 + β3E4(m

(1)

|A|2)
4

+2βE2
1E2(m

(2)

|A|2)
2 + E4

1m
(4)

|A|2 ]

m
(5)

R
=

(
r

Tc

)5

[m
(5)

|A|2E5β
4 + E5

1 (m
(1)

|A|2)
5 + 5β3E1E4m

(2)

|A|2(m
(1)

|A|2)
3 + 5β3E3E2m

(2)

|A|2(m
(1)

|A|2)
3

+5β2E3E2
1m3

|A|(2)(m
(1)

|A|2)
2 + 5β2E2

1E3(m
(2)

|A|2)
2m

(1)

|A|2 + 5β2E1E2
2 (m

(2)

|A|2)
2m

(1)

|A|2

+5β2E2
2E1m

(3)

|A|2(m
(1)

|A|2)
2 + 5βE2E3

1m
(4)

|A|2m
(1)

|A|2 + 5E2E3
1m

(3)

|A|2m
(2)

|A|2 ].
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In general, the eigenvalue moments of R (R̂) depend only on the system load β, the sampling rate r
Tc

,

the eigenvalue distribution of the matrix AHA, and Es, s ∈ Z+. The latter coefficients take into account the

effects of the shape of the chip pulse or, equivalently, of the frequency spectrum of the function φ(t). The

asymptotic limits of the diagonal elements of the matrix R
`

corresponding to user k depends also on |akk|2

but not on the time delay τk.

In the special case of chip pulse waveforms ψ(t) having bandwidth not greater than the half of the chip

rate, i.e. B ≤ Tc

2
the result of Corollary 1 holds for any sets of time delays included synchronous systems.

In Theorem 2, chip pulse waveforms with bandwidth B ≤ 1
2Tc

are considered and the diagonal elements

of Rs, or equivalently R̃, are shown to be independent of the time delays of the active users.

Theorem 2 Let the definitions of Theorem 1 hold.

We assume that the function Φ(j2πf) is bounded in absolute value and has support Ω ⊆
[
− 1

2Tc
, 1

2Tc

]
. The

vectors sk are independent with i.i.d. Gaussian elements snk ∈ C such that E{snk} = 0 and E{|snk|2} = 1
N

.

Furthermore, the elements akk of the matrix A are uniformly bounded for any K. The sequence of the

empirical distributions F
(K)

|A|2(λ) = 1
K

∑K
k=1 1(λ − |akk|2) converges in law almost surely, as K → ∞, to a

non-random distribution function F|A|2(λ).

Then, given |akk|2, the kth diagonal elements of the matrix R
`

or of the matrix R̂
`

converges in probability

to a deterministic value, conditionally on |akk|2,

lim
K=βN→∞

(R
`
)kk = lim

K=βN→∞
(R̂

`
)kk

a.s.P
= R`(|akk|2)

with R`(|akk|2) determined by the following recursion

R`(λ) =
`−1∑
s=0

λRs(λ)ν`−s−1 (30)

and

T`(x) =
r

Tc

`−1∑
s=0

βf(R`−s−1)
1

Tc

|Φ(j2πx/Tc)|2Ts(x) −1

2
≤ x ≤ 1

2
(31)

f(R`) =

∫
λR`(λ)d F|A|2(λ) (32)

ν` =
r2

T 2
c

∫ 1
2

− 1
2

|Φ(j2πx/Tc)|2T`(x)d x. (33)
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The recursion is initialized by setting T0(x) = Tc

r
and R0(λ) = 1.

Theorem 2 is shown in Appendix IV. It is straightforward to verify that Algorithm 1 can be applied to

determine R`(λ), the asymptotic limit of the diagonal elements and the eigenvalue moments of matrices R

and R̂ satisfying the conditions of Theorem 2.

As for linear MMSE detectors, we can show that the diagonal elements of the matrix R̃s
= (H̃HH̃)s

with time delays τk ∈ [0, Ts] converges to the same asymptotic limit as the diagonal elements of the matrix

R̂
s

(R
s
) for a symbol quasi synchronous but chip asynchronous CDMA system with time delays τ̃k =

τk −
⌊

τk

Tc

⌋
Tc. This property is established in the following theorem.

Theorem 3 Given {τ1, τ2, . . . τK} a set of reals in [0, Ts] let us consider the set of reals in [0, Tc] defined as
{

τ̃k : τ̃k = τk −
⌊

τk

Tc
Tc

⌋
, k = 1, . . . K

}
. Let A, Φ(j2πf), ∆φ,r(τ̃k), Ŝ, and Ĥ be defined as in Theorem

1. Furthermore Φ̃k, k = 1 . . . K are 2rN × N matrices such that Φ̃k = [0T
k,0, ∆̃

T

φ,r(τk),0
T
k,1]

T being

∆̃
T

φ,r(τk) an rN × N block diagonal matrix with ˜̀th diagonal block
(
∆̃φ,r(τk)

)
˜̀̀̃ = (∆φ,r(τ̃k))`` , ` =

(
N + ˜̀+

⌊
τk

Tc

⌋)
modN +1, 0k,0 and 0k,1 zero matrices of dimensions r

⌊
τk

Tc

⌋
×N and

(
N − r

⌊
τk

Tc

⌋)
×N,

respectively. Let S̃[m] =
(
Φ̃1s1m, Φ̃2s2m . . . Φ̃KsKm

)
, H̃ [m] = [H̃

T

u [m], H̃
T

d [m]]T = S̃A and H̃ the

infinite block row and block column matrix of the same form as in (3). Furthermore, h̃km is the infinite length

column vector with non zero elements given by |akk|2Φ̃kskm. Let the same assumptions as in Theorem 1 hold.

Then, given (|akk|2, τ̃k), the diagonal elements h̃
H

kmT̃ `
h̃km of the matrix R̃`

converges in probability to

the deterministic value R`(|akk|2, τ̃k) in (24).

Theorem 3 is proven in Appendix V.

The results of Corollary 1 and Theorem 2 can be readily extended to CDMA systems with transfer matrix

H̃.

As in Part I Section IV of this article [1], we conjecture the equivalence between a CDMA system with

transfer matrix H and a CDMA system with transfer matrix H̃. Numerical simulations support this conjec-

ture.

Numerical simulations were performed for an asynchronous CDMA system with maximum time delay

equal to the symbol interval. The 64 users utilized raised cosine chip-pulse waveforms (thus, chip pulse

waveforms that are not square root Nyquist), QPSK modulation, and random spreading sequences with
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AWGN asynchronous channel, K=64, N=128, raised cosine with roll−off 0.5

Multistage Wiener Filter with L=2
Universal weights and L=2
Multistage Wiener Filter with L=4
Universal weights and L=4

Fig. 2. BER of MSWF with universal weights (solid lines), and weight optimized for the finite system (markers) with L = 2 and 4 versus

SNR. CDMA systems with equal received powers, raised cosine chip waveforms (roll-off γ = 0.5), sampling rate 2
Tc

, and system load β = 1
2

are considered.

N = 128. Perfect power control was applied, i.e. all users were received with the same power, and sampled

at rate 2
Tc

. At the receiver, detection was performed by multistage Wiener filters with either universal weights

or weights optimized for the finite system, cf. Figure 2. There is clearly no loss due to the approximation of

weights by their asymptotic limits.

The mathematical results presented in this section have important implications on the design and analysis

of asynchronous CDMA systems and linear detectors for asynchronous CDMA systems. We elaborate on

them in the following section.

VI. EFFECTS OF ASYNCHRONISM, CHIP PULSE WAVEFORMS, AND SETS OF OBSERVABLES

The theoretical framework developed in Section V enables the analysis and design of linear multistage

detectors for CDMA systems using optimum and suboptimum statistics and possibly non ideal chip pulse

waveforms. In this section we focus on the following aspects:

1) Analysis of the effects of chip pulse waveforms and time delay distributions when the multistage detec-

tors are fed by sufficient statistics.

2) Impact of the use of sufficient and suboptimum statistics on the complexity and the performance of

multistage detectors.
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A. Sufficient Statistics

Sufficient statistics impaired by discrete additive Gaussian noise are obtained as output of detector Type

A. For chip pulse waveforms with bandwidth B ≤ 1
2Tc

and any set of time delays, Theorem 2 applies.

For B > 1
2Tc

and uniform time delay distribution, Corollary 1 holds. In both cases, as K, N → ∞ with

constant ratio the diagonal elements of the matrix R
`

and the eigenvalue moments m
(`)

R
can be obtained

from Algorithm 1. As consequence of (16) the performance of the large class of multiuser detectors that

admit a representation as multistage detectors depends only on the diagonal elements R`(|akk|2) and the

variance of the noise. In large CDMA systems, the SINR depends on the system load β, the sampling rate

r
Tc

, the limit distribution of the received powers F|A|2(λ), the variance of the noise σ2, the coefficients E`,

` ∈ Z+ and the received powers |akk|2, but it is independent of the time delay τk, in general. For B ≤ 1
2Tc

,

the SINR is also independent of the time delay distribution. Therefore we can state the following corollary

Corollary 2 If the bandwidth of the chip pulse waveform satisfies the constraint B ≤ 1
2Tc

, large synchronous

and asynchronous CDMA systems have the same performance in terms of SINR when a linear detector that

admits a representation as multistage detector is used at the receiver.

If the time delays and the received amplitudes of the signals are known at the receiver and the sampling

rate satisfies the conditions of the sampling theorem, synchronous and asynchronous CDMA systems are

have the same performance. In [24] is established the equivalence between synchronous and asynchronous

CDMA systems using an ideal Nyquist sinc waveform (B = 1
2Tc

) and linear MMSE detector. Corollary 2

generalize that equivalence to any kind of chip pulse waveforms with bandwidth B ≤ 1
2Tc

and any linear

multiuser detector with a multistage representation.

By inspection of Algorithm 1 we can verify that the dependence of R`(|akk|2) and m
(`)

R
on the sampling

rate r
Tc

can be expressed by the following relations

R`(|akk|2) =

(
r

Tc

)`

R∗
` (|akk|2) (34)

and

m
(`)

R
=

(
r

Tc

)`

m
∗ (`)

R
(35)
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where R∗
` (|akk|2) and m

∗ (`)

R
are independent of the sampling rate r

Tc
. Thanks to this particular dependence

and the fact that σ2 = r
Tc

N0 the quadratic forms ξH
k,mΞ−1

k,mξk,m, ξH
k,mΞ−1ξ, and ξHΞ−1Ξk,mΞ−1ξ are inde-

pendent of the sampling rate for large systems. Thus, the large system performance of (1) linear multistage

detectors optimum in a mean square sense (see (17)), (2) of the polynomial expansion detectors and (3) the

matched filters is independent of the sampling rate. This property is not general. Detectors that are not

designed to benefit at the best from the available sufficient statistics may improve their performance using

different sets of sufficient statistics. Therefore, the large system performance of other multistage detectors

like PIC detectors depends on the sampling rate and can be improved increasing the oversampling factor r.

Given a positive real γ, let us consider the chip pulse

Φ(j2πf) =





√
Tc

γ
for |f | ≤ γ

2Tc
,

0 otherwise.
(36)

corresponding to a sinc waveform with bandwidth B = γ
2Tc

and unit energy. For waveform (36) with γ = 1,

Tc = 1, and r = 1 Algorithm 1 reduces to Algorithm 1 in [18] for synchronous systems. Let us denote by

R
(syn)
` (|akk|2, β) and m

(`)

R
(syn)(β) the values of R`(|akk|2) and m

(`)

R
for such a case and system load β. Then,

in general case for chip pulse waveform (36) Algorithm 1 yields

R
(sinc)
` (|akk|2) =

(
r

Tc

)`

R(syn)
`

(
|akk|2, β

γ

)
(37)

and

m
(`)

R
(sinc) =

(
r

Tc

)`

m
(`)

R
(syn)

(
β

γ

)
. (38)

Therefore, the same property pointed out in part I of this paper [1] for linear MMSE detectors holds for

several multistage detectors (namely, multistage Wiener filters, polynomial expansion detectors, matched

filters): In a large asynchronous CDMA systems using a sinc function with bandwidth γ
2Tc

as chip pulse

waveform and system load β any multistage detector whose performance is independent of the sampling rate

performs as well as in a large synchronous CDMA system with modulation based on square root Nyquist

chip pulses and system load β′ = β
γ
.

The comparison of synchronous and asynchronous systems with equal chip pulse waveforms enables us

to analyze the effects on the system performance of the chip pulse waveforms jointly with the effects of the

distribution of time delays . We elaborate on these aspects focusing on square root raised cosine chip-pulse

waveforms with roll-off ϑ ∈ [0, 1] and on chip pulse waveforms (36) with γ ∈ [1, 2]. To simplify the notation
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we assume Tc = 1. Let

S(x) =





1 0 ≤ |x| ≤ 1−ϑ
2

1
2

(
1− sin π

ϑ

(|x| − 1
2

))
1−γ

2
≤ |x| ≤ 1+ϑ

2

0 |x| ≥ 1+ϑ
2

.

The energy frequency spectrum of a square root raised cosine waveform with unit energy is given by

|Ψsqrc(j2πx)|2 = S(x). The large system analysis of an asynchronous CDMA system using square root

raised cosine chip pulse waveform is obtained applying Algorithm 1. The corresponding coefficients Esqrc,s,

s = Z+, are given by

Esqrt,s=2s(1− γ) + 2

∫ 1+γ
2

1−γ
2

sins

(
π

γ

(
1

2
−x

))
dx.

It is well known that in a synchronous CDMA system the performance is maximized using square root

Nyquist waveforms. In this case the performance is independent of the specific waveform and the bandwidth

and equals the performance of a large synchronous system using the sinc function with bandwidth 1
2Tc

as

chip pulse. Since the square root raised cosine pulses are square root Nyquist waveforms they attain the

maximum SINR in synchronous systems. The large system performance of multistage Wiener filters for

synchronous CDMA systems with a square root raised cosine waveform is obtained making use of (17) and

Algorithm 1 with r = 1 and Es = 1, s ∈ Z+.

In general, chip pulse waveform (36) is not a square root Nyquist waveform. For this reason the perfor-

mance analysis of linear multistage Wiener filters for synchronous CDMA sytems [14], [18] is not applica-

ble. In this case characterized by interchip interference we can still apply Theorem 1, sampling at rate 2
Tc

and assuming a Dirac function fT (τ) = δ(τ) as probability density function of the time delays. For the chip

pulse waveform (36) the matrix Q(x) = ∆Φ,2(x, 0)∆H
Φ,2(x, 0) used in the recursion of Theorem 1 is given

by

Q(x) =





1
γ




1 e−jπx

ejπx 1


 |x| ≤ 1− γ

2

1
γ




4 0

0 0


 1− γ

2
≤ |x| ≤ 1

2
.

The large system analysis in the asynchronous case with chip pulse (36) can be readily performed making

use of (17) and (37).
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In Figure 3 the large system SINR at the output of a multistage Wiener filter with L = 4 is plotted

as function of the bandwidth for synchronous and asynchronous CDMA systems based on modulation by

square root raised cosine or by pulse (36). We assume perfect power control, i.e. A = I, system load

β = 0.5, and input SNR = 10 dB.

Consistently with the theoretical knowledge on synchronous CDMA systems, if the modulation is based

on square root raised cosine a synchronous CDMA system outperforms a similar CDMA system with modu-

lation based on (36). Asynchronous CDMA systems with both chip pulse waveforms widely outperform the

corresponding synchronous systems. In contrast to the synchronous case, chip pulse waveforms (36) exploits

better than square root cosine the additional degrees of freedom introduced by increasing the bandwidth and

an asynchronous CDMA system with modulation based on (36) outperforms considerably a system using

square root raised cosine pulses. Interestingly, while in synchronous systems avoidance of interchip inter-

ference at the output of a chip matched filter is a sensible criterion for chip pulse design and yields optimum

chip pulse waveforms, in asynchronous systems the detrimental effects of the interchip interference can be

eventually compensated by a reduction of MAI due to a careful chip design and the avoidance of interchip

interference is not the driving criterion for the chip pulse optimization.

In Figure 4 the SINR at the output of a multistage Wiener filter with L = 8 is plotted as a function of the

system load, parametric in the bandwidth, for SNR = 10 dB. The improvement achievable by asynchronous

systems over synchronous systems increases as the the system load increases.

B. Chip Rate Sampling

Chip rate sampling is a widely used approach to generate statistics for asynchronous CDMA systems. It

implies the use of square root Nyquist chip pulses and makes use of front end Type B. Hereafter, we refer to

these CDMA systems as systems B, while we refer to the systems that use sufficient statistics from a front

end Type A as systems A.

A bound on the performance of systems B with linear MMSE detectors is in [25]. The performance

analysis of linear multistage detectors as K, N →∞ with K
N
→ β can be performed applying Theorem 1 to

the chip pulse waveform at the output of the chip matched filter Φ(j2πf) = 1√
Eψ

|Ψ(j2πf)|2 and assuming

r = 1. In order to elaborate further on systems B we focus on the square root raised cosine chip pulse with

roll-off θ [26]

ψ(t) =
4θ( t

Tc
) cos(π(1 + θ) t

Tc
) + sin(π(1− θ) t

Tc
)

πt(1− (4θ t
Tc

)2)
θ ∈ [0, 1]. (39)
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Fig. 3. Output SINR of a multistage Wiener filter with L = 4 versus

the bandwidth. CDMA systems with equal received powers, square

root raised cosine chip waveforms or sinc pulses, system load β = 1
2

and input SNR = 10 dB are considered.
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Fig. 4. Output SINR of a multistage Wiener filter with L = 8 versus

the system load. Asynchronous CDMA systems with equal received

powers, square root raised cosine chip waveforms or sinc pulses with

bandwidth B = 1.5, 2 Hz, input SNR = 10 dB are compared to

synchronous CDMA systems with square root Nyquist chip pulses.

In this case, the matrix function Q(x, τ) = ∆φ,1(x, τ)∆H
φ,1(x, τ) occurring in Theorem 1 reduces to the

scalar function

Q(x, τ) =





1
2

+ 1
2
sin2

(
π
θ
(x + 1

2
)
)

+ cos 2πτ
2

(
1− sin2

(
π
θ
(x + 1

2
)
)) −1

2
≤ x ≤ −1−θ

2

1 −1−θ
2
≤ x ≤ 1−θ

2

1
2

+ 1
2
sin2

(
π
θ
(x− 1

2
)
)

+ cos 2πτ
2

(
1− sin2

(
π
θ
(x− 1

2
)
))

1−θ
2
≤ x ≤ 1

2
.

due to the fact that r = 1. Equal received powers, system load β = 1
2
, multistage Wiener filters with L = 3

define the scenario we consider for the asymptotic analysis.

The analysis shows a strong dependence of the performance on the time delays. As expected, it is possible

to verify that the best SINR is obtained when the sampling instants coincide with the time delays of the user

of interest.

In Figure 5 we compare the performance of system B with square root raised cosine chip pulse to the

SINR of a system A with the same modulating pulse. In the comparison we consider the best SINR for

system B obtained when the sampling times coincide with the time delays of the user of interest. The curves

represent the output SINR as a function of the roll-off θ parameterized with respect to SNR. The parameter

(SNR) varies from 0 dB to 20 dB in steps of 5 dB. As reference we also plot the performance of synchronous
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Fig. 5. Asymptotic output SINR of a multistage Wiener filter with L = 3 versus the roll-off θ as front-end A (dashed lines) and

front-end B (dots) are in use in an asynchronous CDMA system. The solid lines show the reference performance in synchronous

CDMA systems. The curves are parametric in the input SNR with SNR varying between 0 dB and 20 dB in steps of 5 dB.

CDMA systems. As expected, multistage detectors with front-end A outperform the corresponding multi-

stage detectors with front-end B.

Interestingly, while linear multistage detectors and asynchronism in system A can compensate to some

extent for the loss in spectral efficiency caused by the increasing roll-off and typical of synchronous CDMA

systems such a compensation is not possible in systems B. Systems B behave similarly to synchronous

CDMA systems. In fact, the SINR for system B is very close to the performance of synchronous systems

for any SNR level.

Since the SINR in system B heavily depends on the sampling instants with respect to τk, different statistics

are needed for the detection of different users in order to obtain good performance. As consequence, joint

detection is not feasible and each user has to be detected independently. This is a significant drawback when

several or all users have to be detected (e.g. uplink) and has a relevant impact on the complexity of the

system. For example, the complexity order per bit of a multistage Wiener filter or polynomial expansion

detector is linear in rK in system A while the complexity order per bit of the same detectors is quadratic in

K in system B. A similar increase in complexity can be noticed also for other detectors (e.g. linear MMSE

detectors, or any multistage detector).
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VII. CONCLUSIONS

In Part II of this work we provided guidelines for the design of asynchronous CDMA systems via the anal-

ysis of the effects of chip pulse waveforms, time delay distributions, sufficient and suboptimum observables

on the complexity and performance of the broad class of multiuser detectors with multistage representation.

Similarly to the results obtained in part I of this article [1], i.e. the chip-pulse constrained capacity and the

performance of linear MMSE detectors, multistage detectors show performances independent of the time

delays of the active users if the bandwidth of the chip pulse waveform is not greater than half of the chip

rate, i.e. B ≤ 1
2Tc

. Above that threshold the performances of linear multistage detectors depend on the time

delay distributions and asynchronous CDMA systems outperform synchronous CDMA systems.

The framework presented here enabled the analysis of optimum and suboptimum multistage detectors

using statistics (A), which are sufficient, or observables (B), which are suboptimum. In the two cases of

(i) chip pulses with bandwidth B ≤ 1
2Tc

and (ii) chip pulses with bandwidth B > 1
2Tc

, sufficient statistics,

and uniform distribution, the effects of the chip pulse waveforms on the detector performance are described

by the coefficients Es = 1
T s

c

∫ B

−B
Tc|Ψ(j2πf)|2sdf. The output SINR of linear MMSE detectors, multistage

Wiener filters, polynomial expansion detectors, and matched filters is independent of the sampling rate. In

contrast, the output SINR of other multistage detectors like PIC detectors depends on the sampling rate and

increases with it.

Comparing the performance of synchronous and asynchronous CDMA systems with modulation based

on square root Nyquist pulses, namely square root raised cosine waveforms, and modulation based on sinc

functions with increasing bandwidth, it becomes apparent that the chip pulse design for synchronous CDMA

systems follows the same guidelines as the chip pulse design for single user systems. In contrast, chip pulse

design for asynchronous CDMA systems is governed by entirely different rules. In fact, CDMA systems we

found to perform well if the spectrum of the received signal is as white as possible.

The asymptotic analysis of asynchronous CDMA systems using statistics (B) shows that the performance

of multistage Wiener filters is close to the SINR of the corresponding synchronous CDMA systems for any

bandwidth and level of SNR. Therefore, this kind of front-end is not capable of exploiting the benefits of

asynchronous CDMA.

The universal weights proposed for the design of low complexity detectors account for the effects of asyn-

chronism, sub-optimality of the statistics, and non-ideality of pulse-shapers. They depend on the sampling

rate although the large system performance do not.
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From the asymptotic analysis and design performed in this work we can draw the following conclu-

sions:

• Multistage detectors with front end Type B and universal weights are asymptotically suboptimal and

have the same complexity order per bit O(K2) in uplink as the linear MMSE detector.

• Multistage Wiener filters and polynomial expansion detectors with statistics A and universal weights are

asymptotically optimum and have the same complexity order per bit as the matched filter, i.e. O(rK)

with r ¿ K.

• If only a user has to be detected, multistage detectors using statistics (B) have slightly lower complexity

than multistage detectors with statistics (A), namely they have a complexity per bit O(K2) while in the

later case the complexity per bit is O(rK2). However, they perform almost as the multistage detectors

for synchronous systems at any SNR and do not provide the gain in performance due to asynchronism

in contrast to statistics (A).
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APPENDIX I

PROOF OF THEOREM 1

By applying the same approach as in part I Theorem 1 of this paper [1] it can be shown that the eigenvalue

moments of the matrix R = AHS
H

SA = H
H

H and R̂ = AHŜ
H

ŜA = Ĥ
H

Ĥ coincide. The same

property holds for the diagonal elements of the matrices R
`

and R̂
`

with ` ∈ Z+.

In the following we focus on the asymptotic analysis of the diagonal elements of the matrices R̂
`

=

(Ĥ
H

Ĥ)` with Ĥ = (∆φ,r(τ̃1)s1,∆φ,r(τ̃2)s2, . . . ,∆φ,r(τ̃K)sK)A.

Throughout this proof we adopt the following notation. For k = 1, . . . , K and n = 1, . . . , N

• ĥk is the kth column of the matrix Ĥ;

• ĥnk is the nth r × 1 block of the vector ĥk and ĥnk = akk(∆φ,r)nnsnk;

• δ̂n is the nth block row of Ĥ of dimensions r ×K;

• Ĥ²n is the matrix obtained from Ĥ by suppressing δ̂n;

• Ĥ∼k is the matrix obtained from Ĥ by suppressing ĥk.

• T̂∼k = Ĥ∼kĤ
H

∼k;
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• R̂²n = Ĥ
H

²nĤ²n;

• σ̂n = (sn1, sn2, . . . , snK).

• ∇∇∇n,t, for t = 1, . . . , r and n = 1, . . . , N , is the K ×K diagonal matrix with the kth element equal to

φ
(

n−1
N

, τ̃k − (t−1)Tc

r

)
. Note that σ̂n∇∇∇n,tA coincides with the (t + (n− 1)r)th row of the matrix Ĥ .

• T̂
s

[nn] is the nth diagonal block of T̂
s

of dimensions r × r.

Furthermore, since the channel gains akk are bounded, we denote by aMAX their upper bound, i.e. |akk| <

aMAX, ∀k. Finally, thanks to the assumption that Φ(j2πf) is bounded in absolute value with finite support

also φ(x, τ) is upper bounded for any x and τ . We denote by ΦMAX its bound.

Let us observe first that the eigenvalue moments of the matrix R̂ (or equivalently of T̂ ) are almost surely

upper bounded by a finite positive values C(s),

In fact,

1

N
trR̂

s
=

1

N

K∑

k1,...ks=1

N∑
n1,...ns=1

ĥ
H

n1,k1
ĥn1,k2ĥ

H

n2,k2
ĥn2,k3 . . . ĥ

H

ns,ks
ĥns,k1

=
1

N

K∑

k1,...ks=1

|ak1k1|2 . . . |aksks|2
N∑

n1,...ns=1

(∆φ,r(τ̃1)
H
n1n1

(∆φ,r(τ̃2)n1n1 . . . (∆φ,r(τ̃s)
H
nsns

(∆φ,r(τ̃1)nsns×

× s∗n1,k1
sn1,k2s

∗
n2,k2

sn2,k3 . . . s∗ns,ks
sns,k1

Applying the approach of non-crossing partitions [27], [28], it is possible to recognize that the factors

s∗n1,k1
sn1,k2s

∗
n2,k2

sn2,k3 . . . s∗ns,ks
sns,k1 which do not vanish asymptotically, correspond to the ones having

nonzero non-crossing partitions. Correspondingly, also the remaining factors

(∆φ,r(τ̃1)
H
n1n1

(∆φ,r(τ̃2)n1n1 . . . (∆φ,r(τ̃s)
H
nsns

(∆φ,r(τ̃1)nsns

are positive and bounded by

|(∆φ,r(τ̃1)
H
n1n1

(∆φ,r(τ̃2)n1n1 . . . (∆φ,r(τ̃s)
H
nsns

(∆φ,r(τ̃1)nsns| ≤
r2s∆2s

MAX

T 2s
c

.

Therefore,

1

N
TrR̂

s ≤ r2s∆MAXa2s
MAX

T 2s
c

(
1

N

K∑

k1,...ks=1

N∑
n1,...ns=1

s∗n1,k1
sn1,k2s

∗
n2,k2

sn2,k3 . . . s∗ns,ks
sns,k1

)
. (40)

The last factor in (40) is the s-th eigenvalue moment of a central Wishart matrix with zeromean i.i.d Gaussian

entries having variance 1
N

. Well established results of random matrix theory [29], [28], [12] show that the
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eigenvalue moments of such a matrix converge almost surely to finite values. More specifically,

1

N

N∑
n1,...ns=1

s∗n1,k1
sn1,k2s

∗
n2,k2

sn2,k3 . . . s∗ns,ks
sns,k1

a.s.→
s−1∑
i=0


 s

i





 s

i + 1


 βi

s
. (41)

Then, appealing to (40) and (41), the eigenvalue moments of the matrices R̂ and T̂ are upper bounded almost

surely by

C(s) =
r2s∆2s

MAXaMAX

T 2s
c

s−1∑
i=0


 s

i





 s

i + 1


 βi

s
. (42)

The proof of Theorem 1 is based on strong induction. In the first step we prove the following facts:

1) The diagonal elements of the matrix R̂ converge in probability, as N → ∞, to deterministic values

R1(|akk|2, τ̃k), conditionally on (|akk|2, τ̃k). Furthermore, ∀ε > 0 and large K = βN

Pr{|R̂kk −R1(|akk|2, τ̃k)| > ε} ≤ o
(
N−2

)
.

2) T̂ [nn], the r × r block diagonal elements of the matrix T̂ = ĤĤ
H

, converge in probability to deter-

ministic blocks T 1(x), with x = limN→∞ n
N

. Additionally, ∀ε > 0, large K = βN and u, v = 1, . . . r,

Pr{|(T̂ [nn])uv − (T 1(x))uv| > ε} ≤ o
(
N−2

)
.

Then, in the recursion step, we use the following induction assumptions:

1) For s = 1, . . . , `−1, the diagonal elements of the matrix R̂
s
, converge in probability, as K = βN →∞,

to deterministic values Rs(|akk|2, τ̃k), conditionally on (|akk|2, τ̃k). Additionally, ∀ε > 0 and large

K = βN, Pr{|(R̂s
)kk −Rs(|akk|2, τ̃k)| > ε} ≤ o (N−2) .

2) For s = 1, . . . , `− 1, T̂
s

[nn], the r× r block diagonal elements of the matrix T̂
s

converge in probability

to deterministic blocks T s(x), with x = limN→∞ n
N

. Additionally, ∀ε > 0, large K = βN, and

u, v = 1, . . . r, Pr{|(T̂ s

[nn])uv − (T s(x))uv| > ε} ≤ o (N−2) .

We prove:

1) The diagonal elements of the matrix R̂
`
, converge in probability, as K = βN → ∞, to deterministic

values R`(|akk|2, τ̃k), conditionally on (|akk|2, τ̃k). Furthermore, ∀ε > 0 and large K = βN

Pr{|(R̂`
)kk −R`(|akk|2, τ̃k)| > ε} ≤ o

(
N−2

)
. (43)

2) The blocks T̂
`

[nn], converge in probability to deterministic blocks T `(x) with limN→∞ n
N

. Additionally,

∀ε > 0, large N and u, v = 1, . . . r,

Pr{|(T̂ `

[nn])uv − (T `(x))uv| > ε} ≤ o
(
N−2

)
. (44)
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First step: Consider R̂kk = ĥ
H

k ĥk = |akk|2sH
k ∆H

φ,r(τ̃k)∆φ,r(τ̃k)sk. Thanks to the bound |φ(x, τ)| <

ΦMAX which holds for any x and τ, also the eigenvalues of the matrix ∆H
φ,r(τ̃)∆φ,r(τ̃) are upper bounded.

In fact, they are given by
∑r

t=1

∣∣∣φ
(

n−1
N

, τ̃k − (t−1)Tc

r

)∣∣∣
2

for n = 1, . . . , N . Therefore, the limit eigenvalue

distribution of the matrix ∆H
φ,r(τ̃)∆φ,r(τ̃) has upper bounded support ∆MAX. Then, by appealing to Lemma

9 in part I [1] with p = 4 and by making use of the bound for any Hermitian matrix C ∈ CN×N (trC)2 ≤
Ntr(C2) we obtain

ζ1 = E

∣∣∣∣|akk|2sH
k ∆H

φ,r(τ̃k)∆φ,r(τ̃k)s− |akk|2
N

tr(∆H
φ,r(τ̃k)∆φ,r(τ̃k))

∣∣∣∣
4

≤ K4|akk|4
N3

tr(∆H
φ,r(τ̃k)∆φ,r(τ̃k))

4

≤ K4|akk|4
N2

∆4
MAX.

Since |akk| ≤ aMAX < +∞, the Bienaymé inequality yields ∀ε > 0

Pr

{∣∣∣∣R̂kk − |akk|2
N

tr(∆H
φ,r(τ̃k)∆φ,r(τ̃k))

∣∣∣∣ ≥ ε

}
≤

E
∣∣∣R̂kk − |akk|2

N
tr(∆H

φ,r(τ̃k)∆φ,r(τ̃k))
∣∣∣
4

ε4

≤ K4|akk|4∆4
MAX

N2ε4
(45)

This bound implies the following convergence in probability2

R1(λ, τ)|(λ,τ)=(|akk|2,τk) = lim
K=βN→∞

R̂kk

= lim
K=βN→∞

|akk|2
N

tr(∆H
φ,r(τ̃k)∆φ,r(τ̃k))

= lim
K=βN→∞

|akk|2
N

N∑

`=1

(∆H
φ,r(τ̃k))`,`(∆φ,r(τ̃k))`,`

= λ

∫ 1

0

∆H
φ,r(x, τ)∆φ,r(x, τ)d x

∣∣∣∣
(λ,τ)=(|akk|2,τ̃k)

. (46)

Furthermore, thanks to the bound (45) ∀ε > 0

Pr
{∣∣∣R̂kk −R1(|akk|2, τ̃k)

∣∣∣ ≥ ε
}
≤ o(N−2).

Let us now consider the block matrix T̂ [nn] whose (u, v) element (T̂ [nn])uv is given by

(T̂ [nn])uv = σ̂nA∇∇∇n,u∇∇∇H
n,vA

Hσ̂H
n .

2In this case it is easy to show also the convergence with probability one or almost sure convergence.
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Thanks to the assumption of Theorem 1 that the support of F|A|2,T (λ, τ) is bounded and φ(x, τ) is bounded in

absolute value, the diagonal elements of the diagonal matrix A∇∇∇n,u∇∇∇H
n,vA

H are upper bounded in absolute

value by a positive constant TMAX. Then, by appealing to Lemma 9 in part I [1] we obtain

E

(∣∣∣∣(T̂ [nn])u,v − 1

N
trA∇∇∇n,u∇∇∇H

n,vA
H

∣∣∣∣
4
)
≤ K4

N3
tr(A∇∇∇n,u∇∇∇H

n,vA
H)4

≤ K4

N2
T 4

MAX. (47)

By appealing again to the Bienaymé inequality and by making use of the bound (47) we obtain ∀ε > 0

Pr

{∣∣∣∣(T̂ [nn])u,v − 1

N
tr(A∇∇∇n,u∇∇∇H

n,vA
H)

∣∣∣∣ > ε

}
≤ 1

ε4
E

(∣∣∣∣(T̂ [nn])u,v − 1

N
tr(A∇∇∇n,u∇∇∇H

n,vA
H)

∣∣∣∣
4
)

≤ K4T
4
MAX

ε4N2
.

Thus, the following convergence in probability holds

lim
K=βN→∞

(T̂ [nn])u,v = lim
K=βN→∞

1

N
trA∇∇∇n,u∇∇∇H

n,vA
H

= lim
K=βN→∞

β

K

K∑

k=1

|akk|2φ
(

n−1

N
, τ̃k−u−1

r
Tc

)
φ∗

(
n−1

N
, τ̃k− v−1

r
Tc

)

= β

∫
λφ

(
x, τ−u−1

r
Tc

)
φ

(
x, τ− v−1

r
Tc

)
d F|A|2,T (λ, τ), (48)

with x = limN→∞ n
N

and 0 ≤ x ≤ 1. Therefore, the block matrix T̂ [nn] converges in probability and in mean

square sense to the r × r matrix

T 1(x) = lim
K=βN→∞

T̂ [nn]

= β

∫
λ∆φ,r(x, τ)∆H

φ,r(x, τ)d F|A|2,T (λ, τ)

with 0 ≤ x ≤ 1. Thanks to the bound (47) for large K = βN and ∀ε > 0 the bound

Pr
{∣∣∣(T̂ [nn])u,v − (T (x))u,v

∣∣∣ < ε
}
≤ o(N−2)

holds. This concludes the proof of the first step.

Step `: First of all, let us introduce some properties of the convergence in probability.

Property A: Let us consider a finite number q of random sequences {a(1)
n }, . . . , {a(q)

n } that converge in

probability to deterministic limits a1, . . . , aq, respectively. Then, any linear combination of such sequences

converges in probability to the linear combination of the limits. Furthermore, if |a(s)
n − as| P→ o(N−is),
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with is ∈ R+, and s = 1, . . . q, then any linear combination of the random sequences converges as

o(N−mins=1,...q(is)), at worst.

Property B: Let {an} and {bn} two random sequences that converge in probability to a and b, respectively.

Then, the sequence {anbn} converges in probability to ab. In fact, ∀ε > 0

Pr{|anbn − ab| > ε} = Pr{|(an − a)(bn − b) + a(bn − b) + b(an − a)| > ε}

≤ Pr
{
|(an − a)(bn − b)| > ε

3

}
+ Pr

{
|a(bn − b)| > ε

3

}
+ Pr

{
|b(an − a)| > ε

3

}

≤ Pr

{
|(an − a)| >

√
ε

3

}
+ Pr

{
|(bn − b)| >

√
ε

3

}
+ Pr

{
|(bn − b)| > ε

3|a|
}

+ Pr

{
|(an − a)| > ε

3|b|
}

. (49)

Because of the convergence in probability of an and bn the right hand side in (49) vanishes as n → ∞ and

this proves the convergence in probability of the random sequence {anbn}.
Property C: If for large n, Pr{|an − a| > ε} ≤ o(n−s) and Pr{|bn − b| > ε} ≤ o(n−t), with s, t ∈ R+,

then also Pr{|(an − a)(bn − b)| > ε} ≤ o(n−min(s,t)), at worst.

Thanks to the convergence of the diagonal elements of R̂
s

and of the diagonal r × r blocks of T̂
s
, for

s = 1, . . . , `− 1 the following convergence in probability holds:

lim
K=βN→∞

trA∇∇∇n,uR̂
s

²n∇∇∇H
n,vA

H

N
= lim

K=βN→∞

K∑

k=1

|akk|2
N

φ

(
n−1

N
, τ̃k−u−1

r
Tc

)
φ∗

(
n−1

N
, τ̃k−v−1

r
Tc

)
(R̂

s

²n)kk

= β

∫
λφ

(
x, τ − u− 1

r
Tc

)
φ∗

(
x, τ − v − 1

r
Tc

)
Rs(λ, τ)dF|A|2,T (λ, τ)

(50)

with x = limN→∞ n−1
N

, s = 1, . . . `− 1 and

Rs(λ, τ)|(λ,τ)=(|akk|2,τ̃k) = lim
K=βN→∞

(R̂
s
)kk + o(N−2) (51)

as from the recursion assumptions. Furthermore,

lim
K=βN→∞

|akk|2
N

tr∆H
φ,r(τ̃k)T̂

s

∼k∆φ,r(τ̃k) = lim
K=βN→∞

|akk|2
N

N∑
n=1

(∆H
φ,r(τ̃k))nn(T̂

s
)nn(∆φ,r(τ̃k))nn

= λ

∫ 1

0

∆H
φ,r(x, τ)T s(x)∆φ,r(x, τ)d x

∣∣∣∣
(λ,τ)=(|akk|2,τ̃k)

(52)

with s = 1, . . . `− 1 and

T s(x) = lim
K=βN→∞

(T̂
s
)nn. (53)
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In fact, for (50) we can write

ζ2 = Pr

{∣∣∣∣
1

N
trA∇∇∇n,uR̂

s

²n∇∇∇H
n,vA

H

− 1

N

K∑

k=1

|akk|2φ
(
n−1

N
, τ̃k−u−1

r
Tc

)
φ∗

(
n−1

N
, τ̃k− v−1

r
Tc

)
Rs(|akk|2, τ̃k)

∣∣∣∣∣ > ε

}

≤ ζ2a + ζ2b

where

ζ2a = Pr

{∣∣∣∣
1

N
trA∇∇∇n,u(R̂

s − R̂
s

²n)∇∇∇H
n,vA

H

∣∣∣∣ >
ε

2

}

and

ζ2b = Pr

{∣∣∣∣∣
1

N

K∑

k=1

|akk|2φ
(
n−1

N
, τ̃k−u−1

r
Tc

)
φ∗

(
n−1

N
, τ̃k− v−1

r
Tc

) (
(R̂

s
)kk −Rs(|akk|2, τ̃k)

)∣∣∣∣∣ >
ε

2

}
.

Note that

ζ2a ≤ Pr

{∣∣∣∣
1

K
tr(R̂

s − R̂
s

²n)

∣∣∣∣ >
ε

2βa2
MAXφ2

MAX

}
.

The expansion of the matrix R̂
s
= (R̂²n + δ̂

H

n δ̂n)s yields

trR̂
s
= trR̂

s

²n +
∑

(i0,i1,...is−1)

i0+
∑s−1

j=1(j+1)ij=s0

ϕ(i0, i1, . . . is−1)
s−1∏
u=0

(
δ̂

H

n R̂
u

²nδ̂n

)iu

where ϕ(i0, i1, . . . is−1) ≤ 2s is the number of the terms of the expansion of R̂
s

whose trace equals
∏s−1

u=0

(
δ̂

H

n R̂
u

²nδ̂n

)iu
. Then,

ζ2a ≤ 2s
∑

(i0,i1,...is−1)

i0+
∑s−1

j=1(j+1)ij=s0

Pr

{
1

N

s−1∏
u=0

(
δ̂

H

n R̂
u

²nδ̂n

)iu
>

ε

βa4
MAXφ4

MAX2s+1

}

Thanks to Property B on the convergence in probability, ζ2a converges in probability with rate o(N−2− 4
s )

if ∀ε > 0,

lim
K=βN→∞

Pr

{∏s−1
u=0 δ̂

H

n R̂
u

²nδ̂n

N
> s

√
ε

β2s+1a4
MAXφ4

MAX

}
= o

(
1

N2+ 4
s

)
(54)
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In fact, for ε′ = ε
β2s+1a4

MAXφ4
MAX

Pr

{∏s−1
u=0(δ̂

H

n R̂
u

²nδ̂n)iu

N
> ε′

}
≤

s−1∑
u=0

Pr
{

δ̂
H

n R̂
u

²nδ̂n >
s
√

ε′N
}

(a)

≤
s−1∑
u=0

Pr

{∣∣∣∣∣δ̂
H

n R̂
u

²nδ̂n − trR̂
u

²n

N

∣∣∣∣∣ >
s
√

ε′N − trR̂
u

²n

N

}

(b)

≤
s−1∑
u=0

E

{∣∣∣δ̂H

n R̂
u

²nδ̂n − trR̂
u
²n

N

∣∣∣
4
}

s
√

(ε′N)4

(c)

≤ K4C
(u)

N2((Nε′)
1
s − C(u))4

(55)

where inequality (a) holds for N sufficiently large, inequality (b) follows from the Bienaymé inequality, and

inequality (c) is a consequence of Lemma 9 in part I [1] and the bound on the eigenvalues moments of the

matrix R̂.

Let us consider now the probability ζ2b,

ζ2b ≤ Pr

{
1

N

K∑

k=1

|(R̂s
)kk −Rs(|akk|2, τ̃k)| > ε

a2
MAXφ2

MAX

}

≤ Pr

{
max

k
|(R̂s

)kk −Rs(|akk|2, τ̃k)| > ε

βa2
MAXφ2

MAX

}
(56)

for s = 1, . . . ` − 1. Thanks to the assumption of the recursive step that ∀ε′ > 0 and large K = βN,

Pr{|(R̂s
)kk−Rs(|akk|2, τ̃k)| > ε

′} ≤ o(N−2), ζ2b → o(N−2), i.e. it vanishes asymptotically as N,K →∞
with constant ratio with the same converge rate as o(N−2) at worst. Therefore, (50) converges in probability

as o(N−2) for N → +∞, at worst.

The proof of the convergence (52) in probability follows along similar lines.

Following the same approach as in the proof of Theorem 1 in [2], we can expand (R̂
`
)kk and T̂

`

[nn] as

follows:

(R̂
`
)kk =

`−1∑
s=0

ĥ
H

k T̂
`−s−1

∼k ĥk(R̂
s
)kk ` = 1, 2, . . . (57)

T̂
`

[nn] =
`−1∑
s=0

δ̂nR̂
`−s−1

²n δ̂
H

n T̂
s

[nn]. ` = 1, 2, . . . (58)

being T̂
0

and R̂
0

the identity matrices of dimensions rN × rN and K ×K, respectively.

Thanks to Property A and Property B of the convergence in probability of random sequences and the

induction assumptions, the convergence in probability of the sequences {(R̂`
)kk} and {T̂ `

[nn]} reduces to
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show the convergence in probability of ĥ
H

k T̂
s

∼kĥk and δ̂nR̂
s

²nδ̂
H

n to a deterministic limit, respectively. Let

us define

ζ3 = ĥ
H

k T̂
s

∼kĥk − |akk|2
N

tr∆H
φ,r(τ̃k)T̂

s

∼k∆φ,r(τ̃k).

Lemma 9 in part I [1] applied to the quadratic form ĥ
H

k T̂
s

∼kĥk with p = 4 yields

E |ζ3|4 <
K4|akk|4

N3
E

(
tr(∆H

φ,r(τ̃k)T̂
s

∼k∆φ,r(τ̃k))
4
)

≤ K4

N3
a8

MAXφ8
MAXtr(T̂

4s

∼k). (59)

Thanks to the bound on the eigenvalues moments of the matrix T̂ , limK=βN→∞ 1
N

E(trT̂
4s

∼k) is almost sure

upper bounded ∀s as N = βK → +∞. Therefore, E|ζ3|4 → 0 as K, N → ∞ with K
N
→ β and ĥ

H

k T̂
s

∼kĥk

converges in mean square sense, and thus in probability. Furthermore, the Bienaymé inequality implies that

Pr{|ζ3| > ε} ≤ o(N−2) as N → +∞. Thanks to (52)

lim
N=βK→∞

|akk|2
N

tr∆H
φ,r(τ̃k)T̂

s

∼k∆φ,r(τ̃k) = λ

∫ 1

0

∆H
φ,r(x, τ)T s(x)∆φ,r(x, τ)d x

∣∣∣∣
(λ,τ)=(|akk|2,τ̃k)

+ o(N−2)

= g(T s, λ, τ) + o(N−2). (60)

then

Pr{|ĥH

k T̂
s

∼kĥk − g(T s, λ, τ)| > ε} → o(N−2) (61)

for property A.

The convergence in probability of the diagonal blocks T̂
`

[nn] can be proven in a similar way. More specif-

ically, it can be shown that the r × r block δ̂nR̂
s

²nδ̂
H

n converges to the r × r deterministic matrix

f(Rs, x) = β

∫
λ∆φ,r(x, τ)∆φ,r(x, τ)HRs(λ, τ)d F|A|2,T (λ, τ). (62)

such that Pr{
∣∣∣(δ̂n)uR̂

s

²n(δ̂
H

n )u − (f(Rs, x))u

∣∣∣ > ε} → o(N−2).

Finally, by making use of equations (57) and (58) and the definitions (51), (53), (62), and (60) we obtain

R`(λ, τ) =
`−1∑
s=0

g(T `−s−1, λ, τ)Rs(λ, τ) ` = 1, 2, . . . (63)

and

T `(x) =
`−1∑
s=0

f(R`−s−1, x)T s(x) ` = 1, 2, . . . . (64)
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with g(T s, λ, τ) and f(Rs, x) given in (60) and (62), respectively. Consistently to the definitions of T̂
0

and

R̂
0
, T 0(x) = Ir, being Ir the r × r identity matrix and R0(λ) = 1.

Then, g(R0, λ, τ) = λ
∫ 1

2

− 1
2

∆H
φ,r(x, τ)∆φ,r(x, τ)dx and f(T 0, x) = β

∫
λ∆φ,r(x, τ)∆H

φ,r(x, τ)dF|A|2,T (λ, τ)

and (63) and (64) reduce to the asymptotic limits R1(λ, τ) and T 1(x) already derived in step 1. Therefore,

we can begin the recursion with ` = 0, R0(λ, τ) = 1 and T 0(x) = Ir.

Properties A, B, and C, the induction assumptions, relations (57) and (63), the convergence rates ζ2 →
o(N−2) and Pr{ζ3 > ε} ≤→ o(N−2) yield (43). The proof of (44) follows immediately along similar lines.

This concludes the proof of Theorem 1.

APPENDIX II

PROOF OF COROLLARY 1

Corollary 1 is derived by specializing Theorem 1 to a unitary Fourier transform Φ(j2πf) with bandwidth

B ≤ r
2Tc

. Let us recall here that the unitary Fourier transform in the discrete time domain is given by

φ(x, τ) =
1

Tc

ej2π τ
Tc

x

sign(x)b r
2c∑

s=−sign(x)b r−1
2 c

ej2π τ
Tc

sΦ∗
(

j2π

Tc

(x + s)

)
for |x| ≤ 1

2
. (65)

The matrix Q(x, τ) = ∆φ,r(x, τ)∆φ,r(x, τ)H , with ∆φ,r(x, τ) defined in (28), can be decomposed as

Q(x, τ) = Q(x) + Q(x, τ) with the elements of Q(x) and Q(x, τ) defined by

(Q(x))k,` =
1

T 2
c

sign(x)b r
2c∑

s=−sign(x)b r−1
2 c

∣∣∣∣Φ
(

j2π

Tc

(x + s)

)∣∣∣∣
2

e−j2π k−`
r

(x+s) for |x| ≤ 1

2
, (66)

and

(Q(x, τ))k,` =
1

T 2
c

sign(x)b r
2c∑

s,u=−sign(x)b r−1
2 c

s 6=u

Φ

(
j2π

Tc

(x + u)

)
Φ∗

(
j2π

Tc

(x + s)

)
e−j2π τ

Tc
(s−u)e−j2π( k−1

r
(x−s)− `−1

r
(x−u))

for |x| ≤ 1

2
, (67)

respectively.
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Equations (26) and (27) can be rewritten as

f(Rs, x) = βQ(x)

∫
λRs(λ, τ)dF|A|2,T (λ, τ)

+ β

∫
λRs(λ, τ)Q(x, τ)dF|A|2,T (λ, τ), −1

2
≤ x ≤ 1

2
(68)

g(T s, λ, τ) = λ

∫ 1
2

− 1
2

tr(T s(x)Q(x))dx + λ

∫ 1
2

− 1
2

tr(T s(x)Q(x, τ))dx, (69)

respectively. If the conditions of Corollary 1 are satisfied, i.e. if B ≤ r
2Tc

and τ is uniformly distributed in

[0, Tc], it can be shown that

• R`(λ, τ), ` ∈ Z+, are independent of τ and

• T `(x) is a matrix of the form (70).

These properties can be proven by strong induction. It is straightforward to verify that they are satisfied

for s = 0. In fact, R0(λ, τ) = 1 is independent of τ and T 0(x) = I is of the form (70) with b0 = 1 and

bi(x) = 0 with i = 1, . . . r − 1. By appealing to Lemma 1 in part I [1] Appendix I tr(Q(x, τ)) = 0 and

g(T 0, λ, τ) = λ
∫ 1

2

− 1
2

tr(Q(x))dx. Hence, g(T 0, λ, τ) is independent of τ.

The induction step is proven using the following induction assumptions:

• For s = 0, 1, . . . `− 1, Rs(λ, τ) is independent of τ ;

• For s = 0, 1, . . . `− 1, T s(x) is of the form

B = B(x) =




b0 b1e
j 2π

r
x . . . . . . br−1e

j
2π(r−1)

r
x

br−1e
−j 2π

r
x b0 b1e

j 2π
r

x . . . br−2e
j

2π(r−2)
r

x

. . .
. . . . . . . . . . . .

b1e
−j

2π(r−1)
r

x . . . . . . br−1e
−j 2π

r
x b0




, (70)

being b0 = b0(x), b1 = b1(x), . . . br−1 = br−1(x), eventually functions of x.

Thanks to the form (70) of T s(x), s = 1, . . . ` − 1, given by the induction assumptions and by applying

Lemma I in part I Appendix I we have tr(T s(x)Q(x, τ)) = 0, for s = 0, 1, . . . , ` − 1. Then, (69) reduces

to g(T s, λ, τ) = λ
∫ 1

2

− 1
2

tr (T s(x)Q(x)) dx and g(T s, λ, τ) is independent of τ for s = 0, 1, . . . , ` − 1.

Therefore, all quantities that appear in the right hand side of (24) are independent of τ and R`(λ, τ) is

also independent of τ . In the following we will shortly write R`(λ) and g(T s, λ) instead of R`(λ, τ) and

g(T s, λ, τ). Thanks to the fact that Rs(λ, τ) is independent of τ and λ and τ are statistically independent

with τ uniformly distributed, (68) can be rewritten as

f(Rs, x) = β

∫
λRs(λ)dF|A|2

(
Q(x) +

1

Tc

∫ Tc

0

Q(x, τ)dτ

)
. (71)
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It is straightforward to verify that
∫ Tc

0
Q(x, τ)dτ = 0 from the definition of Q(x, τ) in (67). Then,

f(Rs, x) = βQ(x)

∫
λRs(λ)dF|A|2(λ)

= f(Rs)Q(x) (72)

with f(Rs) = β
∫

λRs(λ)dF|A|2(λ). Substituting (72) in (25) yields

T `(x) =
`−1∑
s=0

f(R`−s−1)Q(x)T s(x), −1

2
≤ x ≤ 1

2
. (73)

Since T s(x) is of form (70), the conditions of Lemma 2 in part I Appendix I are satisfied for B = T s(x).

This implies that Q(x)T s(x) is also of the form (70). Since T `(x) is a linear combination of matrices of the

form (70), T `(x) is also a matrix of the form (70). Then, the statement of the strong induction is proven .

Thanks to the properties shown by strong induction the recursive equations in Theorem (1) reduce to the

following set of recursive equations:

R`(λ) =
`−1∑
s=0

g(T `−s−1, λ)Rs(λ) (74)

T `(x) =
`−1∑
s=0

f(R`−s−1)Q(x)T s(x) −1

2
≤ x ≤ 1

2
(75)

f(Rs) = β

∫
λRs(λ)d F|A|2(λ), −1

2
≤ x ≤ 1

2
(76)

g(T s, λ) = λ

∫ 1
2

− 1
2

tr(T s(x)Q(x))d x (77)

with T 0(x) = Ir and R0(λ) = 1.

Then, applying again Theorem 1 we obtain the following convergence in probability

lim
K=βN→∞

(R̂
`
)kk = R`(λ)|λ=|akk|2 .

From (75) and T 0(x) = Ir it is apparent that T `(x) is a polynomial in Qs(x), for s = 0, 1, . . . `. Then,

T `(x) has the same eigenvectors as Q(x) and it can written as T `(x) = U (x)Λ`(x)UH(x) where Λ`(x) is

a diagonal matrix with diagonal elements t`,1, t`,2, . . . t`,r and

U (x) =

(
e

(
x− sign(x)

⌊
r − 1

2

⌋)
, . . . e (x) . . . e

(
x + sign(x)

⌊r

2

⌋))
(78)

with e (x) r-dimensional column vector defined by

e (x) =
1√
r

(
1, e−j2π 1

r
x, . . . e−j2π r−1

r
x
)T

.
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By making use of the eigenvalue decomposition of the matrix Q(x) in part I Appendix I Lemma 3 the matrix

equation (75) reduces to r scalar equations

t`,u(x) =
`−1∑
s=0

f(R`−s−1)
r

T 2
c

∣∣∣∣Φ
(

j
2π

Tc

(
x− sign(x)

(⌊
r − 1

2

⌋
− u + 1

)))∣∣∣∣
2

ts,u(x) u = 1, . . . r and |x| ≤ 1
2
.

By substituting y = x− sign(x)
(⌊

r−1
2

⌋− u + 1
)

for |x| ≤ 1
2

we obtain

t`,u

(
y +

⌊
r − 1

2

⌋
− u + 1

)
=

`−1∑
s=0

f(R`−s−1)
r

T 2
c

∣∣∣∣Φ
(

j
2π

Tc

y

)∣∣∣∣
2

ts,u

(
y +

⌊
r − 1

2

⌋
− u + 1

)
(79)

for 0 ≤ y +
⌊

r−1
2

⌋− u + 1 ≤ 1
2

and

t`,u

(
y −

⌊
r − 1

2

⌋
+ u− 1

)
=

`−1∑
s=0

f(R`−s−1)
r

T 2
c

∣∣∣∣Φ
(

j
2π

Tc

y

)∣∣∣∣
2

ts,u

(
y −

⌊
r − 1

2

⌋
+ u− 1

)
(80)

for 1
2
≤ y−⌊

r−1
2

⌋
+u−1 ≤ 0. Then, for u = 1, . . . r the r functions (79) and (80) defined in not overlapping

intervals in [−r, r] can be combined in a unique scalar functions T`(y) in the interval |y| ≤ r satisfying the

recursive equation

T`(y) =
`−1∑
s=0

r

T 2
c

f(R`−s−1)

∣∣∣∣Φ
(

j
2π

Tc

y

)∣∣∣∣
2

Ts(y).

Similar arguments applied to (77) yield

g(Ts, λ) = λ

∫ r

r

r

T 2
c

Ts(y)

∣∣∣∣Φ
(

j
2π

Tc

y

)∣∣∣∣
2

dy.

This concludes the derivation of Corollary 1 from Theorem 1.
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APPENDIX III

DERIVATION OF ALGORITHM 1

Algorithm 1 can be derived from the recursive equations of Corollary 1 by using the following substitu-

tions3:

λ → z

Rs(λ) → ρs(z)

λRs(λ) → vs(z)

f(Rs) = E(λRs(λ)) → Vs

1

Tc

∣∣∣∣Φ
(

j2πx

Tc

)∣∣∣∣
2

→ y

Ts(·) → µs(y)

r

T 2
c

∣∣∣∣Φ
(

j2πx

Tc

)∣∣∣∣
2

Ts(x) → us(y)

νs =
r

Tc

∫ r

−r

1

Tc

∣∣∣∣Φ
(

j2πx

Tc

)∣∣∣∣
2

Ts(x)dx → Us.

Then, the initial step is obtained by defining µ0(y) = 1 and ρ0(z) = 1. The recursive equations in step ` are

obtained by using the previous substitutions. In order to derive Us let us observe that 1
Tc

∣∣∣Φ
(

j2πx
Tc

)∣∣∣
2

Ts(x)

is a polynomial in y =
∣∣∣Φ

(
j2πx
Tc

)∣∣∣
2

of degree s + 1. Then, Us is a linear combination of En where

En =
1

T n
c

∫ r

−r

∣∣∣∣Φ
(

j2πx

Tc

)∣∣∣∣
2n

dx =
1

T n
c

∫ B

−B

Tc |Φ (j2πf)|2n df.

The coefficients of the linear combination are obtained by expanding us(y) as a polynomial in y.

We conclude the derivation of Algorithm 1 by summarizing the previous considerations and substitu-

tions:

•

ρ`(z) =
`−1∑
s=0

zU`−s−1ρs(z)

µ`(y) =
r

Tc

`−1∑
s=0

βyV`−s−1µs(y).

• Us and Vs are obtained from us(y) = yµs(y) and vs(z) = zρs(z), respectively by
3Note that the substitution of λ with z is redundant. It is used to obtain polynomials in the commonly used variable z.
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– expanding us(y) and vs(z) as polynomials in y and z, respectively,

– replacing the monomials yn and zn, n ∈ Z+ with En and m
(s)

|A|2 , respectively.

Then, R`(λ) = ρ`(λ) and the eigenvalue moment m
(`)

R
= E{R`(λ)} is obtained by replacing all monomials

z, z2, . . . , z` in the polynomial ρ`(z) by the moments m1
|A|2 ,m

2
|A|2 , . . . , m

`
|A|2 , respectively.

APPENDIX IV

PROOF OF THEOREM 2

The proof of Theorem 2 follows along the line of the proof of Theorem 1.

For a signal with bandwidth B ≤ 1
2Tc

,

φ(x, τ) =
1

Tc

ej2π τx
Tc Φ∗

(
j
2π

Tc

x

)
|x| ≤ 1

2

and φ(x, τ) = φ(x− b2xc, τ) for any x. Correspondingly, we define

∆φ,r(x, τ) =
1

Tc

Φ(
j2πx

Tc

)e−
j2πτx

Tc e(x), |x| ≤ 1

2

with e(x) = (1, ej2π x
r , . . . ej2π

(r−1)
r

x) and

∆φ,r(x, τ) = ∆φ,r(x− b2xc, τ) for any x.

We adopt here the same notation as in the proof of Theorem 1. Then, the K ×K diagonal matrix∇∇∇nt, for

t = 1, . . . r and n = 1, . . . N is given by

∇∇∇nt =
1

Tc

Φ∗
(

j2π

Tc

n

)
e−

j2πn(t−1)
r diag

(
e

j2πnτ̃1
Tc , e

j2πnτ̃2
Tc , . . . e

j2πnτ̃K
Tc

)

with n = n−1
N
−⌊

2n−1
N

⌋
and ∆φ,r(τ̃k) is the rN×N block diagonal matrix with n diagonal block ∆φ,r(n, τ̃k).

We develop the proof by strong induction as in Theorem 1 with similar initial step and similar induction step.

Step 1: In this case

R̂kk = |akk|2sH
k ∆H

φ,r(τ̃k)∆φ,r(τ̃k)sk = |akk|2sH
k Φsk

where Φ is a matrix independent of τ̃k and the nth element is given by Φnn = r
Tc

∣∣∣Φ
(

j2πn
Tc

)∣∣∣
2

.

By following the same approach as in Theorem 1 it results ∀ε > 0

Pr

{∣∣∣∣∣R̂kk − r|akk|2
TcN

N−1∑
n=0

∣∣∣∣Φ
(

j2πn

Tc

)∣∣∣∣
2
∣∣∣∣∣ > ε

}
≤ K4|akk|4∆4

MAX

N2ε4
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being ∆MAX = maxx∈[− 1
2
, 1
2 ]

∣∣∣Φ
(

j2πx
Tc

)∣∣∣
2

and

R1(λ)|λ=|akk|2 = lim
K=βN→∞

|akk|2
N

N−1∑

`=0

∣∣∣∣Φ
(

j2π

Tc

(
n

N
−

⌊
2n

N

⌋))∣∣∣∣
2

= λ

∫ 1
2

− 1
2

∣∣∣∣Φ
(

j2πx

Tc

)∣∣∣∣
2

dx

∣∣∣∣∣
λ=|akk|2

. (81)

Furthermore, Pr
{
|R̂kk −R1(|akk|2)| > ε

}
≤ o (N−2) .

Similarly, (T̂ [nn])uv, the (u, v)-element of the matrix T̂ [nn] is given by

T̂ [nn] = σ̂nA∇∇∇n,u∇∇∇H
n,vA

Hσ̂H
n

=
1

Tc

∣∣∣∣Φ
(

j2πn

Tc

)∣∣∣∣ e−j2πn v−u
r σ̂nAAHσ̂H

n . (82)

As in Theorem 1 it can been shown that

Pr

{∣∣∣∣∣(T̂ [nn])uv − 1

NTc

∣∣∣∣Φ
(

j2πn

Tc

)∣∣∣∣
2

e−j2πn v−u
r tr(AAH)

∣∣∣∣∣ > ε

}
≤ K4T

4
MAX

N2ε4

with TMAX = maxx∈[− 1
2
, 1
2 ]

∣∣∣Φ
(

j2πn
Tc

)∣∣∣
2

supK maxk |akk|2 and the following convergence in probability

holds

lim
K=βN→∞

(T̂ [nn])uv = lim
K=βN→∞

β

TcK

∣∣∣∣Φ
(

j2πn

Tc

)∣∣∣∣
2

e−j2πn v−u
r

K∑

k=1

|akk|2

=
β

Tc

∣∣∣∣Φ
(

j2πx

Tc

)∣∣∣∣
2

e−j2πn v−u
r

∫
λdF|A|2(λ)

with x = limN→∞ n and |x| ≤ 1
2
. Thus, the diagonal block converges in probability as follows

T 1(x) = lim
K=βN→∞

(T̂ [nn])uv

=
β

Tc

∣∣∣∣Φ
(

j2πx

Tc

)∣∣∣∣
2 ∫

λdF|A|2(λ)e(x)eH(x) (83)

Furthermore,

Pr
{∣∣∣(T̂ [nn])uv − (T 1(x))uv

∣∣∣ > ε
}
≤ o(N−2).

This concludes the first step of the induction.

Step `: Let us observe that

ϑ1 =
1

N
trA∇∇∇n,uR̂

s

²n∇∇∇H
n,uA

H

=
e−j2πn u−v

r

N

K∑

k=1

|akk|2
T 2

c

∣∣∣∣Φ
(

j2πn

Tc

)∣∣∣∣
2

(R̂
s

²n)kk
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and

ϑ2 =
|akk|2

N
tr∆H

Φ,r(τ̃k)T̂
s

∼k∆Φ,r(τ̃k)

=
|akk|2

N

N∑
n=1

1

T 2
c

∣∣∣∣Φ
(

j2πn

Tc

)∣∣∣∣
2

eH(n)(T̂
s

∼k)nne(n).

By following the same approach as in Theorem 1 it can be shown that ϑ1 and ϑ2 converge in probability

to the following limits

lim
K=βN→∞

ϑ1 =
β

T 2
c

e−j2πn u−v
r

∣∣∣∣Φ
(

j2πx

Tc

)∣∣∣∣
2 ∫

λRs(λ)dF|A|2(λ)

and

lim
K=βN→∞

ϑ2 =
λ

T 2
c

∫ 1
2

− 1
2

∣∣∣∣Φ
(

j2πx

Tc

)∣∣∣∣
2

eH(x)T s(x)e(x)dx

∣∣∣∣∣
λ=|akk|2

with Rs(λ)|λ=|akk|2 = limK=βN→∞(R̂
s
)kk and T s(x)| = limK=βN→∞ T̂

s

[nn] given by the recursion assump-

tions.

Additionally, it can be shown that the following convergence in probability holds

g(T s, λ)|λ=|akk|2 = lim
K=βN→∞

ĥ
H

k T̂
s

∼kĥk

=
λ

Tc

∫ 1
2

− 1
2

∣∣∣∣Φ
(

j2πx

Tc

)∣∣∣∣
2

eH(x)T s(x)e(x)dx

∣∣∣∣∣
λ=|akk|2

(84)

and

f(Rs, x) = lim
K=βN→∞

δ̂nR̂
s

²nδ̂
H

n

=
λ

T 2
c

∫ 1
2

− 1
2

∣∣∣∣Φ
(

j2πx

Tc

)∣∣∣∣
2

eH(x)T s(x)e(x)dx

∣∣∣∣∣
λ=|akk|2

(85)

The convergence in probability satisfies the bounds

Pr
{
|ĥH

k T̂
s

∼kĥk − g(T s, |akk|2)| > ε
}

< o(N−2)

and

Pr
{
|(δ̂n)uR̂

s

²n(δ̂
H

n )v − (f(Rs, x))u,v| > ε
}

< o(N−2)

for large N and ∀ε.
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The recursion assumptions and the limits (84) and (85) in (57) and (58) yield

R`(λ)|λ=|akk|2 =
`−1∑
s=0

g(T `−s−1, λ)Rs(λ)

=
`−1∑
s=0

Rs(λ)
λ

T 2
c

∫ 1
2

− 1
2

∣∣∣∣Φ
(

j2πx

Tc

)∣∣∣∣
2

tr
(
T s(x)e(x)eH(x)

)
dx

∣∣∣∣∣
λ=|akk|2

(86)

and

T ` =
`−1∑
s=0

f(R`−s−1, x)T s(x)

`−1∑
s=0

β

T 2
c

∣∣∣∣Φ
(

j2πx

Tc

)∣∣∣∣
2 ∫

λRs(λ)dF|A|2(λ)e(x)eH(x)T s(x) (87)

where R0(λ) = 1 and T 0(x) = Ir. With a similar approach as in Theorem 1 it can be proven that for large

N and ∀ε > 0

Pr
{∣∣∣R̂`

kk −R`(|akk|2)
∣∣∣ > ε

}
≤ o(N−2)

and

Pr
{∣∣∣(T̂ `

[nn])uv − (T `(x))uv

∣∣∣ > ε
}
≤ o(N−2).

In contrast to Theorem 1 the recursive equations (86), (87), (84), and (85) are independent of the time

delay τ̃k.

The recursive equations can be further simplified by observing that (e(x)eH(x))m = rm−1e(x)eH(x).

Then, it is straightforward to verify by recursion that the matrix T s(x), s = 1, 2, . . . , `−1, is proportional to

the matrix e(x)eH(x) and we can express it as T s(x) = Ts(x)e(x)eH(x), s = 1, 2, . . . . Thus, the recursive

equations can be rewritten as

R`(λ) =
`−1∑
s=0

g(T `−s−1, λ)Rs(λ)

T`(x)e(x)eH(x) =
`−1∑
s=1

f(R`−s−1, x)Ts(x)e(x)eH(x) + f(R`−1, x)T 0(x) ` = 1, 2, . . . (88)

f(Rs, x) = f(Rs, x)e(x)eH(x) (89)

f(Rs, x) =
β

T 2
c

∣∣∣∣Φ
(

j2πx

Tc

)∣∣∣∣
2 ∫

λRs(λ)d F|A|2(λ) −1

2
≤ x ≤ 1

2

g(Ts, λ) =





r2λ
T 2

c

∫ 1/2

−1/2

∣∣∣Φ
(

j2πx
Tc

)∣∣∣
2

T
s
(x)d x s = 1, 2, . . .

rλ
T 2

c

∫ 1/2

−1/2

∣∣∣Φ
(

j2πx
Tc

)∣∣∣
2

d x s = 0.
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with T 0(x) = Ir and R0(λ) = 1.

Substituting (89) in (88) we obtain

T`(x)e(x)eH(x) =
`−1∑
s=1

f(R`−s−1, x)Ts(x)e(x)eH(x)e(x)eH(x) + f(R`−1, x)T 0(x)e(x)eH(x)

= r

`−1∑
s=1

f(R`−s−1, x)Ts(x)e(x)eH(x) + f(R`−1, x)T
′
0(x)e(x)eH(x) (90)

Recalling that T 0(x) = Ir and defining T
′
0(x) = 1

r
, we obtain from (90) the scalar T`(x):

T`(x) = r

(
`−1∑
s=1

f(R`−s−1, x)Ts(x) + f(R`−1, x)T
′
0(x)

)
. (91)

The following equations summarize the recursion in terms of only scalar functions.

R`(λ) =
`−1∑
s=0

g(T`−s−1, λ)Rs(λ)

T`(x) = r

`−1∑
s=0

f(R`−s−1, x)Ts(x)

f(Rs, x) =
β

T 2
c

∣∣∣∣Φ
(

j2πx

Tc

)∣∣∣∣
2 ∫

λRs(λ)d F|A|2(λ) −1

2
≤ x ≤ 1

2

g(Ts, λ) =

(
r

Tc

)2

λ

∫ 1/2

−1/2

∣∣∣∣Φ
(

j2πx

Tc

)∣∣∣∣
2

Ts(x)d x s = 0, 1, . . .

with T0(x) = Tc

r
and R0(λ) = 1. Let us observe that the different expressions of g(Ts, λ) for s = 0, 1, . . .

could be absorbed in a unified expression by initialize the recursion with T0(x) = Tc

r
instead of using

T
′
0(x) = 1

r
.

The recursion in the statement of Theorem 2 is obtained by defining

f(Rs) =

∫
λRs(λ)dF|A|2(λ)

and

ν(Ts) =

(
r

Tc

)2 ∫ 1/2

−1/2

∣∣∣∣Φ
(

j2πx

Tc

)∣∣∣∣
2

Ts(x)d x

and by expressing R`(λ) and T`(x) as recursive functions of f(Rs) and ν(Ts).

APPENDIX V

PROOF OF THEOREM 3

Theorem 3 in part I Appendix V [1] jointly with Lemma 8 i part I Appendix I [1] implies that the eigenval-

ues moments of the matrix T̃ and, thus, the eigenvalue moments of the matrix R̃ converge to the eigenvalue
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moments of the matrix T̂ and R̂. However, in Theorem 3 we show a stronger result: asymptotically, the

diagonal elements of the matrix R̃ are a periodical repetition of the diagonal elements of the matrix R̂. The

proof follows the same approach as for Theorem 1.

Throughout this proof we adopt the following notation. For k = 1, . . . , K and n = 1, . . . , N

• h̃k,m is the unlimited column vector of the matrix H̃ containing Φ̃kskm;

• δ̃n,m is the unlimited block row of H̃ containing ∆Φ,r

(
n−1
N

, τ̃1

)
(s1m)n, the nth r×1 block of the vector

Φ̃1s1m of the reference user. Since we assume that the users are ordered according to an increasing time

delay with respect to the reference user, the vector δ̃n,m has K consecutive r×1 blocks that are nonzero

and the remaining equal to zero. More specifically, δ̃n,m is of the form

δ̃n,m =

(
. . .0, |akn+1,kn+1|2∆

(
n− 1

N
, τ̃kn+1

)
sn,m−1,kn−1, . . . , |aK,K |2∆

(
n− 1

N
, τ̃K

)
sn,m−1,K ,

|a1,1|2∆
(

n− 1

N
, τ̃1

)
sn,m,1, . . . , |akn,kn|2∆

(
n− 1

N
, τ̃kn

)
sn,m,kn ,0 . . .

)
,

where kn is the user with highest time delay lower than nTc, i.e. kn = max(τi : τi < nTc, i = 1, . . . K)

and sn,m,` is the
((

N + n−
⌊

τ`

Tc

⌋
− 1

)
modN + 1

)th

component of the vector s`,m ;

• H̃²n,m is the matrix obtained from H̃ by suppressing δ̃n,m;

• H̃∼k,m is the matrix obtained from H̃ by suppressing h̃k,m.

• T̃ ∼k,m = H̃∼k,mH̃H

∼k,m;

• R̃²n,m = H̃H

²n,mH̃²n,m;

• σ̃n,m = (sn,m−1,kn+1, . . . , sn,m−1,K , sn,m,1 . . . , sn,m,kn);

• Ãn is the diagonal matrix obtained by circular diagonal down shift of the elements of the matrix A by

K − kn steps, i.e. Ãn = diag(akn+1,kn+1, . . . , aK,K , a1,1 . . . , akn,kn).

• ∇̃∇∇n,t, for t = 1, . . . , r and n = 1, . . . , N , is the K ×K diagonal matrix obtained by circular diagonal

down shift of the elements of the matrix∇∇∇n,t, defined in the proof of Theorem 1, by K − kn steps, i.e.

∇̃∇∇n,t = diag

(
φ

(
n− 1

N
, τ̃kn+1− t−1

r
Tc

)
, . . . , φ

(
n−1

N
, τ̃K− t−1

r
Tc

)
, φ

(
n−1

N
, τ̃1− t−1

r
Tc

)
, . . . φ

(
n−1

N
, τ̃kn−

t−1

r
Tc

))
;

Note that σ̃n,m∇∇∇n,m,tAn coincides with the vector of nonzero elements of tth row of δ̃n,m.

• T̃ s

[nn],m is the diagonal block of the matrix T̃ s
of dimensions r × r given by

T̃ s

[nn],m = δ̃n,mR̃s−1
δ̃

H

n,m;

• R̃s

k,m is the diagonal element of the matrix R̃s
given by

R̃s

k,m = h̃
H

k,mT̃ s−1
h̃k,m.
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As the proof of Theorem 1, the proof of Theorem 3 is based on strong induction. In the first step we prove

the following facts:

1) Conditionally on (|akk|2, τ̃k), the diagonal elements of the matrix R̃ converges in probability, as N →
∞, to the deterministic value R1(|akk|2, τ̃k) given by the recursive equations (24)–(27) of Theorem 1.

Since asymptotically R̃k,m depends only on k via (|akk|2, τ̃k) but not on m, asymptotically R̃k,m is a

periodic repetition of the diagonal elements of R̂.

Furthermore, as in Theorem 1, ∀ε > 0 and large K = βN

Pr{|R̃kk −R1(|akk|2, τ̃k)| > ε} ≤ o
(
N−2

)
. (92)

2) T̃ [nn],m, the r × r block diagonal elements of the matrix T̃ , converge in probability to deterministic

blocks T 1(x), with x = limN→∞ n
N

given by the recursive equations (24)–(27) of Theorem 1. Also in

this case, asymptotically, the diagonal blocks of T̃ are a periodic repetition of the diagonal r× r blocks

of the matrix T̂ . Additionally, ∀ε > 0, large K = βN and u, v = 1, . . . r,

Pr{|(T̃ [nn],m)uv − (T 1(x))uv| > ε} ≤ o
(
N−2

)
. (93)

Then, in the recursion step, we use the following induction assumptions:

1) For s = 1, . . . , ` − 1, the diagonal elements of the matrix R̃s
, k = 1, . . . , K and m ∈ Z, converge in

probability, as K = βN → ∞, to deterministic values Rs(|akk|2, τ̃k) given by the recursive equations

(24)–(27) of Theorem 1. Asymptotically they are a periodical repetition of the diagonal elements of

R̂
s
. Furthermore, ∀ε > 0 and large K = βN Pr{|(R̃s

)kk −Rs(|akk|2, τ̃k)| > ε} ≤ o (N−2) .

2) For s = 1, . . . , `−1, T̃ s

[nn],m, the r×r block diagonal elements of the matrix T̃ s
converge in probability

to deterministic blocks T s(x) given by the recursive equations the recursive equations (24)–(27) of

Theorem 1. Asymptotically, they are a periodical repetition of the diagonal blocks of the matrix T̂
s
.

Furthermore, ∀ε > 0, large K = βN and u, v = 1, . . . r, Pr{|(T̃ s

[nn],m)uv − (T s(x))uv| > ε} ≤
o (N−2) .

We prove:

1) The diagonal elements of the matrix R̃`
, converge in probability, as K = βN → ∞, to deterministic

values R`(|akk|2, τ̃k), conditionally on (|akk|2, τ̃k). Asymptotically, the diagonal elements of the matrix

R̃`
are a periodical repetition of the limiting diagonal elements of the matrix R̂

`
. Furthermore, ∀ε > 0

and large K = βN

Pr{|(R̃s
)kk −Rs(|akk|2, τ̃k)| > ε} ≤ o

(
N−2

)
. (94)
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2) The blocks T̃ `

[nn],m, converge in probability to deterministic blocks T `(x) with limN→∞ n
N

given by the

recursive equations (24)–(27) of Theorem 1. Asymptotically they are a periodical repetition of the limit

diagonal blocks of the matrix T̂
s
. Additionally, ∀ε > 0, large N and u, v = 1, . . . r,

Pr{|(T̃ `

[nn],m)uv − (T `(x))uv| > ε} ≤ o
(
N−2

)
. (95)

First step: Consider

R̃k,m = h̃
H

k,mh̃k,m

|akk|2sH
k,mΦ̃kΦ̃

H

k sk,m

|akk|2sH
k,m∆̃

H

φ,r(τk)∆̃φ,r(τk)sk,m. (96)

Applying the same approach as in Theorem 1 we can prove that

lim
K=βN→∞

R̃k,m = lim
K=βN→∞

|akk|2
N

tr∆̃
H

φ,r(τk)∆̃φ,r(τk)

= lim
K=βN→∞

|akk|2
N

tr∆H
φ,r(τ̃k)∆φ,r(τ̃k)

= R1(|akk|2, τ̃k). (97)

The convergence rate (92) can be shown by applying the same arguments as in Theorem 1.

Let us now consider the block matrix T̃ [nn],m whose (u, v) element (T̃ [nn],m)u,v is given by

(T̃ [nn],m)u,v = (δ̃n,m)u(δ̃
H

n,m)v

= σ̃n,mÃn∇̃∇∇n,m,u∇̃∇∇
H

n,m,vÃ
H

n σ̃H
n,m (98)

where (δ̃n,m)j denotes the jth row of δ̃n,m. By applying the same approach as in Theorem 1 we can prove

that

lim
K=βN→∞

(T̃ [nn],m)u,v = lim
K=βN→∞

1

N
tr

(
Ãn∇̃∇∇n,m,u∇̃∇∇

H

n,m,vÃ
H

n

)

= lim
K=βN→∞

1

N
tr

(
A∇∇∇n,u∇∇∇H

n,vA
H

)
(99)

= (T 1(x))u,v (100)

Equation (99) follows from the fact that Ãn and ∇̃∇∇n,m,u are obtained from A and ∇∇∇n,u, respectively, by

circular diagonal down shift of K − kn steps. The asymptotic periodical behaviour of the T̃ [nn],m is a direct
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consequence of the fact that limK=βN→∞ T̃ [nn],m does not depend on m. The convergence rate (93) can be

shown by appealing to the same arguments as in Theorem 1. This concludes the proof of the first step.

Step `: As in Theorem 1, we can expand (R̃`
)k,m and T̃ `

[nn],m as follows:

(R̃`
)k,m =

`−1∑
s=0

h̃
H

k,mT̃ `−s−1

∼k,m h̃k,m(R̃s
)k,m ` = 1, 2, . . . (101)

T̃ `

[nn],m =
`−1∑
s=0

δ̃n,mR̃`−s−1

²n,m δ̃
H

n,mT̃ s

[nn],m. ` = 1, 2, . . . (102)

being T̃ 0
and R̃0

identity matrices of unlimited dimensions.

By applying the same arguments as in Theorem 1 the convergence in probability of the sequences {(R̃`
)k,n}

and {T̃ `

[nn],m} reduces to show the convergence in probability of h̃
H

k,mT̃ s

∼k,mh̃k,m and δ̃n,mR̃s

²n,mδ̃
H

n,m, for

s = 0, . . . , `− 1, respectively.

As in Theorem 1 it can be shown that

lim
K=βN→∞

(δ̃n,m)uR̃s

²n,m(δ̃
H

n,m)v = lim
K=βN→∞

1

N

kn∑
j=1

|ajj |2φ(
n−1

N
, τ̃j− u−1

r
Tc)φ

∗(
n−1

N
, τ̃j− v−1

r
Tc)R̃s

j,m

+ lim
K=βN→∞

1

N

K∑

j=kn+1

|ajj |2φ(
n−1

N
, τ̃j− u−1

r
Tc)φ

∗(
n−1

N
, τ̃j− v−1

r
Tc)R̃s

j,m−1

= lim
N=βK→∞

lim
K=βN→∞

1

N

K∑
j=1

|ajj |2φ(
n−1

N
, τ̃j− u−1

r
Tc)φ

∗(
n−1

N
, τ̃j− v−1

r
Tc)R̂

s

jj

= (f(Rs, x))u,v.

Note that also the r × r blocks δ̃n,mR̃s

²n,mδ̃
H

n,m are independent of m, asymptotically, and equal to the

corresponding blocks δR̂
s

²nδH . Thus, they are a periodical repetition of the blocks δR̂
s

²nδ
H . By making use

of the induction assumptions and the recursive equation (102) we obtain

lim
K=βN→∞

T̃ `

[nn],m
P
= T `(x) =

`−1∑
s=0

f(R`−s−1, x)T s(x).

Applying the same arguments as in Theorem 1 we can show that (95) is satisfied.
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Similarly, for h̃
H

k,mT̃
s

∼k,mh̃k,m, s = 0, . . . , `− 1 it can be shown that

lim
K=βN→∞

h̃
H

k,mT̃ s

∼k,mh̃k,m = lim
K=βN→∞

|akk|2
N

N∑

n=b τk
Tc
c+1

(Φ̃
H

k )[nn]T̃
s

[nn],m(Φ̃k)[nn]

+ lim
K=βN→∞

|akk|2
N

b τk
Tc
c∑

n=1

(Φ̃
H

k )[nn]T̃
s

[nn],m+1(Φ̃k)[nn]

= lim
K=βN→∞

|akk|2
N

N∑
n=1

∆H
φ,r

(
n−1

N
, τ̃k

)
T̂

s

[nn]∆φ,r

(
n−1

N
, τ̃k

)
(103)

= g(T s, |akk|2, τ̃k)

where (X)[nn], for X = Φ̃, ∆̃φ,r(τ),∆φ,r(τ̃) denotes the n block diagonal elements of size r × 1 of the

matrix X. In (103) we make use of the fact that for n =
⌊

τk

Tc

⌋
+ 1, . . .

⌊
τk

Tc

⌋
+ N + 1

(Φ̃k)[nn] =
(
∆̃φ,r(τk)

)
[n−b τk

Tc
c−1,n−b τk

Tc
c−1]

= (∆φ,r(τ̃k))[(n−1)modN+1,(n−1)modN+1]

= ∆φ,r

(
(n− 1)modN

N
, τ̃k

)
. (104)

The induction assumptions and the recursive equation (101) yield

lim
K=βN→∞

(R̃)k,m = R`(|akk|2, τ̃k) =
`−1∑
s=0

g(T `−s−1, τ̃k)Rs(|akk|2, τ̃k). (105)

From the previous equation it becomes apparent the periodical asymptotic behaviour of the diagonal ele-

ments of the matrix R̃`
. The inequality (94) follows along the same lines as in the proof of Theorem 1.

Furthermore, the limit of (R̃`
)k,m and (T̃ `

)[nn],m coincide with the equations for the limits of (R̂
`
)kk and

(T̂
`
)[nn]. This concludes the proof of Theorem 3.
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