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Abstract

The problem we are concerned with enters the general scope of inverse problems; that is, from
the observation of a random process, we want to infer general characteristics of that process. In
the present telecommunication setting, the problem consists in inferring signal characteristics
from noisy observations. Specifically, we study here the case where a set of K wireless devices
simultaneously transmit signals in the open air; to be very general, device k is assumed to be
composed of a number nk of antennas and transmits with power Pk. The sum signal is captured
by a set of N sensors, which aim at reliably inferring (i) the total number K of transmit sources,
(ii) the respective powers P1, . . . , PK of the K signal sources.

The objective of this document is to provide recent results from the field of random matrix
theory which enable (i) the derivation of solutions to such inverse problems when N , n1, . . . , nK

are large, (ii) the derivation of computationally cheap practical algorithms. These results rely
on inference methods of the (hidden) eigenvalue distribution of signal source matrices from the
eigenvalue distribution of the observed received signal matrix. These methods, mathematically
easy to derive when the matrix dimensions grow large, are referred to as eigen-inference methods.

In order to perform eigen-inference, we will successively consider moment-based approaches
in Chapter 1 as well as analytic Stieltjes transform-based approaches in Chapter 2.



Chapter 1

Moment-based methods

Consider a set of n independent and identically distributed N -dimensional complex vectors
y1, . . . ,yn ∈ CN , such that E[y1] = 0 and E[y1yH

1 ] = T. It is a classical problem to try to
determine the eigenvalue distribution of T from the sole realization of y1, . . . ,yn. This is in
particular the case if T is diagonal for instance. Stacking the vectors y1, . . . ,yn in the N × n
matrix Y, we can model the observation as

Y = T
1
2 X (1.1)

where X ∈ CN×n has independent and identically distributed (i.i.d.) entries.

The eigen-inference problem here consists in retrieving the eigenvalue distribution of T from
the matrix Y. It turns out that an often suboptimal but extremely efficient way to infer the
eigenvalues of T is to consider the eigenvalues of the Gram matrix YYH associated to Y, instead
of Y itself. In this chapter, we introduce methods approaches, which enable the identification of
the eigenvalue distribution of T through its successive moments, as a function of the successive
moments of the eigenvalue distribution of YYH.

1.1 Free probability

1.1.1 Basics of free probability

In [1], Voiculescu generalizes the classical mathematical field of probability theory, in which
random variables are classically reals or complex scalars, to general-purpose ∗-algebras of random
variables. A case of particular interest to us is the non-commutative ∗-algebras of asymptotically
large Hermitian random matrices.

Voiculescu defines its generalized probability space as a pair (A, φ) of a given ∗-algebra A

and an expectation operator φ such that φ(1) = 1. In the case of random Hermitian matrices,
an operator φ of practical interest is the normalized expected trace operator, i.e.

φ(A) ∆= lim
N→∞

1
N

E[tr(AN )] (1.2)

where {AN ∈ CN×N} is a series of matrices converging in spectrum to the hypothetical infinite-
size matrix A.
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6 CHAPTER 1. MOMENT-BASED METHODS

In the same way as there exists an independence notion in scalar random variables, Voiculescu
defines the so-called notion of freeness.

Definition 1 A family of unital ∗-subalgebras (Ai)i∈I is called a free family if, for all n,
Aj ∈ Aij

i1 6= i2, . . . , in−1 6= in
φ(A1) = . . . = φ(An) = 0

 ⇒ φ(A1 . . . An) = 0

We will say that the variables A1, . . . , An are free if the underlying algebras they generate form
a free family.

Note that the condition for freeness is tighter than the condition for independence. As such,
two (asymptotically large) Hermitian random matrices A and B with independent entries are
not necessarily free. The additional condition for A and B to be free is that the eigenvectors of
A and B are distributed in directions that are totally disconnected.

Here are some classical examples of families of free random matrices

• (A,UBUH) for independent A, B, U with U a unitary (Haar distributed) matrix

• the family of Haar distributed matrices

• the family of random Gaussian matrices

• a Haar or Gaussian matrix and a deterministic matrix

Most of the matrices that do not enter this list are not free. If so, in the same way that little
can be said of non-independent random variables in classical probability theory, very little can
be said about random matrices that are not free.

Because of the non-commutativity of free random variables, the expectation relations of
products of free random variables are different from those derived in classical probability theory.
In particular, for A, B free random variables, we have that

φ(AB) = φ(A)φ(B)

φ(ABAB) = φ(A2)φ(B)2 + φ(A)2φ(B2)− φ(A)2φ(B)2

φ(AB2A) = φ(A2)φ(B2)

It appears in particular that the second relation here does not exist in classical probability
theory. In the next section, we exhibit the relation between free probability and eigenvalue
distribution.

1.1.2 Free probability and eigenvalue distributions

The free probability setting applied to random matrices is particularly suited to treat direct
problems (for which we want to evaluate the eigenvalue distribution of the output of a random
process, given its input) as well as inverse problems (for which we want to perform just the
opposite) involving large dimensional random matrices.
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The key here is to observe that, for a given Hermitian matrix A, φ(Ak), referred to as the
Kth free order moment of A, reads

φ(Ak) = lim
N→∞

1
N

E[tr(Ak
N )] (1.3)

= lim
N→∞

∫
akdFAN (a) (1.4)

with FAN the distribution function of the eigenvalues of AN .

Taking A, B two free random variables, it is then possible to evaluate, for instance,

φ(AB) = φ(A)φ(B) (1.5)

=
[

lim
N→∞

∫
adFAN (a)

]
×

[
lim

N→∞

∫
bdFBN (b)

]
(1.6)

=
[∫

adFA(a)
]
×

[∫
bdFB(b)

]
(1.7)

where FA and FB are the limiting eigenvalue distributions of AN and BN . We can then derive
the first moment of the product of A and B; but we can also write

φ(A) =
φ(AB)
φ(B)

(1.8)

=
[∫

cdFAB(c)
]
×

[∫
bdFB(b)

]−1

(1.9)

which gives the first moment of A in the inverse problem of recovering A from AB.

We will see in what follows that, in a similar fashion, all free moments of products of A and
B matrices can be derived (direct problems), as well as all free moments of A given AB and B
(inverse problems).

For practical applications though, matrices are never of infinite size. Still, it turns out that,
for matrix sizes of practical usage (matrices larger than 8×8 are often considered large enough),
the above relations can be blindly applied and are good approximations of the true moments
of the finite-size random matrices. However, the relations (1.3) are increasingly complex for
higher moment orders. Fortunately, combinatorics approaches exist that allow for a systematic
derivation of the successive moments.

1.2 Combinatorics methods

In classical probability theory, if A and B are independent, the moments of A+B are functions
of the moments of A and those of B. In particular, for A, B independent,

ck(A + B) = ck(A) + ck(B) (1.10)

with ck(X) the cumulants of X (polynomial functions of the moments mk of X). The cumulants
cn are connected to the moments mn through formulas invoking partitions,

mn =
∑

π∈P(n)

∏
V ∈π

c|V | (1.11)
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In free probability theory, if A, B are Hermitian matrices, there exists a relationship between
the eigenvalue distribution moments Mk(A+B) = φ((A+B)k) of the sum of A and B and the
eigenvalue distribution moments of A and B. This involves the definition of free cumulants Ck,
interpreted by Speicher [2] in terms of non-crossing partitions, as

Mn =
∑

π∈NC(n)

∏
V ∈π

C|V | (1.12)

with NC(n) the set of non-crossing partitions of {1, . . . , n}. One element of the set of NC(8) is
depicted in Figure 1.1. With Mk = Mk(A), Ck = Ck(A), we then have relations of the type,

C1 = M1

C2 = M2 −M2
1

C3 = M3 − 3M1M2 + 2M2
1

As in classical probability theory, those cumulants verify

Ck(A + B) = Ck(A) + Ck(B) (1.13)

Equations (1.12) and (1.13) together allow to evaluate all moments of sums of free random
matrices. The same type of derivation operates for products of such free matrices. For these,
we have the cumulant-to-moment formula

Mn(AB) =
∑

(π1,π2)∈NC(n)

∏
V1∈π1
V2∈π2

C|V1|(A)C|V2|(B) (1.14)

As a consequence, thanks to (1.12), (1.13) and (1.14), all multinomial forms of matrices can
be treated. The eigenvalue distribution of such matrices can then be recovered. Now observe
also that the moment relations are mere polynomials and that the order k free moment of (the
eigenvalue distribution of) a sum/product of matrices is given as a function of all order free
moments up to k of the (eigenvalue distribution of the) underlying matrices. The polynomial
relations can then be commuted to obtain the free moments of the underlying matrices as a
function of the free moments of their sum/product. This means that the inverse problems of
interest can be easily treated through moments computation; the treatment is made even easier
and computationally cheap by the fact that only polynomials have to be computed.

As an example, consider the product DXXH of a deterministic matrix D ∈ Cn×n and the
Wishart matrix XXH where X ∈ Cn×N has i.i.d. complex Gaussian entries with zero mean and
variance 1/N . Denoting Dk = φ(Dk) and Mk = φ((DXXH)k), the combinatorial calculus can
be automatically processed in software and, with c = lim n/N , the output is

M1 = D1 (1.15)

M2 = D2 + cD2
1 (1.16)

M3 = D3 + 3cD1D2 + c2D3
1 (1.17)

M4 = D4 + 2cD2
2 + 4cD3D1 + 6c2D2D1 + c3D4

1 (1.18)
... =

... (1.19)
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Figure 1.1: Non-crossing partition π = {{1, 3, 4}, {2}, {5, 6, 7}, {8}} of NC(8).

These relations can be iteratively inverted so to obtain the solution of the inverse problem
that allows one to recover the free moments of D from those of DXXH. The procedure that
consists in obtaining the moments of D from those of DXXH is referred to as free (product)
deconvolution.

However, these methods do not allow to treat all problems of practical interest in wire-
less communications. In particular, the widely spread information plus noise model cannot be
processed here. As a consequence, we need extra tools to process the case

YYH = (R + X)(R + X)H (1.20)

where R ∈ Cn×N is deterministic and X ∈ Cn×N is Gaussian. This is the subject of the
subsequent section.

1.3 Free deconvolution of the information plus noise model

In [3], the information plus noise model is processed in the free probability scheme described
above. Specifically, we have the following result

Theorem 1 Let XN ∈ CN×n be a random matrix with i.i.d. Gaussian entries of zero mean and
unit variance, and RN be a (non-necessarily random) matrix such that the eigenvalue distribution
of ΓN = 1

nRNRH
N converges weakly and almost surely to the compactly supported probability

distribution µΓ, as n, N → ∞ with limit ratio N/n → c > 0. Then the eigenvalue distribution
of

BN =
1
n

(RN + σXN ) (RN + σXN )H

converges weakly and almost surely to the compact supported measure µB such that

µB = ((µΓ � µc) � δσ2) � µc (1.21)

with µc the probability distribution with distribution function the Marc̆enko-Pastur law, and δσ2

the probability distribution of a single mass in σ2. Equation (1.21) is the free convolution of the
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information plus noise model. This can be reverted as

µΓ = ((µB � µc) � δσ2) � µc

which is the free deconvolution of the information plus noise model.

In the theorem above, the operators ‘�’, ‘�’, ‘�’ and ‘�’ stand respectively for the ad-
ditive free convolution and deconvolution and the product free convolution and deconvolution
operations; for instance, in terms of moments, when the eigenvalue distribution of A and B is
compactly supported, µA �µB is equivalent to Ck(A+B) = Ck(A)+Ck(B) for all k. Therefore
(1) can be translated in terms of moments and allows one to retrieve all moments of RRH as a
function of the moments of BN .

Remark 1 Incidentally, the operations ‘· � µc’ and ‘· � µc’, with the Marc̆enko-Pastur law
(i.e. the asymptotic eigenvalue distribution of Wishart matrix XXH), correspond respectively, in
moment terms, as a cumulant-to-moment and a moment-to-cumulant transform, which further
simplifies the free deconvolution operation.

1.4 Application to power estimation

Consider the uplink orthogonal CDMA scenario constituted of n uplink transmitters and a base
station. Transmitter k has power Pk, spreading code wk ∈ CN (N is the chip length) and sends
symbol s

(l)
k at time l. Denoting W = [w1, . . . ,wn] ∈ CN×n the orthogonal CDMA code matrix,

σn(l) ∈ CN the AWGN noise at time l, the base station receives at time l the signal y(l) given
by

y(l) =
n∑

k=1

wk

√
Pks

(l)
k + σn(l) (1.22)

= WP
1
2 s(l) + σn(l) (1.23)

with P = diag(P1, . . . , Pn) and s(l) = (s(l)
1 , . . . , s

(l)
n )T.

Concatenating the received data for l = 1, . . . , L into Y = [y(1), . . . ,y(L)], we finally have
the model

Y = WP
1
2 S + σN (1.24)

with S = [s(1), . . . , s(L)] and N = [n(1, . . . ,n(L)].

In this model, W ∈ CN×n, n ≤ N is such that WHW = In, N ∈ CN×L has Gaussian entries
with zero mean and variance 1, S ∈ Cn×L has Gaussian entries with zero mean and variance 1/L.
Then, as the system dimensions grow large, with constant ratio, we have, with BN = 1

LYYH,
from Theorem 1

µ
WP

1
2 SSHP

1
2 WH

= ((µBN
� µc) � δσ2) � µc (1.25)

where c = N/L.

Now, since WHW = In, we have straightforwardly that µ
WP

1
2 SSHP

1
2 WH

= µPSSH .
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Applying a further product deconvolution, we have

µP = µPSSH � µSSH (1.26)

Hence finally
µP = ((µBN

� µc) � δσ2) � µc � µc′ (1.27)

with c′ = n/L.

This equality can then be translated in terms of moments, evaluated in software, given the
equations above. If now the n users are grouped in a finite number K of groups with same
transmit power, each group composed of n/K users, then the diagonal matrix P is composed of
exactly K distinct values. From the first K estimated moments p̂k of µP, it is then possible to
solve the K equation

1
K

(
P̂1 + P̂2 + . . . + P̂K

)
= p̂1 (1.28)

1
K

(
P̂ 2

1 + P̂ 2
2 + . . . + P̂ 2

K

)
= p̂2 (1.29)

. . . = . . . (1.30)
1
K

(
P̂K

1 + P̂K
2 + . . . + P̂K

K

)
= p̂K (1.31)

the unique solution P̂1, . . . , P̂K of which is obtained from the Newton-Girard formulas [5]. This
allows one to get an estimate P̂1, . . . , P̂K of the K distinct transmit powers.

Note however that we need to use exactly K estimated moments here to obtain an estimate
of P1, . . . , PK . Relying on classical maximum likelihood estimators or minimum mean square
error estimators, it is possible, but at a highly more expensive computational price, to obtain
an estimate of P1, . . . , PK based on a larger range of moments. For instance, P̂1, . . . , P̂K can be
given by

(P̂1, . . . , P̂K) = arg min
(P̃1,...,P̃K)

(b̃1 − b1, . . . , b̃M − bM )T(b̃1 − b1, . . . , b̃M − bM ) (1.32)

with b̃k the estimated moment of BN when P = diag(P̃1, . . . , P̃K).

1.5 Conclusion

Thanks to the free probability theory, it is possible to obtain computationally cheap expressions
that link the free moments of sums and products of free random matrices. The extension of
sums and products to the information plus noise model is shown to perform in a similar fashion,
based again on free convolution operations on the moments of the underlying matrix eigenvalue
distributions. This generates a general framework for determining the eigenvalue distribution of
a large range of random matrices expressed as polynomial functions of Gaussian Gaussian and
deterministic matrices.

However, the moment approach has some limitations. First, the theorems derived here are
used in practice in the finite N dimension, for which equalities are turned into approximations.
Typically, higher order moments are very badly approximated compared to smaller moments,
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but there is no trivial way to error distribution (which is by the way linked to the parameters we
wish to estimate); for instance, in determining the moments of P from BN in the section above,
be there a central limit theorem for the estimated moments, (1.33) above must be replaced by

(P̂1, . . . , P̂K) = arg min
(P̃1,...,P̃K)

(b̃1 − b1, . . . , b̃M − bM )TC−1(b̃1 − b1, . . . , b̃M − bM ) (1.33)

where C is the covariance matrix of the estimated moments. This matrix is however dependent
on P̃1, . . . , P̃K , so it varies constantly along the search for the optimal P̂1, . . . , P̂K . This however
increases immensely the complexity of the estimator.

Also, note importantly that the method derived above is only valid for a very limited class
of matrices, i.e. Gaussian matrices, unitary matrices and deterministic matrices. Any other
matrix with additional structure requires a whole new setup. Finally, moment methods only
work when the moments actually determine the eigenvalue distribution. If, for instance, the
support of the eigenvalue distribution under study is not compact, then it is very likely that
Carleman’s condition is not met (Appendix B in [6]) and then the moments do not determine
uniquely the underlying distribution. In this case, even if the above methods are extended to
more structured matrices, they remain useless. In the next section, we develop an alternative
approach through the Stieltjes transform of the eigenvalue distribution.



Chapter 2

Analytic approaches

In this section, we discuss a very different approach to the inverse problem involving large
random matrices. This approach will be shown to be more general than the moment-based
approach in the sense that (i) it covers a larger range of random matrices, including general
purpose matrices with i.i.d. entries (i.e. not necessarily Gaussian), (ii) it does really only
on independence of random matrices, therefore releasing freeness assumptions and (iii) it does
not require strong assumptions on the moments, such as the Carleman condition discussed in
Chapter 1.

However, we shall see that the mathematics involved in this quite novel theory are more
involved, to the point that model generalizations are not straightforward. Also, we shall see
that a strong condition is requirement on the parameters to be estimated so that the analytic
approach is feasible; this condition will be referred to as the cluster separability condition.

2.1 Sample covariance matrices with few distinct eigenvalues

We consider here the sample covariance matrix model, i.e. we study the data matrix Y ∈ Cn×N

that is the concatenation of independent columns y1, . . . ,yN ∈ Cn with covariance matrix
T = E[y1yH

1 ] ∈ Cn×n. We assume that Tn has a finite number of distinct eigenvalues, which we
wish to recover. Prior to the proper estimation of the eigenvalues of Tn, we need to study the
asymptotic spectrum of 1

N YYH. For simplicity in the following derivations, we shall consider
the matrix Bn = 1

nYHY instead of 1
N YYH, which has the same eigenvalue distribution but for

a mass in zero.

Since the yi’s are drawn independently, Y can be modelled as

Y = T
1
2
nXH

n (2.1)

where XH
n ∈ Cn×N has independent columns with identically distributed entries.

We first introduce the Stieltjes transform of a distribution F as follows,

Definition 2 Let F be a distribution function. For z ∈ C+, the Stieltjes transform m(z) of F
is defined as

m(z) =
∫

1
t− z

dF (t) (2.2)

13
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For all a < b ∈ R, we then have the inverse Stieltjes transform

F ([a, b]) =
1
π

lim
y→0+

∫ b

a
=[m(x + iy)] (2.3)

Therefore, through the inversion formula (2.3), the Stieltjes transform mF uniquely deter-
mines the distribution F ; in other words, it is equivalent to study the probability distribution
F of some random process or to study its Stieltjes transform mF .

Back to our previous model, from [6] and [7], we now have the following result

Theorem 2 Let Xn ∈ CN×n have complex independent entries with zero mean and unit vari-
ance and Tn ∈ RN×N be Hermitian with eigenvalue distribution converging almost surely to H,
as N → ∞. Let Bn = 1

nXnTnXH
n . Then, under some additional mild assumptions on Xn, as

n, N → ∞, N/n → c0 > 0, almost surely, the eigenvalue distribution of Bn converges weakly
to F with Stieltjes transform mF (z), z ∈ C+, being the unique solution with positive imaginary
part of

z = − 1
mF (z)

+
1
c0

∫
t

1 + tmF (z)
dH(t) (2.4)

Theorem 2 therefore gives access to the almost sure limiting distribution F of the eigenvalues
of Bn through an expression of the Stieltjes transform mF . In the particular case where the
population covariance matrix Tn has a finite number K of distinct eigenvalues, we then have
that, for z ∈ C+, mF (z) is the unique solution with positive imaginary part of

z = − 1
mF (z)

+
K∑

k=1

1
ck

Tk

1 + TkmF (z)
(2.5)

with T1, . . . , TK the distinct eigenvalues of Tn and ck = lim N/nk, nk the multiplicity of Tk.

The asymptotic spectrum of F in the latter case has a peculiar behaviour, namely, for ck large
enough, the spectrum of F is divided into up to K clusters. This is depicted in Figures 2.1 and
2.2 in the case when T1 = 1, T2 = 3 and T3 is alternatively 10 and 5, when c0 = lim N/n = 10.
Note that, when subsequent Ti’s are too close, subsequent clusters merge into a single cluster.
The inference scheme proposed hereafter requires asymptotic separation of these clusters. We
therefore need to identify a rule that implies this feature. In [8], we derive necessary and sufficient
conditions for asymptotic spectrum separability; the conditions are merely slight modifications
from those proposed in [9] and come as follow

Proposition 1 The cluster corresponding to Tk is associated to Tk and Tk only if and only if
the following condition is fulfilled

max

{
K∑

i=r

1
cr

(Trmk)
2

(1 + Trmk)
2 ,

K∑
r=1

1
cr

(Trmk+1)
2

(1 + Trmk+1)
2

}
< 1 (2.6)

where m1 < . . . < mK are the K reals solutions to the equation in m,

K∑
r=1

1
cr

(Trm)3

(1 + Trm)3
= 1 (2.7)

and we take the convention mK+1 = ∞.
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Figure 2.1: Empirical and asymptotic eigenvalue distribution of 1
M YYH when P has three

distinct entries T1 = 1, P2 = 3, P3 = 10, n1 = n2 = n3, c0 = 10. Empirical test: n = 60.

If the condition is fulfilled, we can then give a consistent estimate of Tk, i.e. we can find T̂k,
such that

T̂k − Tk
a.s.−→ 0 (2.8)

as N,n1, . . . , nK → ∞ and 0 < lim N/nk = ck < ∞. Before performing this estimation,
let us explore further the condition given by Proposition 1. It is clear that a scaling of all
Ti’s by a constant value does not impact the equations and therefore the condition (2.6) only
depends on the ratios T2/T1, . . . , TK/T1 and on the values c1, . . . , cK . Assume for instance that
c1 = . . . = cK , and let us observe the cases K = 2 and K = 3. For K = 2, i.e. the matrix
T is formed only of 2 distrinct eigenvalues, then both eigenvalues can be inferred under the
condition that c0 is above the plot in Figure 2.3. In the case K = 3, then, for c0 = 10, we
have the regions of decidability for the 3 eigenvalues given by Figure 2.4. Note in particular
that the case T1 = 1, T2 = 3, T3 = 10 is clearly inside the detectability region, while the triplet
T1 = 1, T2 = 3, T3 = 5 is not, which confirms the tendency observed in Figure 2.1 and Figure
2.2.

In the following, we assume that the condition of cluster separability given by proposition 1
is always fulfilled for the eigenvalue Tk. We shall then describe the method to give a consistent
estimate of Tk, as N,n1, . . . , nK grow large.

2.2 Consistent estimation of the population eigenvalues

The main reason for the necessity of the separability condition originates from complex analysis.
If Ck is some contour in the complex plane such that Ck revolves around Tk and Tk only, i.e. Ti,
i 6= k, is not in the surface described by the contour, then we have the following classical result
from complex analysis [10],

Tk = ck
1

2πi

∮
Ck

1
ck

ω

Tk − ω
dω (2.9)
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M YYH when P has three
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Figure 2.4: Subset of (T1, T2, T3) that fulfills condition (2.6) K = 3, c1 = c2 = c3, for c0 = 10.

Since the other Ti’s, i 6= k, are not inside the contour, this can be further expressed as

Tk = ck
1

2πi

∮
Ck

K∑
r=1

1
cr

ω

Tr − ω
dω (2.10)

in which we recognize an expression close to the Stieltjes transform of the eigenvalue distribution
of Tn. It now suffices to identify a satisfying integration contour Ck. This integration contour
is in fact taken to be −1/mF (Γk) for Γk revolving around the cluster corresponding to Pk in
the limiting spectrum F of Bn. It turns out that, for any such choice of Γk, Ck = −1/mF (Γk)
revolves around Pk and Pk only, which is exactly what we want. Now, from [7], as N,n →∞,

mF (z)− m̂(z) a.s.−→ 0 (2.11)

where m̂(z) is the empirical Stieltjes transform of Bn, i.e.

m̂(z) =
1
N

N∑
i=1

1
λi − z

(2.12)

with λ1, . . . , λN the eigenvalues of Bn. We also have that the number of eigenvalues in the
cluster corresponding to Pk in the spectrum of Bn is exactly equal to nk as N grows large. This
is referred to as the exact separation property [11].

Verifying that m(z) is bounded over Γk, we have that

Tk − T̂k
a.s.−→ 0 (2.13)

where

T̂k = ck
1

2πi

∮
Ĉk

K∑
r=1

1
cr

ω

Tr − ω
dω (2.14)

where Ĉk is now the image of −1/m̂(Γk). Using the change of variable ω = −1/m̂(z), the calculus
of (2.14) is then a mere residue calculus. From the exact separation property, the values inside
the integration contour can be exactly determined.



18 CHAPTER 2. ANALYTIC APPROACHES

Under separability condition, we then have our main result, originating from the work of
Mestre in [9], as follows,

Theorem 3 Let Bn ∈ CN×N be defined as in Theorem 2, and λ = (λ1, . . . , λN ), λ1 < . . . < λN ,
be the vector of the ordered eigenvalues of Bn. Further assume that the limiting ratios c1, . . . , cK

and Tn are such that the asymptotic spectrum separability condition is fulfilled for the eigenvalue
Tk. Then, as N , n, grow large, we have

P̂k − Pk
a.s.−→ 0 (2.15)

where the estimate P̂k is given by

P̂k =
N

nk

∑
i∈Nk

(λi − µi) (2.16)

in which Nk = {N−
∑K

i=k ni+1, . . . , N−
∑K

i=k+1 ni} is the set of indexes matching the cluster cor-

responding to Pk and (µ1, . . . , µN ) are the ordered eigenvalues of the matrix diag(λ)− 1
M

√
λ
√

λ
T
.

In fact, (µ1, . . . , µN ) are the zeros of the Stieltjes transform of the eigenvalue distribution of
Bn. This result is more interesting than the moment approach for the following reasons:

• an estimate of the eigenvalues themselves is given, instead of results on the moments of
the total eigenvalue distribution.

• it is possible to isolate the estimation of individual eigenvalues, while the moment approach
requires a joint estimation of all eigenvalues necessarily.

• the approach relies on the whole distribution of the eigenvalues of T and Bn, or equivalently
on their Stieltjes transform. As a consequence, more information than that of the first
moments is used. Moment-based approach would be equivalent only if a large number of
moments are computed. However, we already discussed the high computational complexity
of such method.

• the practical method, that can be derived from Theorem 3 is computationally cheap.

However, while the moment-based methods are not constrained by spectrum separability,
it is not possible to estimate eigenvalues that are too close to one another with the Stieltjes
transform approach; see again Figures 2.3 and 2.4. If the constraint is not satisfied, the blind
application of Theorem 3 on the empirical eigenvalues found in a cluster returns an estimate of
the averaged value of the Ti’s associated to this cluster. For practical purposes, as discussed
below, this might be good enough.

The purpose of the next section is to apply the eigen-inference method derived in this section
to the cognitive detection of the power of transmit sources.

2.3 Application to power inference in orthogonal CDMA net-
works

Let us consider the CDMA network of Chapter 1, with the model

Y = WP
1
2 S + σN (2.17)
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But now, instead of taking W ∈ CN×n, N ≥ n, we expand W into a unitary N × N matrix,
and we therefore adapt P to an N ×N matrix with additional zero diagonal entries and S into
an N × L matrix with i.i.d. entries of zero mean and variance 1/L. The model is then strictly
equivalent to that of Chapter 1.

We recall now that P is composed of a finite number K of distinct eigenvalues, plus now
additional null eigenvalues. This translates the fact that the different users are grouped into
cellular clusters. We wish, as previously, to estimate the distinct transmit powers P1, . . . , PK .

Note that the model of YHY can now be rewritten in the form

YHY =
[
X N

] [
P

1
2 W

σIN

] [
WP

1
2 σIN

] [
X
N

]
(2.18)

where the eigenvalue distribution of the sample covariance matrix
[
P

1
2 WH

σIN

] [
WP

1
2 σIN

]
is

the same as that of the matrix WPWH + σ2IN up to a mass in zero. From the fact that W is
unitary, we then have that the eigenvalues of WPWH +σ2IN are also those of P+σ2IN , which
are then those of P translated by σ2. It is then possible, from the above scheme to estimate the
values of P1, P2, . . . , PK , assuming that two subsequent values of Pi + σ2 and σ2 satisfy the
condition given in 1.

Note here that the relative distance

(Pi + σ2)− σ2

Pi + σ2
(2.19)

between the eigenvalue Pi + σ2 and the eigenvalue σ2 becomes increasingly small as σ2 grows
large. Intuitively, this translates into the fact that the cluster corresponding to the eigenvalue
σ2 will ultimately melt into the cluster associated to Pi + σ2 as σ2 grows large (for fixed c0).
The order of magnitude of σ2 such that no cluster overlapping happens is Pi. As a consequence,
the Stieltjes transform method is only capable of estimating the power Pi provided that σ2 is
of order of magnitude smaller than Pi; of course, a more precise application of the separability
condition is demanded to identify the exact threshold where Pi can be estimated reliably. Note
also that, not only does the cluster associated to σ2 is prone to overlap the cluster of Pi + σ2

but also the subsequent clusters of Pi−1 + σ2 and Pi+1 + σ2 have relative distance with respect
to Pi + σ2 going small as σ2 grows large. Consequently, depending on c0, even smaller σ2 can
be large enough to break the separability requirement.

2.4 Conclusion

The analytical Stieltjes transform-based method is then more suited than the moment-based
approach when it comes to infer the individual eigenvalues of the population matrix in a sample
covariance matrix model. Moreover, the final results derived here lead to computationally cheap
algorithms, which are already optimal, while moment-based approaches are only optimal when
an infinite number of moments is evaluated. However, the constraint on the cluster separability
is a strong limitation of the method. This limitation is somewhat controlled by the fact that we
introduced here a necessary and sufficient condition to ensure spectrum separability. In fine, this
condition allows the experimenter to define the ratio c0 necessary to ensure a given detection
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sensitivity. Nonetheless, for practical purposes, it might often turn out that the experimenter
does not have the luxury to increase the ratio c0 up to the desired level. In this case, alternative
solutions must be found, which we discuss in the next chapter.



Chapter 3

Conclusion and further studies

3.1 Conclusion

It appears through the first steps in this study that both separate fields of random matrix
theory, free probability and the Stieltjes transform approaches, are capable of coping with inverse
problems that implicate large dimensional matrix models. It turns out that the now well-
documented moment approaches can still be exploited and is open to further contributions, as
exemplified by the recent extension to the information plus noise model [3], [4]. A large range
of models of sums products and information plus noise-type of matrices can be easily treated
using combinatorics methods. Specifically, specific network parameters can be recovered from
the estimated moments of the asymptotic distribution of these parameters.

It has been shown however that the moment approaches have severe limitations, particularly
when it comes to application and cheap eigen-inference algorithms. On the contrary, the Stieltjes
transform approach, which relies though on more complex non-systematic mathematical deriva-
tions, is able to produce very cheap consistent estimators of the individual parameters under
study (instead the moments of the joint distribution of all parameters). The main limitation
of this approach, though, is connected to asymptotic properties of the underlying parameter
distribution. It is however possible to identify these difficulties and anticipate the robustness
of the estimators; specifically, it is possible to anticipate the number of time samples, or the
number of sensors required to perform an accurate parameter estimation.

3.2 Contributions

At time t0 + 24 of this project, the following contributions were made,

• In [3], the mathematical framework for free deconvolution of the information-plus-noise
model is developed. Theorem 1 is proven accurately here.

• In [4], applications of [3] to wireless communications are developed. In particular, the
above CDMA user power inference above is thoroughly detailed in this contribution, with
first results, using the Newton-Girard inversion approach.

21
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• In [12], the free deconvolution framework is applied to the capacity of multi-antenna
(MIMO) communications with imperfect channel state information.

• In [13], the free deconvolution method is applied to the problem of blind detection of users
in a MIMO network.

• In [8], the aforementioned criterion for spectrum separability is discussed and applied to
the problem of multiple source detection.

• In [14], the theoretical fundamentals of source detection under limited knowledge at the
sensor are discussed and applied to the case of source detection in a finite-antenna MIMO
environment. This work is slightly orthogonal to the previous contributions as it regards
eigen-inference from a finite matrix size viewpoint in order to develop optimal (instead of
sub-optimal) Neyman-Pearson detection tests.

3.3 Further studies

The above studies can be further extended along the following lines

• the free deconvolution framework is currently being extended to more structured matrices.
Specifically, it seems possible to widen the scope of wireless communication models, where
free probability can be applied, to more involved matrix models, such as Vandermonde
matrices which are used to model the phase differences of plane waves arriving at a linear
antenna array. Generally speaking, it is believed that some core symmetry property of
matrix models are responsible for the validity of free probability methods. The extension
of the work on Gaussian and unitary matrices to these matrices will be investigated.

• it appears that, although the asymptotic inference methods provide appreciable results
even for rather small matrix dimensions, it is often the case that the application of asymp-
totic methods to matrices of size 4 × 4 shows a non-negligible performance decay. The
extension of the free deconvolution methods to finite-size random matrices is also being
currently investigated, with first promising results. In that case, the precision of the
above moment-based eigen-inference methods will be dramatically increased for systems
of smaller size.

• the system models involved in the Stieltjes-transform approach can be extended to more
involved models. Consider for instance

Y =
K∑

k=1

Hk

√
PkXk + σN (3.1)

which models the simultaneous data transmission of K multi-antenna (with n1, . . . , nK

antennas) transmitters with powers P1, . . . , PK through the respective MIMO channels
H1, . . . ,HK , and additive white Gaussian noise σ2. This model can be written into the
denser form

Y = HP
1
2 X + σN (3.2)

by concatenating H = [H1 . . .HK ], XT = [XH
1 , . . . ,XH

N ] and with P the diagonal matrix
with n1 first entries P1, n2 subsequent entries P2 etc. This model is particularly suited to
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the cognitive estimation of the transmit powers by opportunistic users of the users of a
primary (licensed) network.

• in the particular case of the Stieltjes transform approach when the separability condition is
not met, it is believed that much more than a mere estimation of the averaged parameter
values can be done. In particular, the properties of the asymptotic spectrum can be further
studied to extract features that allow to perform the complex integration calculus.

• finite matrix-size considerations for the Stieltjes transform approach are also considered
to be valuable for matrices of small size. However, computing the trailing terms in finite
dimensions is a very involved problem, unless the random matrices under study are Gaus-
sian matrices. The subject of the extension of the Stieltjes transform approach will then
follow this requirement.
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