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Abstract

This article provides a central limit theorem for a consistent estimator of population eigenvalues with

large multiplicities based on sample covariance matrices. The focus is on limited sample size situations,

whereby the number of available observations is comparable in magnitude to the observation dimension.

An exact expression as well as an empirical, asymptotically accurate, approximation of the limiting

variance is derived. Simulations are performed that corroborate the theoretical claims.

I. INTRODUCTION

Problems of statistical inference based on M independent observations of an N -variate random variable

y, with E[y] = 0 and E[yyH ] = RN have drawn the attention of researchers from many fields for years:

Portfolio optimization in finance [1], gene coexistence in biostatistics [2], channel capacity in wireless

communications [3], power estimation in sensor networks [4], distance of targets in array processing [5],

etc.
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In particular, retrieving spectral properties of the population covariance matrix RN , based on the

observation of M independent and identically distributed (i.i.d.) samples y(1), . . . ,y(M), is paramount

to many questions of general science. If M is large compared to N , then it is known that almost surely

‖R̂N − RN‖ → 0, as M → ∞, for any standard matrix norm, where R̂N is the sample covariance

matrix R̂N , 1
M

∑M
m=1 y(m)y(m)H . However, one cannot always afford a large number of samples.

In order to cope with this issue, random matrix theory [6], [7] has proposed new estimators, mainly

spurred by the G-estimators of Girko [8]. Other works include convex optimization methods [9], [10],

free probability tools [11], [12], and regularized estimation (banding, tapering, thresholding, etc.) [13],

[14], [15], when the structure of RN is known. Many of those estimators are consistent in the sense that

they are asymptotically unbiased as M,N grow large at the same rate. Nonetheless, only recently have

techniques been unveiled which allow to estimate individual eigenvalues and functionals of eigenvectors of

RN . The first contributor is Mestre [16]-[17] who studied the case where R̂N = R
1/2
N UNUH

NR
1/2
N with

RN having eigenvalues with large multiplicities and unknown eigenvectors, and UN with i.i.d. entries.

For this model, he provides an estimator for every eigenvalue of RN with large multiplicity under some

separability condition, see also Vallet et al. [18], Couillet et al. [4] for more elaborate models.

These estimators, although proven asymptotically unbiased, have nonetheless not been fully character-

ized in terms of their asymptotic performances. It is in particular fundamental to evaluate the variance of

these estimators for not-too-large M,N . The purpose of this article is to study the asymptotic fluctuations

of the population eigenvalue estimator of [17] in the case of structured population covariance matrices. A

central limit theorem (CLT) is provided to describe the asymptotic fluctuations of the estimators with exact

expression for the variance as M,N tend to infinity. An empirical, asymptotically accurate, approximation

is also derived. For an application of these results in a cognitive radio context, see for instance [19].

The remainder of the article is structured as follows: In Section II, the system model is introduced

and the main results from [16], [17] are recalled. In Section III, the CLT for the estimator in [17] is

stated and the asymptotic variance derived. In Section IV, an empirical approximation for the variance

is derived. Finally, Section V concludes this article. Technical proofs are postponed to the appendix.

II. ESTIMATION OF THE POPULATION EIGENVALUES

A. Notations

In this article, lowercase (resp. boldface lowercase, boldface uppercase) symbols stand for scalars (resp.

vectors, matrices); ‖x‖ represents the Euclidean norm of vector x and ‖M‖ stands for the spectral norm

of M. The superscripts (·)T and (·)H respectively stand for the transpose and transpose conjugate; the
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trace of M is denoted by Tr(M); the mathematical expectation operator, by E. If x is an N × 1 vector,

then diag(x) is the N × N matrix with diagonal elements constituted from the components of x. If

z ∈ C, then <(z) and =(z) respectively stand for z’s real and imaginary parts, while i stands for
√
−1;

z stands for z’s conjugate and δk` denotes Kronecker’s symbol (whose value is 1 if k = `, 0 otherwise).

For two sequences an, bn such that bn 6= 0, an = O(bn) if maxn≥1
an
bn
< ∞ and an = o(bn) if an

bn
→ 0

when n→∞.

If the support S of a probability measure over R is the finite union of disjoint closed compact intervals

Sk for 1 ≤ k ≤ L, we will refer to each compact interval Sk as a cluster of S.

If Z ∈ CN×N is a Hermitian matrix with eigenvalues (ξi; 1 ≤ i ≤ N), we denote by eig(Z) =

{ξi, 1 ≤ i ≤ N} the set of its eigenvalues and by FZ the empirical distribution of its eigenvalues (also

called spectral distribution of Z), i.e.:

FZ(d λ) =
1

N

N∑
i=1

δξi(d λ) ,

where δx stands for the Dirac probability measure at x.

Convergence in distribution will be denoted by D−→, in probability by P−→, and almost sure convergence,

by a.s.−−→.

B. Matrix Model

Consider an N ×M matrix XN = (Xij) whose entries are i.i.d. random variables, with distribution

CN(0, 1), i.e. Xij = U + iV , where U, V are both i.i.d. real Gaussian random variables N(0, 1
2). Let RN

be an N×N Hermitian matrix with L (L being fixed) distinct eigenvalues ρ1 < · · · < ρL with respective

multiplicities N1, · · · , NL (so that
∑L

i=1Ni = N ). Consider now

YN = R
1/2
N XN .

The matrix YN = [y1, · · · ,yM ] is the concatenation of M independent observations [y1, · · · ,yM ],

where each observation writes yi = R
1/2
N xi with XN = [x1, · · · ,xM ]. In particular, the (population)

covariance matrix of each observation yi is RN = E
(
yiy

H
i

)
. In this article, we are interested in

recovering information on RN based on the observation

R̂N =
1

M
R

1/2
N XNXH

NR
1/2
N ,

commonly referred to as the sample covariance matrix of the yi’s.
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It is in general a complicated task to infer the spectral properties of RN based on R̂N for all finite

N,M . Instead, in the following, we assume that N and M are large, and consider the following asymptotic

regime:

Assumption A1. The dimensions N,M and (Ni)1≤i≤L satisfy the following conditions:

N,M,Ni →∞ ,
N

M
→ c ∈ (0,∞) and

Ni

M
→ ci ∈ (0,∞) , 1 ≤ i ≤ L. (1)

This assumption will be shortly referred to as N,M →∞.

Assumption A2. The limiting support S of the eigenvalue distribution of R̂N is formed of L compact

disjoint subsets (Sk; 1 ≤ k ≤ L), often referred to as clusters in the sequel.

From [17], one can also reformulate this condition in mathematical terms: The limiting support of R̂N

is formed of L disjoint clusters if and only if for 1 ≤ i ≤ L, infN{MN −ΨN (i)} > 0, where

ΨN (i) =


1
N

∑L
r=1Nr

(
ρr

ρr−α1

)2
m = 1,

max
{

1
N

∑L
r=1Nr

(
ρr

ρr−αm−1

)2
, 1
N

∑L
r=1Nr

(
ρr

ρr−αm

)2 }
1 < m < L,

1
N

∑L
r=1Nr

(
ρr

ρr−αL−1

)2
m = L

where α1 ≤ · · · ≤ αL−1 are the L− 1 distinct real ordered solutions of the equation:

1

N

L∑
r=1

Nr
ρ2
r

(ρr − x)3
= 0.

This condition is also called the separability condition.

Figure 1 depicts the eigenvalues of a realization of the random matrix R̂N and the associated limiting

distribution as N,M grow large, for ρ1 = 1, ρ2 = 3, ρ3 = 10 and N = 60,M = 600 with N1 =

N2 = N3 = 20. The separability condition is illustrated there. Figure 2 shows another situation where

the separability condition is not satisfied for ρ1 = 1, ρ2 = 3, ρ3 = 5 and N = 30,M = 80 with

N1 = N2 = N3 = 10.

C. Mestre’s Estimator of the population eigenvalues

In [17], an estimator of the population eigenvalues (ρk; 1 ≤ k ≤ L) based on the observations R̂N is

proposed.

Theorem 1 ([17, Th. 3]): Let Assumptions A1 and A2 hold true and denote by λ̂1 ≤ · · · ≤ λ̂N the

ordered eigenvalues of R̂N . Then the following convergence holds true:

ρ̂k − ρk
a.s.−−−−−−→

M,N→∞
0 , (2)

DRAFT May 11, 2012



5

where

ρ̂k =
M

Nk

∑
m∈Nk

(
λ̂m − µ̂m

)
, (3)

with Nk = {
∑k−1

j=1 Nj + 1, . . . ,
∑k

j=1Nj} and the µ̂i’s defined1 as follows:

• If N ≤M , then µ̂1 ≤ · · · ≤ µ̂N are the real ordered solutions of

1

N

N∑
m=1

λ̂m

λ̂m − µ
=
M

N
. (4)

• If N > M , µ̂i = 0 for 1 ≤ i ≤ N −M and µ̂N−M+1, · · · , µ̂N are the real solutions of the above

equation.

1 3 10
Eigenvalues

D
en

si
ty

Asymptotic spectrum
Empirical eigenvalues

Fig. 1. Empirical and asymptotic eigenvalue distribu-

tion of R̂N for L = 3, ρ1 = 1, ρ2 = 3, ρ3 = 10,

N/M = c = 0.1, N = 60, N1 = N2 = N3 = 20.
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Fig. 2. Empirical and asymptotic eigenvalue distri-

bution of R̂N for L = 3, ρ1 = 1, ρ2 = 3, ρ3 = 5,

N/M = c = 3/8, N = 30, N1 = N2 = N3 = 10.

D. Integral representation of estimator ρ̂k - Stieltjes transforms

The proof of Theorem 1 relies on large random matrix theory, and in particular on the Stieltjes transform

of a probability distribution. The Stieltjes transform mP of a probability distribution P over R+ is a C-

valued function defined by:

mP(z) =

∫
R+

P(dλ)

λ− z
, z ∈ C\R+ .

There also exists an inverse formula to recover the probability distribution associated to a Stieljes

transform: Let a < b be two continuity points of the cumulative distribution function associated to

P, then

1Another characterization of interest of the µ̂i’s is the fact that they are the eigenvalues of diag(λ̂) − 1
M

√
λ̂
√

λ̂
T

, where

λ̂ = (λ̂1, . . . , λ̂N )T , see for instance [7, Chapter 8].
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P([a, b]) =
1

π
lim
y↓0
=
[∫ b

a
mP(x+ iy)dx

]
.

In the case where FZ is the spectral distribution associated to a Hermitian matrix Z ∈ CN×N with

eigenvalues (ξi; 1 ≤ i ≤ N), the Stieltjes transform mZ of FZ takes the particular form:

mZ(z) =

∫
FZ(d λ)

λ− z

=
1

N

N∑
i=1

1

ξi − z
=

1

N
Tr (Z− zIN )−1 ,

which is the normalized trace of the resolvent (Z− zIN )−1. Since the seminal paper of Marčenko and

Pastur [20], the Stieltjes transform has proved to be extremely efficient to describe the limiting spectrum

of large dimensional random matrices.

In the following, we recall some elements of the proof of Theorem 1, necessary for the remainder of

the article. The following important result is due to Bai and Silverstein [21] (see also [20]).

Theorem 2 ([21]): Let Assumption A1 hold true and denote by FR the limiting spectral distribution

of RN , i.e.

FR(d λ) =

L∑
k=1

ck
c
δρk(d λ) .

Then, the spectral distribution F R̂N of the sample covariance matrix R̂N converges (weakly and almost

surely) to a probability distribution F as M,N →∞, whose Stieltjes transform m(z) satisfies:

m(z) =
1

c
m(z)−

(
1− 1

c

)
1

z
,

for z ∈ C+ = {z ∈ C, =(z) > 0} and where m(z) is defined as the unique solution in C+ of:

m(z) = −
(
z − c

∫
t

1 + tm(z)
FR(dt)

)−1

.

Note that m(z) is also the Stieltjes transform of a probability distribution F , which turns out to be the

limiting spectral distribution of F R̂N where R̂N is defined as:

R̂N ,
1

M
XH
NRNXN .

Denote by mR̂N
(z) and mR̂N

(z) the Stieltjes transforms of F R̂N and F R̂N . Note in particular that

mR̂N
(z) =

M

N
mR̂N

(z)−
(

1− M

N

)
1

z
.

Remark 1: This relation associated to (4) readily implies that for µ̂i 6= 0, mR̂N
(µ̂i) = 0. Otherwise

stated, the (non null) µ̂i’s are the zeros of mR̂N
. This fact will be of importance in the sequel.
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Denote by mN (z) and mN (z) the finite-dimensional counterparts of m(z) and m(z), respectively,

defined by the relations:

mN (z) = −
(
z − N

M

∫
t

1 + tmN (z)
FRN (dt)

)−1

, (5)

mN (z) =
M

N
mN (z)−

(
1− M

N

)
1

z
,

where mN (z) is the unique solution of (5) satisfying mN (z) ∈ C+ if z ∈ C+. It can be shown that

mN and mN are Stieltjes transforms of probability measures FN and FN , respectively (cf. [7, Theorem

3.2]).

With these notations at hand, we can now provide some elements of the proof of Theorem 1.

Elements of proof for Theorem 1: By Cauchy’s formula, write:

ρk =
N

Nk

1

2iπ

∮
Γk

(
1

N

L∑
r=1

Nr
w

ρr − w
dw

)
,

where Γk is a negatively oriented contour taking values on C \ {ρ1, · · · , ρL} and only enclosing ρk.

With the change of variable w = − 1
mM (z) , the condition that the limiting support S of the eigenvalue

distribution of RN is formed of L distinct clusters (Sk, 1 ≤ k ≤ L) (cf. Assumption A2), and standard

properties of contour integrals, we can write:

ρk =
M

2iπNk

∮
Rk

z
m′N (z)

mN (z)
dz , 1 ≤ k ≤ L (6)

where Rk denotes a negatively oriented, rectangular and symmetric with respect to the abcissa axis,

contour which only encloses the corresponding cluster Sk. Defining

ρ̂k ,
M

2πiNk

∮
Rk

z
m′

R̂N

(z)

mR̂N
(z)

dz , 1 ≤ k ≤ L , (7)

dominated convergence arguments ensure that ρk − ρ̂k → 0, almost surely. The integral form of ρ̂k can

then be explicitly computed thanks to residue calculus, and this finally yields (3).

Remark 2 (About the contour integrals): If R′k is another (rectangular and symmetric with respect to

the abcissa axis) contour which only encloses the k-th cluster, then the value of the contour integrals in

(6) and (7) remains unchanged. In particular, we can arbitrarily choose two non-overlapping contours Rk

and R′k of the same cluster Sk in the sequel.

The main objective of this article is to study the performance of the estimators (ρ̂k, 1 ≤ k ≤ L). More

precisely, we will establish a CLT for (M(ρ̂k − ρk), 1 ≤ k ≤ L) as M,N →∞, explicitly characterize

the limiting covariance matrix Θ = (Θk`)1≤k,`≤L, and finally provide an estimator for Θ.
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Θk` = − 1

4π2ckc`

∮
Rk

∮
R′`

[
m′(z1)m′(z2)

(m(z1)−m(z2))2
− 1

(z1 − z2)2

]
1

m(z1)m(z2)
dz1dz2 . (8)

III. FLUCTUATIONS OF THE POPULATION EIGENVALUE ESTIMATORS

A. The Central Limit Theorem

The main result of this article is the following CLT which expresses the fluctuations of (ρ̂k, 1 ≤ k ≤ L).

Theorem 3: Let Assumptions A1 and A2 hold true and recall the definitions of the ρ̂k’s and ρk’s.

Then:

(M(ρ̂k − ρk), 1 ≤ k ≤ L)
D−−−−−−→

M,N→∞
x ∼ NL(0,Θ) ,

where NL refers to a real L-dimensional Gaussian distribution, and Θ is an L×L matrix whose entries

Θk` are given by (8). The contours in (8) are defined as follows. The contours (Rk; 1 ≤ k ≤ L) and

(R′k; 1 ≤ k ≤ L) are negatively oriented rectangles, symmetric with respect to the abcissa axis, and only

enclosing the cluster Sk. They also verify:

Rk ∩ R` = R′k ∩ R′` = ∅ for k 6= ` ,

Rk ∩ R′` = ∅ for all k, `.

In particular, the families (Rk) and (R′k) are non-overlapping.

Remark 3: In Theorem 3, the separability assumption A2 can be relaxed to some extent. For example,

if only the cluster associated to ρk satisfies the separability condition, one can study the fluctuations of

ρ̂k by relying on the same techniques.

B. Proof of Theorem 3

We first outline the main steps of the proof and then provide the details.

Using the integral representation of ρ̂k and ρk, we get:

M(ρ̂k − ρk) =
M2

2πiNk

∮
Rk

z

(
m′

R̂N

(z)

mR̂N
(z)
−
m′N (z)

mN (z)

)
dz .

Let K be the union of the Rk’s and the R′k’s; denote by C(K,X) the set of continuous functions from

K to a Banach space X endowed with the supremum norm ‖u‖∞ = supK |u|. Consider the process:

(XN , X
′
N , uN , u

′
N ) : K→ C4

z 7→ (XN (z), X ′N (z), uN (z), u′N (z))
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where

XN (z) = M
(
mR̂N

(z)−mN (z)
)
,

X ′N (z) = M
(
m′

R̂N

(z)−m′N (z)
)
,

uN (z) = mR̂N
(z) , u′N (z) = m′

R̂N

(z) .

Then from [22] (see also Proposition 1), (XN , X
′
N , uN , u

′
N ) almost surely belongs to C(K,C4) for N,M

large enough and M(ρ̂k − ρk) writes:

M(ρ̂k − ρk) =
M

2πiNk

∮
Rk

z

(
mN (z)X ′N (z)− u′N (z)XN (z)

mN (z)uN (z)

)
dz

4
= ΥN (XN , X

′
N , uN , u

′
N ) ,

where

ΥN (x, x′, u, u′) =
M

2πiNk

∮
Rk

z

(
mN (z)x′(z)− u′(z)x(z)

mN (z)u(z)

)
dz . (9)

Remark 4: Note that ΥN is a real random variable; if needed, we shall explicitly indicate the depen-

dence on the contour Rk and write ΥN (x, x′, u, u′,Rk).

Remark 5: Note that, due to formulas (6) and (7) and to Remark 2, the following equality holds true:

ΥN (x, x′, u, u′,Rk) = ΥN (x, x′, u, u′,R′k),

if Rk and R′k are two contours which only contain the k-th cluster. This fact will be of importance later.

The main idea of the proof of the theorem lies in three steps:

(i) To prove the convergence in distribution of the process (XN , X
′
N , uN , u

′
N ) to a Gaussian process.

(ii) To transfer this convergence to the quantity ΥN (XN , X
′
N , uN , u

′
N ,Rk) with the help of the con-

tinuous mapping theorem [23].

(iii) To check that the limit (in distribution) of ΥN (XN , X
′
N , uN , u

′
N ) is Gaussian and to compute the

limiting covariance between ΥN (XN , X
′
N , uN , u

′
N ,Rk) and ΥN (XN , X

′
N , uN , u

′
N ,R`).

Remark 6: Note that the convergence in step (i) is a distribution convergence at a process level, hence

one has to first establish the finite dimensional convergence of the process and then to prove that the

process is tight over Ck (see for instance [24, Theorem 13.1]). Tightness turns out to be difficult to

establish due to the lack of control over the eigenvalues of R̂N whenever the contour crosses the real

line. In order to circumvent this issue, we shall introduce, following Bai and Silverstein [25], a process

that approximates XN and X ′N .

Let us now start the proof of Theorem 3.
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We begin by simple considerations on complex Gaussian random vectors. Consider a C2-valued,

centered, random vector (U, V ). If (U, V ) is, as an R4-valued vector, Gaussian, then its distribution

is fully characterized with the quantities:

EU2, EV 2, EUŪ, EV V̄ , EUV and EUV̄ .

Lemma 1: Let S be the support of the distribution F .

1) The function κ : (C \ S)2 → C defined by

κ(z, z̃) =


m′(z)m′(z̃)

(m(z)−m(z̃))2 −
1

(z−z̃)2 if z 6= z̃ ,

m′′′(z)
6m′(z) −

m′′(z)2

4m′(z)2 if z = z̃ ,

is continuous and admits partial derivatives up to order 2 over (C \ S)2.

2) Let Assumptions A1 and A2 hold true and consider a compact set K ⊂ C, symmetric with respect

to the real axis (i.e. z ∈ K⇒ z̄ ∈ K) which does not intersect S. Then, the process

(XN , X
′
N ) : K→ C2

z 7→ (XN (z), X ′N (z))

converges in distribution to a stochastic process (X,Y ) satisfying X(z) = X(z̄) and Y (z) = Y (z̄).

As an R4-valued real process, the process (X,Y ) is a centered Gaussian process with mean function

zero and covariance function defined as follows, for z, z̃ ∈ K:

EX(z)X(z̃) = κ(z, z̃) , (10)

EY (z)X(z̃) =
∂κ

∂z
(z, z̃) ,

EX(z)Y (z̃) =
∂κ

∂z̃
(z, z̃) ,

EY (z)Y (z̃) =
∂2

∂z∂z̃
κ(z, z̃) .

Remark 7: Due to the properties of the process (X,Y ), EX(z)X(w) = κ(z, w̄) (and similarly

for the other cross-conjugate quantities EX(z)Y (w), etc.); moreover, the quantities EX(z)Y (z) and

EY (z)Y (z) can be computed by considering the limits limz̃→z
∂κ
∂z (z, z̃) and limz̃→z

∂2κ
∂z∂z̃ (z, z̃). The

covariance structure of the process (X,Y ) is hence fully described.

Lemma 1 is the cornerstone to the proof of Theorem 3; its proof is postponed to Appendix B and

relies on the following proposition, of independent interest:
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Proposition 1: Assume that A1 and A2 hold true and denote by S the support of the probability

distribution associated to the Stieltjes transform m. Then, for every ε > 0, ` ∈ N∗:

P

(
sup

λ∈eig(R̂N)

d(λ, S) > ε

)
= O

(
1

N `

)
,

where d(λ, S) = infx∈S |λ− x|.

The proof of Proposition 1 is postponed to Appendix A.

As (uN , u
′
N )

a.s.−−−−−−→
N,M→∞

(m,m′), a straightforward corollary of Lemma 1 yields the convergence in

distribution of (XN , X
′
N , uN , u

′
N ) to (X,Y,m,m′). This concludes the proof of step (i).

Consider two families of contours (Rk) and (R′k) as described in Theorem 3. Denote by

K =
⋃

k=1:L

Rk ∪
⋃

k=1:L

R′k . (11)

A direct consequence of Lemma 1 yields that (XN , X
′
N , uN , u

′
N ) : K→ C4 converges in distribution to

the Gaussian process (X,Y,m,m′) with mean (0, 0,m,m′) and covariance structure inherited from the

Gaussian process (X,Y ). We are now in position to transfer the convergence of (XN , X
′
N , uN , u

′
N ) to

ΥN (XN , X
′
N , uN , u

′
N ) via the continuous mapping theorem, whose statement is reminded below.

Theorem 4 ([23, Th. 4.27]): For any metric spaces S1 and S2, let ξ, (ξn)n≥1 be random elements in

S1 with ξn
D−−−→

n→∞
ξ and consider some measurable mappings f , (fn)n≥1: S1 7→ S2 and a measurable

set Γ ⊂ S1 with ξ ∈ Γ a.s. such that fn(sn)→ f(s) as sn → s ∈ Γ. Then fn(ξn)
D−−−→

n→∞
f(ξ).

It remains to apply Theorem 4 to the process (XN , X
′
N , uN , u

′
N ) and to the function ΥN as defined

in (9). Denote by2

Υ(x, y, v, w) =
1

2πick

∮
Rk

z

(
m(z)y(z)− w(z)x(z)

m(z)v(z)

)
dz ,

and consider the set

Γ =

{
(x, y, v, w) ∈ C4(K,C) , inf

K
|v| > 0, x, y, w are continuous over K

}
.

It is obvious that X,Y and m′ are continuous over K. Then, it is shown in [6, Section 9.12.1] that

infK |m| > 0, and, by a dominated convergence theorem argument, that (xN , yN , vN , wN )→ (x, y, v, w) ∈

Γ implies that ΥN (xN , yN , vN , wN )→ Υ(x, y, v, w). Therefore, Theorem 4 applies to ΥN (xN , yN , vN , wN )

and the following convergence holds true:

ΥN (XN , X
′
N , uN , u

′
N )

D−−−−−−→
M,N→∞

Υ(X,Y,m,m′) ,

2As previously, we shall explicitly indicate the dependence on the contour Rk if needed and write Υ(x, x′, u, u′,Rk).
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and step (ii) is established.

It now remains to prove step (iii), i.e. to check the Gaussianity of the random variable Υ(X,Y,m,m′)

and to compute the covariance between Υ(X,Y,m,m′,Ck) and Υ(X,Y,m,m′,C`).

In order to propagate the Gaussianity of the deviations in the integrands of (7) to the fluctuations of

the integral which defines ρ̂k, it suffices to notice that the integral can be written as the limit of a finite

Riemann sum and that a finite Riemann sum of Gaussian random variables is still Gaussian. Therefore

M(ρ̂k−ρk) converges to a real Gaussian distribution (notice that Υ(X,Y,m,m′,Rk), being the limiting

distribution of the real random variable ΥN , is real as well). The same argument applies to the whole

vector (M(ρ̂k − ρk); 1 ≤ k ≤ L), which hence converges toward a Gaussian vector Υ:
M(ρ̂1 − ρ1)

...

M(ρ̂L − ρL)

 D−−−−−−→
M,N→∞

Υ
4
=


Υ(X,Y,m,m′,R1)

...

Υ(X,Y,m,m′,RL)

 ∼ NL(m,Θ) ,

where m is a L× 1 vector and Θ = (Θk`) is a L× L covariance matrix.

As infz∈K |m(z)| > 0, a straightforward application of Fubini’s theorem together with the fact that

E(X) = E(Y ) = 0 yields:

E
∮ (

z
m
′
(z)X(z)

m2(z)
− z Y (z)

m(z)

)
dz = 0 ,

hence m = 0.

It remains to compute the covariance between Υ(X,Y,m,m′,Rk) and Υ(X,Y,m,m′,R`). As Θ =

E(ΥΥT ), write:

Θk` = E
(
Υ(X,Y,m,m′,Rk)Υ(X,Y,m,m′,R`)

)
,

(a)
= E

(
Υ(X,Y,m,m′,Rk)Υ(X,Y,m,m′,R′`)

)
,

= − 1

4π2ckcl
E
∮
Rk

z1

(
m
′
(z1)X(z1)

m2(z1)
− Y (z1)

m(z1)

)
dz1

∮
R′`

z2

(
m
′
(z2)X(z2)

m2(z2)
− Y (z2)

m(z2)

)
dz2 ,

where (a) follows from Remark 2 and enforces the fact that the contours are non-overlapping. Choosing

non-overlapping contours will help us to compute the Θk`’s by evaluating contour integrals with no

singularities on the contours.

Write:

Θk` = E
(
Υ(X,Y,m,m′,Rk)Υ(X,Y,m,m′,R′`)

)
,

(a)
= − 1

4π2ckcl

∮
Rk

∮
R′`

z1z2

(m′(z1)m
′
(z2)κ(z1, z2)

m2(z1)m2(z2)
− m

′
(z1)∂2κ(z1, z2)

m2(z1)m(z2)

−m
′
(z2)∂1κ(z1, z2)

m(z1)m2(z2)
+
∂2

12κ(z1, z2)

m(z1)m(z2)

)
dz1dz2 ,
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Θ̂k` = − M2

4π2NkN`

∮
Rk

∮
R′`

(
m′

R̂N

(z1)m′
R̂N

(z2)

(mR̂N
(z1)−mR̂N

(z2))2
− 1

(z1 − z2)2

)
× 1

mR̂N
(z1)mR̂N

(z2)
d z1d z2 .

(12)

where (a) follows from Lemma 1 and the fact that infz∈K |m(z)| > 0 together with Fubini’s theorem,

and ∂1, ∂2, ∂
2
12 respectively stand for ∂/∂z1, ∂/∂z2 and ∂2/∂z1∂z2. The above double integral is also

well-defined as κ(z1, z2) is well-defined and C∞-differentiable over Rk × R′`. By integration by parts,

we obtain

∮
z1z2m

′(z2)∂1κ(z1, z2)

m(z1)m2(z2)
dz1

=

∮ (
−z2m

′(z2)κ(z1, z2)

m(z1)m2(z2)
+
z1z2m

′(z1)m′(z2)κ(z1, z2)

m2(z1)m2(z2)

)
dz1 .

Similarly, ∮
z1z2m(z2)∂12κ(z1, z2)

m(z1)m2(z2)
dz1

= −
∮
z2∂2κ(z1, z2)

m(z1)m(z2)
dz1 +

∮
z1z2m

′(z1)∂2κ(z1, z2)

m2(z1)m(z2)
dz1 .

Hence

Θk` = − 1

4π2ckcl

{∮
Rk

∮
R′`

z2m
′(z2)κ(z1, z2)

m(z1)m2(z2)
dz1dz2 −

∮
Rk

∮
R′`

z2∂2κ(z1, z2)

m(z1)m(z2)
dz1dz2

}
.

Another integration by parts yields∮
z2∂2κ(z1, z2)

m(z1)m(z2)
dz2 = −

∮
κ(z1, z2)

m(z1)m(z2)
dz2 +

∮
z2m

′(z2)κ(z1, z2)

m(z1)m2(z2)
dz2 .

Finally, we obtain:

Θk` = − 1

4π2ckc`

∮
Rk

∮
R′`

κ(z1, z2)

m(z1)m(z2)
d z1d z2 ,

and (8) is established.

IV. ESTIMATION OF THE COVARIANCE MATRIX

Theorem 3 describes the limiting performance of the estimator of Theorem 1, with an exact charac-

terization of its variance. Unfortunately, the variance Θ depends upon unknown quantities. We provide

hereafter consistent estimates Θ̂ for Θ based on the observation R̂N .
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Θ̂k` =
M2

NkN`

 ∑
(i,j)∈Nk×N`, i 6=j

−1

(µ̂i − µ̂j)2m′
R̂N

(µ̂i)m′R̂N

(µ̂j)

+δk`
∑
i∈Nk

(
m′′′

R̂N

(µ̂i)

6m′
R̂N

(µ̂i)3
−

m′′
R̂N

(µ̂i)
2

4m′
R̂N

(µ̂i)4

)]
. (13)

Theorem 5: Assume that Assumptions A1 and A2 hold true, and recall the definition of Θk` given in

(8) and Theorem 3. Let Θ̂k` be defined by (13), where (Nk) and (µ̂k) are defined in Theorem 1, then:

Θ̂k` −Θk`
a.s.−−→ 0

as N,M →∞.

Theorem 5 is useful in practice as one can obtain simultaneously an estimate ρ̂k of the values of ρk

as well as an estimation of the degree of confidence for each ρ̂k.

Proof: In view of formula (8), taking into account the fact that mR̂N
and m′

R̂N

are consistent

estimates for m and m′, it is natural to define Θ̂k` by replacing the unknown quantities m and m′ in (8)

by their empirical counterparts mR̂N
and m′

R̂N

, hence the definition of Θ̂k` in (12).

The proof of Theorem 5 now breaks down into two steps: The convergence of Θ̂k` to Θk`, which relies

on the definition (12) of Θ̂k` and on a dominated convergence argument, and the effective computation

of the integral in (12) which relies on Cauchy’s residue theorem [26], and yields (13).

We first address the convergence of Θ̂k` to Θk`. Due to [22], [27], almost surely, the eigenvalues of

R̂N will eventually belong to any ε-blow-up of the support S of the probability measure associated to m,

i.e. the set {x ∈ R : d(x, S) < ε}. Hence, if ε is small enough, the distance between these eigenvalues

and any z ∈ Rk will be eventually uniformly lower-bounded. By [17, Lemma 1], the same holds true for

the zeros of mR̂N
(which are real). In particular, this implies that mR̂N

is eventually uniformly lower-

bounded on Rk (if not, then by compacity, there would exist z ∈ K such that mR̂N
(z) = 0 which yields

a contradiction because all the zeroes of mR̂N
are strictly within any contour). With these arguments at

hand, one can easily apply the dominated convergence theorem and conclude that Θ̂k` → Θk` a.s.

We now evaluate the integral (12) by computing the residues of the integrand within Rk and R′`. There

are two cases to discuss depending on whether k 6= ` and k = `. Denote by h(z1, z2) the integrand in

(12), that is:
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h(z1, z2) =

(
m′

R̂N

(z1)m′
R̂N

(z2)

(mR̂N
(z1)−mR̂N

(z2))2
− 1

(z1 − z2)2

)
× 1

mR̂N
(z1)mR̂N

(z2)
. (14)

Note that, when z2 is fixed, for z1 → λ̂i,

m′
R̂N

(z1)

(mR̂N
(z1)−mR̂N

(z2))2

a.s.−−−−→
z1→λ̂i

−M.

Then h(z1, z2)
a.s.−−→ 0 when z1 → λ̂i. Same result holds for z1 → 0. That is to say, λ̂i and 0 are not

poles of h(z1, z2).

To apply the residue theorem, we first consider the case where k 6= `.

In this case, the two integration contours are different and never intersect (in particular, z1 is always

different from z2). Let z2 be fixed, and denote by µ̂i the zeroes (labeled in increasing order) of mR̂N
,

then the computation of the residue Res(h(·, z2), µ̂i) of h(·, z2) at a zero µ̂i of mR̂N
which is located

within Rk is straightforward and yields:

r(z2)
4
= Res(h(·, z2), µ̂i) =

(
m′

R̂N

(µ̂i)m
′
R̂N

(z2)

m2
R̂N

(z2)
− 1

(µ̂i − z2)2

)
1

m′
R̂N

(µ̂i)mR̂N
(z2)

. (15)

Similarly, if one computes Res(r, µ̂j) at a zero µ̂j of mR̂N
located within Rk, one obtains:

Res(r, µ̂j) = − 1

(µ̂i − µ̂j)2m′
R̂N

(µ̂i)m′R̂N

(µ̂j)
.

As stated in the following proposition, let z2 ∈ Rk\R, the set Rz2 = {z1 ∈ C : z1 6= z2,mR̂N
(z1) =

mR̂N
(z2) 6= 0} is eventually empty a.s. for all N,M large, and if z2 ∈ Rk ∩ R, this set is not empty,

however, the integration with respect to z2 for this residue is zero because the set Rk ∩R only contains

two points, hence the residue in this set has not to be counted.

Proposition 2: Let Assumptions A1 and A2 hold true, then for z2 ∈ Rk\R,

Rz2 = {z1 ∈ C : z1 6= z2,mR̂N
(z1) = mR̂N

(z2) 6= 0} = ∅ a.s.

for all N,M large.

The proof of Proposition 2 is postponed to Appendix C.

It remains to count the number of µ̂i within each contour. By [17, Lemma 1], eventually, there are

exactly as many µ̂i as eigenvalues within each contour, hence the result in the case k 6= `:

Θ̂k` =
M2

NkN`

∑
(i,j)∈Nk×N`

− 1

(µ̂i − µ̂j)2m′
R̂N

(µi)m′R̂N

(µj)
.
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We now compute the integral (12) in the case where k = `, and begin by the computation of the

residues at µ̂i. The definition (15) of r and the computation of Res(r, µ̂j) still hold true in the case

where µ̂j is within Rk but different from µ̂i. It remains to compute Res(r, µ̂i). Taking z2 → µi, we get:

lim
z2→µ̂i

(z2 − µ̂i)3

(
1

m′
R̂N

(µ̂i)mR̂N
(z2)(µ̂i − z2)2

)
=

1

m′2
R̂N

(µ̂i)
,

lim
z2→µ̂i

(z2 − µ̂i)2

 1

m′
R̂N

(µ̂i)mR̂N
(z2)(µ̂i − z2)2

− 1

m′
R̂N

2(µ̂i)(z2 − µ̂i)3

 = −
m′′

R̂N

(µ̂i)

2m′
R̂N

3(µ̂i)
.

Finally,

lim
z2→µ̂i

(z2 − µ̂i)

(
1

m′
R̂N

(µ̂i)mR̂N
(z2)(µ̂i − z2)2

− 1

m′2
R̂N

(µ̂i)(z2 − µ̂i)3
+

m′′RN
(µ̂i)

2m′3RN
(µ̂i)(z2 − µ̂i)2

)

=
m′′′R̂N

(µ̂i)

6m′R̂N
(µ̂i)3

−
m′′R̂N

(µ̂i)
2

4m′R̂N
(µ̂i)4

.

Hence the residue:

Res(r, µ̂i) =
m′′′RN

(µ̂i)

6m′RN
(µ̂i)3

−
m′′RN

(µ̂i)
2

4m′RN
(µ̂i)4

.

There are two other cases that should be taken into account for the computation of the integral: The set Rz2 ,

and the residue for z1 = z2. The first case can be handled as before. For z1 = z2, the calculus of g(z1, z2)

for the residue z1 = z2 is exactly the same as before. It remains to compute 1
(z1−z2)2

1
mR̂N

(z1)mR̂N
(z2) for

the residue z1 = z2. The integration by parts formula yields that:

∮
1

(z1 − z2)2

dz1

mR̂N
(z1)mR̂N

(z2)
=

∮
−
m′

R̂N

(z1)

(z1 − z2)

dz1

m2
R̂N

(z1)mR̂N
(z2)

.

Then the residue for z1 = z2 is:

−
m′

R̂N

(z2)

m3
R̂N

(z2)
.

Again, this is the derivative function of 1
2m2

R̂N
(z2) , then the integration is zero.

Finally both have a null contribution, hence the formula:

Θ̂kk =
M2

N2
k

 ∑
(i,j)∈N2

k, i 6=j

−1

(µ̂i − µ̂j)2m′
R̂N

(µ̂i)m′R̂N

(µ̂j)
+
∑
i∈Nk

(
m′′′

R̂N

(µ̂i)

6m′
R̂N

(µ̂i)3
−

m′′
R̂N

(µ̂i)
2

4m′
R̂N

(µ̂i)4

)]
.
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V. CONCLUSION

This article provides a central limit theorem to describe the fluctuations of consistent estimators of

a large covariance matrix. The emphasis is put in the case where the dimension of each variable is

comparable to the number of available samples and a key assumption is a separability condition which

assesses that the number of clusters of the limiting spectral distribution is the same as the number

of (population matrix) eigenvalues to be estimated. Moreover, an estimation of the limiting covariance

matrix, based on the observations, is provided.

The results presented here are mainly based on large random matrix and probability theory. They are

part of a recent effort to develop statistical results for large dimensional/small sample size dataset, a

context of growing interest with the spectacular evolution of data acquisition, and the recent issues in

sensor networks, cognitive radio, and wireless communications at large.

APPENDIX

A. Proof of Proposition 1

Let us first begin by considerations related to the supports of the probability distributions associated

to m(z) and mN (z). Denote by S and SN these supports and recall that S is the union of L disjoint

clusters: For a1 ≤ b1 < · · · < aL ≤ bL,

S = [a1, b1] ∪ · · · ∪ [aL, bL] .

The following lemma clarifies the relations between SN and S.

Lemma 2: Let N,M → ∞, then for N large enough, the support SN of the probability distribution

associated to the Stieltjes transform mN (z) is the union of L clusters: For aN1 ≤ bN1 < · · · < aNL ≤ bNL ,

SN = [aN1 , b
N
1 ] ∪ · · · ∪ [aNL , b

N
L ] .

Moreover, the following convergence holds true:

aN` −−−−−−→
N,M→∞

a` , bN` −−−−−−→
N,M→∞

b` ,

for 1 ≤ ` ≤ L.

Remark 8: If the support SN contains zero, (ex: N > M ), aN1 = bN1 = 0. By Assumption A1, the

multiplicity N1 corresponding to zero satisfies N1

N → c1 > 0, hence zero is also in the support S. In this

case, we will get that a1 = b1 = 0, and the conclusion still holds true.
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Proof of Lemma 2: Recall the relations:

mN (z) = −
(
z − N

M

∫
t

1 + tmN

FRN (dt)

)−1

(16)

and

mN (z) =
M

N
mN (z)−

(
1− M

N

)
1

z
. (17)

As the Stieltjes transform of δ0 (the Dirac mass at 0) is −1
z and mN (z) is a continuous function over

R∗+, for a,b with 0 < a < b, by the inverse formula of Stieltjes transform, one gets:

FN ([a, b]) =
M

N
FN ([a, b]).

So it suffices to study the support SN associated to FN .

From the definition of mN (z) (see formula (16)), we obtain:

zRN
(mN ) = − 1

mN

+
N

M

∫
tdFRN(t)

1 + tmN

.

Denote by B = {m ∈ R : m 6= 0,−m−1 /∈ {ρ1, · · · , ρL}}. In [28, Theorem 4.1 and Theorem 4.2],

Silverstein and Choi show that for a real number x, x ∈ ScN ⇐⇒ mx ∈ B and z′RN
(mx) = 1

m2
x
−

N
M

∫ t2dFRN (t)
(1+tmx)2 > 0 with mN (x) = mx and zRN

(mx) = x.

Then if a ∈ ∂SN , ma /∈ B or z′RN
(ma) ≤ 0 with ma = mN (a). Now we will show that ma ∈ B. In [28,

Theorem 5.1], ma 6= 0. If −m−1
a ∈ SFRN , as FRN is discrete, we get that limm→ma

∫ t2dFRN (t)
(1+tm)2 −→∞.

So on the neighborhood to the left and to the right of ma, z′RN
< 0 which contradicts [28, Theorem 5.1].

Hence z′RN
(ma) ≤ 0. By the continuity, we get

z′RN
(ma) =

1

m2
a

− N

M

∫
t2dFRN (t)

(1 + tma)2
= 0.

This is equivalent to the following equation:

z′RN
(ma) =

1

m2
a

− 1

M

L∑
i=1

Ni
ρ2
i

(1 + ρima)2
= 0. (18)

By multiplying the common denominator, one gets a polynomial of the degree 2L in ma. Let us now

prove that these 2L roots are real. At first, note that:

1

m2
− N

M

∫
t2dFRN (t)

(1 + tm)2
−−−−−→
m→− 1

ρi

−∞,

and

z′′RN
(m) = − 2

m3
+
N

M

∫
2t3dFRN (t)

(1 + tm)3
.
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So z′′RN
(m) has one and only one zero in the open set (− 1

ρi
,− 1

ρi+1
) for 1 ≤ i ≤ L − 1 . Then for

βi ∈ (− 1
ρi
,− 1

ρi+1
) such that z′′RN

(βi) = 0, it suffices to show that z′RN
(βi) > 0 in order to prove

that there will be two zeros for z′RN
(m) in the set (− 1

ρi
,− 1

ρi+1
). From the separability condition (cf.

Assumption A2), infN{MN −ΨN (i)} > 0, and

z′RN

(
− 1

αi

)
= α2

i −
N

M

∫
t2dFRN(t)

(1− t
αi

)2
,

= α2
i

(
1− 1

M

L∑
r=1

Ni
ρ2
i

(αi − ρi)2

)
> 0 .

Thus we obtain 2(L− 1) roots. Besides, in the open set (−ρ−1
L , 0),

1

m2
− N

M

∫
t2dFRN (t)

(1 + tm)2
−−−−−→
ma→0−

+∞,

there exists another root in this set. In the open set (−∞,−ρ−1
1 ),

1

m2
− N

M

∫
t2dFRN (t)

(1 + tm)2
−−−−−→
m→−∞

0

and
1

m2
− N

M

∫
t2dFRN (t)

(1 + tm)2
∼

m→−∞

1

m2
(1− L

M
) > 0.

Hence the last root in this open set. This proves that SN = [aN1 , b
N
1 ] ∪ · · · ∪ [aNL , b

N
L ].

To prove aN` −−−−−−→N,M→∞
a` and bN` −−−−−−→N,M→∞

b` , note that ai bi satisfy the same type of equation by

replacing N
M by c and FRN by FR. As N

M → c and Ki
M → ci, the roots of Eq. (18) converge to those of

the limiting equation (see [29] for instance). Hence the conclusion.

We are now in position to establish the proof of Proposition 1.

Denote by S(ε) the ε-blow-up of S, i.e. S(ε) = {x ∈ R, d(x, S) < ε}. Let ε > 0 be small enough

and consider a smooth function φ equal to zero on S(ε/3), equal to 1 if x /∈ S(ε), equal to zero again

if |x| ≥ τ (as we shall see, τ will be chosen to be large), and smooth in-between with 0 ≤ φ ≤ 1:

φ(x) =


0 if d(x, S) < ε/3 ,

1 if d(x, S) > ε , |x| ≤ τ − ε

0 if |x| > τ .
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Notice that if N,M →∞ and N is large enough, then by Lemma 2, φ(x) = 0 for all x ∈ SN . Now if

Z is a M ×M hermitian matrix with spectral decomposition Z = U diag (γi; 1 ≤ i ≤M)) UH , where

U is unitary and (γi; 1 ≤ i ≤M) = eig(Z) , write φ(Z) = U diag (φ(γi); 1 ≤ i ≤M)) UH .

We have:

P(sup
n
d(λn, S) > ε) ≤ P(‖R̂N‖ > τ − ε) + P(Trφ(R̂N ) ≥ 1)

= P(‖R̂N‖ > τ − ε) + P([Trφ(R̂N )]p ≥ 1)

(a)

≤ P(‖R̂N‖ > τ − ε) + E[Trφ(R̂N )]p ,

for every p ≥ 1, where (a) follows from Markov’s inequality. The fact that P(‖R̂N‖ > τ) = O(N−`)

for τ large enough and every ` ∈ N∗ is well-known (see for instance [6, Section 9.7]). We shall therefore

establish estimates over E[Trφ(R̂N )]p. Take p = 2k; we prove the following statement by induction: For

k ≥ 1 and for every integer β < 2k and for every smooth function f with compact support whose value

on S(ε/3) is zero ,

E
(

Trf(R̂N )
)2k

= O

(
1

Nβ

)
.

First notice that, due to Lemma 2,
∫
SN
f(λ)FN (dλ) = 0 (where FN is the probability distribution

associated to mN ) for N,M large enough (N,M →∞). A minor modification of [30, Lemma 2] (whose

model is slightly different) with the help of [31, Proposition 5] yields that for N,M →∞ and N large

enough, ETr f(R̂N ) = O(N−1), and the property is verified for k = 0.

Let k > 0 be fixed and assume that the result holds true for β < 2k. We want to show that

E[Trf(R̂N )]2
(k+1)

= O(N−2β). At step k + 1, the expectation writes:∣∣∣E[Tr f(R̂N )]2
(k+1)

∣∣∣ (19)

=

∣∣∣∣E([Trf(R̂N )]2
k

+ E[trf(R̂N )]2
k − E[Trf(R̂N )]2

k
)2
∣∣∣∣

≤ 2
(

Var[Tr f(R̂N )]2
k

+ |E[Trf(R̂N )]2
k |2
)
. (20)

The second term of the right hand side (r.h.s.) of the equation can be handled by the induction hypothesis:∣∣∣E[Trf(R̂N )]2
k
∣∣∣2 = O

(
1

N2β

)
.

We now rely on Poincaré-Nash inequality (see for instance [31, Section II-B]) to handle the first term of

the r.h.s. Applying this inequality, we obtain:

Var
(

(Tr f(R̂N ))2k
)
≤ K

∑
i,j

E

∣∣∣∣∣∂[Tr f(R̂N )]2
k

∂Yi,j

∣∣∣∣∣
2

+

∣∣∣∣∣∂[Tr f(R̂N )]2
k

∂Y i,j

∣∣∣∣∣
2
 , (21)
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where K is a constant which does not depend on N,M and which is greater than RN ’s eigenvalues. In

order to compute the derivatives of the r.h.s., we rely on [32, Lemma 4.6]. This yields:

∂

∂Yi,j
[Tr f(R̂N )]2

k

=
2k

M
[Tr f(R̂N )]2

k−1[Y∗Nf
′(R̂N )]j,i ,

∂

∂Yi,j
[Tr f(R̂N )]2

k

=
2k

M
[Tr f(R̂N )]2

k−1[f ′(R̂N )YN ]i,j .

Plugging these derivatives into (21), we obtain:

Var(Tr[f(R̂N )]2
k

)

≤ K 22k+1

M2
E
[
(Tr f(R̂N ))(2k+1−2) Tr (f ′(R̂N )YNY∗Nf

′(R̂N ))
]
,

=
K 22k+1

M
E
[
(Tr f(R̂N ))(2k+1−2) Tr (f ′(R̂N )2R̂N )

]
,

≤ K 22k+1

M

∣∣∣E[Trf(R̂N )]2
k+1
∣∣∣ 2k+1−2

2k+1

×
∣∣∣E[Trf ′(R̂N )2R̂N ]2

k
∣∣∣ 1

2k

,

where the last inequality is a consequence of Hölder’s inequality.

As the function h(λ) = λ[f ′(λ)]2 satisfies the induction hypothesis, we have for every α < 1:∣∣∣ETr[f ′(R̂N )2R̂N ]2
k
∣∣∣ 1

2k

= O(N−α).

Plugging this estimate into (19), we obtain:∣∣∣E[Tr f(R̂N )]2
(k+1)

∣∣∣ ≤ K ( 1

N1+α
|E[Tr f(R̂N )]2

(k+1) |
2k+1−2

2k+1

)
+ O(N−2β) , (22)

where K is a constant independent of M,N, k. Notice that inequality (22) involves twice the quantity

of interest E[Tr f(R̂N )]2
(k+1)

that we want to upper bound by O(N−2β). We shall proceed iteratively.

Notice that Tr [f(R̂N )] ≤ supx∈R |f(x)| ×N because f is bounded on R; hence the rough estimate:

E[Trf(R̂N )]2
(k+1)

= O(N2k+1

).

Plugging this into (22) yields:

E[Tr f(R̂N )]2
(k+1)

= O(Na1) ,

where a0 = 2k+1 and a1 = a0
2k+1−2

2k+1 − (1 + α). Iterating the procedure, we obtain:

E[Tr f(R̂N )]2
(k+1)

= O
(
Na`∨(−2β)

)
,

where a` = a`−1
2k+1−2

2k+1 − (1 +α) and x∨ y stands for sup(x, y). Now, in order to conclude the proof, it

remains to prove that i) the sequence (a`) converges to some limit a∞, ii) for some well-chosen α < 1,

a∞ ∈ (−2k+1,−2β). Write:

a`+1 + 2k(1 + α) =
2k − 1

2k
(a` + 2k(1 + α)) ,
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hence a` converges to −2k(1 +α) which readily belongs to (−2k+1,−2β) for a well-chosen α ∈ (0, 1).

Finally E[Tr f(R̂N )]2
(k+1)

= O(N−2β) which ends the induction.

It remains to apply this estimate to E[Trφ(R̂N )]` in order to get the desired result.

B. Proof of Lemma 1

Notice that XN (z) = M(mR̂N
−mN ) = XN (z) for z ∈ C+. So it suffices to verify the arguments

for z ∈ C+. As 1
ρ̂k−z can converge to infinity if z is close to the real axis, the process XN (z) might be

large when z is close to the real axis. Thus we begin the proof by considering a truncated version of the

process XN . More precisely, let εN be a real sequence decreasing to zero satisfying for some δ ∈]0, 1[:

εN ≥ N−δ .

With the same notations as in Lemma 2, denote by S = [a1, b1] ∪ · · · ∪ [aL, bL]; and take pk, qk such

that bk−1 < pk < ak and bk < qk < ak+1 for 1 ≤ k ≤ L with conventions b0 = 0 and aL+1 = ∞, i .e.

[pk, qk] only contains the k-th cluster. Let d > 0. Consider:

Rk,1 = {x+ id : x ∈ [pk, qk]} ,

Rk,2 =
{
pk + iv : v ∈

[εN
N
, d
]}

,

Rk,3 =
{
qk + iv : v ∈

[εN
N
, d
]}

,

and let R̃k = Rk,1 ∪ Rk,2 ∪ Rk,3. The process X̂N (·) is defined by

X̂N (z) =


XN (z) for z ∈ R̃k,

XN (pk + i εNN ) for x = pk, v ∈ [0, εNN ],

XN (qk + i εNN ) for x = qk, v ∈ [0, εNN ].

This partition of R̃k is identical to that used in [25, Section 1]. With probability one (see [22] and [27]),

for all ε > 0,

lim
N

sup
λ∈eig(R̂N )

d(λ, SN ) < ε

with d(x, S) the Euclidean distance of x to the set S. Notice that:∣∣∣∣∮
Rk

(
XN (z)− X̂N (z)

)
dz

∣∣∣∣ ≤ 2

∫ εN
N

0

∣∣∣XN (pk + ix)− X̂N (pk + i
εN
N

)
∣∣∣+∣∣∣XN (qk + ix)− X̂N (qk + i

εN
N

)
∣∣∣ dx.

Furthermore, with probability one, for all N large,∫ εN
N

0

∣∣∣mR̂N
(pk + ix)−mR̂N

(pk + i
εN
N

)
∣∣∣ dx ≤ εN

N
(|pk − ak|−1 + |pk − bk−1|−1),
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and ∫ εN
N

0

∣∣∣mN (pk + ix)−mN (pk + i
εN
N

)
∣∣∣ dx ≤ 2K

εN
N

where K = supz∈Rk |mN (z)|. Thus, with probability one,∣∣∣∣∮ (XN (z)− X̂N (z)
)
dz

∣∣∣∣ ≤ K1εN ,

where K1 is a constant which does not depend on N . A similar result can be achieved for the derivative

functions X ′N (z) and X̂ ′N (z). One can get:∣∣∣∣∮
Rk

(
X ′N (z)− X̂ ′N (z)

)
dz

∣∣∣∣ ≤ 2

∫ εN
N

0

∣∣∣X ′N (pk + ix)− X̂ ′N (pk + i
εN
N

)
∣∣∣+∣∣∣X ′N (qk + ix)− X̂ ′N (qk + i

εN
N

)
∣∣∣ dx.

With probability one, for all N large,∫ εN
N

0

∣∣∣m′
R̂N

(pk + ix)−m′
R̂N

(pk + i
εN
N

)
∣∣∣ dx ≤ εN

N
(|pk − ak|−2 + |pk − bk−1|−2)

and ∫ εN
N

0

∣∣∣m′N (pk + ix)−m′N (pk + i
εN
N

)
∣∣∣ dx ≤ 2K ′

εN
N

where K ′ = supz∈Rk |m
′
N (z)|. So with probability one, for all N large,∣∣∣∣∮

Rk

(
XN (z)− X̂N (z)

)
dz

∣∣∣∣ ≤ K1εN , (23)∣∣∣∣∮
Rk

(
X ′N (z)− X̂ ′N (z)

)
dz

∣∣∣∣ ≤ K2εN (24)

for some constants K1 and K2. Both terms converge to zero as M → ∞. Then, by Slutsky’s lemma

[33], it suffices to establish the arguments for X̂N (z) and X̂ ′N (z).

As mentionned in Section III, there are two conditions to prove (see for instance Billingsley [24,

Theorem 13.1]) to establish the convergence in distribution of the process (X̂N , X̂
′
N ) to the process

(X,Y ) over the compact :

• Finite-dimensional convergence of the process (X̂N , X̂
′
N ) over the compact K.

• Tightness on the compact K.

1) Finite-dimensional convergence: In [25], Bai and Silverstein establish a central limit theorem for

F R̂N with the complex Gaussian entries Xij . We recall below their main result.

Proposition 3 (cf. [25]): With the notations introduced in Section II, for f1, . . . , fp, analytic on an

open region containing R,

1)
(
N
∫
fi(x)d(F R̂N − FN )(x)

)
1≤i≤p

forms a tight sequence on N ,
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2) (
N

∫
fi(x)d(F R̂N − FN )(x)

)
1≤i≤p

D−→ Np(0,V),

where V = (Vij) and

Vij = − 1

4π2

∮
C1

∮
C2

fi(z1)fj(z2)vij(z1, z2)dz1dz2,

with

vij(z1, z2) =
m′(z1)m′(z2)

(m(z1)−m(z2))2
− 1

(z1 − z2)2

where the integration is over positively oriented contours C1 and C2 which are supposed to be

non-overlapping and both circle around the support S.

Now we apply this proposition to establish the finite-dimensional convergence. For all zi ∈ Ck\R, note

that

mR̂N
(z)−mN (z) =

1

2iπ

∮
1

x− z
d(F R̂N − FN )(x)

with the contour which contains the support S and XN (z) = M(mR̂N
(z) −mN (z)). Then Proposition

3 directly implies that for every finite p ∈ N, the random vector(
X̂N (z1), X̂

′

N (z1), · · · , X̂N (zp), X̂
′

N (zp)
)

converges to a centered Gaussian vector by considering the functions:(
f1(x) =

1

x− z1
, f2(x) =

1

(x− z1)2
, · · · , f2p−1(x) =

1

x− zp
, f2p(x) =

1

(x− zp)2

)
.

Hence the finite dimensional convergence.

The proof of the tightness is based on Poincaré-Nash inequality (see for instance [30] and [31]). In

Appendix A, it is proved that for all ε > 0 and all ` ∈ N,

P

(
sup

λ∈eig(R̂N )

d(λ, S) > ε

)
= o(N−`).

Following the same idea as Bai and Silverstein [25, Section 3 and 4], it is indeed a tight sequence. The

details of the proof are in Appendix B2. Thus Lemma 1 is proved.

2) Tightness: We will show the tightness of the sequence M(mR̂N
− mN ) and M(m

′

R̂N

− m
′

N )

by using Poincaré-Nash’s inequality [31] on the compact K. As the compact K is the union of 2L

contours Rk and R′`, it is sufficient to prove the tightness on every contour Rk (or equivalently R̃k).

First, denote by M(mR̂N
(z) −mN (z)) = X1

N (z) + X2
N (z) with X1

N (z) = M(mR̂N
(z) − E[mR̂N

(z)])

and X2
N (z) = M(E[mR̂N

(z)]−mN (z)).
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We now prove tightness based on [24, Theorem 13.1], i.e.

1) Tightness at any point of the contour (here R̃k).

2) Satisfaction of the condition

sup
N,z1,z2∈R̃k

E|(X̂1
N (z1)− X̂1

N (z2))|2

|z1 − z2|2
≤ K.

Condition 1) is achieved by an immediate application of Proposition 3. We now verify the second

condition.

We evaluate E|(X̂1
N (z1)−X̂1

N (z2))|2
|z1−z2|2 . Denote by λ̂′1 ≤ · · · ≤ λ̂′M , the eigenvalues of R̂N . Note that

mR̂N
(z1)−mR̂N

(z2) =
z1 − z2

M

M∑
i=1

1

(λ̂′i − z1)(λ̂′i − z2)

=
z1 − z2

M
Tr(D−1

N (z1)D−1
N (z2))

with DN (z) = R̂N − zIM . We have

∂

∂Yi,j

(
mR̂N

(z1)−mR̂N
(z2)

z1 − z2

)

=
∂

∂Yi,j
Tr(R̂N − z1IM )−1(R̂N − z2IM )−1

=
1

M

[
−Y∗ND−2

N (z1)D−1
N (z2)−Y∗ND−1

N (z1)D−2
N (z2)

]
j,i
,

and

∂

∂Ȳi,j

(
mR̂N

(z1)−mR̂N
(z2)

z1 − z2

)

=
1

M
[−D−2

N (z1)D−1
N (z2)YN −D−1

N (z1)D−2
N (z2)YN ]i,j .

Then by the Poincaré-Nash inequality and the fact that R̂N is uniformly bounded in spectral norm almost

surely, one gets

E|X̂1
N (z1)− X̂1

N (z2)|2

|z1 − z2|2
≤ C1

N
E
[
Tr(LN,1)

]
=

C1

N
E(Tr(LN,1)Isupn d(λ̂′n,S)≤ε) +

C1

N
E(Tr(LN,1)Isupn d(λ̂′n,S)>ε)

with

LN,1 = R̂ND−4
N (z1)D−2

N (z2) + 2R̂ND−3
N (z1)D−3

N (z2) + R̂ND−2
N (z1)D−4

N (z2)
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and C1 a constant which does not depend on N or M . For the first term, Tr(LN,1) is bounded on the

set supn d(λ̂′n, S) ≤ ε. For the second term, since for all i ∈ N and all z ∈ R̃k, 1
|λ̂′n−z|i

≤ N i

εiN
, it leads to

N∑
n=1

1

|λ̂′n − z|i
≤ N i+1

εiN
.

Then

|Tr(LN,1)| ≤ O

(
N7

ε6
N

)
.

As P(sup d(λ̂′n, S) ≥ ε) = P(sup d(λ̂n, S) ≥ ε) = o(N−16), take εN = N−0.01, one obtains∣∣∣E(Tr(LN,1)Isupn d(λ̂′n,S)>ε)
∣∣∣ ≤ E

∣∣∣Tr(LN,1)Isup d(λ̂′n,S)>ε

∣∣∣
≤ O

(
N7

ε6N
P(sup d(λ̂′n, S) > ε)

)
≤ O

(
N7−0.06−16

)
→ 0.

The second condition to establish the tightness is achieved.

For X̂2
N (z), following exactly the same method as in [6, Section 9.11], one can prove that X̂2

N (z) is

bounded and forms an equicontinuous family that converges to 0. Hence the tightness for M(mR̂N
(z)−

mN (z)).

The next step is to prove the tightness of M(m′
R̂N

(z)−m′N (z)). We have

m′
R̂N

(z1)−m′
R̂N

(z2)

=
z1 − z2

M

M∑
i=1

2λ̂′i − z1 − z2

(λ̂′i − z1)2(λ̂′i − z2)2

=
z1 − z2

M
Tr
(
D−2
N (z1)D−2

N (z2)(DN (z1) + DN (z2))
)
.

Following the same method as derived before, one obtains
∂

∂Yij
D−1
N (z1)D−2

N (z2)

= − 1

M

[
Y∗ND−2

N (z1)D−2
N (z2) + 2Y∗ND−1

N (z1)D−3
N (z2)

]
j,i
,

and ∣∣∣∣ ∂

∂Yij
TrD−2

N (z1)D−2
N (z2)(D(z1) + DN (z2))

∣∣∣∣2 =
1

M
Tr(L2)

with

LN,2 =4R̂N

(
3D−4

N (z1)D−4
N (z2) + 2D−3

N (z1)D−5
N (z2) + 2D−5

N (z1)D−3
N (z2)

+ D−2
N (z1)D−6

N (z2) + D−6
N (z1)D−2

N (z2)
)
.
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Then Poincaré-Nash inequality yields that

Var
|X̂1′

N (z1)− X̂1′

N (z2)|
|z1 − z2|

≤ C1

N
E(Tr(LN,2)Isupn d(λ̂′n,S)≤ε) +

C1

N
E(Tr(LN,2)Isupn d(λ̂′n,S)>ε)

with C1 the same constant defined as before. The term Tr(LN,2) is bounded on the set sup d(λ̂′n, S) ≤ ε.

For the second term, |Tr(LN,2)| ≤ O
(
N9

ε8N

)
. As P(sup d(λ̂′n, S) ≥ ε) = o(N−16) and εN = N−0.01,

∣∣∣E(Tr(LN,2)Isupn d(λ̂′n,S)>ε)
∣∣∣→ 0.

The proof of the tightness of X̂1′

N (z) is achieved as before.

The proof of the tightness is completed if one verifies that X̂2′

N (z) for z ∈ R̃k is bounded and forms

an equicontinuous family, and converges to 0. We will use the same method for the process X̂2
N (z) (see

[6, Section 9.11]).

By Formula (9.11.1) in [6, Section 9.11], it is proved that:

(EmR̂N
−mN )

1−
N
M

∫ mN t
2dFRN (t)

(1+tEmR̂N
)(1+tmN )

−z + N
M

∫
tdFRN

1+tEmR̂N

− TN

 = EmR̂N
mNTN (25)

where

TN =
N

M2

M∑
j=1

Eβjdj(EmR̂N
)−1,

dj = dj(z) = −q∗jR
1/2(R̂(j) − zI)−1(EmR̂N

R + I)−1R1/2qj + (1/M)Tr(EmR̂N
R + I)−1R(R̂N − zI)−1,

βj =
1

1 + 1
M y∗j (R̂(j) − zI)−1yj

,

qj = 1/
√
Nxj ,

R̂(j) = R̂N −
1

M
yjy

∗
j .

If one differentiates (25) with respect to z, the equation becomes

(Em′
R̂N

−m′N )

1−
N
M

∫ mN t
2dFRN (t)

(1+tEmR̂N
)(1+tmN )

−z + N
M

∫
tdFRN

1+tEmR̂N

− TN

+ (EmR̂N
−mN )

1−
N
M

∫ mN t
2dFRN (t)

(1+tEmR̂N
)(1+tmN )

−z + N
M

∫
tdFRN

1+tEmR̂N

− TN

′

= Em′
R̂N

mNTN + EmR̂N
m′NTN + EmR̂N

mNT
′
N .

In the work of [6, Section 9.11], it is proved that when N tends to infinity,

1) supz∈R̃k |EmR̂N
(z)−m(z)| → 0 and supz∈R̃k |mN (z)−m(z)| → 0,
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2)
N

M

∫ t2mNdF
RN (t)

(1+tEm
R̂N

)(1+tmN )

−z+ N

M

∫
tdFRN

1+tEm
R̂N

−TN
converges ,

3) X̂2
N (z)→ 0, TN → 0.

With the same method, one can show easily that

4) supz∈R̃k |Em
′
R̂N

(z)−m′(z)| → 0,

5) supz∈R̃k |m
′
N (z)−m′(z)| → 0,

6) N
M

(∑M
j=1 Eβjdj

)′
converges.

With these results, it suffices to show that T ′N → 0, and X̂2′

N is equicontinuous.

In [6, Section 9.9], they show that for m, p ∈ N and a non-random N × N matrix Ak, k = 1, ..,m

and B`, ` = 1, .., q, we have

∣∣∣∣∣E
(

m∏
k=1

r∗tAkrt

q∏
`=1

(r∗tR`rt −M−1TrRB`)

)∣∣∣∣∣ ≤ KM−(1∧q)
m∏
k=1

‖Ak‖
q∏
`=1

‖B`‖. (26)

We have also that for any positive p,

max(E‖D−1(z)‖p,E‖D−1
j (z)‖p,E‖D−1

ij (z)‖p) ≤ Kp (27)

and

sup
N,z∈R̃k

‖(EmR̂N
(z)R + I)−1‖ <∞ (28)

where Kp is a constant which depends only on p.

With all these preliminaries, as TN → 0, by the dominated convergence theorem of derivation, it

suffices to show that T ′N is bounded over R̃k. In [6, Section 9.11], it is sufficient to show that (f ′M (z))

is bounded where

fM (z) =

M∑
j=1

E[(r∗jD
−1
j rj−M−1TrD−1

j R)(r∗jD
−1
j (EmR̂N

R+I)−1rj−M−1TrD−1
j (EmR̂N

R+I)−1R)].

With the help of (26)-(28), f ′M (z) is indeed bounded in R̃k.

Now we will show that X̂2′

N is equicontinuous. With the light work as before, it is sufficient to show

that f ′′M (z) is bounded. Using (26), we obtain
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|f ′′(z)| ≤KM−1
[(

E(TrD−3
1 RD̄−3

1 R)E(TrD−1
1 (EmR

N
R + I)−1R(Em̄R̂N

R + I)−1D̄−1
1 R)

)1/2

+ 2
(
E(TrD−2

1 RD̄−2
1 R)E(TrD−2

1 (EmR̂N
R + I)−1R(Em̄R̂N

R + I)−1D̄−2
1 R)

)1/2

+ 2|Em′
R̂N

|
(
E(TrD−2

1 RD̄−2
1 R)E(TrD−1

1 (EmR̂N
R + I)−2R(Em̄R̂N

R + I)−2D̄−11 R)
)1/2

+
(
E(TrD−1

1 RD̄−1
1 R)E(TrD−3

1 (EmR̂N
R + I)−1R(Em̄R̂N

R + I)−1D̄−3
1 R)

)1/2

+ 2|Em′
R̂N

|
(
E(TrD−1

1 RD̄−1
1 R)E(TrD−2

1 (EmR̂N
R + I)−2R(Em̄R̂N

R + I)−2D̄−2
1 R)

)1/2

+ |Em′′
R̂N

|
(
E(TrD−1

1 RD̄−1
1 R)E(TrD−1

1 (EmR̂N
R + I)−2R(Em̄R̂N

R + I)−2D̄−1
1 R)

)1/2

+ |Em′R̂N
|2
(
E(TrD−1

1 RD̄−1
1 R)E(TrD−1

1 (EmR̂N
R + I)−3R(Em̄R̂N

R + I)−3D̄−1
1 R)

)1/2]
.

Thanks to (27) and (28), the right side is indeed bounded. This ends the proof of the tightness.

C. Study of the set Rz2

For z2 fixed, denote Rz2 = {z1 ∈ C : z1 6= z2,mR̂N
(z1) = mR̂N

(z2)}. We will show that this set is

empty a.s. for all N,M large. Suppose that z1 ∈ Rz2 . We first use [6, Formula (9.11.4)] that

sup
z∈Rz2

|EmR̂N
(z)−mN (z)| → 0.

By Formula (16), we get

z(mN ) = − 1

mN

+
N

M

∫
t

1 + tmN

FRN (dt).

As z1 6= z2,

mN (z1) 6= mN (z2).

Take ε = |mN (z1)−mN (z2)|. For N sufficiently high,

|EmR̂N
(z1)−mN (z1)| < ε

4

and

|EmR̂N
(z2)−mN (z2)| < ε

4
.

Finally

|EmR̂N
(z1)− EmR̂N

(z2)| ≥ ε− |EmR̂N
(z1)−mN (z1)| − |EmR̂N

(z2)−mN (z2)|

≥ ε

2
,

which implies, along with mR̂N
(z)− EmR̂N

(z)
a.s.−−→ 0 that for all large N , Rz2 = ∅ almost surely.
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