1

A New Approach for Capacity Analysis of Large
Dimensional Multi-Antenna Channels
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Abstract

This paper adresses the behaviour of the mutual informatiarorrelated MIMO Rayleigh channels when the
numbers of transmit and receive antennas convergeédo at the same rate. Using a new and simple approach
based on PoincérNash inequality and on an integration by parts formulds itigorously established that the
mutual information converges to a Gaussian random variahlese mean and variance are evaluated. These results
confirm previous evaluations based on the powerful but ngarous replica method. It is believed that the tools
that are used in this paper are simple, robust, and of intéseshe communications engineering community.
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. INTRODUCTION

It is widely known that high spectral efficiencies are attdinghen multiple antennas are used at both the
transmitter and the receiver of a wireless communicatisiesy. Indeed, due to the mobility and to the presence
of a large number of reflected and scattered signal paths)eheeats of theV x n Multiple Input Multiple Output
(MIMO) channel matrix withN antennas at the receiver’s site andntennas at the transmitter’'s are often modeled
as random variables. Assuming a random model for this mafakatar realized in the mid-nineties that Shannon’s
capacity of such channels increases at the rateiof V, n) for a fixed transmission power [1]. A result of the same
nature can be found in the work of Foschini and Gans [2]. Thhaastof [1] and [2] assumed that the elements of
the channel matrixG are centered, independent and identically distributedl.ji.elements. In this context, a well
known result in Random Matrix Theory (RMT) [3] says that theesigalue distribution of the Gram matriRG*
where G* is the Hermitian adjoint ofc converges to a deterministic probability distributionragoes to infinity
and N/n converges to a constant> 0. Denote byI(p) = logdet (gGG* + IN) the capacity of channdh for a
Signal to Noise Ratio at a receiver antenna equal/te. One consequence of [3] is that the capacity per transmit
antennal (p)/n, being an integral of &g function with respect to the empirical eigenvalue disttit of GG*,
converges to a constant. This fact already observed in [thisissthe assertion of the linear increase of capacity
with the number of antennas. In addition, this convergenmoegs to be sufficiently fast. As a matter of fact, the
asymptotic results predicted by the RMT remain relevantsfmtems with a moderate number of antennas.

The next step was to apply this theory to channel models tlthide a correlation between paths (or entries of
G). One of the main purposes of this generalization is to beftelerstand the impact of these correlations on
Shannon’s mutual information. Let us cite in this context tbatdbutions [4], [5], [6], [7] and [8], all devoted to
the study of the mutual information in the case where the efgmof channel’s matrix are centered and correlated
random variables. In [9], a deterministic equivalent is poiled under broad conditions for the capacity based on
Rice channels modeled by non-centered matrices with intkgpe but not identically distributed random variables.
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The link between matrices with correlated entries and negrigith independent entries and a variance profile is
studied in [10].

One of the most popular correlated channel models used ésetbapacity evaluations is the so-called Kronecker
modelG = YWW whereW is a N x n matrix with Gaussian centered i.i.d. entries, abhdand ¥ are N x N and
n x n matrices that capture the path correlations at the recaiverat the transmitter sides respectively [11], [12].
This model has been studied by Chuah et. al. in [5]. With sorsaraptions on matrice¥ and ¥, these authors
showed that/ (p)/n converges to a deterministic quantity defined as the fixed mdiah integral equation. Later
on, Tulino et. al. [8] obtained the limit of(p)/n for a correlation model more general than the Kronecker hode
Both these works rely on a result of Girko describing the migiie distribution of the Gram matrix associated
with a matrix with independent but non necessarily idefifiodistributed entries, a close model as we shall see in
a moment.

In [7], Moustakas et. al. studied the mutual information fioe Kronecker model by using the so-called replica
method. They found an approximatidn(p) of E [I(p)] accurate to the order/n in the largen regime. Using
this same method, they also showed that the variandd ©f— V' (p) is of order one and were able to derive this
variance for largen.

Although the replica technique is powerful and has a widgeaof applications, the rigorous justification of some
of its parts remains to be done. In this paper, we propose amethod to study the convergence f (p) and
the fluctuations ofl (p). Beside recovering the results in [7], we establish the @éhtimit Theorem (CLT) for
I(p)—V(p). The practical interest of such a result is of importanceesthe CLT leads to an evaluation of the outage
probability, i.e. the probability thaf(p) lies beneath a given threshold, by means of the Gaussiamxdpyation.
Many other works have been devoted to CLT for random matriCésse to our present article are [13], [14], [15].

In this article, we also would like to advocate the methodduseestablish both the approximation bfp) in
the largen regime and the CLT. Due to the Gaussian character of theesrfi Matrix G, two simple ingredients
are available. The first one is an Integration by parts formu@ ¢hat provides an expression for the expectation
of certain functionals of Gaussian vectors. This formula basn widely used in RMT [16]-[18]. The second
ingredient is Poincé@-Nash inequality (17) that bounds the variance of funet®mf Gaussian vectors. Although
well known [19], [20], its application to RMT is fairly recefil8]. This inequality enables us to control the decrease
rate of the approximation errors such as the orter error E [I(p)] — V(p). We believe that these tools which
prove to be simple and robust might be of great interest ferccbmmunications engineering community.

The paper is organized as follows. In Section Il, we introduee rhain notations; we also state the two main
results of the article. In Section IIl, we recall general nxatesults and the two aforementioned Gaussian tools.
Section 1V is devoted to the proof of the first order result, tisathe approximation oE[(p)]. The CLT, also
refered to as the second order result, is established indBe¥ti Proof details are in an appendix.

II. NOTATIONS AND STATEMENT OF THE MAIN RESULTS
A. From a Kronecker model to a separable variance model.

Consider a MIMO system represented byva< n matrix G wheren is the number of antennas at the transmitter
and N is the number of antennas at the receiver and whéfe) is a sequence of integers such that
N
im M oo

n—oo

Assuming the transmitted signal is a Gaussian signal withvariance matrix equal téln (and thus, a total power
equal to one), Shannon’s mutual information of this chansdl,{p) = logdet (§GG* + IN) , Wherep > 0 is
the inverse of the additive white Gaussian noise varian@ael receive antenna. The general problem we address
in this paper concerns the behaviour of the mutual inforomator large values ofV andn in the case where the
channel matrixG, assumed to be random, is described by the Kronecker n@del#'WW. In this model,¥ and
W are respectivelyV x N andn x n deterministic matrices anW is random with independent entries distributed
acccording to the complex circular Gaussian law with meapo aed variance onéN (0, 1).

It is well known that this model can be replaced by a simplevriecker model mvolvmg a matrix W|th Gaussian

independent (but not necessarily identically distribyiteatries. Indeed, le®# = UD;V* (resp\II UD; V*) be



a Singular VaIuNeR:acomposition (SVD) df (resp.\i), whereD,, (resp.ﬁn) is the diagonal matrix of eigenvalues
of W™ (resp.¥W¥ ), thenl,(p) writes:

I,(p) = log det (gYnYZ + IN) ;

whereY,, = D2X, D2 is a N x n matrix, D,, andD,, are respectivelyV x N andn x n diagonal matrices, i.e.
Dn:m%(ﬁﬂ1gigAﬂ and ﬁmzmﬁcyllgjgn%

andX,, = V*WU has i.i.d. entries with distributiofA/(0,1) sinceV and U are deterministic unitary matrices.

Since every individual entry o,, has the form}/ig”) d(")d( )Xw, we call Y,, a random matrix with a
separable variance profile.

B. Assumptions and Notations.

The centered random variablé — E[X] will be denoted by)%. Element(i, j) of a matrix A will be either
denoted[A];; or A;;. Elementi of vectora will be denoteda; or [a];. Column; of matrix A will be denoted
a;. The transpose, the Hermitian adjoint (conjugate trangpoSé, and the matrix obtained by conjugating its
elements are denoted respectivaly, A*, and A. The spectral norm of a matriA will be denoted|A||. If A

is squaretrA refers to its trace. Let = /—1, then the operator8/0z andd/0z wherez = x + iy is a complex
number are defined by’ = (aaa; 1day) and 2= (% + i%) where & and . are the standard partial

derivatives with respect to andy

Throughout the paper, notatidid will denote a generic constant whose main featuredsto depend om. In
particular, the value of{ might change from a line to another as long as it never depapde n. Constantk’
might depend ont € R™ and whenever needed, this dependence will be made moreiexpli
As usual notationv,, = O(,,) is a flexible shortcut fofa,,| < K3, anda,, = o(8,), for a,, = £,0, with g,, — 0
asn goes to infinity.

In order to study a deterministic approximationgf p) and its fluctuations, the following mild assumptions are
required over the two triangular arra le”), 1<i<N, n> 1) and (J§"), 1<j<n, n> 1).

(A1) The real numberszll(”) and dg.") are nonnegative and the sequen(eé”)) and (cig.”)) are uniformly
bounded, i.e. there exist constadts., andd,,.x such that

sup | Dy < dimax  and  sup |Dy| < dimax-
n n

where|D,,|| and | D, | are the spectral norms @,, andD,.
(A2) The normalized traces dd,, and D,, satisfy
inf ltr (D,) >0 and inf ltr (f)n) > 0.
n n n n
In the sequel, we shall frequently omit the subscripand the superscrigtn).
The resolvent associated WingnY;; is the N x N matrix H,,(t) = (%YnY:; + IN)_l. Of prime importance is
the random variablg(t) = 1trDH(t) and its expectation(t) = 1 trD EH(¢).
We furthermore introduce the x n deterministic matrix defined by

R(t) = <I + ta(t)ﬁn) - )
= diag (7;(t), 1 <j<n) where 7;(t)= ma

and the related quantit§(t) = %trﬁf{(t). In a symmetric fashion, th& x N matrix R(¢) is defined by
R(t) = (I+ta(t)D,) ",

1
= diag(ri(t), 1<i< N) where r;(t) =

1+ ta(t)d;



We finally introduce the solutions of a determinisBick 2 system.
Proposition 1: For everyn, the system of equations i@, )

(1)

§ = LD, (I+t6Dy)"?
6 = LtrD,(I+t6Dy)?

admits a unique solutioédn(t), Sn(t)) satisfyingd,,(t) > 0,0, (t) > 0. Moreover, there exist nonnegative measures
i, andfi,, overR*™ such that

+ 14+t
where,(RT) = LtrD,, and i, (R*) = 1trD,,.
The proof is postponed to Appendix A.

With § andé properly defined, we introduce the followin§ x N andn x n diagonal matrices:

T=(I+tD)"' and T=(I+tD)".

Notice in particular that = %tr DT andé = %tr DT by (1). We finally introduce the following quantities which
are required to express the fluctuationsipfp):

T (t) = DR TH(t) 3)
An(t) = 2rD2T2 (1)
Proposition 2: Assume that Assumption®1) and (A2) hold and denote by
o (t) = —log (1 = *3()Fn(1)) , >0 @)

where~,,(t) and¥,(t) are given by (3). Thew?(t) is well-defined, i.el — 2,,(t),(t) > 0 for ¢t > 0. Moreover
there exist nonnegative real numbeng and M; such that

0 <m? <info(t) <supo2(t) < M <oo for t>0. (5)
n n

Moreover,o7 () is upper-bounded uniformly in and¢ for ¢ € [0, o], i.e. sup,<, M7 < cc.

Proof of Proposition 2 is postponed to Appendix B.

Summary of the main notations.

In order to improve the readability of the paper, we gathétha notations in Table II-B. As expressed there,
there are three kinds of quantities:

1) Random quantities,

2) Deterministic quantities depending on the lawY¥ * via the expectatiof£ with respect to the entries of
Y,

3) Deterministic quantities which only depend on the masiD and D, sometimes viad andé (as defined in
Proposition 1) which are easily computable.

The main goal of the forthcoming computations will be to apprate elements of the first and second kind by
elements of the third kind.



Random quantities Deterministic quantities

depending on the law oYY ™ via E | only depending on the variance structure Daand D

1

H= (YY" +1)~

B =L1trDH a= 7—1LtrD(IEH) §=1t'D(I+ D)~ ! = 2uuDT
7 = (1+tad;) ™"
R I+ taD)™! T = (I+t5D)"!
i = LtDR = 1trD(I+taf))*1 5= tDI+tD)~' = LzDT
= (1+tad;)™!
= (I+taD)™? T = (I+tD)™*

v = %trT2D2, ¥ = %trTZﬁQ
o?(t) = —log(1 — t*y(t)7(t))

TABLE |
SUMMARY OF THE MAIN NOTATIONS

C. Statement of the main results.

We now state the main results. Theorem 1 describes the first apgeoximation of the Shannon capacity(p)
while Theorem 2 describes its fluctuations when centered w#pect to its first order approximation.

Theorem 1:Let X be aN x n matrix whose elementX;; are independent complex Gaussian variables such
that

E(X;) =E(X7) =0, E(X;[*)=1, 1<i<N,1<j<n,

andY = D:XD: where the diagonal matricé® and D satisfy Assumption{A1) and (A2). Let I,(p) =
logdet (2YY* 4+ 1Iy). Then, we have

i) = Valo)+ O (3 ©
asn — oo, Nn~1 — ¢ €]0, co[ where
Va(p) = log det (I + p5n(p)15n> + log det (I + p5n(p)Dn) — 1p6(p)0n(p) -

and where(6,,(t), 8,(t)) is the unique positive solution of the system

§ = iaD(I+tD)!

§ = itaD(I+tsD,) !

Theorem 2:Assume that the setting of Theorem 1 holds andsfgp) = —log (1 — p*yn(p)¥n(p)) - Then the
random variabler,, 1 (p)(I,(p) — Vi.(p)) converges in distribution towards’(0, 1) where

)
{ lp) = s DITR(p) { T(p) = (14 pdD)~!
n(p) = 3 trDI T (p) T(p) = (I+ pdD)~

[11. M ATHEMATICAL TOOLS AND SOME USEFUL RESULTS

In this section, we present the tools we will use extensiadilyalong the paper. In Section IlI-A, we recall well
known matrix results; in Section 11l-B, we present two fundantal properties of Gaussian models: The Integration
by parts formula and PoindaNash inequality for Gaussian vectors. Section IlI-C isotied to a cornerstone
approximation result which roughly states tHatand R can be replaced b{f and T up to some well-quantified
error. In Section IlI-D, various variance estimates and agipnation rules are stated.



A. General results
1) Some matrix inequalitiestet A andB be two N x N matrices with complex elements. Then

tr (AB)| < /tr (AA¥)\/tr (BB¥) . (7)

AssumingA is Hermitian nonnegative, we have
tr (AB)| < [|B]| tr (A) , (8)
where]||.|| is the spectral norm (see [21]).
2) The ResolventThe Resolvent matri#, (t) of matrix Y,, Y7 is defined asH,,(¢) = (1Y, Y} + IN)fl. It

is of constant use in this paper and we give here some of ifzepties. The following identity, also known as the
Resolvent identity

H(t) = Iy — %H(t)YY* )
follows from the mere definition cH. Furthermore, the spectral norm of the resolvent is readilynded by one:
IH#)|| <1 for t>0. (10)
3) Bounded character of the mean of some empirical moméwets(B,,),,cy = ( diag b(ln), . ,b&") , neN

be a sequence of deterministic< n diagonal matrices. Assun{@ 1), and furthermore, thatip,, | B,,|| < co. Then
for every integerk, we have

%IE [tr (%YBY*)k] <K. (11)

Let us sketch a proof. Expanding the left hand side of (11) gield

1 - _
W Z b]1 b]z e b]kE [)/Z‘ljl Y:L'2j1 le.2j2 i3j2 " Y;kjky;ljk] .

i1,i9,..,ip=1:N
J1,--ndp=1lin

A close look at the argument of thi& operator implies that due to the independence oftthewe only havek + 1
degrees of freedom in the choice of the indi¢gsnd j,. As all moments of the Gaussian law exist and moreover
IIB., |Dx||, and||D,,|| are bounded, this sum is of orderasn — oc.

4) Differentiation formulas:Let A be aN x N complex matrix and leQ(A) = (Iy + A)"'. Let 5A be a
perturbation ofA. Then
Q(A +6A)=Q(A) - Q(A) 6A Q(A) +o([|6A]]), (12)

whereo (|[0A[|) is negligible with respect t§dA || in a neighborhood of. Writing H(¢) = [Hpq(t)]g’qﬁl, we need
the expression of the partial derivatigéd,,/0Y;;. Using (12), we have:

0H,q t YY" t 1N
= —— |H H| =-—|H|0k-—1)Yy H
Y n [ oY, Lq n [ { (k=) Z]Lc,e:l ]pq
t N 13 %
whered is the Kronecker function. Similarly, we can establish
OH,, t t
3% = n [HY]pj Hi, = _E[HYJ}pHiq : (14)

The differential ofg(A) = logdet(A) is given byg(A + §A) = g(A) + tr (A~! §A) + o (||6A]]) . We use
this equation to derive the expressiondf(t)/dY;; also needed below:

oIt aYY*\ ¢ N ¢
<H ) = —tr <H [6(6 —])ij]k’“> =~ [HY], =

vy

oY, [Hyj] ;- (15)

t
n



B. Gaussian tools

1) An Integration by parts formula for Gaussian functionalst ¢ = [¢1,. .., &y be a complex Gaussian ran-
dom vector whose law is determined Bi¢] = 0, E[¢£7] = 0, andE[¢€*] = E. LetT =T'(&, -+, Ear, €1, -+ 5 Enr)
be aC' complex function polynomially bounded together with itgidatives, then:

M
E0©)] = =], E [382@} | (16)
m=1 m

This formula relies on an integration by parts and thus isrrefkto as the Integration by parts formula for Gaussian
vectors. It is widely used in Mathematical Physics [22] and beaen used in Random Matrix Theory in [16], [17].

2) Poincag-Nash inequality:Let £ andT" be as previously and 167" = [0T'/0z1, . ..,0T /0zy]T and Vs =
[T /071, ...,0T /0z37]T. Then the following inequality holds true:

var (I(€)) < E |V.T(¢)" & V.I()| +E[(V2T(€))" & VT(¢)] - (17)

This inequality is well-known (see e.g. [19], [20]) and hastfseen applied to Random Matrix Theory in [18].
When¢ is the vector of the stacked columns of mathix i.e. £ = [Y14,..., YNn]T, formula (16) becomes:

E[YyT(Y)] = didsE [a” )} , (18)
Y,
while inequality (17) writes:

n

N
var ( §ZdeE

Poincaé-Nash inequality turns out to be extremely useful to deéth wariances of various quantities of interest
related with random matrices. For the reader’s convenjenegprovide a proof in Appendix C and in order to give
right away the flavour of such results, we state and prove thewimg:

Proposition 3: Assume that the setting of Theorem 1 holds andAlgtbe aN x N real diagonal matrix which
spectral norm is uniformly bounded im Then

ar (%trAH) =0(n?) .

Proof: We apply inequality (19) to the functioR(Y) = %trAH. Using (13), we have

Y) (19)

2 'aF(Y) 2
oY, ;

o

N
OH t
Z a5 ”p = ——Q[yjHAH]Z- .

aY”

Therefore, denoting byl the upper bound! = sup,, |A,|| and noticing thatdT' /0Y; ;| = |0I'/9Y; |, we have:

21 =
var(Y) < ZdeE‘ [y HAH] ‘

i=1 j=1

2%

= =) d4;E(y/HAHDHAHYy))

n
7j=1

ot 2

—Etr HAHDHAH

YDY*
n

a 2t2 YDY* (
< {\HII |A|?D] tr( - )}

where inequality(a) follows from (8), (b) follows from (10) and from the bounded character||&,, || and || D,,||,
and (c) follows from (11). [ |

=

—~
Na

IA
ol =

< ;

n3

) 2 d st YDY* (©)
2AdatEtr< D )
n



C. Approximation rules

The following theorem is crucial in order to prove Theorems @ @n Roughly speaking it allows to replace
matricesR andR by T and T up to a well-quantified small error.

Theorem 3:Let (A,) and (B,) be two sequences of respectively x N andn x n diagonal deterministic
matrices whose spectral norm are uniformly bounded,ithen the following hold true:

1 1 1
—trAR = —trAT+ 0O (—2> , (20)
n n n
1 ~ 1 ~ 1
—trBR = —trBT+ O (—2) . (22)
n n n

Proof of Theorem 3 is postponed to Appendix D.

D. More variance estimates and more approximations rules

We collect here a few results which proofs rely on the Intégnaby parts formula (18), on Poin&iNash
inequality, and on Theorem 3. The proofs of these resultspadth systematic, are somewhat lengthy and are
therefore postponed to the Appendix. These results will leel extensively in Section V.

Proposition 4: In the setting of Theorem 1, lex,, andB,, be uniformly bounded real diagonal matrices of size
N x N andn x n. Consider the following functions:

oY) = “tr (AHYEY )| w(Y)= L1t (AHDH
n n

YBY*
" .

n

Then,
1) The following inequalities hold true:

var (®(Y)) = O(n™?), var (U(Y)) = O(n"?%) .

2) The following approximations hold true:

E[®(Y)] = %tr (bTB) %tr(ADT)Jro(n*Q), 22)
1 1 (== Y, (=om 1
EW(Y)] = =g <§tr (DTB) tr (ADT?) — htr <D2T2B> tr (ADT)) +0 (ﬁ) (23)

The variance inequalities are proved in Appendix E; the agpration rules, in Appendix F.

IV. FIRSTORDER MOMENT APPROXIMATION: PROOF OFTHEOREM 1
This section is devoted to the proof of the following approaiion:

E[L(p)] = Va(p) + O (n7") (24)
where

Va(p) = log det (T + pd(p) Dy ) + logdet (T + pbu(p) Dy ) = 108u(p)3n(p) - (25)

This result already appears in [7] and is proved under gregeerality in [9]. The proof presented here is new
and relies on gaussian tools.

Outline of the proof

The proof is divided into three steps. We first make some prednyi remarks. Notice that the mutual information
can be expressed d$p) = [ tr (n 'H(t)YY™) d¢. In particular,

E[1(p)] = /0 e (E [H(t) YY*D it (26)

n




YY*
n

In order to study the asymptotic behaviourIofl(p)], it is thus enough to studgyr (H(t)
to an integration. The Resolvent identity (9) yields

2 (102 < s (1)

n

)fornﬁ—i—ooup

We are therefore led to the study Bfitr(H(¢))]. We now describe the three steps of the proof.

A. In the first part of the proof, we exparifiHH(¢) with the help of the Integration by parts formula (18). This
derivations will bring to the fore the deterministic diagdmatrix R, and Poinca-Nash inequality will then
allow us to obtain the following approximation:

EtrAH = trtAR+ O (n7!) |

for every diagonal matrixA bounded in the spectral norm. Here are the main steps, gdtlmeran informal

way. Differentiating the ternit ([Hyj]p ij), we obtain:

B (1Hy.], V) = ddi2 1] - 10 L x(DH) [y, ¥, )

from which we will extractE[H,,,| later on. At this point, PoincarNash inequality yields some decorrelation
up to O (n~') and we obtain:

1 — 1 —
B | LD (31y,), ¥, | ~ & | LD | £ [[Hy,], ] - o2 [11y,], 73]
This approximation allows us to isola]ﬁ([Hyj]p E):
(1+tdj0)E ([Hy;], V) = ddE[Hy] < E([Hy), V) = ddisE [Hy) |
Now summing overj and using the Resolvent identifyl,, = 1 — 7 3" E[Hy,], Y,; in the previous

equation vyields:

1—-EH, .
——P ~ ad,EH,,, thatis EH,, ~r, .

All the technical details are provided in Section IV-A.

B. The second step follows from the approximation rule (2@jest in Section IlI-C, which immediatly yields
EtrAH = trAT + O (n_l) .

This in turn will imply that
Etr <H(t)YY ) —tr (1-;@1{) —tr (I_TT> Fen(t) D nd()5(t) + en(t).

n

where (a) follows from the fact thall — T = t6D(I + D) L.

C. In the third step, we integrate the previous equality:

/Op Etr (H(t)YZ*> dt = n/opa(t)é(t)dt + /Op en(t)dt.

We identify n [/ 5(t)o(t)dt with V;,(p) as given by (25), and check thif e, (t)dt = O(n™1).




10

A. Development of (trAH(¢)) and Approximation byrAR(t)
In order to studyE (trAH(t)), we first consider the diagonal entriés,,(t) of H(¢). For each indey, we have

E([Hy]p p]) ZE (HpiYiiYy;)

We now apply the Integration by parts formula (18) to the samdof the right hand side for functidn defined
asT(Y) = H,;Y,,;. This yields:
_ - ) -t _
E (Hp’l}/Z]}/;)]) = dld]E [H”] 5(1 — p) — Clld] EE ([Hyj]p H“Yp]> . (27)
Therefore,
E ([H.Yj]pm) = dpdjE [Hy) — td; E< tr(DH) [HYJ]pfn) : (28)
from which we sahh extradt[H,,,] later on. Recall at this point thatr ( “lrDH(t)) = O (n2) by Proposition

3. Recall also the following notationg:= n~'tr(DH), o = E[3], andﬁ [ —«a. Plugging the relation = oz—l—ﬁ
into (28), we get

E [[HYj]pm} = dyd;E[Hyp] — td;aF [[HYj]pm} — td;E [ﬁ Hy;]pY; ] : (29)
Solving this equation w.r.t& [[Hy;],Y, ;] provides:
E [Hy;]pYp;] = dp d;7E[Hpp) — td;7;E [% [Hyj]pm] where 7;(t) = % for1<j<n. (30)
1+ tOé(t)dj
Summing (30) oveyj yields:
o[ —aasin,) - w5 w] , @
n pp n Pp

~ ~\ —1 ~ ~
whereR is the diagonal matrixliag (7;(t)) = (I+ atD anda = 1trDR. In order to obtain an expression
for E[H,,], we plug the identity (31) into the Resolvent identity:

E[H,,) =1 —(E [HYY } ]
n pp
and obtain:
°o | _YDRY*
E [pr] =Tp+ t2TpE pH - ] (32)
n
pp

with 7, (t) = (1 + tad ) . Let A be aN x N diagonal matrix with bounded spectral norm. Multiplyin®2j3y
A’s components and summing ovgtyields:

Etr(AH) = tr(AR) + nt’E [B <I>(Y)} :

where®(Y) = %tr(ARH@). As% is zero-meanIE[E ®| = E[$ ®]. In particular, Cauchy-Schwarz inequality
yields:

EZ®| < \/var(F)y/var(®)

Recall thatvar(3) = O (n=2) by Prop. 3. Sincg|R,,|| and |[D,R.,| are both bounded by Assumpti¢Al)
and by the definitions oR,, and R,,, one can directly apply the result of Proposition 4 &oin order to get
var(®) = O (n™?).

We have therefore proved the following:
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Proposition 5: In the setting of Theorem 1, leA be a uniformly bounded diagon& x N matrix. Then for
everyt € R,
E(trAH(t)) = trAR(t) + O (') . (33)

B. The Deterministic Approximatiom'(¢).

Proposition 5 provides a deterministic equivalentBgtrAH) since matrixR is deterministic; however its
elements still depend oa = n~'tr(DR), which itself depends oa = E (n~'trDH), an unknown parameter.
The next step is therefore to apply Theorem 3 to approximatemBt by T, which only depends o andD
and and on and 4, the solutions of (1). Theorem 3 together with Equation (33)ljnthat:

E(trAH) = tr(AT)+ O (') . (34)

SinceT only depends om andd, (34) provides a deterministic equivalentBftrAH) in terms ofd andj. Note
that takingA = D yields in particulara = § + O(n~2) while a direct application of Theorem 3 féx = D yields
a=04+0(n?2).

We are now in a position to describe the behaviouitaf (H(t)%) by using the Resolvent identity. From
(9) and (34), takingA = I, we immediately obtain:

E tr (H(t) Y:L[*
AsI—T(t) = (T(t)"* —I)T(t) = té(t)DT(t), we eventually get that
E [tr (H(t) YY*)} — n8(1)5(1) + enlt), (35)

where the erroe, (t) is aO(n~1) term.

) - %m« I-T()+0n") .

C. Recovering the Deterministic Approximatidt{p) of E[I(p)].

As mentionned previously,(t) is a O(n~!) term, i.e.|e,(t)] < K;n~!. One can easily keep track df;
in the derivations that lead to (35) and prove thét is bounded on the compact intervigl, p]. In particular,
len(t)] < Kn~! on the compact intervdD, p] for someK > 0. The proof of this fact is omitted.

As e,(t) is uniformly bounded on0, p], we have| [ e, (t)dt| = O(n~'). Therefore,

E[I(p)] = /p nd(t)o(t) + O (n_l) .

0
Consider now

V(o) =W (p,6(0),5(p))
where functioni¥ (p, 6, 4) is defined by
w (p, g, 5) = log det (I + pé]f)) + log det (I + pgD) — npdd .

One can easily check that:

aW -~ g -1 ~ aW
As the pair (§(p),0(p)) satisfies (1), the above partial derivatives evaluated antp@i,d(p),0(p)) are zero.

Therefore,

p (tr <D(I + pSD)A) - n5> .

WV _ (aw — n3(0)3(0) (36)

o\ 9p ><p76<p>75<p>>
which in turn implies (6). Theorem 1 is proved.
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Remark 1 (On the deterministic approximati@l): The deterministic approximatiom can be used to approx-
imate functionals of the eigenvalues ¥fY* other that the mutual informatiolvg det(pn='YY* 4 I) (see for
instance [9]). This relies on a specific representatioMofThe spectral theorem for Hermitian matrices yields the

integral representation:
1 % Np(d))
ZtrH,(2) = , C\R_,
n (2) /0 14+ Az zeCy

where N,, represents the empirical distribution of the eigenvalde¥ & *. It can be shown that~!trT admits a

similar representation:
1  w(dN)
—tr'T = C\R_
n n(2) /0 1+ Az’ z€C\ ’

wherer is a probability measure. Finally, one can prove that f(A) N, (d)) — [;° f(A)mn(d)) converges to zero
almost surely for every continuous bounded function (sgédd®details).

V. SECOND ORDERANALYSIS: PROOF OFTHEOREM 2

This section is devoted to the proof of the Central Limit Thearem

o (p) (Ln(p) — Va(p)) —=— N(0,1),

n—oo

where £ stands for the convergence in distribution.

Outline of the proof

Denote by, (u, p) = E [ei“(P)=Va(P))] the characteristic function af,(p) — V;,(p). The proof is based on
the fact that in order to establish the convergence (inibigion) of o, *(p) (I(p) — V(p)) towardsA (0, 1), it is
sufficient to prove that:

B (1) = Y (1, p) — e 4 n(P)/2 — 0, VueR.
In fact, recall by Proposition 2 that the sequenge,,(p) belongs to a compact interval, sinceo,,(p) is bounded
away from zero. If nowh, (u) — 0 for everyw, it converges uniformly to zero on the compact &gt due to the
continuity of h,,. Therefore,

which proves the CLT. The proof of the convergenceigfu) towards zero is divided into two steps.
A. We first differentiatey,, (u, t) with respect tot in order to obtain a differential equation of the form:

U u?
W = _?nn(t)wn(u, t) + En(u7 t) : 37)

In order to obtain the differential equation (37), we first elep 0+/0t with the help of the Integration by
parts formula (18). We then use Poinegafash inequality to prove that relevant variances areagrmd (n~2).
This will enable us to decorrelate various expectationsté.@xpress them as products of expectations up to
negligible terms. We shall then use the approximation ratated in Proposition 4 in Section 11I-D to deal
with the obtained expectations.

B. The second step is devoted to identify the variance, that gove the identity
P
[ ma = oo,

whereo? is given by (4), i.ea?(p) = —log(1 — p*v(p)7(p)).
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C. The third step is dezvoted to the integration of (37). Indted directly integrating (37), we introduce
K (u, p) = ¥n(u, p)ez7+(?) which satisfies the following differential equation:

8Kn(u, t) Z(t)
—— 2 =ep(u,t)ez %\ | 38
1 en(u,t)e> (38)
Taking into account the obvious facts thgf(u,0) = 1, 02(0) = 0 and therefore thak,, (u, 0) = 1, we shall

obtain that p .
Ky(u,p) =1 +/ en(u, t)e T dt |
0

and prove thatf/’ =, (u, t)e = ~730) gt = O(n~1). This will yield in turn that:

(a 2

n(u,p) = (l—i-(’)(n_l))e_%"i(p) 2wl L omY .

where (a) follows from Proposition 2.
The theorem will then be proved.

=

A. The differential equatiod;,, = —“727771% +éen
Recall thaty, (u, p) = n(u, p)e™ V() wherep(u,t) = E (/). As V//(t) = né(t)(t) by (36), we obtain:

8¢(u, t) _ —iuV(t) 8@(“? t) . N
5 ¢ 5 iund(t)o(t)y(u,t) . (39)
Sincel’(t) = n~'trH(t)YY* by (26), we have:
8(,0(?,&, t) . YY" iul(t iu iul
o =iuE [tr (H(t)T> ® g:l ;]E [Yprlyme : (40)

Applying the Integration by parts formula (18) B[Y;; H,,; Y,;e*! | (which can be writter (Y;,I'(Y)) for I'(Y) =
H,;Y,;e!) and using the differentiation formulas (14) and (15) yseld

oo (e

E Yz‘ijifjei“I] = diJjE[
ij

- - Edd E |[Hy,], HiVpie™ | + did;o(i — p)E | Hyic™ |
+ ﬂd 4E | Hy ¥y [Hy,] ] . (41)
We now sum over index and obtain:
B[[Hy,] Vye!] = —tdE |3 [Hy,] Ve | + dyd;E [Hype|
+ %djﬂ«: |[HDHy,] Ve .
where 8 = n~'trDH. Writing 3 = 5+ « yields:
(1+tad))E |[Hy;] Ve | = —td;E [é [Hy,], Ve | + dpdiE | Hype™ |
+ litd E [[HDHyj]p@eM . (42)
We now take into account thaf(t) = (1 + tad;)~" and sum ovey:
E|[HYY'],, | = - E [ﬁ [HYDRY*LP “”] + nad,E | Hype™! |

iut

+—E “HDHYﬁﬁY*Lp ei“[} . (43)
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By the Resolvent identity (9)E [Hpe™!] = E [e*!] —

E [[HYY*]pp eiuj}. Replace now in (43), recall that
rp(t) = (1+ to?(t)d,,)_l and sum ovep to obtain:

1
n

E [tr <H£> ei"f] — tr(DR)GE [ei“}
n
+ jutE ltr (RHDHw> eiuf]
n n
n
= x1+x2+x3- (44)
Thanks to Theorem 3,
xi = tr(DR)GE [eiuf] — tr(DT)GE [eiuf} +OMmY) = nidE [eiuf} +Oom Y. 45)

In order to deal withy2, we apply the results of Proposition 4 related#¢Y) in the particular case where
A =R andB = DR. In this casey. writes ys = iutE (\IJ(Y)eM) , and Cauchy-Schwarz inequality yields:

° 2
v(Y)

‘E (\Ifei“I) K (ei“I> IE(\IJ)‘ - ‘E[eiu[ Ef]‘ <. |E — O

Therefore,
E (\Ifei“f) —E (ei“I) E(T)+On™) .

We now use the approximation f&V(Y') given in Proposition 4. By Theorem 3, we can replii:e(resp.f{ by
T (resp.T) in the obtained expression. We therefore obtain:
E(0(Y)e) = EU(Y)E "] +0(n")
_ 1 1 2m3y oL (533 L 2 iul ~1
- e (’yntr(D %) - ty—tr (D*T?) —tr (DT?) ) B[] + O (n7) . (46)
The termys can be handled similarly: We apply the results of Proposidioalated to?(Y) in the particular case
whereA = R and B = DR. In this casey; writes yo = —tnE <ﬂ<I>(Y)ei“I) , and Cauchy-Schwarz inequality

(o) - (e Y o) = f o < ¢ 5] ¢ ¥ =002

We therefore obtain

yields:

E |3 te (RH%RYj ei“I] - E[Eeiﬂ tr (D*TR) %tr(DTR)—}—O(n_l)
(@ E[Bei"ﬂ 5t (DT?) + 0 (n) (47)

where(a) follows from Theorem 3. It remains to deal with the teﬁ'{% ei“] . To this end, we shall rely on (43)

and develop the terrl [H,e™/]. The Resolvent identity yields:

E [[HYy*]pp eiul] — %E [eiul} _ %E [preiul} _
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Plugging this equality into (43) and using = (1 + to?dp)_l, we obtain after some computations

o . o, 1 Y]’:V)NYﬂ<
E [ﬁ e"”} = ¢’E [B e Zr (RDH—R>]
n n
2 L YDRY*) ; 1 .
- ﬂE[ (RDHDH7R> el | 4+ Ztr (D (R—E[H]))E{e“ﬂ}
n n n n

—

(@) 2~ wr| 1 iut” 1 33y .21 373 -2
= t‘yyE [ﬂe } D=7 ’yntr(DT) ty ntr(DT) e+0(Mn°) (48)

where (a) follows from Theorem 3, Proposition 4 and Proposition 5. Wedfwe obtain:

o . 1 iut? 1 1, [=a~ 1
il | L ~ L 33\ 42t 373
]E[ﬁe } = —( ~2<fyntr(DT) ty ntr(DT))gp—l—O(—nQ) .

n(1—t2y9)
Plugging (48) into (47), and the result together with (45) &) into (44), and getting back to (40) and (39), we
obtain: O (. 1)
n\U, _
e =t (O gn (ut) + O(n )

where

2,1 D373 1 2 .

1 Fogtr (D T ) Str(DT?) 35214 (D3TS) Lo (DT2)
Mn(t) = 57 ( 27 + t’yﬁtr (D T ) + =275 . (49

Equation (37) is established, and the first step of the proobispieted.

B. Identification of the variance
In order to finish the proof, it remains to prove that:

1do?(t)
n t) == L
m(t) = 5—

To this end, we first begin by computing the derivativesypft) and4, (t). We shall prove that

where o2(t) = —log (1 — ty,(t)Fn(t)) . (50)

~ 1t (D3T3) Ltr (DT2 Lt (D3T3) Ltr (DT2
& Lir (D*T?) Ltr (DT?) o dy i ) Lt ) -

dat 1— 297 dt 1— 297

We only derive 4 7 the computations being similar in the other case. We firsaedpthe expression of, and

obtain: ,
d 1 (s
Z Jdt TZ = Z o <71+t5( ¥ ) = =2 (to(1)) —tr (D3T3) _ (52)

Let us now computé’(t):

_ 1 ZN: d; ( )/ — 3() — A5 ) (53)
n 14 to(t)d;
A similar computation yieldsi’(t) = —%0(t) — Atd’(t). Combining both equations yields:
5 A0 =8
1— 2%

We now plug this into (52) and obtain:

& Loy (ﬁ3T3> (5 - mS)
P 1— 243 '

(54)
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Recall now that the mere definition &, T, § and 4 yields

{lpro1 1 =

Using (55), we obtain:
n~lr (DT?) = nltr (DT (I — tSDT)) — 5 —tdy (56)
n”ttr <]5’i‘2> = nltr (ﬁ'i‘ (I - t5]5'i‘>> =6—t67 . (57)

It remains to plug (56) in (54) to conclude the proof of (51).

We are now in position to prove (50). The main idea in the folfmyvcomputations is to express (49) as a
symmetric quantity with respect thand T on the one hand anéland T on the other hand. To this end, we split
nn(t) in (49) asn,(t) = (N + 7@ +7®). We first work onn®):

1-t2yy

L@ @ FOF (DU 55t e (DY)
1— 277 1— 277

—t251tr (D3T3) Ltr (5@2)

=

)

~1
256=tr (D3T?) .
e +t ’ydntr( )
where (a) follows from (56), and(h) from (57). We now look at)(®):
n® 4+ 2551 (D*T?) = 17 Gtr (D2T3 + g (D2T2 (tSDT))>> = tyq
n n n
where the last equality follows (55) again. We thereforeehav

. 1291t (153%3) 1y (DT?) 251ty (D3T3 Ly (15%2)
_ — +itvy |,

) =
L - 73 =73

@ 1893 + 95+ 27
2 1— 297

—

_ _Ld 25
= 5 le (1=

where (a) follows from (51). This concludes the identification of the igace.

C. Integration of the differential equatiof87)

Let us introducek, (u, p) = tn(u, p)e’s 7). Due to (37),Kn(u, p) readily satisfies the following differential

equation:
0K, (u,t)

ot
As in Section IV-C, one can easily prove tHat,(t)| < £ for everyt € [0, p]. As K, (u,0) = 1, we get

= en(u, t)eégi ® (58)

P W2 s
Kﬂ(“? p) - 1 +/ (C:n(u’t)eTJn(t) dt .
0

Due to Proposition 472 (t) is bounded from above uniformly imandt € [0, p]. This fact, together withe,, (¢)| < %
implies that:

Kn(u,p) =140 <1) .

n
This in turn yields

U, (u,p) = (1 +0 (nil)) efg"i(p)
— 502 +0(nY,
where the last equality follows from the fact that(p) is uniformly bounded by: by Proposition 2.
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APPENDIX
A. Proof of Proposition 1

_ Let us first establish the existence and uniqueness of themolot (1). To this end, we plug the expression of
0 in (1). The system of two equations reduces to the single equat= f(t,) where f(t, ) is defined by

- N\ -1 -1
£(£,6) = Lor (D <1 +ile <D (1+tD) > D> ) (59)
n n
which is itself equivalent tg(d,t) = 1 where

g(t,8) = f(g’ o) _ %tr (D (51 + t%tr <515 (I + téﬁ)l) D) _1> .

The functiond — ¢(t,d) is continuous, decreasing and satisfi€¢s 0) = +oo and g(¢, +o0) = 0. Therefore, the
equationg(t,d) = 1 has a unique solution(¢) > 0.

The integral representation (2) fandé is related to the Stieltjes representation of a class of &éindlynctions.
One can indeed prove that functions— 4(¢) andt¢ — 4(t) defined onR**, extend toC \ R_, are analytic over
this set and satisfy the system (1) for everg C \ R_. Relying on specific properties 6{z) andé(z), we can
prove that the following integral representation holds:

+00 oo 4
_ p(dA) T / M(d)\)
i(z) = /0 T and  §(z) = A e (60)
wherey, andji are nonnegative measures uniquely defineitorsatisfyingu(R*) = 1tr(D) anda(RT) = %tr(f)).

We refer to [9] where a more general result is proven and giépdetails.

B. Proof of Proposition 2

In order to prove Proposition 2, it is sufficient to first provettha- t>~7 is bounded away from zero and then
to prove that the same quantity is strictly lower than 1, emfly in ». We shall proceed into four steps.
1) A priori estimates fo®, 4, v and5: The mere definition of andé yields:

N n ~
_ 1 < Ndumax < 1 d; .

= Z = and 6=- Z L < i, (61)

n — 1+ td 6 n 1+ td o

Using these upper estimates, one gets the following Iom'ma&as.
ltrD ltr]~)

§>—n" " and §> 0 . (62)

1 + tdmaxdmax 1 + t dmaxdmax

One can notice that due to Assumptiphl), these lower bound are eventually bounded away from zerallfin
a straightforward application of Jensen’s inequality ggel

2
9 1< N~y . n o -

2) An estimate oveg—f: The following equalities are straightforward (see for inst& (53)):

§'(t) = —y0(t) —~td'(t) and §'(t) = —75(t) — 316 (t) - (64)
In particular,|8(0)| = 5(0)5(0) < Nn~1d2,,. dmax Which is eventually bounded. Recall thaadmits the following

representation: )
o= [
o L1+tA

where /i is a nonnegative mesure satisfyifgR ") = 1trD In particular, one obtains:

0<—0'(t) = /0 % < =8'(0) < Nn7'd?, dmax - (65)
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3) The quantityl — t2y7 is bounded away from zero, uniformly inand fort € [0, p]: Eliminating &’ between
the two equations in (64) yields:
dg 2 ~ o~/ K _ ;5/ < _ ;5/ 2
o (1 =t*vy) = A(tdy —0) = ntrDT (t5DT I) = ntrDT ,
where the last equality follows from the identil = (I + tD)~! which yields (t0DT — I) = —T. Otherwise
stated:
FtrDT?
n(=3'(t))’
This immediatly implies thal — t2~7 is positive. In order to check that it is bounded away fromozeniformly
in n, notice first that,~'trDT? > d-! ~. Collecting now the previous estimates (63) and (65), waiabt

max

1—t2y7 =

s %2
2 ms s

maXx-"max

Using (62) and AssumptioAl), we obtain thatl — t24% is bounded away from zero, uniformly in and for
t€[0,pl.

4) The quantityl — t2~7 is strictly bounded above from 1, uniformly in The inequalities (63) together with
(62) yield:

sup (1 — tQWﬁ) < sup (1 — t2%5252) < 1.
n n

This completes the proof of Proposition 2.

C. Proof of Poincag-Nash inequality

The proof is borrowed from [18]. Recall thgt= [¢1,..., &y is a complex Gaussian random vector which
law is determined by

El]=0, Ele’)=0 and E¢¢]=E.

Let T =T'(&,---, €0, &1, -+, ) be aC! complex function polynomially bounded together with itgidatives.
We shall prove here Poin@&iNash inequality

var ([(€)) < E [V.I(€)" & V.I(€)] +E[(V:I(€)" E VaL(©)] .
whereV.I' = [0 /0z1,...,0T /0zy|T and VI = [0 /97, ..., 0T /oz)T.

Let y and z be two C?>M-valued jointly Gaussian vectors (which parameters will dpecified below). Con-
sider the Gaussian vectot(t) = vty + /1 —tz and letY : C*¥ — C be a given smooth functiof =
T(Zl, ey ROM R, ,m) Then

d

1
EY (y) — EY (z) = /O ZEY(x(t)) dt .

Let V.Y = [0Y/0z1,...,0Y/0z]" and VY = [0Y/0%1,...,0Y /0%Z2a7)T. Then

d
ZEY(x(t) =E

VA

y z \' y '
<2—\/1_€ - ﬁ) VT (x(¢)) + <2—\/E - ﬁ) : VzT(X(t))] . (66)

At this point, assume thag = [u”,u’]” andz = [v',w’]” whereu, v andw are independent? -valued
Gaussian vectors having the same langadoreover, putY (x(t)) = I'(x1(t))T'(x2(t)) wherex(t) is partitioned
asx(t) = [x7(t),x(t)]. Then

var(T(u)) = EY (y) — EY (z)
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which leads us to consider the right hand side of Equation. (B6¢ first term there (call if) writes

T
1 =E [(2%% - N%) VZT(X(t))] - %E [F(xz(t)) ul'V, T (x1(t)) + T(x:1(t)) uTVZF(Xg(t))]

- 2\/%1[«: [F(xz(t)) VIV, (x1(t)) + D(x(t)) wTer(xQ(t))} . (67)
Let us process the terii LF(xQ(t)) uTVZF(xl(t))}. Writing u = [Uy,...,Un]T andx;(t) = (X1, ..., Xim)?
for i = 1,2, we have by the Integration by Parts Formula (16)
e )] N~ g [ (e dia )
B [Toa) Uy T | - PRHE = (T )
e S ) ¥ Y ) N IO E— 0 NN ())
= Vit n;[u]pmlﬁl 0Xi,  0%sn + T(xa(1)) OXs X

where we usec; (t) = vtu+ /1 —tv andxs(t) = Vtu+ /1 — tw in the second equality. By treating similarly
the other terms of the right hand side of (67) and taking thm,sihhe terms with the second order derivatives
0%/0X; ,0X;,, disappear and we end up with

X1 = 5B [(VaT(a()T & VTGo) + (VD ()" & VT6a ()] (68)

where we used the identityf /02 = 0 f/0z which proof is straightforward.
By using twice the Cauchy-Schwarz inequality we obtain:

1
2

E|V.D(x: ()T = vzr(xzu))\ < E [(vzr(x1 T B V.I(x (t))) (vzr(xQ(t))T = VJ’(Xg(iﬁ))) }

< {E[V-r6a®)" & VIGa®)] ) {E [v-L00)" & VI60)] )

The second term of the right hand side of (68) can be boundedsimigar manner. Noticing that; (¢) andxa(t)
have the same law as, which does not depend an it results that

bl < 3B [V.T(w)" & VoI (w)] + JE[(V=T(w)" & V=T(u)]

The second term of the right hand side of Equation (66) is tdesitilarly, which leads to the desired result.

D. Proof of Theorem 3
We first give a sketch of the proof to emphasize the main ideas thwe technical aspects of the proof.
1) We first prove that the asymptotic behavioursof'tr (A (R — T)) is directly related to the behaviour of
a(t) — 6(t). Similarly, n=*trA (ﬁ - ’f‘) is related tod(t) — &(t).
2) We extend the definition af from ¢t € R™ to z € C\ R_ and establish an integral representation:

B v(d\)
alt) _/R+ 14+

As a consequence of the integral representations,fdmnd«, we prove that, § anda are bounded analytic
functions on every compact subset©f\ R_.

3) As a consequence of this detour in the complex plane, weeptioe following weaker result. For every
uniformly bounded diagonal matriA, the following holds true:

n~ltr(AR) =n"'tr(AT) + o(1)
{ n~'tr(AR) =n"'tr(AT)+ o(1)

4) We then refine the previous result in order the get the shagpe of convergenc®(n~2) instead ofo(1).
The theorem will then be proved.
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1) The asymptotic behaviour af 'tr (A (R — T)) and its relation witha(t) —§(t): The standard matrix identity
R-T=R(T'-R™HT

immediatly yields
n (AR -T) = (3(t) - a(t)~tr (ARDT) and
n i (D -R)) = &) - al) = ?(a(t) ~5(t)) -t (DRDT) .
Therefore,

ntir (AR —T)) = 2(a(t) - 5(1)) ~ir (DRDT) %tr (ARDT) . (69)

n

2) Anintegral representation far, and bounds over, § andé: Recall thatv(t) = E[n~'tr(D(I+tn~'YY*)"1)].
This function readily extends frome R* to z € C\ R~. Moreover, the following representation holds true:

L[ (AN
o) = [ L (70

wherev is a uniquely defined positive measure R such thatv(R*) = %trD. To prove this, we introduce the

eigenvalue/eigenvector decomposition of mawix' YY* = Zf\il Aiw;ul where(\;, 1 <i < N) and(u;, 1 <
i < N) represent its eigenvalues and eigenvectors respectiviety.random variabled(z) = 1trD(I + z%)—1

can be written as !
N
1 u/Du; o0 w(dN)
W)—;Z _/0 1+ Az’

wherew is the nhonnegative random measure defined by
1 N
= — Dud(A—N;) .
0= D uDui - )

Consider now the measuredefined byr = E[w], that isv(B) = E[w(B)] for every Borel setB c R™. It is clear
that a(z) = E[3(2)] is given by (70), and that(R*) = E[w(R™)] is given by

%trD(Z uiuf)] .

As Y uul =1, y(R*) = LyD as expected and representation (70) implies ¢{a} is analytic overC \ R~.

Let dis{w, RT) stand for the distance from element € C to R*. Then the following holds true for every
ze€ C\R™:

N
1
v(RT)=E [ﬁ > uDuy| =E
i=1

1 1 1 N 1 1

la(z)] < —t (D)mm < gdmaxmm . (71)

Tr
n
Similarly, (60) yields that
Ndmax 1
n|z| dist(—%,R*) '

0(2)] < (72)

A similar result holds ford, (z). These upper bounds imply in particular thet:), (z) and(z) are uniformly
bounded on each compact subsetlof R_.
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3) A weaker result as a consequence of Montel's theoréva:first establish that for every diagonal matax
uniformly bounded,

n~ltr(AR) =n"1tr(AT) + o(1)
{ n~Utr(AR) =n"'tr(AT) + o(1)

We take (69) as a startlng point. MatricBs R, T, and T have their spectral norms bounded by onetfar R
and matricesA, D, andD are also uniformly bounded by assumption. Therefore, thager 'tr (ARDT) and

n~'tr (ARDT) are also bounded. In order to prove (73), it is sufficient toverthata(t) — §(t) = o(1). To this
end, we make use of Proposition 5 and writg) — 6(¢) as

(73)

—_

a(t) — 8() = %tr (DR~ T)) +en(t) ,
wheree, (t) = O(n2) . Using relation (69) forA = D, we immediately get that:

a(t) — 6(t) = (alt) — 6(t))t2%tr (DRDT) %tr (DRDT) + £, (t) . (74)

As sup, (IRl |Rall, | Tal, |Tall) <1, we have:
max-"max — max-"max

1 ey 1
Ztr (DRDT)— (DRDT)<—d2 B, < 2ed?, d
mn mn

as soon aé%’ < 2¢. Therefore, ift < tg := (2dmaxcimaxﬁ)*1, then

t21tr (DRDT) ~tr (DRDT) < %
for n large enough. Eq. (74) thus implies that
o (t) — 0, (t)] < 2len(t)], e aft)—d(t) =0OMnm2) for t<tg. (75)

This in particular implies thatv, (t) — d,,(t) = o(1) for ¢t < to; however, it remains to establish this convergence
for ¢t > t¢. To this end, observe that,(z) — d,(z) is analytic inC \ R_ and bounded on each compact subset
of C\ R_. Montel's theorem asserts that the sequence of functgyis) — ¢, (z) is compact and therefore that
there exists a converging subsequence which convergesd®wa analytic function. Since this limiting function

is zero on|0, to[ by (75), it must be zero everywhere due to the analycity. Thezefrom every subsequence,
one can extract a subsequence that converges toward zeresdéeily,a,(z) — d,(z) converges to zero for every

z € C\ R~ and in particular fort > 0. This establishes (73).

Even if the convergence rate of,(t) — 6,(t) is O(n~2) for t < t, Montel's theorem does not imply that the
convergence rate af,,(z) — d,(z) remainsO(n~2) elsewhere. Therefore, there remains some work to be done in
order to prove thaty,(t) — §,(t) = O(n~2) for eacht > 0.

4) End of the proof:We take (74) as a starting point. Equations (73) imply thatefacht > 0,

{ n~ltr (DR(t)DT(t)) —v(t) = o(1)

(
n~ltr (f)f{(t)f)i‘(t)) —5(t) =o(1) (76)

where~,, = n=1trD2T? and4, = n~trD2T2. Thanks to Proposition 5, (76) implies that

n

inf (1 - t%tr (DuRo (D To(t) %tr (ﬁnf{n(t)ﬁn’i‘n(t))> >0,

Equation (74) thus clearly implies tha{t) —(¢) is of the same order of magnitude &g1t), i.e. thata(t) —6(t) =
O(n~2). Theorem 3 is proved.
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E. Proof of Proposition 44) - Variance controls
Consider firstd(Y) = 1tr (AHYBY"). We use Poinc&Nash inequality (19) to control the variance ®f It

E[ ] ZdeE ’ —I—ZdeE

=1 j=1 =1 j=1
We haved(Y) = (1/n?) Z;}Vrzl > =1 apbgHy Yrq Yy From the differentiation formula (13) we have

o
oYy

(77)

el

__ t .
(Herqu}JQ) = Hp; [YJ H], Yr‘quq + Hprypq‘s(r —1i)0(q —j) -

Therefore, after a straightforward computation we obtdry0Y;; = ¢§j.> + <b£]2) with

t
o = -

The first term of the right hand side of inequality (77) can battd as follows:

— [yJHYBY*AH|. and (bg]?):%bj [y;AH], .
ZdeE < 222dd( { ”JrE[

(ﬂ)
i=1 j=1
22

- ZSE [tr (HYBY*AHDHAYBY*HY]SY*)}

’ aY 7]

+—4E [tr (AHDHAYB%SY*)} : (78)
n
Let A = sup ||A,||. Using inequalities (7), (8), (10) and Cauchy-Schwarz irdityy we have

22 ~
—E [tr (H YBY* AHDHA YBY* H YDY*)}

- 2o o oy anomamyn) o (v
< Zu|ima) er\\/m\/“<(YﬁY*>2>]

« 2 el (22
3 % (79)

where the last inequality is due to (11). Turning to the sdctamm of the right hand side of (78), we have

~ 2 ~
2R [tr (AHDHAYB%Y*” < Hdnaep [L (Lypopy-)| < £ (80)
n4 n?2 n n n?2
The second term of the right hand side of Inequality (77) iatere similarly. This proves thatr(®) = O(n~2).

Consider now¥'(Y) = Ltr (AHDHYBY ). The proof being quite similar to the previous one, we jusegiv
its main steps. By (19) we ha{¥(Y)?] < SN, S0 did; (E[|0W/0Y; ;%] + E[|0%/0Y; ;]%]). A computation
similar to above yield9V /0Y;; = 1/12-(;) + 1/}5? + ng’) where

t t 1

Ujj = ——5 [yjHDHYBY"AH],, ¢} = —— [y;HYBY'AHDH] , and vj =~

ij i —b; [y;AHDH], .
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We have

IN

N n

333 ad; (=] o[])
i=1 j=1
3t2

= SE [tr (HDH YBY* AHDHA YBY* HDH Yf)Y*)}

wgﬂ +E [ wﬁﬂ +E [

3t 3 D
+°7E |tr (H YBY* A (HD)HA YBY" H YDY")|
+%E [ix (A (HD)* HA YB2DY")] .

The first two terms of the right hand side can be bounded by assefi;mequalities similar to inequalities (79).
The third term can be bounded as in (80). This ends the proofseofdriance controls in Proposition 4.

F. Proof of Proposition 42) - Approximation rules
Consider firstd(Y) = Ltr (AHYEY), we write &(Y) = (1/n?) 30y S0, a,biE [Yi; Hy,i Yy, and apply

T on

the Integration by parts formula (18) to the summand. Usdeniity (14), we have

— ~ 0 — t - o 5

E [Yij HpiYp;] = did;E [ﬁ (Hptij)} = —did;E UHYJ],, Hz'z'ij} + did;6(i — p)E [Hp] .
4]

By taking the sum over the index we obtainE [[Hyj]pm} = —td,;E [ﬂ [Hyj]pm} + dpd,E [H,p). Writing

now g3 = %Jr « and then grouping together the terms \MEE{ [Hyj]pfv}, we obtain:

E [[Hyj']pm} = _tCZijE [ﬂ [Hy]‘]p%} + dpd;7;E [pr} .

We now sum overj andp, and obtain:

E [ltr (AHYBY )} 1y (f)ﬁB) L (AD E[H]) + ¢,
n n n n

with

]

n n

o 1 YDRBY*
g:%EL%ﬂ(M}_E;_>
n

:_HE31U<AHXEEEXJ
n

Applying Cauchy-Schwarz inequality, Proposition 3 and théavece controls in Proposition 4, we det = O(n~2).

By Theorem 3,n ltr (ﬁﬁB) = n~ltr (ﬁT‘B) + O(n~2). By Theorem 3 and Proposition 5, we obtain
n~ltr (AD E [H]) = n~tr (ADT) + O(n2). This ends the proof of (22).

Consider now¥(Y) = Lltr (AHDH%). In order to computeéE¥(Y), we shall need the following
intermediate result:

Lemma 1:In the setting of Theorem 1, I€f(Y) = 1tr (DHDH). Then

1) The following estimate holds true:

wrfrv) =0 ()

n?
2) moreover,

ol 1
EY(Y)])=—>5—=+0 (ﬁ) .
Proof: In order to prove Lemma 1-(1), we use the Resolvent identifya(@l write:

DHDH = DHD — tn 'DHDHYY" .
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Sincevar(X+Y') < var(X)+var(Y)+24/var(X)var(Y'), we only need to deal with each term of the right handside.
By Proposition 3,var(n~'tr DHD) = O(n~2) and by Proposition 4-(1)yar(tn~2tr DHDHYY*) = O(n"2)
and the proof of Lemma 1-(1) is completed.

Let us now prove Lemma 1-(2). The Resolvent identity (9) yields:

E[[HDHH = d,E| pp]—tIEHHDHYY*] ] | -

We then writeE L[HDHYZ*]W} =n i—1 Y_i— diHp Hy;YijY,;, and apply the differentiation formula (13)
to the summand. After derivations similar to (41-42), weadft

“E |[HDHy,] ¥,;| = —%Jj@- [[Hyj] (DHDH)}

Tl

1
t
_Ed‘]r‘j [HDHy]]p pj

1
= dpd;5E [HDH pp] (82)
Taking the sum ovej and combining with (81) ylelds.
YDRY*| 1
E |[HDH = tE||H———| —tr(DHDH
[HDH],, | r [ - ] —tr (DHDH)
L pp
o YDRY*
+t*r,E | B [HDHR]
n
L pp
+rpdpE [Hpp] (83)
Taking now the sum ovep, we obtain:
1
E[ tr(DHDH} ZdE[HDH] }_X1+X2+X3, (84)
where
1 YDRY*
x1 = tE|=tr (DRH7R> —tr (DHDH)] ,
n

X2 = tz]E

5lu (DRHDH&RY*)] |
n n
X3 = Ep. (D’RE [H]) .
n
Let us first deal with the termg, andys. Cauchy-Schwarz inequality together with Proposition 3 arap@sition

4-(1) yield x2 = O(n~2). Proposition 5 together with Theorem 3 yield = v + O(n~2). We now look aty;.
Due to Proposition 4-(1) and to Lemma 1-(1), we have:

X1 = t2E

ltr (DRH

YDRY*
n

n

E [%u (DHDH)] 1o (%) ,

—
S
N

£294E [ tr (DHDH)} +0 <%) :

where (a) follows from (22) in Proposition 4. It remains to plug the vaduobtained fory;, x2 and s into (84)
to obtain:

(1—t*y7)E [%tr (DHDH)} =v+0(n?).
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Recalling Proposition 2, we can divide ¥ — t>v4) and obtain the desired result. [ |
We can now go back to the computation®¥(Y). Let us give the main steps of the derivation. Expanding
Ev(Y) yields:

N n
1 YBY* 1 —
E [ﬁtr <AHDH - ﬂ = ;:1 ;1 aph;E [[HDHyg']p ij]

We replace the summand'E [[HDHyj]p%} by the expression given by (82). We then replace the term
E [[HDH]W} in (82) by the expression given by (83). We sum opyaand ; and notice afterwards that the terms

where% is involved are of orde®(n~2). We therefore end up with:

E Ftr (AHDHYBY >] = —tE itr (DHDH) ltr (AHM)
n n n n n
== 1 1 YDRY*
+ ot (DRB) E | —tr (DHDH) ~tr (ARDH7>]
n n mn n

1 e N1 1
+—tr (DRB) —tr (AD’REH) + O <F)

We first decorrelate by using the variance estimates in Pripos!-(1) and Lemma 1-(1) and obtain:

1 YBY* 1 1 YDRBY*
E [—tr <AHDH ﬂ - tE [—tr(DHDH)] E [—tr (AHL>
n n n n n
2Ly (ﬁﬁB) E [ltr (DHDH)} E |1t (ARDHEH
n n n n

1 e N1 1
+—tr (DRB) —tr (AD’REH) + 0 (ﬁ)

It remains to apply Theorem 3, Proposition 4 and Lemma 1-(2) eaaébhms in the right hand side of the previous
equality to conclude.
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