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Abstract

This article deals with the problem of estimating the covariance matrix of a series of independent

multivariate observations, in the case where the dimension of each observation is of the same order as

the number of observations. Although such a regime is of interest for many current statistical signal

processing and wireless communication issues, traditional methods fail to produce consistent estimators

and only recently results relying on large random matrix theory have been unveiled.

In this paper, we develop the parametric framework proposed by Mestre, and consider a model

where the covariance matrix to be estimated has a (known) finite number of eigenvalues, each of it with

an unknown multiplicity. The main contributions of this work are essentially threefold with respect to

existing results, and in particular to Mestre’s work: To relax the (restrictive) separability assumption, to

provide joint consistent estimates for the eigenvalues and their multiplicities, and to study the variance

error by means of a Central Limit Theorem.

I. INTRODUCTION

Estimating the covariance matrix of a series of independent multivariate observations is a crucial issue

in many signal processing applications. A reliable estimate of the covariance matrix is for instance needed
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in principal component analysis [1], direction of arrival estimation for antenna arrays [2], blind subspace

estimation [3], capacity estimation [4], estimation/detection procedures [2], [5], etc.

In the case where the dimension N of the observations is small compared to the number M of

observations, the empirical covariance matrix based on the observations often provides a good estimate

for the unknown covariance matrix. This estimate becomes however much less accurate, and even not

consistent with the dimension N getting higher (see for instance [6, Theorem 2]).

An interesting theoretical framework for modern estimation of multi-dimensional variables occurs

whenever the number of available samples M grows at the same pace as the dimension N of the

considered variables. Shifting to this new assumption induces fundamental differences in the behavior of

the empirical covariance matrix as analyzed in Mestre’s work [6], [7]. Recently, several attempts have

been done to address this problem (cf. [6], [7], [8], [9], [10], [11]) using large random matrix theory

which proposed powerful tools, mainly spurred by Girko’s G-estimators [12], to cope with this new

context. In [6], [7], Mestre considers the eigenvalue estimation of a parametrized model of covariance

matrices similar to the model we shall study in this article. In [8] and [11], grid-based techniques for

inverting the Marčenko-Pastur equation are proposed. In [10], the problem of estimating a specific linear

functional of the eigenvalues of an unknown covariance matrix is addressed. In [9], the eigenvalues of

an unknown parametrized covariance matrix are estimated by resorting on the empirical moments of the

observations. This technique, which goes back to Pisarenko’s ideas [13], will be also combined to large

random matrix theory in the present article.

We shall consider the case where the dimension of each observation N together with the number of

samples M go to infinity at the same pace, i.e. their ratio converges to some nonnegative constant c > 0.

In order to present the contribution provided in this paper, let us describe the model under study.

Consider an N ×M matrix XN = (Xij) whose entries are independent and identically distributed

(i.i.d.) random variables. Let RN be an N×N Hermitian matrix with L (L being fixed and known) distinct

eigenvalues 0 < ρ1 < · · · < ρL with respective multiplicities N1, · · · , NL (notice that
∑L

i=1Ni = N ).

Consider now

YN = R
1/2
N XN .

The matrix YN = [y1, · · · ,yM ] is the concatenation of M independent observations, where each

observation writes yi = R
1/2
N xi with XN = [x1, · · · ,xM ]. In particular, the covariance matrix of each

observation yi is RN = Eyiy
H
i (matrix RN is sometimes called the population covariance matrix).

In this article, we consider the problem of estimating individually the eigenvalues ρi as well as their
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multiplicities Ni in the case where the total number of eigenvalues is fixed and known.

Such a scenario is customary in applications for wireless communications. A relevant example concerns

uplink CDMA systems operating over flat fading channels, where users are arranged into L classes, each

class corresponding to a distinct power amount. In this case, matrix YN can be modeled as:

YN = WP
1

2 X + σVN

where W are VN represent respectively the signature matrix assumed to be orthogonal and the noise ma-

trix, while P is diagonal with diagonal elements taking distinct values among the finite set {ρ1, · · · , ρL}.

In a decentralized context, where each user selects its own power from this finite set according to a defined

control energy strategy, the base station which stands for the receiver can have to estimate the number of

users in each class as well as their corresponding powers. Obviously, this problem amounts to estimating

the eigenvalues of the theoretical covariance matrix as well as their corresponding multiplicities. Similar

scenarios are studied in [14], [15].

Among the proposed parametric techniques, we cite the one developed by Mestre [7] and taken up

by Vallet et al [16] and Couillet et al [17] for more elaborated models. Although being computationally

efficient, this technique requires a separability condition, namely the assumption that the number of

samples is large compared to the dimension of each sample (small limiting ratio c = lim N
M > 0). In

such a case, the limiting spectrum of the empirical covariance matrix possesses as many clusters1as there

are eigenvalues to be estimated, and each eigenvalue can be estimated by a contour integral surrounding

the related cluster. Mestre’s technique cannot be applied any more in the case where c is larger (which

reflects a higher dimension of the observations relatively to the sample dimension). In fact, the dimension

of the clusters may grow and neighbouring clusters may merge, violating the one-to-one correspondence

between clusters and eigenvalues to be estimated (see for instance Fig. 1 and 2).

A way to circumvent the separability condition has recently been proposed by Bai, Chen and Yao [9],

based on the use of the empirical asymptotic moments:

α̂k =
1

M
Tr (YNYN )k , k ∈ {1, · · · , 2L} ,

which can be shown to be a sufficient statistic to estimate
(
N1

N , · · · , NL

N , ρ1, · · · , ρL
)
. Although being

robust to separability condition, this technique suffers from numerical difficulties, since the proposed

estimator has no closed-form expression and thus should be determined numerically. An interesting

1By cluster, we mean a connected component of the support of the limiting probability distribution of the spectrum.
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contribution, although not directly focused on estimating the covariance of the observations is the work

by Rubio and Mestre [18], where an alternative way to estimate the moments

γk =
1

N
Tr(Rk

N ),

for all k ∈ N is proposed, yielding an explicit (yet lengthy) formula.
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Fig. 1. Empirical and asymptotic eigenvalue distribu-

tion of R̂N for L = 3, ρ1 = 1, ρ2 = 3, ρ3 = 10,

N/M = c = 0.1, N = 60, N1 = N2 = N3 = 20. In

this case, there are 3 clusters in the limiting eigenvalues

distribution and the separability assumption holds true.
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Fig. 2. Empirical and asymptotic eigenvalue distri-

bution of R̂N for L = 3, ρ1 = 1, ρ2 = 3, ρ3 = 5,

N/M = c = 3/8, N = 30, N1 = N2 = N3 = 10.

In this case, there is only one cluster in the limiting

eigenvalue distribution while there are 3 underlying

eigenvalues to be estimated: The separability assump-

tion does not hold true any more.

In this article, we improve existing work in several directions: With respect to Mestre’s seminal

papers [6], [7], we propose a joint estimation of the eigenvalues and their multiplicities, and drop the

separability assumption. The proposed estimator is close in spirit to the one developed by Bai et al. 2 in

[9], although we carefully establish the existence and uniqueness of the estimator, which is not explicit

in [9]. Comparisons on the relative numerical efficiency of both procedures is provided in the simulations

section. Finally, we study the fluctuations of the estimator and establish a Central Limit Theorem (CLT).

The remainder of the paper is organized as follows. In Section II, the main assumptions are provided

and Mestre’s estimator [7] is briefly reviewed. In Section III, the proposed estimator is described. Its

fluctuations are studied in Section IV, where a CLT is stated. Simulations are presented in Section V,

and a conclusion ends the paper in Section VI. Finally, the remaining technical details are postponed to

2We shall also mention an ongoing work by Li and Yao, not yet disclosed to our knowledge.
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the Appendix.

II. MAIN ASSUMPTIONS AND GENERAL BACKGROUND

A. Notations

In this paper, the notations s,x,M stand for scalars, vectors and matrices, respectively. Superscripts

(·)T and (·)H respectively stand for the transpose and transpose conjugate; trace of M is denoted by

Tr(M); determinant of M, by det(M); the mathematical expectation operator, by E. If z ∈ C, then <(z)

and =(z) respectively stand for z’s real and imaginary parts, while i stands for
√
−1; z stands for z’s

conjugate.

If Z ∈ CN×N is a nonnegative Hermitian matrix with eigenvalues (ξi; 1 ≤ i ≤ N), we denote in the

sequel by FZ the empirical distribution of its eigenvalues (also called spectral distribution of Z), i.e.:

FZ(d λ) =
1

N

N∑
i=1

δξi(d λ) ,

where δx stands for the Dirac probability measure at x.

Convergence in distribution will be denoted by D−→, in probability by P−→; and almost sure convergence,

by a.s.−−→.

B. Main assumptions

Consider the model

YN = R
1/2
N XN ,

and

R̂N =
1

M
YNYH

N .

At first, an assumption about the matrix RN is needed:

Assumption 1: RN is an N ×N Hermitian non-negative definite matrix with L (L being fixed and

known) distinct eigenvalues 0 < ρ1 < · · · < ρL with respective multiplicities N1, · · · , NL (notice that∑L
i=1Ni = N ).

As mentioned earlier, we consider the asymptotic regime where the number of samples M and the

dimension N grow to infinity at the same pace, together with the multiplicities of each eigenvalue of

RN .
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Assumption 2: Let M,N be integers such that:

N,M →∞ , with
N

M
→ c ∈ (0,∞) , and

Ni

N
→ ci ∈ (0,∞) , 1 ≤ i ≤ L. (1)

This assumption will be shortly referred to as N,M →∞.

The following assumption is standard and is sufficient for estimation purposes.

Assumption 3: Let XN = (Xij) be a N ×M matrix whose entries are i.i.d. random variables in C

such that E(X1,1) = 0, E(|X1,1|2) = 1 with finite fourth moment: E(|X1,1|4) <∞.

Remark 1: In order to establish the fluctuations of the estimators, the Gaussianity of the entries of

XN is needed (although this technical condition may be removed with substantial extra work).

Assumption 3b: The entries of the N ×M matrix XN = (Xij) are i.i.d. standard complex Gaussian

variables, i.e. Xij = U + iV , where U, V are both independent real Gaussian random variables N(0, 1
2).

It is well-known in large random matrix theory that under Assumptions 1, 2 and 3, F R̂N converges

to a limiting probability distribution. In Mestre’s paper [7], a separability condition3 is needed in order

to derive the estimator of RN ’s eigenvalues:

Assumption 4: The support S of the limiting probability distribution of F R̂N is composed of L

compact connex disjoint subsets, and not reduced to a singleton.

Remark 2: Note that when M < N , matrix R̂N is singular and thus admits (N −M) eigenvalues

equal to zero. Hence, the limiting spectrum of R̂N has an additional mass in zero with weight 1 − 1
c ,

which will not be considered among the L clusters.

The separability condition is illustrated in Fig. 1 and 2. In both figures, the limiting distribution of

F R̂N is drawn (red line). In Fig. 1, RN ’s eigenvalues are ρ1 = 1, ρ2 = 3, ρ3 = 10, they have the

same multiplicity and the ratio c is equal to 0.1. In this case, the separability condition is satisfied as

the limiting distribution exhibits 3 clusters. The separability condition is no longer satisfied in Fig. 2,

when ρ1 = 1, ρ2 = 3, ρ3 = 5 and c = 0.375. In this case, the limiting distribution only exhibits a single

cluster.

C. Background on Large Random Matrices, Mestre’s estimators and their fluctuations

The Stieltjes transform has proved since Marčenko and Pastur’s seminal paper [19] to be extremely

efficient to describe the limiting spectrum of large random matrices. Given a probability distribution P

3The precise technical statement of the separability condition together with a mathematical interpretation are available in [7],

but are not necessary here.
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defined over R+, its Stieltjes transform is a C-valued function defined by:

mP(z) =

∫
R+

P(dλ)

λ− z
, z ∈ C\R+ .

In the case where FZ is the spectral distribution associated to a nonnegative Hermitian matrix Z ∈ CN×N

with eigenvalues (ξi; 1 ≤ i ≤ N), the Stieltjes transform mZ of FZ takes the particular form:

mZ(z) =

∫
FZ(d λ)

λ− z

=
1

N

N∑
i=1

1

ξi − z
=

1

N
Tr (Z− zIN )−1 ,

which is exactly the normalized trace of the resolvent (Z− zIN )−1.

An important result associated to the model presently under investigation is Bai and Silverstein’s

description of the limiting spectral distribution of R̂N [20] (see also [19]):

Theorem 1: [20] Assume that Assumptions 1, 2, 3 hold true and denote by FR the limiting spectral

distribution of RN , i.e. FR(d λ) =
∑L

k=1 ckδρk(d λ). The spectral distribution F R̂N of the sample

covariance matrix R̂N converges (weakly and almost surely) to a probability distribution F as M,N →

∞, whose Stieltjes transform m(z) satisfies:

m(z) =
1

c
m(z)−

(
1− 1

c

)
1

z
,

for z ∈ C+ = {z ∈ C, =(z) > 0}, where m(z) is defined as the unique solution in C+ of:

m(z) = −
(
z − c

∫
t

1 + tm(z)
FR(dt)

)−1

.

Remark 3: Note that m(z) is also a Stieltjes transform whose associated probability distribution

function will be denoted F , which turns out to be the limiting spectral distribution of F R̂N where

R̂N is defined as:

R̂N ,
1

M
XH
NRNXN .

Remark 4: Denote by mR̂N
(z) and mR̂N

(z) the Stieltjes transforms of F R̂N and F R̂N . Notice in

particular that

mR̂N
(z) =

M

N
mR̂N

(z)−
(

1− M

N

)
1

z
. (2)

Remark 5: Denote by mN (z) and mN (z) the finite-dimensional counterparts of m(z) and m(z),

respectively, defined by the relations:mN (z) = −
(
z − N

M

∫
t

1+tmN (z)F
RN (dt)

)−1
,

mN (z) = M
NmN (z)−

(
1− M

N

)
1
z .

(3)
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It can be shown that mN and mN are Stieltjes transforms of given probability measures FN and FN ,

respectively (cf. [21, Theorem 3.2]).

In [7], Mestre proposes a novel approach to estimate the eigenvalues (ρk; 1 ≤ k ≤ L) of the population

covariance matrix based on the observations R̂N under the additional Assumption 4. His approach relies

on large random matrix theory and the separability condition presented above plays a major role in the

mere definition of the estimators. As it will be a useful background in the sequel, we provide hereafter

a brief description of Mestre’s results:

Theorem 2: [7] Denote by λ̂1 ≤ · · · ≤ λ̂N the ordered eigenvalues of R̂N . Under Assumptions 1, 2,

3, 4 and assuming moreover that the multiplicities N1, · · · , NL are known, the following convergence

holds true:

ρ̃k − ρk
a.s.−−−−−−→

M,N→∞
0 , (4)

where

ρ̃k =
M

Nk

∑
m∈Nk

(
λ̂m − µ̂m

)
, (5)

with Nk = {
∑k−1

j=1 Nj + 1, . . . ,
∑k

j=1Nj} and µ̂1 ≤ · · · ≤ µ̂N the (real and) ordered solutions of:

1

N

N∑
m=1

λ̂m

λ̂m − µ
=
M

N
(6)

repeated with their multiplicites. When N > M , we use the convention µ̂1 = · · · = µ̂N−M+1 = 0,

whereas µ̂N−M+2, · · · , µ̂N are the positive solutions of the above equation.

Remark 6: Notice that (6) associated to (2) readily implies that for non null µ̂i, mR̂N
(µ̂i) = 0.

Otherwise stated, the µ̂i’s are the zeros of mR̂N
. This fact will be of importance in the sequel.

Sketch of proof : We can now describe the main steps of Theorem 2. By Cauchy’s formula, write:

ρk =
N

Nk

1

2iπ

∮
Γk

(
1

N

L∑
r=1

Nr
w

ρr − w
dw

)
,

where Γk is a positively oriented (clockwise) contour taking values in C\{ρ1, · · · , ρL} and only enclosing

ρk. With the change of variable w = − 1
mM (z) and the condition that the limiting support S of the

eigenvalue distribution of RN is formed of L distinct clusters (Sk, 1 ≤ k ≤ L) (cf. Figure 1), we can

write:

ρk =
M

2iπNk

∮
Ck

z
m′N (z)

mN (z)
dz , 1 ≤ k ≤ L, (7)

where Ck denotes positively oriented contours which enclose the corresponding clusters Sk. Defining

ρ̃k ,
M

2πiNk

∮
Ck

z
m′

R̂N

(z)

mR̂N
(z)

dz , 1 ≤ k ≤ L , (8)
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dominated convergence arguments ensure that ρ̃k − ρk → 0, almost surely. The integral form of ρ̃k can

then be explicitly computed thanks to residue calculus, and this finally yields (5). �

Recently, a CLT has been derived [15] for this estimator under the extra assumption that the entries

of XN are Gaussian:

Theorem 3: [15] With the same notations as before, under Assumptions 1, 2, 3b, 4 and with known

multiplicities N1, · · · , NL, then:

(M(ρ̃k − ρk), 1 ≤ k ≤ L)
D−−−−−−→

M,N→∞
x ∼ NL(0,Θ) ,

where NL refers to a real L-dimensional Gaussian distribution, and Θ is a L× L matrix whose entries

Θk` are given by,

Θk` = − 1

4π2c2ckc`

∮
Ck

∮
C`

[
m′(z1)m′(z2)

(m(z1)−m(z2))2
− 1

(z1 − z2)2

]
1

m(z1)m(z2)
dz1dz2 ,

where Ck (resp. C`) is a closed counterclockwise oriented contour which only contains the k-th cluster

(resp. `-th) .

The proof of this theorem is based on [22] and the continuous mapping theorem. Details are available

in [15].

The main objective of this article is to provide estimators for the ρk’s without relying any more on

the separability condition (i.e. to remove Assumption 4). A Central Limit Theorem will be established

as well for the proposed estimator. As a by-product, the knowledge of the multiplicities will no longer

be needed, and they will be estimated as well.

III. ESTIMATION OF THE EIGENVALUES ρi

In this section, we provide a method to estimate consistently the eigenvalues of the population co-

variance matrix and their multiplicities without the need of the separability condition (cf. Fig. 2). Our

method is based on the asymptotic evaluation of the moments of the eigenvalues of RN ,

γi ,
1

N
Tr Ri

N =

L∑
k=1

Nk

N
ρik, 1 ≤ i ≤ 2L− 1. (9)

If (m̂i)1≤i≤2L−1 are the empirical moments of the sample eigenvalues, then it is well-known that except

for i = 1, γi cannot be approximated by m̂i. Consistent estimators for γi are provided in [18], where it

has been proved that:

γi − γ̃i −−−−−−−→
N,M→+∞

0,
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where

γ̃i =

i∑
l=1

µS(l, i)m̂l, (10)

µS(l, i) being some given coefficients that depend on the system dimensions and on the empirical moments

m̂i [18]. An alternative is to use the Stieltjes transform:

Lemma 1: Let Assumptions 1, 2 and 3 hold true. Let γ̂i be the real quantities given by:
γ̂0 = 1,

γ̂1 = − M
2N iπ

∮
C

zm′
R̂N

(z)

mR̂N
(z) dz,

γ̂k = M(−1)k

2Nkiπ

∮
C

dz
mk

R̂N
(z)
, for 2 ≤ k ≤ 2L− 1

where C is a counterclockwise oriented contour which encloses the support S of the limiting distribution

of the eigenvalues of R̂N . Let γi be the theoretical moments as given in (9). Then, for 1 ≤ i ≤ 2L− 1,

γ̂i − γi
a.s.−−−−−−→

N,M→∞
0 .

The proof of this lemma is postponed to Appendix A. While the estimates proposed by [18] are better in

practice, estimates (γ̂i) will be of interest in order to establish the Central Limit Theorem, and to obtain

a closed-form expression of the asymptotic variance.

An interesting remark is that the map that links the eigenvalues and their multiplicities to their first

2L − 1 moments is invertible. Retrieving the eigenvalues from the estimates of the 2L − 1 moments is

thus possible. This is the basic idea on which our method is founded.

The main result is stated as below:

Theorem 4: Let Assumptions 1, 2, 3 hold true and let (γ̂k, 1 ≤ k ≤ 2L − 1) be as in Lemma 1.

Consider the following system of equations:
∑L

i=1 xi = 1,∑L
i=1 xiy

k
i = γ̂k for 1 ≤ k ≤ 2L− 1,

(11)

where (xi)1≤i≤L and (yi)1≤i≤L are 2L unknown parameters. Then for N,M large enough, the system of

equations (11) has one and only one real solution (ĉ1, · · · , ĉL, ρ̂1, · · · , ρ̂L) with ρ̂1 < · · · < ρ̂L. Moreover,

(ĉ1, · · · , ĉL, ρ̂1, · · · , ρ̂L) is a consistent estimator of (c1, · · · , cL, ρ1, · · · , ρL), i.e.,

ĉ` − c`
a.s.−−−−−−→

N,M→∞
0 and ρ̂` − ρ`

a.s.−−−−−−→
N,M→∞

0,

with c` = lim N`

N for 1 ≤ ` ≤ L.

Remark 7: The condition of separability is not required in the previous theorem. Moreover, the mul-

tiplicities are assumed to be unknown and thus have to be estimated. Fig. 2 represents a case where the
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three clusters are merged into one cluster. In such a situation, the estimator in [7] is biased whereas the

proposed one is asymptotically consistent.

Remark 8: We use the estimator proposed in Lemma 1. However, the proof below does not depend

on the estimator of the moments we choose. In fact, for any consistent estimator of the moments γi, the

above theorem always holds true.

A. Proof of Theorem 4

The proof can be split into two main steps. By using the inverse function theorem, we can prove the

almost sure existence of a real solution. Then, the uniqueness is ensured by a matrix inversion argument.

1) Existence of a real solution of the system: The first task is to show that the system of equations (11)

admits, for N sufficiently large, one real solution (ĉ1, · · · , ĉL, ρ̂1 · · · , ρ̂L) satisfying ρ̂1 < ρ̂2 < · · · < ρ̂L.

We shall also establish the consistency of the obtained solution. The proof of the existence of a real

solution follows in the same way as in [9]. It is merely based on the use of the inverse function theorem

which ensures the existence as soon as the Jacobian matrix of the considered transformation is invertible.

We recall below the inverse function theorem [23]:

Theorem 5: [23] Let f : Rn → Rn be a continuously differentiable function. Let a and b be vectors

of Rn such that f(a) = b. If the Jacobian matrix of f at a is invertible, then there exists a neighborhood

U containing a such that f : U → f(U) is a diffeomorphism, i.e, for every y ∈ f(U) there exists a

unique x such that f(x) = y. In particular, f is invertible in U .

Consider the functional f defined as:

f(x1, · · · , xL, y1, · · · , yL) =

(
L∑
`=1

x` ,

L∑
`=1

x`y` , · · · ,
L∑
`=1

x`y
2L−1
`

)
.

Consider z = (x1, · · · , xL, y1, · · · , yL) and denote by c = (c1, · · · , cL, ρ1, · · · , ρL); we then have:

M ,
∂f

∂z

∣∣∣∣
z=c

=


1 · · · 1 0 · · · 0

ρ1 · · · ρL c1 · · · cL
...

. . . . . . . . . . . .
...

ρ2L−1
1 · · · ρ2L−1

L (2L− 1)c1ρ
2L−2
1 · · · (2L− 1)cLρ

2L−2
L

 . (12)

As proven in [9, Proposition 1], matrix M is invertible. The inverse function theorem then applies. Denote

by ψi =
∑L

k=1 ckρ
i
k for 0 ≤ i ≤ 2L− 1. There exists a neighborhood U of (c1, · · · , cL, ρ1, · · · , ρL) and

a neighborhood V of (ψ0, · · · , ψ2L−1) such that f is a diffeomorphism from U onto V . On the other

hand, we have:

γ̂i − γi
a.s.−−→ 0.

May 11, 2012 DRAFT
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As γi − ψi → 0, therefore, almost surely, (γ̂0, · · · , γ̂2L−1) ∈ V for N and M large enough. Hence, a

real solution

(ĉ1, · · · , ĉL, ρ̂1, · · · , ρ̂L) = f−1(γ̂0, · · · , γ̂2L−1) ∈ U

exists. And by the continuity, one can get easily that:

ĉ` − c`
a.s.−−−−−−→

N,M→∞
0 and ρ̂` − ρ`

a.s.−−−−−−→
N,M→∞

0 for 1 ≤ ` ≤ L .

2) Uniqueness of the solution of the system: Consider the polynomial Q with degree L defined as:

Q(X) =

L∏
`=0

(X − ρ̂`)
4
=

L∑
`=0

s`X
`

where sL = 1. Denote by s = [s0, · · · , sL−1]T . It is clear that g : (ρ̂1, · · · , ρ̂L)→ s is a homeomorphism.

It remains thus to show that vector s is uniquely determined by (γ̂0, · · · , γ̂2L−1).

It is clear that each ρ̂k is also the zero of the polynomial functions R`(X) given by:

R`(X) =

L∑
i=0

siX
i+` ,

where 0 ≤ ` ≤ L− 1. In other words, for 1 ≤ k ≤ L, we get:

L∑
i=0

siρ̂
`+i
k = 0,

or equivalently:
L∑
i=0

siĉkρ̂
`+i
k = 0. (13)

Summing (13) over k, we obtain:
L∑
i=0

γ̂i+`si = 0 , (14)

for 0 ≤ ` ≤ L− 1. Since sL = 1, (14) becomes:

γ̂L+` +

L−1∑
i=0

siγ̂i+` = 0 , (15)

for 0 ≤ ` ≤ L− 1.

Writing (15) in a matrix form, we get: Γs = −b, where

Γ =


γ̂0 γ̂1 · · · γ̂L−1

γ̂1 γ̂2 · · · γ̂L
...

. . . . . .
...

γ̂L−1 γ̂L · · · γ̂2L−2

 and b =


γ̂L
...

γ̂2L−1

 . (16)
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On the other hand, we have Γ = ADAT , where D = diag(ĉ1, ĉ2, · · · , ĉL) and

A =


1 1 · · · 1

ρ̂1 ρ̂2 · · · ρ̂L
...

...
...

ρ̂L−1
1 ρ̂L−1

2 · · · ρ̂L−1
L

 . (17)

Then,

det(Γ) =

L∏
k=1

ĉk
∏

1≤i<j≤L
(ρ̂i − ρ̂j)2 > 0.

Therefore, the vector s is then uniquely determined by Γ and b and is given by:

s = −Γ−1b.

Hence the unicity. Proof of Theorem 4 is completed.

B. Summary of the main steps of the estimation procedure

The proof of the unicity shows that the solutions of the system of equations (11) can be directly obtained

from the estimates of the first 2L − 1 moments. More precisely, the estimation of the eigenvalues and

their corresponding multiplicities can be performed through the following steps:

1) Set γ̂0 to 1. Estimate the first 2L−1 moments using (10). Coefficients µS(l, i)

are computed using Eq. (46) in [18].

2) Construct the matrix Γ and b using (16).

3) Compute the vector s as s = −Γ−1b.

4) Determine (by using for instance function roots of MATLAB) the roots ρ̂1, · · · , ρ̂L
of the polynomial whose coefficients are given by vector s.

5) Construct matrix A as specified by (17), and vector d = [γ̂0, · · · , γ̂L−1]
T.

6) The coefficient estimates ĉ = [ĉ1, · · · , ĉL]
T are thus given by:

ĉ = A−1d.

Remark 9: Note that while the existence of a real solution is only proven for M and N large enough,

the previous algorithm always yield a solution, even for very small dimensions. However, in such

scenarios, the validity of the obtained solution is not ensured. In fact, if N and M are not large enough,

the moment estimates are not accurate, and the solution of the algorithm may yield complex or negative

eigenvalues. This event completely disappears when N and M or only M take higher values. In practice,

getting such inadequate solutions should warn that more samples are required.

May 11, 2012 DRAFT



14

IV. FLUCTUATIONS OF THE ESTIMATOR

In this section, we shall study the fluctuations of the multiplicities and eigenvalues estimators (ĉ1, · · · , ĉL, ρ̂1, · · · , ρ̂L)

introduced in Theorem 4. In particular, we establish a Central Limit Theorem for the whole vector in

the case where the entries of matrix XN are Gaussian.

Theorem 6: Let Assumptions 1, 2, 3b hold true. Let (ĉ1, · · · , ĉL, ρ̂1, · · · , ρ̂L) be the estimators obtained

in Theorem 4. Then

M

[
ĉ1 −

N1

N
, · · · , ĉL −

NL

N
, ρ̂1 − ρ1, · · · , ρ̂L − ρL

]
D−−−−−−→

N,M→∞
N2L(0,Θ)

where Θ is a 2L × 2L matrix admitting the decomposition Θ = M−1WM−1T and matrix M is the

Jacobian matrix of f evaluated for z = c and is defined in (12) and

W =

[
0 0
0 V

]
,

where V is a (2L− 1)× (2L− 1) matrix whose entries are given by (for 1 ≤ k, ` ≤ 2L− 1):

Vk,` = −(−1)k+`

4π2c2

∮
C1

∮
C2

(
m′(z1)m′(z2)

(m(z1)−m(z2))2
− 1

(z1 − z2)2

)
× 1

mk(z1)m`(z2)
d z1d z2

where C1 and C2 are two closed contours non-overlapping which contain the support S of F and are

counterclockwise oriented.

Proof: The proof relies on the same techniques as developed in [15]. We outline hereafter the main

steps and then provide the details.

By Theorem 4, the estimate vector (ĉ1, · · · , ĉL, ρ̂1, · · · , ρ̂L) verifies the following system of equations:
∑L

i=1 ĉi = 1,∑L
i=1 ĉiρ̂i = γ̂1,∑L
i=1 ĉiρ̂

k
i = γ̂k for 2 ≤ k ≤ 2L− 1,

where the γ̂i’s are the moment estimates provided by Lemma 1.

Using the integral representation of
∑L

i=1 ciρi and
∑L

i=1 ciρ
k
i (cf. Section A in the Appendix and

Formula (22)), we get:

∑L
i=1M

(
ĉi − Ni

N

)
= 0,∑L

i=1M
(
ĉiρ̂i − Ni

N ρi
)

= − M2

2N iπ

∮
C
z

(
m′

R̂N
(z)

mR̂N
(z) −

m′N (z)
mN (z)

)
dz,∑L

i=1M
(
ĉiρ̂

k
i − Ni

N ρ
k
i

)
= M2(−1)k

2i(k−1)Nπ

∮
C

(
1

mR̂N
(z)k−1 − 1

mN (z)k−1

)
dz, 2 ≤ k ≤ 2L− 1.
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Denote by C(C,C) the set of continuous functions from C to C endowed with the supremum norm

‖u‖∞ = supC |u|. In the same way as in [15], consider the process: (XN , X
′
N , uN , u

′
N ) : C→ C, where

XN (z) = M
(
mR̂N

(z)−mN (z)
)
,

X ′N (z) = M
(
m′

R̂N

(z)−m′N (z)
)
,

uN (z) = mR̂N
(z), u′N (z) = m′

R̂N

(z).

Then, M
∑L

i=1

(
ĉiρ̂i − Ni

N ρi
)

can be written as:

M

L∑
i=1

(
ĉiρ̂i −

Ni

N
ρi

)
= − M

2iNπ

∮
C

z

(
mN (z)X ′N (z)− u′N (z)XN (z)

mN (z)uN (z)

)
dz,

, ΥN (XN , X
′
N , uN , u

′
N ),

where

ΥN (x, x′, u, u′) = − M

2iNπ

∮
C

z

(
mN (z)x′(z)− u′(z)x(z)

mN (z)u(z)

)
dz.

On the other hand, using the decomposition ak − bk = (a− b)
∑k−1

`=0 a
`bk−1−`, we can prove that:

L∑
i=1

M

(
ĉiρ̂

k
i −

Ni

N
ρki

)
=

M2(−1)k

2iNπ(k − 1)

∮
C

k−2∑
`=0

−
mR̂N

(z)−mN (z)

m`+1

R̂N

(z)mk−1−`
N (z)

dz

=
M(−1)k+1

2iN(k − 1)π

∮
C

k−2∑
`=0

XN (z)uN (z)−`−1mN (z)−k+1+`dz

, ΦN,k(XN , uN ),

for 2 ≤ k ≤ 2L− 1, where

ΦN,k(x, u) =
M(−1)k+1

2iN(k − 1)π

∮
C

k−2∑
`=0

x(z)u(z)−`−1mN (z)−k+1+`dz.

The main idea of the proof of the theorem lies in the following steps:

1) Prove the convergence of the processes (XN , X
′
N , uN , u

′
N ) and (XN , uN ) over the contour C by

using Bai and Silverstein’s theorem [22].

2) Prove the convergence of [ΥN (XN , X
′
N , uN , u

′
N ),ΦN,2(XN , uN ), · · · ,ΦN,L(XN , uN )]T to a Gaus-

sian random vector with the help of the continuous mapping theorem (cf. Theorem 7).

3) Compute the limiting covariance between M
∑L

i=1

(
ĉiρ̂

k
i − Ni

N ρ
k
i

)
and M

∑L
i=1

(
ĉiρ̂

`
i − Ni

N ρ
`
i

)
.

4) Conclude by expressing M
[
ĉ1 − N1

N , · · · , ĉL − NL

N , ρ̂1 − ρ1, · · · , ρ̂L − ρL
]T

as a linear function of

M [γ̂0 − γ0, · · · , γ̂2L−1 − γ2L−1]T .
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A. Convergence of the processes (XN , X
′
N , uN , u

′
N ) and (XN , uN )

The cornerstone of the first step is the convergence of the process

XN : C→ C

z → XN (z)

to a Gaussian process X(z) which is ensured in [24, Lemma 9.11].

For the process (XN , X
′
N , uN , u

′
N ), it has been proved in [15, Lemma 1] that it indeed converges to

the process (X,Y,m,m′) where (X,Y ) is a Gaussian process with mean function zero and covariance

function given by:

cov (X(z), X(z̃)) =
m′(z)m′(z̃)

(m(z)−m(z̃))2 −
1

(z − z̃)2
, κ(z, z̃),

cov (Y (z), X(z̃)) =
∂

∂z
κ(z, z̃),

cov (X(z), Y (z̃)) =
∂

∂z̃
κ(z, z̃),

cov (Y (z), Y (z̃)) =
∂2

∂z∂z̃
κ(z, z̃).

For the process (XN , uN ), since uN −−−−−−−→
N,M→+∞

m, (XN , uN ) converges in distribution to (X,m).

The convergence of the process (XN , uN ) is achieved.

B. Fluctuations of the moments

The next step is to prove the convergence of the vector [ΥN (XN , X
′
N , uN , u

′
N ),ΦN,2(XN , uN ), · · · ,ΦN,L(XN , uN )]T .

The convergence of ΥN (XN , X
′
N , uN , u

′
N ) to a Gaussian random variable has been established in [15]

where it has been proved that:

ΥN (XN , X
′
N , uN , u

′
N )

D−−−−−−→
M,N→∞

Υ(X,Y,m,m′)

where

Υ(x, y, v, w) =
1

2iπc

∮
C

z

(
m(z)y(z)− w(z)x(z)

m(z)v(z)

)
dz.

The next task is to prove the convergence in distribution of ΦN,k(XN , uN ) over the contour C, for

2 ≤ k ≤ L. Let Φk(x, u) be defined as:

Φk(x, u) =
(−1)k

2icπ

∮
C

x(z)u(z)−kdz.

We want to show that Φk(XN , uN ) converges in distribution to a Gaussian vector. The continuous

mapping theorem is useful to transform one convergence to another.
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Theorem 7 (cf. [25, Th. 4.27]): For any metric spaces S1 and S2, let ξ, (ξn)n≥1 be random elements

in S1 with ξn
D−−−→

n→∞
ξ and consider some measurable mappings f , (fn)n≥1: S1 → S2 and a measurable

set Γ ⊂ S1 with ξ ∈ Γ a.s. such that fn(sn)→ f(s) as sn → s ∈ Γ. Then fn(ξn)
D−−−→

n→∞
f(ξ).

Consider the set:

Γ =

{
(x, u) ∈ C2 (C,C) , inf

C
|u| > 0

}
.

Then, since infC |m| > 0 (see [24, Section 9.12]), the dominated convergence theorem implies that the

convergence of (xN , yN ) → (x, y) ∈ Γ leads to ΦN,k(xN , yN ) → Φk(x, y). The continuous mapping

theorem applies, thus giving:

ΦN,k(XN , uN )
D−−−−−−→

M,N→∞
Φk(X,u).

It now remains to prove that the limit law Φk(X,u) is Gaussian. For that, it suffices to notice that the

integral can be written as the limit of a finite Riemann sum and that a finite Riemann sum of the elements

of a Gaussian random vector is still Gaussian.

The convergence of ΥN (XN , X
′
N , uN , u

′
N ) and ΦN,k(XN , uN ) to Gaussian random variables is not

sufficient to establish a CLT for the whole vector. It remains to prove that any linear combination of

[ΥN (XN , X
′
N , uN , u

′
N ),ΦN,2(XN , uN ), · · · ,ΦN,L(XN , uN )]T converges toward a Gaussian distribution,

which can easily be established in the same way as before. It implies that this vector converges to a

Gaussian vector. This ends the proof of the fluctuations of the moments.

C. Computation of the variance

We now come to the third step. We shall therefore evaluate the quantities:

V1,1 = E
[
Υ(X,Y,m,m′)Υ(X,Y,m,m′)

]
,

V1,k = Vk,1 = E
[
Υ(X,Y,m,m′)Φk(X,m)

]
, 2 ≤ k ≤ L,

Vk,` = E [Φk(X,m)Φ`(X,m)] , 2 ≤ k, ` ≤ 2L− 1.

The details of the calculations are in Appendix B and yield: For 1 ≤ k, ` ≤ 2L− 1

Vk,` = −(−1)k+`

4π2c2

∮
C1

∮
C2

[
m′(z1)m′(z2)

(m(z1)−m(z2))2 −
1

(z1 − z2)2

]
1

mk(z1)m`(z2)
dz1dz2 . (18)

Let wM = M [γ̂0 − γ0, · · · , γ̂2L−1 − γ2L−1]T . We have just proved that the vector wM converges

asymptotically to:

wM
D−−−−−−−→

N,M→+∞
N2L(0,W),
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where

W =

[
0 0
0 V

]
and V is the (2L− 1)× (2L− 1) matrix whose entries Vk,l are given by (18).

Remark 10: The zeros in the variance simply follow from the fact that γ̂0 − γ0 = 0.

D. Fluctuations of the eigenvalues estimates

To transfer this convergence to qM , M
[
ĉ1 − N1

N , · · · , ĉL − NL

N , ρ̂1 − ρ1, · · · , ρ̂L − ρL
]T

, we shall

use Slutsky’s lemma which is as below:

Lemma 2 (cf. [26]): Let Xn, Yn be sequences of vector or matrix random elements. If Xn converges

in distribution to a random element X, and Yn converges in probability to a constant C, then

Y−1
n Xn

D−→ C−1X

provided that C is invertible.

We will show that wM satisfies the following linear system:

wM = M̂MqM (19)

where we will try to find a matrix M̂M who converges in probability to M which is given by (12).

To this end, let us work out the expression of wk,M , the k-th element of wM .

If k = 1, it is easy to see that w1,M = 0.

For k ≥ 2, wk,M is given by:

wk,M = M

L∑
i=1

(
ĉiρ̂

k−1
i − Ni

N
ρk−1
i

)

= M

L∑
i=1

(
ĉiρ̂

k−1
i − Ni

N
ρ̂k−1
i +

Ni

N
ρ̂k−1
i − Ni

N
ρk−1
i

)

= M

L∑
i=1

((
ĉi −

Ni

N

)
ρ̂k−1
i +

Ni

N
(ρ̂i − ρi)

k−2∑
`=0

ρ̂`iρ
k−2−`
i

)
.

Then define

M̂M =


1 · · · 1 0 · · · 0

ρ̂1 · · · ρ̂L
N1

N · · · NL

N
...

. . . . . . . . . . . .
...

ρ̂2L−1
1 · · · ρ̂2L−1

L
N1

N

∑2L−2
`=0 ρ̂`1ρ

2L−2−`
1 · · · NL

N

∑2L−2
`=0 ρ̂`Lρ

2L−2−`
L

 .
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We can easily check that Eq. (19) is satisfied and M̂M converges in probability to M. It remains to

check that M is invertible. Note that the non-singularity of matrix M has already been established in

Section III, where this property was required to prove the existence of an estimator. As a consequence,

using Slutsky’s lemma, we deduce that:

M̂MqM
D−−−−−−−→

M,N→+∞
N2L(0,W)

and

qM
D−−−−−−−→

M,N→+∞
N2L

(
0,M−1W(M−1)T

)
.

This ends the proof for the fluctuation.

V. SIMULATIONS

In this section, we compare the performance of the proposed estimator with Mestre’s estimator [7] in

Section V-A; we then compare the proposed estimator with the estimator proposed by Bai et al. [9] in

Section V-B. We finally verify by simulations the accuracy of the Gaussian approximation stated by the

CLT in Section V-C.

A. Comparison with Mestre’s estimator - with and without separability

As will be seen below, the separability assumption is compulsory for Mestre’s method to be effective.

If this assumption holds true, a simple clustering procedure enables to estimate the unknown multiplicities

and Mestre’s method outperforms our moment estimator (see Fig. 3).

If, however, the separability assumption is not met, then it is not clear how to directly estimate

(even roughly) the multiplicities; and even if those were known, Mestre’s estimation method has no

methodological foundations (as the estimator is not even consistent in this case!) and the computation of

Mestre’s estimator yields a systematic error (see Fig. 4 for instance).

A final remark is in order with respect to the separability assumption: Although it is easy in simulations

to generate data fulfilling or violating the separability assumption, it is not an easy task, while facing real

data, to decide whether the separability assumption holds true or not. Building such a test remains an

open problem, advocating for our procedure by default - unless any extra argument emerges to support

a separability assumption. Otherwise stated, the non-separability assumption is much more realistic in

practical cases.
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In the first experiment, we consider the case where the separability condition holds true. We assume also

that the covariance matrix has three different eigenvalues (ρ1, ρ2, ρ3) = (1, 3, 7), which are distributed

as : N1

N = 0.5, N2

N = N3

N = 1
4 . The ratio N

M is set to 30
200 = 3

20 . The separability condition being met,

the clusters are well separated so that the multiplicities can be estimated in a heuristic way based on the

difference of the ordered eigenvalues. More precisely, an empirical method for estimating the multiplicities

consists in the following steps:

• Arrange the eigenvalues of the covariance matrix in increasing order: λ̂1 ≤ · · · ,≤ λ̂N .

• Take L indexes i1, · · · , iL satisfying:

i1 = arg max
i

(
λ̂i+1 − λ̂i

)
,

i2 = arg max
i 6=i1

(
λ̂i+1 − λ̂i

)
,

...

iL = arg max
i/∈{i1,··· ,iL−1}

(
λ̂i+1 − λ̂i

)
.

• Arrange these indexes in the increasing order: i[1] ≤ · · · ≤ i[L]. Empirical estimates of the multi-

plicities are thus given by:

N̂1 = i[1]

N̂2 = i[2] − i[1]

...

N̂L = N − i[L−1].

This empirical method has proved to be efficient in the asymptotic regime4.

Fig. 3 compares the performance of the Mestre’s estimator using the aforementioned method for

estimating the multiplicities with that of the proposed estimator, in terms of MSE:

MSE ,
1

1000

1000∑
k=1

3∑
i=1

|ρ̂ki − ρi|2,

In this case, Mestre’s estimator outperforms the proposed estimator. This can be attributed to numerical

difficulties which will be discussed in the next section.

4Applying exact separation results from Bai and Silverstein [27], [28], it can be proved that the estimates of the normalized

multiplicities (N̂k/N) are asymptotically consistent.
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Fig. 3. Experienced MSE with N when N
M

= 3
20

and (ρ1, ρ2, ρ3) = (1, 3, 7)

In the second experiment, we consider the case where the separability condition does not hold. In par-

ticular, we assume that the covariance matrix RN has three different eigenvalues (ρ1, ρ2, ρ3) = (1, 2, 3),

each with the same multiplicity, i.e. N1

N = N2

N = N3

N = 1
3 . We also set the ratio between the dimension of

variables and the number of samples N
M to 3/8, a ratio which is too high for the separability condition to

hold true. We assume for our estimator that the multiplicities are not known, a hypothesis that obviously

cannot be used for Mestre’s estimator. We thus favour Mestre’s estimator by assuming that it knows

perfectly the multiplicities. Fig. 4 compares the obtained results in terms of MSE: for different values

of M and N satisfying a constant ratio c = N/M = 3/8 and 1000 realizations. We note that as M and

N increase, the estimator in [7] exhibits an error floor, underlying the fact that without the separability

assumption, Mestre’s estimators are no longer consistent.

B. Comparison with Bai, Chen and Yao’s method

The estimator proposed in [9] and our proposed estimator are similar at first sight. The main dif-

ference lies in the intermediate quantities which are estimated before estimating the eigenvalues and

their multiplicities. While the technique of [9] is based on the numerical computation of the empirical

moments 1
NTr (YNYH

N )k, our technique rather relies on building consistent estimators of the theoretical

moments 1
NTr Rk

N . This diffence induces important numerical consequences in the computation of the

estimates: In [9], the functional relation between the quantities to be estimated and the empirical moments
1
NTr (YNYH

N )k yields a system of equations whose resolution relies on iterative methods (based for

instance on the functions fsolve or fminsearch in MATLAB) which are extremely slow.
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Fig. 4. Experienced MSE with N when N
M

= 3
8

and (ρ1, ρ2, ρ3) = (1, 2, 3)

On the other hand, the method proposed in this article is based on a bijective system of equations

that links the theoretical moments to the eigenvalues and their multiplicities, whose resolution relies on

simple computations: A matrix inversion and solving a polynomial (see for instance end of Section III).

Simulation results indicate that our algorithm allows a great gain of complexity compared to [9], while

keeping the same level of performance. Execution times for one realization are provided in the following

table I for the same simulation setting as the second experiment. Note that unlike our method which

exhibits low complexity, the complexity of the method of [9] tends to increase exponentially as the

dimensions N and M increase.

N,M Proposed method Bai, Chen and Yao’s method

N = 300, M = 800 0.5s 10.68s

N = 360, M = 960 0.55s 25.57s

N = 420, M = 1120 0.67s 42.62s

TABLE I

EXECUTION TIME TO OBTAIN AN ESTIMATOR FOR ONE REALIZATION (IN SECONDS)

C. Accuracy of the Gaussian approximation

Finally, we verify by simulations the accuracy of the Gaussian approximation. We consider the case

where there are two different eigenvalues ρ1 = 1 and ρ2 = 3 that are uniformly distributed. Unlike the
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Fig. 5. Comparison of empirical against theoretical variances for c1 = c2 = 0.5 and ρ1 = 1 and ρ2 = 3

first experiment, we assume that the multiplicities are not knwon. We represent in Fig 5 the histogram

for ρ̂1 and ρ̂2 when N = 60 and M = 120. We also represent in red line, the corresponding Gaussian

distribution. We note that as it was predicted by our derived results, the histogram is similar to that of a

Gaussian random variable.

VI. CONCLUSION

The present work is a theoretical contribution to the important problem of estimating the covariance

matrices of large dimensional data. Two important assumptions (separability condition, exact knowledge

of the multiplicity) have been in particular relaxed with respect to previous works. From a numerical

point of view, it should be noticed however, that the situation is more contrasted: If the eigenvalues

of RN are far away from each other, then only the largest eigenvalue is well-estimated because in the

expression of the moments, the term corresponding to the largest eigenvalue prevails. On the other hand,

if the eigenvalues are too close to each other, matrix Γ is ill-conditioned, thus enlarging the induced

error. These phenomenas are inherent to the moment method, and preliminary studies show that using

trigonometric moments might help mitigating these numerical problems.
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APPENDIX A

PROOF OF LEMMA 1

By Cauchy’s formula, write:

L∑
k=1

Nk

N
ρ`k =

1

2iπN

∮
Γ

L∑
r=1

Nrω
`

ω − ρr
dω,

where Γ is a counterclockwise oriented contour that surrounds all the eigenvalues {ρ1, · · · , ρL}. Per-

forming the changing variable ω = − 1
mN (z) in the same manner as in [7], we get:

L∑
k=1

Nk

N
ρ`k =

(−1)`+1

2iπN

∮
C

L∑
r=1

Nrm
′
N (z)dz

m`+1
N (z) (ρrmN (z) + 1)

,

where the contour C is counterclockwise oriented which contains the whole support S.

From (3), we can establish that:

mN (z) = − 1

Nz

L∑
r=1

Nr

1 + ρrmN (z)
,

thus yielding:
L∑
k=1

Nk

N
ρ`k =

(−1)`

2iπ

∮
C

zm′N (z)

m`+1
N (z)

mN (z)dz. (20)

Plugging the relation:

mN (z) =
M

N
mN (z) +

M(1− N
M )

Nz

into (20), we obtain:

L∑
k=1

Nk

N
ρ`k =

(−1)`

2iπ

∮
C

Mzm′N (z)dz

Nm`
N (z)

+
(−1)`

2iπ

∮
C

M(1− N
M )m′N (z)

Nm`+1
N (z)

dz. (21)

Since m′N (z)

m`+1
N (z)

is the derivative of − 1
`m`

N (z)
,∮
C

m′N (z)

m`+1
N (z)

dz = 0.

The second term on the right hand side of (21) is then equal to zero. It remains thus to deal with∮
C

zm′N (z)
m`

N (z)
. If ` ≥ 2, by integration by parts, we obtain:∮

C

zm′N (z)

m`
N (z)

dz =
1

`− 1

∮
C

dz

m`−1
N (z)

.

We thus obtain:
L∑
k=1

Nk

N
ρ`k =

M(−1)`

2iπN(`− 1)

∮
C

dz

m`−1
N (z)

. (22)
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This proves that the theoretical moments admit the following integral representation:

γ1 = − M

2N iπ

∮
C

zm′N (z)

mN (z)
dz

γl =
M(−1)`

2iN(`− 1)

∮
C

dz

ml−1
N (z)

, 2 ≤ ` ≤ 2L− 1.

Finally, we show that consistent estimates of γi can be obtained by substituting the unknown term mN (z)

by its asymptotic equivalent mR̂N
(z). Let γ̂0, · · · , γ̂2L−1 the real quantities given by:

γ̂0 = 1,

γ̂1 = − M
2N iπ

∮
C

zm′
R̂N

(z)

mR̂N
(z) dz,

...

γ̂2L−1 = M(−1)2L−1

2N(2L−1)iπ

∮
C

dz
m2L−1

R̂N
(z)
.

Then, by the dominated convergence theorem and the fact that with probability one [24, Section 9.12],

for all N,M large enough,

inf
z∈C
|mN (z)| > 0

and

inf
z∈C
|mR̂N

(z)| > 0,

one obtains: for all k ≥ 2, ∣∣∣∣∣∣
∫
C

dz

mk−1
N (z)

−
∫
C

dz

mk−1

R̂N

(z)

∣∣∣∣∣∣ a.s.−−→ 0

and ∣∣∣∣∣
∫
C

m′
R̂N

(z)dz

mR̂N
(z)

−
∫
C

m′N (z)dz

mN (z)

∣∣∣∣∣ a.s.−−→ 0.

Consequently:

γ̂i − γi
a.s.−−−−−−→

N,M→∞
0.

APPENDIX B

CALCULATION OF THE VARIANCE

In this section, we will show the calculations of the variance matrix V. The computation of V1,1 has

been carried out in [15] where it was shown that:

V1,1 = − 1

4π2c2

∮
C1

∮
C2

[
m′(z1)m′(z2)

(m(z1)−m(z2))2 −
1

(z1 − z2)2

]
1

m(z1)m(z2)
dz1dz2,
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with C1 and C2 defined in the theorem. Using the fact that infz∈C |m(z)| > 0 together with Fubini’s

theorem, the quantity Vk,` for k ≥ 2, ` ≥ 2, becomes:

Vk,` = −(−1)k+`

4π2c2

∮
C1

∮
C2

E [X(z1)X(z2)]m−k(z1)m−`(z2)dz1dz2.

Substituting E [X(z1)X(z2)] by κ(z1, z2), we obtain:

Vk,` = −(−1)k+`

4π2c2

∮
C1

∮
C2

[
m′(z1)m′(z2)

(m(z1)−m(z2))2 −
1

(z1 − z2)2

]
1

mk(z1)m`(z2)
dz1dz2.

Finally, it remains to compute Vk,1. Expanding Υ(X,Y,m,m′) and Φk(X,m), we obtain:

Vk,1 = −(−1)k+1

4π2c2

∮
C1

∮
C2

[
z2

m(z2)mk(z1)
E
[
X(z1)X ′(z2)

]
dz1dz2 −

m′(z2)

m(z2)2mk(z1)
E [X(z1)X(z2)]

]
dz1dz2

= −(−1)k+1

4π2c2

(∮
C1

∮
C2

z2∂2κ(z1, z2)

m(z2)m(z1)k
dz1dz2 −

∮
C1

∮
C2

m′(z2)κ(z1, z2)

m2(z2)mk(z1)
dz1dz2

)
.

By integration by parts, we obtain:∮
C2

z2∂2κ(z1, z2)

m(z2)mk(z1)
dz2 = −

∮
C2

κ(z1, z2)

m(z2)mk(z1)
dz2 +

∮
C2

m′(z2)κ(z1, z2)

m(z2)2mk(z1)
dz2.

Hence,

Vk,1 = −(−1)k+1

4π2c2

∮
C1

∮
C2

κ(z1, z2)dz1dz2

m(z2)mk(z1)
.

This extends the expression of Vk,` for any k, ` ∈ {1, · · · , L− 1}, thus yielding:

Vk,` = −(−1)k+`

4π2c2

∮
C1

∮
C2

[
m′(z1)m′(z2)

(m(z1)−m(z2))2 −
1

(z1 − z2)2

]
1

mk(z1)m`(z2)
dz1dz2. (23)
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