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Résumé
Dans ce travail nous nous intéressons au problème d’estimation du débit maximal qu’un utilisateur qui subit de l’interfrence et

dont les données sont non-prioritaires peut atteindre. Ceci trouve application à titre d’exemple dans diverses situations pratiques
recontrées dans les réseaux cognitifs. L’interférence étant en général inconnue, il s’agit ici de construire un estimateur robuste
à cette source de bruit. Le modèle dans ce cas, s’apparente au modèle non-centré, où l’interférence représente la composante
aléatoire.

Etat du rapport
Ce rapport a fait l’objet d’une soumission au journal IEEE Transactions on Information theory qui est le journal de référence

en théorie de l’information. Deux autres articles de conférence ont été acceptés à :
• GRETSI 2011, qui est la plus importante conférence francophone en traitement de signal et communication numérique,
• GLOBECOM 2011, qui est considérée comme la plus importante conférence internationale en communication numérique.

I. INTRODUCTION

The use of multiple-input-multiple-output (MIMO) technologies has the potential to achieve high data rates, since several
independent channels between the transmitter and the receiver can be exploited. However, the effectiveness of this technology
may depend on the conditions of the surrounding environment such as the availability of the channel state information or
the presence of colored interference. From a practical point of view, in a fast varying fading channel, it is of fundamental
importance for users to rapidly estimate the maximum rate that can be achieved in the communication to other users.

Conventional methods for channel capacity estimation rely on the use of classical estimation techniques which assume a
large number of observations. In general, consider θ the parameter we wish to estimate, and M the number of independent
and identically distributed observation vectors y1, · · · ,yM ∈ CN . The parameter θ is often a function of the covariance matrix
Σ = E

[
y1y

H
1

]
of the received random process, i.e θ = f(Σ), for some function f . Using the strong law of large numbers, a

consistent estimate of the covariance of the random process is simply given by the empirical covariance of Y = [y1, · · · ,yM ],
i.e. Σ̂ , 1

MYYH = 1
M

∑M
i=1 yiy

H
i . Classical estimation methods then consist in using the empirical covariance as a good

approximation of Σ, thus yielding the estimator θ̂ of θ, where θ̂ = f(Σ̂). Such methods provide good performance as long
as the number of observations M is very large compared to the vector size N , a situation rarely encountered in wireless
communications, especially in fast changing environments.

To address the scenario where the number of observations M is of the same order as the dimension N of each observation,
new consistent estimation methods based on large random matrix theory have been proposed in the context of wireless
communications. They were initially applied to eigenvector and eigenvalue estimation problems [1], which has given rise to
improved subspace estimation techniques [2], [3]. Recently, the use of these methods to estimate performance indexes has
spurred the interest of many researchers. In the field of wireless communications, the capacity estimation of MIMO systems
under imperfect channel knowledge has been addressed in [4] and [5], where methods based respectively on free probability
theory and large random matrix theory have been proposed.

In this paper, we consider a different situation where the receiver perfectly knows the channel with the transmitter but does
not a priori know the experienced interference. Such a situation can be encountered in multi-cell scenarios, where interference
stemming from neighboring cell users changes fast, which is a natural assumption in packet switch transmissions. The estimated
capacity can serve first as an upper-bound for the maximum rate that could be achieved. Indeed, this rate cannot be achieved
if the channel interference is not exactly estimated and therefore the estimator may serve only as an approximate achievable
performance. Another usage is found in the context of cognitive radios where multiple frequency bands are sensed for future
transmissions. In this setting, the proposed estimator provides the expected rate performance achievable in each frequency
band. The transmitter-receiver pair then elects the bands achieving the highest rates, for which the exact interference is then
inferred for proper transmission at the estimated rate. This approach is much more accurate than the approach consisting
only in evaluating the total noise variance in each band and much faster than the approach consisting in evaluating the exact
interference matrix for each band.

We specifically derive first a consistent estimator of the ergodic capacity in the case where the channel from the transmitter
to the receiver is assumed to be known. In a second step, we study the asymptotic performance of the proposed estimator and
compare it with that of the traditional one. In particular, we prove that both estimators converge to Gaussian random variables
and identify their theoretical variances.
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Fig. 1. System model.

Notations: In the following, boldface lower case symbols represent vectors, capital boldface characters denote matrices (IN
is the size-N identity matrix). If A is a given matrix, AH stands for its transconjugate; if A is square, tr(A), det(A) and
‖A‖ respectively stand for the trace, the determinant and the spectral norm of A. We say that the variable X has a standard
complex Gaussian distribution if X = U + iV (i2 = −1) , where U, V are independent real random variables with Gaussian
distribution N(0, 2−1). Almost sure convergence will be denoted by a.s.−−→, and convergence in distribution by D−→. Notation O

will refer to Landau’s notation: un = O(vn) if there exists a bounded sequence Kn such that un = Knvn.
Paper organization: In Section II, we present the system model and formalize mathematically the considered problem. In

Section III, we provide first order results for the conventional and the proposed estimator. We show that while the proposed one
is consistent with growing N,M , the traditional estimator is asymptotically biased. In Section IV, we study the fluctuations of
both estimators: we establish central limit theorems (CLT), hence we prove the Gaussianity of the fluctuations, and we derive
the asymptotic variances. Finally, we provide in Section V numerical simulations that support the accuracy of the derived
results. Mathematical details are provided in the appendices.

II. SYSTEM MODEL AND PROBLEM SETTING

The system model

Consider a communication link between two users: a transmitter and a receiver equipped with n0 and N antennas, respectively.
Also assume that the communication link is affected by the presence of K interferers with nk antennas each, 1 ≤ k ≤ K.
Figure 1 describes this scenario, in the case of two interfering users. Similar to [5], we assume that time is slotted. We
denote T the number of time slots and assume that the channel matrices are deterministic and remain constant in every time
slot t ∈ {1, · · · , T}. In other words, we assume that within each slot t, the N × n0 channel matrix Ht representing the
channel between the transmitter and the receiver, and the N × nk channel matrix Gt,k standing for the channel between the
transmitter and the k-th interferer are deterministic and constant. Denote by M the data transmission periods in each slot. The
M concatenated signal vectors received in slot t are gathered in Yt ∈ CN×M given by:

Yt = HtXt,0 +

K∑
k=1

Gt,kXt,k + σWt,

where Xt,0 ∈ Cn×M is the concatenated matrix of the transmitted signals, Xt,k ∈ Cnk×M represents the interfering signal
and Wt ∈ CN×M stands for the additive noise. Their formal statistical properties are given in the following assumption:

Assumption A1: For given t and k where 1 ≤ t ≤ T and 1 ≤ k ≤ K, the entries of the matrices Xt,0, Xt,k and Wt are
random variables, independent and identically distributed (i.i.d.) with standard complex Gaussian distribution and independent
across t, k.

Assuming a perfect decoding of Xt,0, initially transmitted at low rate, and a perfect knowledge of the channel matrix Ht,
the residual interference to which the receiver has access is given by:

Yt = Yt −HtXt,0 =

K∑
k=1

Gt,kXt,k + σWt.

This is also the received signal at slot t if no transmissions occurred.
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The receiver wants to evaluate the average rate that can be achieved during the T slots, or equivalently by approximating
the ergodic capacity (per transmit antenna). Under Assumption A1, an approximate of the ergodic capacity is given by:

Cerg =
1

NT

T∑
t=1

[
log det

(
σ2IN +

K∑
k=1

Gt,kG
H
t,k + HtH

H
t

)
− log det

(
σ2IN +

K∑
k=1

Gt,kG
H
t,k

)]

=
1

NT

T∑
t=1

[
log det

(
σ2IN + GtG

H
t + HtH

H
t

)
− log det

(
σ2IN + GtG

H
t

)]
(1)

where
Gt = [Gt,1, · · · ,Gt,K ] ∈ CN×n (2)

with n =
∑K
k=1 nk.

In this paper, we address the problem of estimating Cerg based on the T successive observations Y1, . . . ,YT assuming
perfect knowledge of H1, · · · ,HT .

The conventional large-M estimator Ĉtrad

If the number M of available observations in each slot is very large compared to the channel vector N , the standard estimator
Ĉtrad, hereafter referred to as the large-M estimator, reads:

Ĉtrad =
1

NT

T∑
t=1

log det

(
1

M
YtY

H
t + HtH

H
t

)
− 1

NT

T∑
t=1

log det

(
1

M
YtY

H
t

)
. (3)

However, in practice, the situation M � N is rarely encountered, especially in systems embedded with multiple antennas and
under fast fading channel conditions implying that M is of the same order of magnitude as N .

In this case, it can be proved that the large-M estimator is asymptotically biased, hence not consistent. The objective of this
work is to propose a consistent estimator of Cerg when the number of available observations is of the same order (although
larger) than N . We will refer to this estimator as the G-estimator in reference to Girko who introduced many estimators [6],
[7] in similar contexts and coined these techniques as G-estimation techniques (standing for general estimation techniques).

It will be convenient in the sequel to consider the following notation:

Ĉtrad(y) =
1

NT

T∑
t=1

log det

(
1

M
YtY

H
t + yHtH

H
t

)
− 1

NT

T∑
t=1

log det

(
1

M
YtY

H
t

)
. (4)

With this notation at hand, Ĉtrad = Ĉtrad(1).

The asymptotic regime, remaining assumptions

Recall that n =
∑K
k=1 nk. The derivation of the G-estimator will be carried out under the following assumptions:

Assumption A2: M,N, n, n0 → +∞, and:

0 < lim inf
M,N→∞

N

n
≤ lim sup

M,N→∞

N

n
< +∞ ,

1 < lim inf
M,N→∞

M

N
≤ lim sup

M,N→∞

M

N
< +∞ ,

0 < lim inf
N,n0→∞

n0
N

≤ lim sup
N,n0→∞

n0
N

< +∞ .

Remark 1: The constraints over N and n simply state that these quantities remain of the same order. The lower bound for
the ratio M/N accounts for the fact that that M is larger than N , although of the same order.
In the rest of the paper, this regime will simply be referred to as M,N, n → ∞. We are now in position to formalize the
assumptions over the channel matrices:

Assumption A3: Let t ∈ {1, · · · , T} (T fixed). Consider the family (Gt) of N×n matrices and the family (Ht) of N×n0
matrices where N,n, n0 satisfy Assumption A2. Then the spectral norms of Gt and Ht are uniformly bounded in the sense
that:

sup
1≤t≤T

sup
N,n
‖Gt‖ <∞ , sup

1≤t≤T
sup
N,n0

‖Ht‖ <∞ .

Assumption A4: Denote by rt the rank of Ht. Then

0 < lim inf
N,n0→∞

rt
N
≤ lim sup

N,n0→∞

rt
N

< 1 .
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III. CONVERGENCE OF THE CAPACITY ESTIMATORS

In this section, we study the asymptotic behaviour of the large-M estimator Ĉtrad and prove that under the asymptotic regime
A2, this estimator is biased. We then build a consistent estimator based on G-estimation techniques. Both results are essentially
based on large random matrix theory. Let us first briefly introduce the G-estimation techniques. G-estimation techniques can
be roughly classified into two categories. The first one is based on the Stieltjes transform (the definition of which is recalled
below) and was taken up by Mestre who developed a framework for eigenvalue and eigenvector estimation issues [1].

Let P be a probability distribution on R+, then the Stieltjes transform m(z) of P is defined as

m(z) =

∫
R

P(dλ)

λ− z
, z ∈ C \ R+ . (5)

For example, the Stieltjes transform mYtYH
t

associated to the empirical distribution of the eigenvalues of the Hermitian matrix
YtY

H
t is simply the normalized trace of the associated resolvent:

mYtYH
t
(z) =

1

N
tr
(
YtY

H
t − zIN

)−1
=

1

N

N∑
i=1

1

λi − z
,

where λ1, · · · , λN denotes the eigenvalues of YtY
H
t . Since their introduction by Marčenko and Pastur in their seminal paper

[8], Stieltjes transforms have proved to be a highly efficient tool to study the spectrum of large random matrices. From an
estimation point of view, Stieltjes transform are, in the large dimension regime of interest, consistent estimates of well-identified
deterministic quantities. Therefore, the approach consists in expressing the parameters of interest as functions of the Stieltjes
transform of the eigenvalue distribution of YtY

H
t . This approach is appropriate as long as we consider estimation of parameters

depending either on the eigenvalues or on the eigenvectors of YtY
H
t , but cannot be used when the dependence is on both of

them; it will be illustrated in Lemma 2 below.
The second approach is based on other consistent estimators different from the Stieltjes transform mYtYH

t
(z). Details will

be provided in Section III-B.

A. The large-M estimator is biased

Recall the definition of the large-M estimator Ĉtrad given in (3). Before providing the expression of the asymptotic bias for
Ĉtrad, we shall define some deterministic quantities and also study their properties under the appropriate asymptotic regime
M,N, n→∞.

Lemma 1: Let Assumptions A1-A4 hold true. Denote Γt = GtG
H
t + σ2IN and let y > 0. Then:

1) The functional equation:

κt(y) =
1

M
tr

(
Γt

(
Γt

1 + κt(y)
+ yHtH

H
t

)−1)
(6)

admits a unique positive solution κt(y).
Denote by Tt(y) and Qt(y) the following quantities:

Tt(y) =

(
yHtH

H
t +

Γt
1 + κt(y)

)−1
, Qt(y) =

(
yHtH

H
t +

1

M
YtY

H
t

)−1
.

2) Then, for any deterministic family (SN ) of N ×N complex matrices with uniformly bounded spectral norm, we have:

1

M
tr SNQt(y)− 1

M
tr SNTt(y)

a.s.−−−−−−−→
M,N,n→∞

0.

3) Let

Vt(y) = log det

(
yHtH

H
t +

Γt
1 + κt(y)

)
+M log(1 + κt(y))−M κt(y)

1 + κt(y)
,

then, the following convergence holds true:

1

N
log det

(
yHtH

H
t +

1

M
YtY

H
t

)
− 1

N
Vt(y)

a.s.−−−−−−−→
M,N,n→∞

0 .

Proof of Lemma 1 is postponed to Appendix A.
Remark 2: Note that items 2) and 3) provide deterministic equivalents of various random quantities under the asymptotic

regime of interest.
In the next lemma, we show how the Stieltjes transform method can be used to compute a consistent estimate of 1

N

∑T
t=1 log det(σ2IN+

GtG
H
t ). This term only depends on the eigenvalues of Gt which are not directly observable. The idea underlying G-estimation

is to use advanced random matrix theory tools to link the asymptotic non-observable Stieltjes transform of Gt to that of the
observable covariance matrix 1

MYtY
H
t . More precisely, we prove the following:
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Lemma 2: Let Assumptions A1-A4 hold true. Then, the following convergence holds true:

1

N
log det(GtG

H
t + σ2IN )− 1

N
log det

(
1

M
YtY

H
t

)
+
N −M
N

log

(
M −N
M

)
− 1

a.s.−−−−−−−→
M,N,n→∞

0 .

Proof of Lemma 2 is postponed to Appendix B.
Remark 3: As a consequence of this lemma, it turns out that a consistent estimate of 1

N log det(GtG
H
t + σ2IN ) is simply

the traditionnal large-M estimator (recall that 1
MEYtY

H
t = GtG

H
t + σ2IN ) up to a term of bias depending on the time and

space dimensions.
We now derive the bias of the estimator Ĉtrad. Prior to that, define the deterministic quantity V(y) as :

V(y) =
1

NT

T∑
t=1

(
log det

(
yHtH

H
t +

Γt
1 + κt(y)

)
− log det(GtG

H
t + σ2IN )

)

+
1

T

T∑
t=1

(
M

N
log(1 + κt(y))− M

N

κt(y)

1 + κt(y)

)
+
M −N
N

log

(
M −N
M

)
+ 1. (7)

where κt(y) is the unique solution of (6).
Theorem 1 (Bias of the large-M estimator): Let Assumptions A1-A4 hold true. Then,

Ĉtrad − V(1)
a.s.−−−−−−−→

M,N,n→∞
0 .

Proof: Gathering item 3) of Lemma 1 together with Lemma 2 yields the desired result.

B. A G-estimator for the capacity

The term 1
N log det(σ2IN +GtG

H
t +HtH

H
t ) in the definition of the capacity depends on the eigenvalues of GtG

H
t +HtH

H
t .

Since matrix Ht is assumed to be known and to not necessarily share the same eigenvector space as Gt, the capacity depends
simultaneously on the eigenvalues and the eigenvectors of the unobservable matrix Gt. Hence, the use of the Stieltjes transform
cannot be applied. A similar situation was successfully addressed in [5], by using a novel approach based on deterministic
equivalents as developed in [9]. In the sequel, we follow the same approach in [5].

Theorem 2 (a G-estimator for the capacity): Assume that A1 and A3 hold true; consider the quantity:

ĈG =
1

NT

T∑
t=1

log det

(
IN + ŷN,tHtH

H
t

(
1

M
YtY

H
t

)−1)

+
(M −N)

N

[
log

(
M

M −N
ŷN,t

)
+ 1

]
− M

N
ŷN,t ,

where ŷN,t is the unique real positive solution of the following equation:

ŷN,t =
ŷN,t
M

tr HtH
H
t

(
ŷN,t HtH

H
t +

1

M
YtY

H
t

)−1
+
M −N
M

.

Then,
ĈG − Cerg

a.s.−−−−−−−→
M,N,n→∞

0 .

In the sequel, we will refer to ĈG as the G-estimator.
Remark 4: Note that ĈG writes:

ĈG = Ĉtrad(ŷN,t) +
(M −N)

N

[
log

(
M

M −N
ŷN,t

)
+ 1

]
− M

N
ŷN,t ,

a relation that sheds some light on the difference between ĈG and Ĉtrad.
In order to prove Theorem 2, it is sufficient to provide a consistent estimate of each quantity in the sum of the expression

of the ergodic capacity. Denote by Ct the capacity at time t given by:

Ct ,
1

N
log det(σ2IN + GtG

H
t + HtH

H
t )− 1

N
log det(σ2IN + GtG

H
t ) ,

, Ct,1 − Ct,2 .

As a consistent estimate Ĉt,2 of Ct,2 has already been provided by Lemma 2, it remains to build a consistent estimate for
Ct,1.
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The proof of Theorem 2 is postponed to Appendix C. Although technical, this proof is very illustrative on how to build
consistent estimators based on deterministic equivalents. We therefore provide below an outline of the proof.

Outline of the proof: The proof is divided into 4 steps:
1) In the first step, we exploit the convergence of parametrized quantities of interest. Denote f(y) = 1

N log det( 1
MYtY

H
t +

yHtH
H
t ) and recall the definition of κt(y) as given in Lemma 1-1). By Lemma 1-3), we have:

−f(y) +
1

N
log det

(
GtG

H
t + σ2IN

1 + κt(y)
+ yHtH

H
t

)
+
M

N
log(1 + κt(y))− M

N

κt(y)

1 + κt(y)

a.s−−−−−−−→
M,N,n→∞

0 .

Clearly, the deterministic quantity to which f(y) converges differs from Ct,1.
2) In the second step, we find a specific value of y to enforce the desired quantity Ct,1 to appear: one can readily check

that if yN,t is the solution of the following equation:

y =
1

1 + κt(y)
, (8)

then one would immediately obtain:

Ct,1 −
[

1

N
log det

(
1

M
YtY

H
t + yN,tHtH

H
t

)
+
M −N
N

log(yN,t) +
M

N
(1− yN,t)

]
a.s.−−−−−−−→

M,N,n→∞
0 . (9)

Based on the definition of κt(y), one can prove that there exists a unique positive yN,t solution of (8), given by the
following closed-form expression:

yN,t = 1− 1

M
tr
[
(GtG

H
t + σ2IN )(HtH

H
t + GtG

H
t + σ2IN )−1

]
. (10)

Unfortunately, the value of yN,t depends upon the unknown matrix Gt.
3) In the third step, we provide a consistent estimator ŷN,t of yN,t. Based on an analysis of κt(y), and on finding a consistent

estimate for this quantity, one can prove that there exists a unique positive solution ŷN,t to the following equation:

ŷN,t =
1

M
tr ŷN,t HtH

H
t

(
ŷN,t HtH

H
t +

1

M
YtY

H
t

)−1
+
M −N
M

. (11)

Moreover, ŷN,t satisfies:
ŷN,t − yN,t

a.s.−−−−−−−→
M,N,n→∞

0 .

4) Finally, it remains to check that one can replace yN,t by ŷN,t in the convergence (9). This will immediately yield a
consistent estimate Ĉt,1 for Ct,1. For the proof of the theorem to be complete, it remains to gather the estimates of Ct,1
and Ct,2. This yields :

ĈG =
1

T

T∑
t=1

(
Ĉt,1 − Ĉt,2

)
,

which is the announced result.

IV. FLUCTUATIONS FOR THE CAPACITY ESTIMATORS

We develop in this section fluctuation results for the capacity estimators Ĉtrad and ĈG already introduced. More precisely,
we establish CLTs, provide explicit expressions for the variance, and prove that these estimators when correctly centered and
rescaled converge in distribution toward a Gaussian random variable.

While the entries of the matrices Xt and Wt (cf. Assumption A1) could have easily been taken non Gaussian to establish
first order results in Section III, the Gaussian property of the entries is a central assumption to establish fluctuation results.
This assumption is natural in the current wireless communications context.

The Gaussianity of the entries allows one to use the powerful Gaussian methods adapted along the years to the study of
large random matrices by Pastur and co-authors (see e.g. [10] - for application to wireless communication, see [11], etc.). The
Gaussian calculus heavily relies (but not exclusively) on the integration by parts formula and the Poincaré-Nash inequality,
recalled in Appendix D.
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A. Fluctuations of the large-M estimator

In the previous section, we have shown that the large-M estimator is asymptotically biased, in the sense that it converges to
a deterministic equivalent which is different from the theoretical ergodic capacity.

In the sequel, we shall study its fluctuations around this deterministic equivalent. We will prove that when properly centered
and rescaled, the large-M estimator converges to a standard Gaussian random variable.

This result is an important first step to the study of the fluctuations of the G-estimator.
Theorem 3: Let Assumptions A1-A4 hold true and recall the definition (4) of Ĉtrad(y). Then,
1) the sequence of real numbers (αN (y)):

αN (y) =
2 log(M)

T 2
− 1

T 2

T∑
t=1

log

(
(M −N) (M(κt(y) + 1)

2 − tr

(
IN

κt(y) + 1
+ yHtH

H
t (GtG

H
t + σ2IN )−1

)−2)
is well-defined. Furthermore:

0 < lim inf
M,N,n→∞

αN (y) ≤ lim sup
M,N,n→∞

αN (y) < +∞ .

2) The following convergence holds true:

N

αN (y)

(
Ĉtrad(y)− V(y)

)
D−−−−−−−→

N,M,n→∞
N(0, 1) ,

where V(y) is defined in (7).
Proof: See Appendix D.

B. Fluctuations of the G-estimator

As opposed to the large-M estimator, the G-estimator has no closed-form expression, as the ŷN,t’s are solutions of implicit
equations (easily solved through numerical computations, though). Establishing the CLT might seem more difficult since the
randomness comes from both the received matrix Yt and the quantity ŷN,t.

In the following lemma, we shall prove that the fluctuations of ŷN,t− yN,t are of order O(M−2), a rate which is sufficient,
as we will see later, to discard the randomness stemming from ŷN,t in the study of the fluctuations.

Lemma 3: For t ∈ {1, · · · , T}, the following estimates hold true, as M,N, n→∞:
1) var(ŷN,t) = O(M−2) ,
2) E ŷN,t = yN,t + O(M−2) .

Proof: See Appendix E.
We are now in position to state the CLT for the G-estimator.
Theorem 4: Let Assumptions A1-A3 hold true. Then,

N

θN
(ĈG − Cerg)

D−−−−→
N→∞

N(0, 1),

where θN given by:

θN =
1

T 2

T∑
t=1

2 log(MyN,t)− log
(

(M −N)
(
M − tr

((
IN + HtH

H
t (GtG

H
t + σ2IN )−1

)−2)))
(12)

is well-defined and satisfies
0 < lim inf

M,N,n→∞
θN ≤ lim sup

M,N,n→∞
θN < +∞ .

Proof: Consider the function Ct(y) defined for y > 0 as:

Ct(y) =
1

N
log det

(
yHtH

H
t +

YtY
H
t

M

)
+

M −N
N

[
log

(
M

M −N
y

)
+ 1

]
− M

N
y − log det

(
YtY

H
t

M

)
.

Then Ĉ = 1
T

∑T
t=1 Ct(ŷN,t). Since all the random variables (Ct(ŷN,t), 1 ≤ t ≤ T ) are independent, it is sufficient to prove a

CLT for Ct(ŷN,t), for a given t ∈ {1, · · · , T}. In order to handle the randomness of ŷN,t, we shall perform a Taylor expansion
of Ct around ŷN,t. Recall the following differentiation formula:

d

dx
log detA(x) = trA′(x)A−1(x)
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(see for instance [12, Section 15]). A direct application of this formula, together with the mere definition of ŷN,t yields:

dCt
d y

(ŷN,t) = 0 .

Hence, the Taylor expansion writes:

NCt(yN,t) = NCt(ŷN,t) +N
(yN,t − ŷN,t)2

2
× d2Ct

dy2
(ŷN,t) +N

(yN,t − ŷN,t)3

6
× d3Ct

dy3
(ξN,t) , (13)

where ξN,t lies between yN,t and ŷN,t. The mere definition (11) of ŷN,t yields:

M −N
M

≤ ŷN,t ≤ 1 +
M −N
M

.

In particular, ŷN,t uniformly belongs to a fixed compact interval, so does yN,t for similar reasons. One can easily prove that
the second and third derivatives of Ct(y) are uniformly bounded on the union of these intervals. This result combined with the
fact that NE(ŷN,t−yN,t)2 = O(M−1) implies that the last two terms in the right hand side (r.h.s.) of (13) converge to zero in
probability. By Slutsky’s Theorem [13], it suffices to establish the CLT for NC(yN,t) instead of NC(ŷN,t) = NĈ(ŷN,t). This
is extremely helpful since unlike ŷN,t whih is random, yN,t is deterministic. The result is thus obtained by applying Theorem
3 and noticing that κ(yN,t) + 1 = 1

yN,t
.

V. SIMULATIONS

In the simulations, we consider the case where a mobile terminal with N = 4 antennas receives during M = 15 slots, data
stemming from an n0 = 4 antenna secondary transmitter. We assume that the communication link is interfered by K = 8
mono-antenna users. For each t ∈ {1, · · · , T}, matrices Ht and Gt are randomly chosen as standard Gaussian matrices and
remain constant during the Monte Carlo averaging. In a first experiment we set T to 10 and represent in Fig. 2 the theoretical
and empirical normalized variances for the G-estimator with respect to SNR = 1

σ2 . We also display in the same graph the
empirical variance of the large-M estimator. We note that the G-estimator exhibits better performance for all SNR range. We
study in a second experiment the effect of T when the SNR is set to 10 dB. Fig. 3 represents the obtained results. We note
that since the large-M estimator is biased, its mean square error does not significantly decrease with T and remains almost
unchanged, whereas the G-estimator exhibits a low variance which drops linearly with T . Finally, to assess the Gaussian
behaviour of both estimators, we represent in Fig. 4 and Fig. 5 their corresponding histograms. We note a good fit between
theoretical and empirical results although the system dimensions are small.
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Fig. 2. Empirical and theoretical variances with respect to the SNR.

VI. CONCLUSION

In this paper, we have proposed a novel G-estimator for fast estimation of the ergodic capacity in presence of unknown
interference in the case where the number of available observations is of the same order as the dimension of each observation.
In particular, we have shown that the conventional estimator, based on the replacement of the unknown covariance matrix of
the observations by the empirical covariance matrix, is biased. Based on large random matrix theory, we have introduced a
novel G-estimator which is unbiased and consistent. We then have studied the fluctuations of the two estimators and established
CLTs for both of them. Numerical simulations have been provided and strongly support the accuracy of our derived results
even for usual system dimensions.



9

100 101
−25

−20

−15

−10

−5

0

T

N
or

m
al

iz
ed

m
ea

n
sq

ua
re

er
ro

r
[d

B
]

Theoretical normalized variance (G-estimator)
Empirical normalized variance (G-estimator)
Empirical normalized variance (large-M estimator)

Fig. 3. Empirical and theoretical variances with respect to the SNR.
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APPENDIX A
PROOF OF LEMMA 1

Define for ρ ≥ 0:

Qt(ρ, y) =

(
ρIN + yHtH

H
t +

1

M
YtY

H
t

)−1
,

gt(ρ, y) =
1

N
log det

(
ρIN + yHtH

H
t +

1

M
YtY

H
t

)−1
.

Denote by Xt =
[
XH
t,1, · · · ,XH

t,K

]H
, and Zt =

[
WH

t XH
t

]H
then Yt = [σIN Gt] Zt. Denote by [σIN Gt] = UtΣtV

H
t

the singular value decomposition of [σIN Gt] where Σt =
[
D

1
2
t 0N×n

]
, Dt being the diagonal matrix of eigenvalues of
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GtG
H
t +σ2IN ; in particular, Dt’s entries are nonnegative and bounded away from zero. Let Z̃t = VH

t

[
WH

t XH
t

]H
. Since the

entries of Zt are i.i.d. and Gaussian, Z̃t has the same entry distribution as Zt. Writing Z̃t =
[
W̃H

t X̃H
t

]H
, gt(ρ, y) becomes:

gt(ρ, y) =
1

N
log det

(
ρIN + yHtH

H
t +

1

M
UtD

1
2
t W̃tW̃

H
t D

1
2
t UH

t

)
,

=
1

N
log det

(
ρIN + yUH

t HtH
H
t Ut +

1

M
D

1
2
t W̃tW̃

H
t D

1
2
t

)
.

Obviously, we have − 1
N log det(Qt(y)) = gt(0, y) and 1

M tr Qt(y) = 1
M tr Qt(0, y). Deterministic equivalents for gt(ρ, y)

and Qt(ρ, y) have been derived in [9] and are recalled in the lemma below.
Lemma 4 (cf. [9]): Let ρ > 0.
1) Denote by Γt = GtG

H
t + σ2IN and let y > 0. The following functional equation:

κt(ρ, y) =
1

M
tr

(
Γt

(
ρIN + yHtH

H
t +

Γt
1 + κt(ρ, y)

)−1)
admits a unique positive solution κt(ρ, y).

2) Define

Tt(ρ, y) =

(
ρIN + yHtH

H
t +

Γt
1 + κt(ρ, y)

)−1
.

Then, for any sequence of deterministic matrices SN ∈ CN×N with uniformly bounded spectral norm:

1

M
tr SNQt(ρ, y)− 1

M
tr SNTt(ρ, y)

a.s.−−−−−−−→
M,N,n→∞

0 .

In particular, setting SN = Γt, we get:

1

M
tr ΓtQt(ρ, y)− κt(ρ, y)

a.s.−−−−−−−→
M,N,n→∞

0 .

3) Let

Vt(ρ, y) =
1

N
log det

(
ρIN + yHtH

H
t +

Γt
1 + κt(ρ, y)

)
+
M

N
log(1 + κt(ρ, y))− M

N

κt(ρ, y)

1 + κt(ρ, y)
,

then
g(ρ, y)− Vt(ρ, y)

a.s.−−−−−−−→
M,N,n→∞

0 .

The general idea of the proof of Lemma 1 is to transfer these determinitic equivalents to the case ρ↘ 0; we will proceed
by taking advantage from the fact that all the diagonal elements of Dt are positive and uniformly bounded away from zero.
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We first prove the existence and uniqueness of κt(y). Consider the function f defined on [0,∞[ by:

f : x 7→ x− 1

M
tr Dt

(
yUH

t HtH
H
t Ut +

Dt

1 + x

)−1
.

An easy computation yields the derivative of f with respect to x:

f ′(x) = 1− 1

M
tr Dt

(
yUH

t HtH
H
t Ut +

Dt

1 + x

)−1
Dt

(1 + x)2

(
yUH

t HtH
H
t Ut +

Dt

1 + x

)−1
which is obviously always positive. Function f is thus always increasing and thus establishes a bijection from [0,∞[ to
[f(0),+∞[. Since f(0) is negative, we conclude that f has a single zero. This proves the existence and uniqueness of κt(y).
It remains to extend the asymptotic convergence results to the case ρ = 0.

In the sequel, we only prove item 2) for SN = DN as it captures the key arguments of the proof; the extension to general
sequences (SN ) will then be straightforward. Write 1

M tr ΓtQt(y)− κt(y) as:

1

M
tr ΓtQt(y)− κt(y) =

1

M
tr ΓtQt(y)− 1

M
tr ΓtQt(ε, y)

+
1

M
tr ΓtQt(ε, y)− κt(ε, y)

+ κt(ε, y)− κt(y) ,

where ε > 0. We now handle sequentially each of the differences of the r.h.s. of the previous decomposition. We first prove
that there exists a fixed constant K > 0 (which only depends on lim supNM−1) such that for every ε > 0, there exists N1

(which depends on the realization and hence is random) such that for every N ≥ N1, we have:∣∣∣∣ 1

M
tr ΓtQt(y)− 1

M
tr ΓtQt(ε, y)

∣∣∣∣ ≤ ε

K
. (14)

This can be proved by noting that from the resolvent identity, we have:

1

M
tr ΓtQt(y)− 1

M
tr ΓtQt(ε, y) =

ε

M
tr ΓtQt(0, y)Qt(ε, y) ,

≤ ε

M
tr Γt

∥∥∥∥∥
(

1

M
D

1
2
t W̃W̃HD

1
2
t

)−1∥∥∥∥∥
2

.

Recall that W̃t is a N ×M matrix and that by Assumption A2, lim supM,N NM
−1 < 1. Therefore the spectrum of W̃tW̃

H
t

is almost surely eventually bounded away from zero1. In particular, there exists a constant K such that eventually, we have∥∥∥∥( 1
MD

1
2
t W̃W̃HD

1
2
t

)−1∥∥∥∥2 ≤ K−1, hence:

∃N1, ∀N ≥ N1,

∣∣∣∣ 1

M
tr ΓtQt(y)− 1

M
tr ΓtQt(ε, y)

∣∣∣∣ ≤ ε

K
.

The second step consists in proving that for some constant K̃ (depending on lim supNM−1) there exists N2 (depending
on the realization) such that for all N ≥ N2:

|κt(ε, y)− κt(y)| ≤ K̃ε . (15)

The proof of (17) relies on the following identity:

κt(y)− κt(ε, y) = εαN + βN (κt(y)− κt(ε, y)) , (16)

where

αN =
1

M
tr ΓtTt(ε, y)ΓtTt(y) ,

βN =
1

M
tr

(
ΓtTt(ε, y)ΓtTt(y)

(1 + κt(y))(1 + κt(ε, y))

)
.

It is clear that βN < 1 and one can prove that there exists K̃ > 0 such that lim supαN < K̃. In fact, αN satisfies:

αN ≤
N

M
‖Γt‖2

∥∥Γ−1t ∥∥2 (1 + κt(y))(1 + κt(ε, y)) . (17)

1Recall that if limNM−1 = c < 1, then the smallest eigenvalue λmin(W̃tW̃H
t ) converges to (1 −

√
c)2 > 0; it remains to argue on subsequences to

conclude in the case where lim supM,N NM−1 < 1 .
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One can prove that κt(y) and κt(ε, y) are lower than N
M(1−N/M) . In fact, κt(y) writes:

κt(y) =
N(1 + κt(y))

M
− (1 + κt(y))

M
tr

(
yHtH

H
t

(
yHtH

H
t +

Γt
1 + κt(y)

)−1)
,

=
N

M(1− N
M )
− (1 + κt(y))

M(1− N
M )

tr

(
yHtH

H
t

(
yHtH

H
t +

Γt
1 + κt(y)

)−1)
,

≤ N

M(1− N
M )

.

Similar arguments hold for κt(ε, y), thus proving that lim supαN ≤ K̃. From (16), we conclude that there exists N3 such that
for all N ≥ N3,

|κt(ε, y)− κt(y)| ≤ K̃ε .

We are now in position to prove the almost sure convergence of 1
M tr ΓtQt(y)− κt(y). Consider the constants K and K̃ as

defined previously and let ε > 0. According to (14), there exists N1 such that:

∀N ≥ N1 ,

∣∣∣∣ 1

M
tr ΓtQt(y)− 1

M
tr ΓtQt(ε, y)

∣∣∣∣ ≤ ε

K
.

Using the almost sure convergence result of 1
M tr ΓtQt(ε, y) stated in Lemma 4, there exists N2 such that:

∀N ≥ N2 ,

∣∣∣∣ 1

M
tr ΓtQt(ε, y)− κt(ε, y)

∣∣∣∣ ≤ ε .
Finally from (15), there exists N3 such that for all N ≥ N3:

|κt(ε, y)− κt(y)| ≤ K̃ε .

Combining all these results, we have, for N ≥ max(N1, N2, N3):∣∣∣∣ 1

M
tr ΓtQ(y)− κt(y)

∣∣∣∣ ≤ ε( 1

K
+ 1 + K̃

)
,

hence proving that:
1

M
tr ΓtQt(y)− κt(y)

a.s.−−−−−−−→
M,N,n→∞

0 ,

which is the desired result.

APPENDIX B
PROOF OF LEMMA 2

Using the same eigenvalue decomposition as in Appendix A, we can prove that Yt = UtD
1
2
t W̃t where W̃t is a N ×M

standard Gaussian matrix, and where Dt is a diagonal matrix with the same eigenvalues as GtG
H
t + σ2IN . In the sequel, if

A is a p× p hermitian matrix, denote by FA the empirical distribution of its eigenvalues, i.e. FA = 1
p

∑p
i=1 δλi(A), and by

mA the associated Stieltjes transform.
Denote by mYH

tYt
(z) the Stieltjes transform corresponding to the empirical eigenvalue distribution of YH

t Yt, i.e.,

mYH
tYt

(z) =
1

M
tr
(
YH
t Yt − zIM

)−1
.

Notice that mDt
(z) = mGtGH

t
(z − σ2). Using this fact, and the result in [14], on can easily prove that mYH

tYt
satisfies:

∀z ∈ C \ R+ , mYH
tYt

(z)−m(z)
a.s.−−−−−−−→

M,N,n→∞
0 ,

where m(z) is the unique Stieltjes transform of a probability distribution F , solution of the following functional equation:

m(z) =

(
−z +

N

M

∫
λ+ σ2

1 + (λ+ σ2)m(z)
dFGtG

H
t (λ)

)−1
. (18)

Moreover, m(z) is analytical on C+ = {z ∈ C,=(z) > 0} where =(z) stands for the imaginary part of z ∈ C. Using (18),
one can prove that mGtGH

t
(z) satisfies:

mGtGH
t

(
− 1

m(z)
− σ2

)
= m(z)(1− M

N
)− M

N
zm2(z) . (19)
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The link between the unobservable Stieltjes transform mGtGH
t

and the deterministic equivalent m(z) being established, it
remains to express N−1 log det(IN + σ−2GtG

H
t ) in terms of mGtGH

t
, which follows easily by differentiation:

∂

∂σ2

1

N
log det

(
IN +

GtG
H
t

σ2

)
=

1

N
tr
(
GtG

H
t + σ2IN

)−1 − 1

σ2
.

Hence:

1

N
log det

(
IN +

GtG
H
t

σ2

)
=

∫ +∞

σ2

1

t
− 1

N
tr

(
GtG

H
t +

1

t
IN

)−1
dt ,

=

∫ 1
σ2

0

1

t
− 1

t2
mGtGH

t

(
−1

t

)
dt . (20)

We shall now perform a change of variables within the integral in order to substitute m for mGtGH
t

with the help of (19). It
has been proved in [15] that m(z) is continuous and increasing on R∗−; in particular, the application

u 7→
(

1

m(u)
+ σ2

)−1
establishes a bijection from R∗− to (0, 1/σ2). Considering the change of variable 1

t = 1
m(u) + σ2, (20) writes:

1

N
log det

(
IN +

GtG
H
t

σ2

)
=

∫ 0

−∞

[
1

m(u)
+ σ2 −

(
1

m(u)
+ σ2

)2

mGtGH
t

(
− 1

m(u)
− σ2

)]
m′(u)

(1 + σ2m(u))2
du

=

∫ 0

−∞

[
m′(u)

m(u)(1 + σ2m(u))
−
(

1− M

N

)
m′(u)

m
+
M

N
um′(u)

]
du

=

∫ 0

−∞

[
M

N

m′(u)

m(u)
− σ2m′(u)

1 + σ2m(u)
+
M

N
um′(u)

]
du.

We shall now compute this integral, denoted by I in the sequel. Write I = limx→−∞
y→0

Ix,y where

Ix,y =

∫ y

x

[
M

N

m′(u)

m(u)
− σ2m′(u)

1 + σ2m(u)
+
M

N
um′(u)

]
du .

Straightforward computations yield:

Ix,y = log

∣∣∣∣∣ (m(y))
M
N

1 + σ2m(y)

∣∣∣∣∣− log

∣∣∣∣∣ (m(x))
M
N

1 + σ2m(x)

∣∣∣∣∣+
M

N
ym(y)− M

N
xm(x)−

∫ y

x

M

N
m(u)du . (21)

As our objective is to compute the limit of Ix,y as x→ −∞ and y → 0, we need to obtain equivalents for m at 0 and −∞.
A direct application of the dominated convergence theorem yields:

m(x) ∼
x→−∞

− 1

x
.

Recall that F is the probability distribution associated to m. Then, F ({0}) = M−1(M − N). Although this property is not
easy to write down properly, it is quite intuitive if one sees F as close to FYH

tYt (the empirical distribution of the eigenvalues
of YH

t Yt) which clearly satisfies FYH
tYt({0}) = M−1(M −N) by Assumption A2: This assumption implies in fact that zero

is an eigenvalue of YH
t Yt of order M −N . Hence,

m(y) ∼
y→0
−M −N

My
.

Using these relations, we can derive equivalents for the first four terms in the right-hand side of (21). In particular, we obtain:

log

∣∣∣∣∣ (m(y))
M
N

1 + σ2m(y)

∣∣∣∣∣ ∼
y→0

(
M

N
− 1

)
log

(
M −N
M

)
− log(σ2) +

(
1− M

N

)
log |y| , (22)

− log

∣∣∣∣∣ (m(x))
M
N

1 + σ2m(x)

∣∣∣∣∣ ∼
x→−∞

M

N
log |x| , (23)

M

N
ym(y) ∼

y→0
−
(
M

N
− 1

)
, (24)

−M
N
xm(x) ∼

x→−∞

M

N
. (25)
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Let us now handle the last term in the. of (21). Denote by F the probability distribution defined by

F (dx) =
(M −N)

M
δ0(dx) +

N

M
F (dx) .

If m is the Stietjes transform associated to F , then:

m(z) =
M

N
m(z) +

(M −N)

N

1

z
.

Note in particular that mYtYH
t
−m→ 0, hence that F is a deterministic approximation of FYtY

H
t , the empirical distribution

of the eigenvalues of YtY
H
t . Now,∫ y

x

M

N
m(u)du =

∫ y

x

∫
dF (t)

t− u
du− M −N

Nu
du ,

=

∫
(− log |t− y|+ log |t− x|)dF (t) +

M −N
N

(log |x| − log |y|) . (26)

Using the dominated convergence theorem, one can provethat the r.h.s. of (26) is equivalent to:∫ y

x

M

N
m(u)du ∼

x→−∞
y→0

−
∫

log(t)dF (t) +
M

N
log |x| − M −N

N
log |y| . (27)

Plugging (22), (23), (24), (25) and (27) into (21) yields:

lim
x→−∞
y→0

Ix,y =
M −N
N

log

(
M −N
M

)
− log σ2 +

∫
log(t)dF (t).

Since the spectrum of 1
MYtY

H
t is almost surely eventually bounded away from zero and upper-bounded, uniformly along N ,

we have:
1

N

N∑
i=1

log(λi)−
∫

log(t)dF (t)
a.s.−−−−−−−−→

M,N,n→+∞
0

where (λi, 1 ≤ i ≤ N) are the eigenvalues of 1
MYtY

H
t . A consistent estimator of 1

N log det(σ2IN + GtG
H
t ) is thus given by:

C1 =
M −N
N

log

(
M −N
M

)
+ 1 +

1

N

N∑
i=1

log(λi)

=
M −N
N

log

(
M −N
M

)
+ 1 +

1

N
log det

(
1

M
YtY

H
t

)
,

which concludes the proof.

APPENDIX C
PROOF OF THEOREM 2

As previously mentionned, the proof of Theorem 2 relies on the existence of a consistent estimate for

Ct,1 =
1

N
log det(σ2IN + GtG

H
t + HtH

H
t ) .

Denote by f(y) the parametrized quantity:

f(y) =
1

N
log det(YtY

H
t + yHtH

H
t ) .

Then by Lemma 1-3), we obtain:

−f(y) +
1

N
log det

(
GtG

H
t + σ2IN

1 + κt(y)
+ yHtH

H
t

)
+
M

N
log(1 + κt(y))− M

N

κt(y)

1 + κt(y)

a.s.−−−−−−−→
M,N,n→∞

0 . (28)

Obviously, if y is replaced by yN,t, solution of:

yN,t =
1

1 + κt(yN,t)
, (29)

then the term Ct,1 appears in (28). The existence and uniqueness of yN,t immediatly follows from the fact that the function
g defined as:

g : x 7→ (1 + x)
1

M
tr(GtG

H
t + σ2IN )(HtH

H
t + GtG

H
t + σ2IN )−1
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is a contraction. Moreover, straightforward computations yield:

yN,t = 1− 1

M
tr(GtG

H
t + σ2IN )(HtH

H
t + GtG

H
t + σ2IN )−1 . (30)

Unfortunately, yN,t depends on the unobservable matrix Gt. One need therefore to provide a consistent estimate ŷN,t of yN,t.
In order to proceed, we shall study the asymptotics of κt(y). By Lemma 1-2), we have:

y

M
tr HtH

H
t Qt(y)− y

M
tr HtH

H
t Tt(y)

a.s.−−−−−−−→
M,N,n→∞

0 . (31)

On the other hand, we have:

y

M
tr HtH

H
t Tt(y) =

1

M
tr yHtH

H
t

(
yHtH

H
t +

GtG
H
t + σ2IN

1 + κt(y)

)−1
,

=
N

M
− 1

M(κt(y) + 1)
tr

(
(GtG

H
t + σ2IN )

(
yHtH

H
t +

GtG
H
t + σ2IN

1 + κt(y)

)−1)
,

=
N

M
− κt(y)

1 + κt(y)
,

=
N

M
− 1 +

1

1 + κt(y)
. (32)

Substituting (32) into (31), we obtain:

1

M
tr yHtH

H
t Qt(y)− N

M
+ 1− 1

κt(y) + 1

a.s.−−−−−−−→
M,N,n→∞

0 . (33)

Intuitively, a consistent estimate of ŷN,t of yN,t should satisfy ŷN,t = M−1ŷN,t tr HtH
H
t Qt(ŷN,t). This intuition is confirmed

by the following lemma:
Lemma 5: There exists a unique positive solution ŷN,t to the equation:

ŷN,t
M

tr Qt(ŷN,t)−
N

M
+ 1− ŷN,t = 0 .

Moreover, the following convergence holds true:

ŷN,t − yN,t
a.s.−−−−−−−→

M,N,n→∞
0 ,

where yN,t is defined by (29) (see also (30)).
Proof: The existence and uniqueness of ŷN,t follows from the fact that y :7→ 1

M tr Qt(y) − N
M + 1 is a contraction.

Moreover, using Assumption A2, it is straightforward to check that ŷN,t is eventually lower than 1. Using (33), we get that:

yN,t
M

tr HtH
H
t Qt(yN,t)−

N

M
+ 1− yN,t

a.s.−−−−−−−→
M,N,n→∞

0 .

Beware that in (33), the convergence holds true for a fixed y while yN,t depends upon N . A way to circumvent this issue is
to merge yN,t into Ht and to consider the slightly different model based on H̃t =

√
yN,tHt.

Therefore, the mere definition of ŷN,t and the previous convergence yield:

ŷN,t
M

tr(HtH
H
t Qt(ŷN,t))− ŷN,t + yN,t −

yN,t
M

tr(HtH
H
t Qt(yN,t))

a.s.−−−−−−−→
M,N,n→∞

0.

It can be easily proved that hN : y 7→ y
M tr HtH

H
t Qt(y) is a contraction on R+, i.e. that there exists 0 ≤ kN ≤ 1 such that:

|hN (x)− hN (y)| ≤ kN |x− y|,

whenever x, y ≥ 0; moreover, due to Assumption A2, lim sup kN < 1. On the other hand, we have:

|yN,t − ŷN,t| = |yN,t − ŷN,t − hN (yN,t) + hN (ŷN,t)− hN (ŷN,t) + hN (yN,t)| ,
≤ |yN,t − ŷN,t − hN (yN,t) + hN (ŷN,t)|+ |hN (ŷN,t)− hN (yN,t)| ,
≤ |yN,t − ŷN,t − hN (yN,t) + hN (ŷN,t)|+ kN |ŷN,t − yN,t| .

Hence, we get:
0 ≤ (1− kN )|ŷN,t − yN,t| ≤ |yN,t − ŷN,t − h(yN,t) + h(ŷN,t)| .

Since the r.h.s. converges to zero, yN,t − ŷN,t converges also to zero almost surely.
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With the help of Lemma 5, the following convergences can be easily verified:
1

N
log det(Qt(yN,t))−

1

N
log det(Qt(ŷN,t))

a.s.−−−−−−−→
M,N,n→∞

0 ,

κ(ŷN,t)− κ(yN,t)
a.s.−−−−−−−→

M,N,n→∞
0 .

Therefore:

−f(ŷN,t) +
1

N
log det(GtG

H
t + σ2IN + HtH

H
t )− M −N

N
log(ŷN,t)−

M

N
(1− ŷN,t)

a.s.−−−−−−−→
M,N,n→∞

0 ,

which in turn implies that:

Ct,1 − log det(ŷN,tHtH
H
t + YtY

H
t )− M −N

N
log(ŷN,t)−

M

N
(1− ŷN,t)

a.s.−−−−−−−→
M,N,n→∞

0 .

Using this estimate of Ct,1 together with the estimate of Ct,2 as provided in Lemma 2 immediatly yields a consistent estimate
for Ct(σ2) = Ct,1 − Ct,2, and the theorem is proved.

APPENDIX D
PROOF OF THEOREM 3

The proof of theorem 3 relies on the tools used in [11] suitable for dealing with Gaussian random variables. Recall that
Ĉtrad(y) is given by:

Ĉtrad(y) =
1

NT

T∑
t=1

log det

(
yHtH

H
t +

1

M
YtY

H
t

)
− log det

(
1

M
YtY

H
t

)
,

where Yt = [σIN Gt]

[
Wt

Xt

]
and Xt =

[
XH
t,1, . . . ,X

H
t,K

]H
. Similarly, as in Appendix A and Appendix B, we can prove that

Yt = UtD
1
2
t W̃t where W̃t is a N ×M standard Gaussian matrix, and Dt is the N × N diagonal matrix containing the

eigenvalues of GtG
H
t + σ2IN . Then, Ĉtrad(y) becomes:

Ĉtrad(y) =
1

NT

T∑
t=1

log det(yHtH
H
t +

1

M
UtD

1
2
t W̃tW̃

H
t D

1
2
t UH

t )− log det(
1

M
D

1
2
t W̃tW̃

H
t D

1
2
t ),

=
1

NT

T∑
t=1

log det(yD
− 1

2
t UH

t HtH
H
t UtD

− 1
2

t +
1

M
W̃tW̃

H
t )− log det(

1

M
W̃tW̃

H
t ),

=
1

NT

T∑
t=1

log det

(
yD
− 1

2
t UH

t HtH
H
t UtD

− 1
2

t

(
1

M
W̃tW̃

H
t

)−1
+ IN

)
.

Denote by D
− 1

2
t UH

t HtH
H
t UtD

− 1
2

t = ŨtΛtŨ
H
t be the eigenvalue decomposition of D

− 1
2

t UH
t HtH

H
t UtD

− 1
2

t . Since r is the
rank of HtH

H
t , matrix Λt has exactly r non zero entries which we denote by (Λi,t, 1 ≤ i ≤ r). We get then:

Ĉtrad(y) =
1

NT

T∑
t=1

log det

(
yΛt

(
1

M
W̃tW̃

H
t

)−1
+ IN

)
.

Let Λr,t = diag (λ1,t, . . . , λr,t). Then using theorem 3.2.11 in [16], we can prove that Ĉtrad(y) can be written as:

Ĉtrad(y) =
1

NT

T∑
t=1

log det

(
yΛr,t

(
1

M
W̃r,tW̃

H
r,t

)−1
+ IN

)
,

where W̃r,t is a r ×M −N + r standard Gaussian matrix. Let M = (M−N+r)
My Λ−1r,t , we finally get:

Ĉtrad(y) =
1

NT

T∑
t=1

log det

(
1

M −N + r
M

1
2 W̃r,tW̃

H
r,tM

1
2 + Ir

)
− log det (M)− log det

(
1

M −N + r
W̃r,tW̃

H
r,t

)

,
T∑
t=1

Ĉtrad,t(y).

Let s = M −N + r. By Assumption A4, we have:

0 < lim inf
s

r
≤ lim sup

s

r
< +∞.
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Moreover, matrix M satisfies:
sup ‖M‖ <∞ and inf

1

s
tr M > 0.

We retrieve then the same model as in [11], with the slight difference that Ĉtrad,t(y) has an extra random term log det
(

1
M W̃r,tW̃

H
r,t

)
.

As we will see next, this has no impact on the applicability of the method and one can get the desired result by following
the same lines of [11]. In particular, we consider to prove a CLT for the functional log det( zsM

1
2 W̃W̃HM

1
2 + Ir) −

log det(1
sM

1
2 W̃W̃HM

1
2 ) where z > 0. The expression of the variance for this CLT will depend on some deterministic

quantities which we recall hereafter.

A. Notations

Let Z = M
1
2 W̃ and define the resolvent matrix S(z) by:

S(z) =
(z
s
M

1
2 W̃W̃HM

1
2 + Ir

)−1
=
(z
s
ZZH + Ir

)−1
,

Let also Is(z) be given by:
Is(z) = log det

(z
s
M

1
2 W̃W̃HM

1
2 + Ir

)
= − log det S(z).

We introduce the following intermediate quantities:

β(z) =
1

s
tr MS, α(z) =

1

s
tr MES, and

o

β= β − α.

Matrix R̃(z) is a s× s diagonal matrix defined by:
R̃(z) = r̃Is,

where r̃ = 1
1+zα(z) . We also define R(z) the r × r matrix given by:

R(z) = (Ir + zr̃(z)M)
−1
.

We also define δ(z) as the unique positive solution of the following equation:

δ(z) =
1

s
tr M

(
Ir +

z

1 + zδ(z)
M

)−1
,

where the existence and uniqueness of δ(z) have already been proven in [11]. Let Ξ and Ξ̃ the r × r and s × s diagonal
matrices defined by:

Ξ =

(
Ir +

z

1 + zδ(z)
M

)−1
and Ξ̃ =

1

1 + zδ(z)
Is

Define also γ, δ̃(z) and γ̃ as γ = 1
s tr M2Ξ2, δ̃(z) = 1

1+zδ(z) and γ̃ = 1
(1+zδ(z))2 .

B. Mathematical tools

We recall here the mathematical tools that will be used to establish theorem 3.
1) Differentiation formulas:

∂Sp,q
∂Zi,j

= −z
s

[
ZHS

]
j,q
Sp,i,

∂Sp,q
∂Z∗i,j

= −z
s

[SZ]p,j Si,q,

∂Is(z)

∂Z∗i,j
=
z

s
[SZ]i,j ,

∂log det( 1
sZZH)

∂Z∗i,j
=
[(

ZZH
)−1

Z
]
i,j
.

2) Integration by parts formula for Gaussian functionals: Denote by Φ be a C1 complex function polynomially bounded
with its derivatives, then

E [Zi,jΦ(Z)] = miE

[
∂Φ(Z)

∂Z∗i,j

]
.

where mi is the i-th diagonal element of M.
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3) Poincaré-Nash inequality: The variance of Φ(Z) can be upper-bounded as:

var(Φ(Z)) ≤
r∑
i=1

s∑
j=1

miE

∣∣∣∣∂Φ(Z)

∂Zi,j

∣∣∣∣2 +

∣∣∣∣∣∂Φ(Z)

∂Z∗i,j

∣∣∣∣∣
2
 .

4) Deterministic approximations of some functionals:
Proposition 1: Let Ar and Br be two sequences of respectively r × r and s × s diagonal deterministic matrices with
uniformly bounded spectral norm. Assume that assumptions A1-A4 hold true. Then, the following holds true:

1

s
tr ArR =

1

s
tr ArΞ + O

(
s−2
)
, r̃ = δ̃ + O

(
s−2
)

and E
1

s
tr ArH =

1

s
tr ArΞ + O

(
s−2
)
.

Proposition 2: Let Ar, Br and Cr be three sequences of r× r, s× s and r× r diagonal deterministic matrices whose
spectral norm are uniformly bounded in r. Consider the following:

Φ(Z) =
1

s
tr

(
ArS

ZBrZ
H

s

)
, Ψ(Z) =

1

s
tr

(
ArSMS

ZBrZ
H

s

)
,

and assume that A1-A4 hold true. Then,
a) The following estimations hold true: var(Φ(Z)), var(Ψ(Z)), var(β) are O

(
s−2
)
.

b) The following approximations hold true:

E [Φ(Z)] = δ̃
1

s
tr ArMΞ + O

(
s−2
)
, (34)

E [Ψ(Z)] =
1

1− z2γγ̃

(
δ̃

1

s
tr Br

1

s
tr(ArM

2Ξ2)− zγγ̃ 1

s
tr Br

1

s
tr ArMΞ

)
+ O

(
s−2
)
, (35)

E
[

1

s
tr MSMS

]
=

γ

1− z2γγ̃
+ O

(
s−2
)
. (36)

C. Central limit theorem

All the notations being defined, we are now in position to show the CLT. We recall that our objective is to study the
fluctuations of Ĉtrad(y) =

∑T
t=1 Ĉtrad,t(y). Since

(
Ĉtrad,t(y), t = 1, · · · , T

)
are independent, it suffices to consider the CLT

for Ĉtrad,t(y), for t ∈ {1, · · · , T}. We consider thus the random quantity Is(z) − log det
(
1
sZZH

)
. Before getting into the

proof details, we shall first recall the CLT of g(Z) = − log det(1
sZZH) whose proof can be found in [17]. Indeed, it is shown

that:
−1

log(1− r
s )

(
− log det(

1

s
ZZH)− bs

)
D−−−−−−−→

N,M,n→∞
N(0, 1).

where bs = −r
[(

1− s
r

)
log
(
1− r

s

)
− 1
]
. Like in [11], define Ψs(u, z) = E

[
eu(Is(z)−Vs(z)+g(Z)−bs)

]
, where Vs(z) is the

deterministic equivalent defined by:

Vs(z) = s log (1 + zδ(z)) + log det

(
Ir +

z

1 + zδ(z)
M

)
− szδ(z)δ̃(z),

and verifying:
1

s
(Is(z)− Vs(z))

a.s−−−−→
r,s→∞

0.

The principle of the proof is to establish a differential equation verified by Ψs(u, z). Writing the derivative of Ψs(u, z) with
respect to z, we get:

∂Ψs

∂z
= E

[
u
∂Is(z)

∂z
euIs(z)+ug(Z)

]
e−uVs(z)−ubs − u∂Vs(z)

∂z
Ψs(u, z). (37)

On the other hand, we have:

E
[
∂Is(z)

∂z
euIs(z)+ug(Z)

]
= E

[
tr

(
SZZH

s

)
euIs(z)+ug(Z)

]
=

1

s

r∑
p,i=1

s∑
j=1

E
[
Zi,jSp,iZ

∗
p,je

uI(z)+ug(Z)
]
.
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Applying the integration by part formula, we get:

E
[
Zi,jSp,iZ

∗
p,je

uIs(z)+ug(Z)
]

= E

[
mi

∂

∂Z∗i,j

[
Sp,iZ

∗
p,je

uI(z)+ug(Z)
]]

= E
[
miSp,iδ(p− i)euI(z)+ug(Z)

]
− z

s
E
[
[SZ]p,jmiSi,iZ

∗
p,je

uIs(z)+ug(Z)
]

+
uz

n
E
[
miSp,iZ

∗
p,j [SZ]i,j e

uIs(z)+ug(Z)
]

+ E

[
umiSp,iZ

∗
p,j

∂g(Z)

∂Z∗i,j
euIs(z)+ug(Z)

]
.

After summing over index i, we obtain:

E
[
[SZ]p,j Z

∗
p,je

uIs(z)+ug(Z)
]

= E
[
mpSp,pe

uIs(z)+ug(Z)
]

− z

s
E
[
tr(MS) [SZ]p,j Z

∗
p,je

uIs(z)+ug(Z)
]

+
zu

s
E
[
[SMSZ]p,j Z

∗
p,je

uIs(z)+ug(Z)
]

− uE
[[

SM
(
ZZH

)−1
Z
]
p,j
Z∗p,je

uIs(z)+ug(Z)

]
. (38)

Recall the relation β = 1
s tr MS and

o

β= β − α where α = 1
s tr MES. Plugging the relation β = α+

o

β into (39), we get:

E
[
[SZ]p,j Z

∗
p,je

uIs(z)+ug(Z)
]

= E
[
mpSp,pe

uIs(z)+ug(Z)
]
− zE

[
o

β [SZ]p,j Z
∗
p,je

uIs(z)+ug(Z)

]
− zαE

[
[SZ]p,j Z

∗
p,je

uIs(z)+ug(Z)
]

+
zu

s
E
[
[SMSZ]p,j Z

∗
p,je

uIs(z)+ug(Z)
]

− uE
[[

SM
(
ZZH

)−1
Z
]
p,j
Z∗p,je

uIs(z)+ug(Z)

]
. (39)

Hence, solving this equation with respect to E
[
[SZ]p,j Z

∗
p,je

uIs(z)+ug(Z)
]

and using the fact that r̃ = 1
1+zα , we get:

E
[
[SZ]p,j Z

∗
p,je

uIs(z)+ug(Z)
]

= E
[
mpr̃Sp,pe

uIs(z)+ug(Z)
]
− zE

[
o

β r̃ [SZ]p,j Z
∗
p,je

uIs(z)+ug(Z)

]
+
z

s
E
[
ur̃ [SMSZ]p,j Z

∗
p,je

uIs(z)+ug(Z)
]

− uE
[
r̃
[
SM

(
ZZH

)−1
Z
]
p,j
Z∗p,je

uIs(z)+ug(Z)

]
. (40)

Using the relation Sp,p = 1− z
s

[
SZZH

]
p,p

, we get after summing with respect to j,

E

[[
SZZH

s

]
p,p

euIs(z)+ug(Z)

]
= E

[
mpr̃e

uIs(z)+ug(Z)
]
− zmpr̃

[[
SZZH

s

]
p,p

euIs(z)+ug(Z)

]

− zE

[
o

β r̃

[
SZZH

s

]
p,p

euIs(z)+ug(Z)

]
+
uz

s
E

[
r̃

[
SMS

ZZH

s

]
p,p

euIs(z)+ug(Z)

]

− uE

[
r̃

[
SM

s

]
p,p

euIs(z)+ug(Z)

]
.

Using the relation rp = 1
1+zr̃mp

, we get:

E

[[
SZZH

s

]
p,p

euIs(z)+ug(Z)

]
= E

[
mprpr̃e

uIs(z)+ug(Z)
]
− zE

[
o

β r̃rp

[
SZZH

s

]
p,p

euIs(z)+ug(Z)

]

+
uz

s
E

[
r̃rp

[
SMS

ZZH

s

]
p,p

euIs(z)+ug(Z)

]
− uE

[
r̃rp

[
SM

s

]
p,p

euIs(z)+ug(Z)

]
.
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Summing over p, we finally get:

E
[
tr

(
SZZH

s

)
euIs(z)+ug(Z)

]
= r̃ tr(MR)E

[
euIs(z)+ug(Z)

]
− zE

[
o

β r̃ tr

(
RS

ZZH

s

)
euIs(z)+ug(Z)

]
+
z

s
uE

[
r̃ tr

(
RSMS

ZZH

n

)
euIs(z)+ug(Z)

]
− ur̃E

[
tr

(
RSM

s

)
euIs(z)+ug(Z)

]
= χ1 + χ2 + χ3 + χ4.

It remains thus to deal with the terms (χi, 1 ≤ i ≤ 4). Using proposition 1, we have:

χ1 = r̃ tr MRE
[
euIs(z)+ug(Z)

]
= sδδ̃E

[
euIs(z)+ug(Z)

]
+ O

(
s−1
)
. (41)

To deal with χ3, we apply the results of proposition 2-b, with Ar = R and Br = I. In this case, χ3 writes as : χ3 =
zur̃EΨ(Z)euIs(z)+ug(Z). Using Cauchy-Schwartz inequality, we get:∣∣∣E(Ψ(Z)euIs(z)+ug(Z)

)
− EeuIs(z)+ug(Z)E (Ψ(Z))

∣∣∣ ≤√E
[∣∣∣ oΨ (Z)

∣∣∣2],
where

o

Ψ (Z) = Ψ(Z)− E (Ψ(Z)). Therefore,

χ3 =
zuδ̃

1− z2γγ̃

[
δ̃

1

n
tr(M2Ξ3)− zγγ̃

s
tr MΞ2

]
E
[
euIs(z)+ug(Z)

]
+ O

(
s−1
)
. (42)

The term χ2 can be dealt with in the same way, thus proving:

χ2 = −zE
[
o

β euIs(z)+ug(Z)

]
γ̃ tr(MΞ2) + O

(
s−1
)
. (43)

Since tr(MΞ2) is of order s, we shall expand E
[
o

β euIs(z)+ug(Z)

]
to at least the order s−1, and thus

o

β and E
[
euIs(z)+ug(Z)

]
cannot be separated in the same way as above.

Indeed, we shall first take the sum over j in (40), thus yielding:

E
[[

SZZH
]
p,p
euIs(z)+ug(Z)

]
= E

[
smpr̃Sp,pe

uIs(z)+ug(Z)
]
− zE

[
o

β r̃
[
SZZH

]
p,p
euIs(z)+ug(Z)

]
+
z

s
E
[
ur̃

[
SMSZZH

]
p,p
euIs(z)+ug(Z)

]
− uE

[
r̃ [SM]p,p e

uIs(z)+ug(Z)
]
. (44)

Using the fact that:
z

s

[[
SZZH

]
p,p
euIs(z)+ug(Z)

]
= E

[
euIs(z)+ug(Z)

]
− E

[
Sp,pe

uIs(z)+ug(Z)
]
,

(44) becomes:

E
[
euIs(z)+ug(Z)

]
− E

[
Sp,pe

uIs(z)+ug(Z)
]

= zE
[
mpr̃Sp,pe

uIs(z)+ug(Z)
]
− z2E

[
o

β r̃

[
SZZH

s

]
euIs(z)+ug(Z)

]
+
z2

s
E

[
ur̃

[
SMS

ZZH

s

]
p,p

euIs(z)+ug(Z)

]
− uz

s
E
[
r̃ [SM]p,p e

uIs(z)+ug(Z)
]
.

(45)

Solving E
[
Sp,pe

uIs(z)+ug(Z)
]

in (45) and using the relation rp = 1
1+zmpr̃

, we obtain:

E
[
Sp,pe

uIs(z)+ug(Z)
]

= E
[
rpe

uIs(z)+ug(Z)
]

+
z2

s
E
[
o

β rpr̃
[
SZZH

]
p,p
euIs(z)+ug(Z)

]
− z2

s
E

[
ur̃rp

[
SMS

ZZH

s

]
p,p

euIs(z)+ug(Z)

]
+
uz

s
E
[
r̃rp [SM]p,p e

uIs(z)+ug(Z)
]
. (46)

Multiplying both sides in (46) by mp and summing over p, we get:

E
[
o

β euIs(z)+ug(Z)

]
= E

[
1

s
tr(MR−MES)euIs(z)+ug(Z)

]
+
z2

s
E
[
o

β
r̃

s
tr(MRSZZH)euIs(z)+ug(Z)

]
− z2

s
E
[
ur̃

1

s
tr(MRSMS

ZZH

s
)euIs(z)+ug(Z)

]
+
uz

s2
r̃E
[
tr (RMS) euIs(z)+ug(Z)

]
.
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Using the approximating expressions in proposition 2, we get:

E
[
o

β euIs(z)+ug(Z)

]
= z2γγ̃E

[
o

β euIs(z)+ug(Z)

]
− z2δ̃u

s(1− z2γγ̃)

(
δ̃

1

s
tr(M3Ξ3)− zγ2γ̃

)
E
[
euIs(z)+ug(Z)

]
+
uz

s2
r̃E
[
tr(MRSM)euIs(z)+ug(Z)

]
+ O

(
s−2
)
.

Hence,

E
[
o

β euIs(z)+ug(Z)

]
= − z2u

s(1− z2γγ̃)2

(
γ̃

1

s
tr(M3Ξ3)− zγ2δ̃3

)
E
[
euIs(z)+ug(Z)

]
+

uzδ̃γ

s(1− z2γγ̃)
E
[
euIs(z)+ug(Z)

]
+ O

(
s−2
)
. (47)

Plugging (47) into (43), we get:

χ2 =
z3uγ̃

s(1− z2γγ̃)2

(
γ̃

1

s
tr(M3Ξ3)− zγ2δ̃3

)
tr(MΞ2)E

[
euIs(z)+ug(Z)

]
(48)

− uz2γδ̃3

(1− z2γγ̃)

1

s
tr
(
MΞ2

)
E
[
euIs(z)+ug(Z)

]
+ O

(
s−1
)
. (49)

Finally, it remains to deal with χ4. Using proposition 1, we get:

χ4 = − uδ̃
s

tr
(
MΞ2

)
E
[
euIs(z)+ug(Z)

]
+ O

(
s−1
)
. (50)

From (41), (42), (49) and (50), we then have:

E
[
tr

(
SZZH

s

)
euIs(z)+ug(Z)

]
=

[
sδδ̃ +

z3uγ̃2

s(1− z2γγ̃)2
1

s
tr
(
M3Ξ3

)
tr
(
MΞ2

)
+

zuγ̃

1− z2γγ̃
1

s
tr(M2Ξ3)

− z2uγδ̃3

(1− z2γγ̃)2
1

s
tr(MΞ2)− uδ̃

1− z2γγ̃
1

s
tr MΞ2

]
× E

[
euIs(z)+ug(Z)

]
+ O

(
s−1
)
. (51)

Hence Ψs(u, z) satisfies:

∂Ψs

∂z
=

[
−u2z3γ̃2

(1− z2γγ̃)2
1

s
tr
(
M3Ξ3

) 1

s
tr
(
MΞ2

)
− u2zγ̃

(1− z2γγ̃)

1

s
tr
(
M2Ξ3

)
+

u2z2γδ̃3

(1− z2γγ̃)2
1

s
tr
(
MΞ2

)
+

u2δ̃

1− z2γγ̃
1

s
tr
(
MΞ2

)]
Ψs(u, z) + O

(
s−1
)
.

Following the same lines as in [11], one can prove that:

−
d log

(
1− z2γγ̃

)
dz

=
1

1− z2γγ̃

(
−
z2γδ̃3 1

s tr
(
MΞ2

)
1− z2γγ̃

+ zγ̃
1

s
tr
(
M2Ξ3

)
+
z3γ̃2 1

s tr
(
M3Ξ3

)
1
s tr

(
MΞ2

)
1− z2γγ̃

)
. (52)

Moreover, from the system of equations (54) in [11], one can find that:

1

2

d log γ̃

dz
= −

δ̃ 1
s tr

(
MΞ2

)
1− z2γγ̃

. (53)

Using (52) and (53), we finally get:

∂Ψs

∂z
= −u

2

2

[
− d

dz
log(1− z2γγ̃) +

d log γ̃

dz

]
Ψs(u, z) + O

(
s−1
)
.

Let σ2
T = − log

(
1− z2γγ̃

)
+ log γ̃ and Ks(u, z) = Ψs(u, z) exp

(
u2σ2

T

2

)
. Therefore, Ks(u, z) satisfies:

∂Ks

∂z
= ε(s, z) exp

(
u2σ2

T

2

)
,

where ε(s, z) = O
(
s−1
)
. On the other hand, we have:

Ks(u, z) = E
[
eu(− log det( 1

sZZH−bs))
]
.
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Hence,

Ks(u, z) = Ks(u, 0) +

∫ z

0

εs(u, x)dx

= e
u2 log(1− r

s
)

2 + O
(
s−1
)
.

The characteristic function Ψs(u, z) can be thus approximated as:

Ψs(u, z) = exp

(
−u

2σ2
T

2
+
u2 log(1− r

s )

2

)
+ O

(
s−1
)
. (54)

The characteristic function satisfies the same equation as in [11]. The single difference is that the variance αN,t(y) given by:

αN,t(y) = − log

(
1− γγ̃
γ̃

)
− log(1− r

s
) (55)

has two additive terms accounting for the variance of g(Z) and the correlation between g(Z) and Is(z). The CLT can be thus
established by using the same arguments in [11], provided that we show that lim inf αN,t(y) > 0. For that, we need only to
prove that:

lim inf
1− z2γγ̃

γ̃
> 0.

Deriving δ̃ with respect to z, one can easily see that:

1− z2γγ̃
γ̃

= − 1
dδ̃
dz

1

s
tr
(
MΞ2

)
.

It has been shown in [11, eq.(67)] that − dδ̃dz satisfies:

0 < −dδ̃
dz

<
r

s
λmax,t,

where λmax = max (λ1,t, · · · , λr,t). This fact combined with lim inf 1
s tr

(
MΞ2

)
implies that lim inf αN,t(y) > 0. It remains

thus to express the variance αN,t(y) using the original notations. One can easily show that:

δ =
1

M −N + r
tr

(
My

M −N + r
D
− 1

2
t UH

t HtH
H
t UtD

− 1
2

t +
IN

1 + δ

)−1
− (N − r)(1 + δ)

M −N + r

=
1

M −N + r
tr

(
(GtG

H
t + σ2IN )

(
My

M −N + r
HtH

H
t +

GtG
H
t + σ2IN
1 + δ

)−1)
− (N − r)(1 + δ)

M −N + r

=
1

M
tr

(
(GtG

H
t + σ2IN )

(
yHtH

H
t +

(M −N + r)(GtG
H
t + σ2IN )

M(1 + δ)

)−1)
− (N − r)(1 + δ)

M −N + r
. (56)

Then, from (56), we can prove that M(δ+1)
M−N+r − 1 is solution in x of:

x =
1

M
tr

(
(GtG

H
t + σ2IN )

(
yHtH

H
t +

GtG
H
t

1 + x

)−1)
. (57)

Since κt is the unique solution of (57), we have:
M(δ + 1)

M −N + r
− 1 = κt,

or equivalently:

δ̃ =
1

1 + δ
=

M

(M −N + r)(κt + 1)
.

Therefore:
γ̃ = δ̃2 =

M2

(M −N + r)2(κt + 1)2
. (58)

In the same way, one can prove that γ can be expressed in terms of the original notations as:

γ =
(M −N + r)

M2
tr

(
yHtH

H
t

(
GtG

H
t + σ2IN

)−1
+

IN
κt + 1

)−2
− (κt + 1)2(N − r)(M −N + r)

M2
. (59)

Substituting (59) and (58) into (55), αN,t(y) becomes

αN,t(y) = logM2 − log

(
(M −N)

(
M(κt + 1)2 − tr

(
yHtH

H
t

(
GtG

H
t + σ2IN

)−1
+

IN
κt + 1

)−2))
.
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APPENDIX E
PROOF OF THEOREM 3

1) Denote by R(y) and f(y) the functionals given by:

f(y) =
1

M
tr(yHtH

H
t Qt(y)) +

M −N
M

− y

R(y) = − log det(Qt(y)) + (M −N) log(y)−My.

where Qt(y) =
(
yHtH

H
t + 1

MYtY
H
t

)−1
. According to Poincaré-Nash inequality, we have:

var(ŷN,t) ≤ K
N∑
i=1

M∑
j=1

E ∣∣∣∣∣∂ŷN,t∂Y ∗i,j

∣∣∣∣∣
2

+ E
∣∣∣∣∂ŷN,t∂Yi,j

∣∣∣∣2
 . (60)

We only deal with the first sum in the previous inequality; the second one can be handled similarly. By the implicit function
theorem, if ∂f

∂y 6= 0 then ∂ŷN,t
∂Y ∗

i,j
writes:

∂ŷN,t
∂Y ∗i,j

=

∂f
∂Y ∗

i,j
(ŷN,t)

∂f
∂y (ŷN,t)

. (61)

As will be shown later, to conclude that var(ŷN,t) = O(M−2), we need to establish that
∣∣∣∂f∂y (ŷN,t)

∣∣∣ is lower bounded away

from zero, which is a much stronger requirement than ∂f
∂y 6= 0. This can be proved by noticing that ∂R

∂y = Mf
y . Hence

∂2R

∂y2
(ŷN,t) =

M ∂f
∂y (ŷN,t)

ŷN,t
. (62)

On the other hand, one can prove by straightforward calculations that
∣∣∣∂2R
∂y2 (ŷN,t)

∣∣∣ ≥ M−N
ŷ2N,t

which, plugged into (62), yields:∣∣∣∣∂f∂y
∣∣∣∣ ≥ M −N

MŷN,t
, (63)

which is eventually uniformily lower bounded away from 0 due to Assumption A2 and to the fact that ŷN,t ≤ 1 by mere
definition. Therefore,

N∑
i=1

M∑
j=1

E

∣∣∣∣∣∂ŷN,t∂Y ∗i,j

∣∣∣∣∣
2

≤ K

M4

N∑
i=1

M∑
j=1

|
[
ŷN,tQtHtH

H
t QtY

]
i,j
|2 ,

≤ K

M3
tr

(
QtHtH

H
t Qt

YY∗

M
QtHtH

H
t Qt

)
,

≤ K

M2
.

To prove 2), we rely on the resolvent identity which states:

Qt(a)−Qt(b) = (b− a)Qt(a)HtH
H
t Qt(b) . (64)

Using (64), we obtain:

ŷN,t =
1

M
(ŷN,t − EŷN,t) tr HtH

H
t Qt(ŷN,t) +

1

M
trE(ŷN,t)HtH

H
t Qt(ŷN,t) +

M −N
M

,

=
1

M
(ŷN,t − EŷN,t)HtH

H
t Qt(EŷN,t)−

1

M
tr(ŷN,t − EŷN,t)2HtH

H
t Qt(ŷN,t)HtH

H
t Qt(EŷN,t)

+
1

M
trE(ŷN,t)HtH

H
t Qt(EŷN,t)−

1

M
trE(ŷN,t)(ŷN,t − E(ŷN,t))HtH

H
t Qt(ŷN,t)HtH

H
t Qt(E(ŷN,t)) +

M −N
M

,

(a)
=

1

M
(ŷN,t − EŷN,t) tr HtH

H
t T(E(ŷN,t)) +

1

M
E(ŷN,t)HtH

H
t T(E(ŷN,t))

− E(ŷN,t)(ŷN,t − EŷN,t)E
[

1

M
tr HtH

H
t Qt(ŷN,t)HtH

H
t Qt(E(ŷN,t))

]
+
M −N
M

+ ε ,

where ε satisfies E(ε) = O(M−2). Note that equality (a) follows from the fact that

var(ŷN,t) = O

(
1

M2

)
and var

(
1

M
tr HtH

H
t Qt(ŷN,t)HtH

H
t Qt(E(ŷN,t))

)
= O

(
1

M2

)
.
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Both estimates can be established with the help of Poincaré-Nash inequality. Therefore:

E(ŷN,t) =
1

M
E(ŷN,t) tr HtH

H
t Tt(E(ŷN,t)) +

M −N
M

+ O(M−2)

= 1− 1

M(1 + κ(E(ŷN,t))
tr((GtG

H
t + σ2IN )Tt(E(ŷN,t))) + O(M−2)

= 1− κ(E(ŷN,t))

1 + κ(E(ŷN,t))
+ O(M−2)

=
1

1 + κ(E(ŷN,t))
+ O(M−2) . (65)

Now recall the definition of yN,t = (1 + κ(yN,t))
−1. One can prove easily that y 7→ κ(y) is a contraction, i.e. that there exists

kN < 1 such that
|κ(y1)− κ(y2)| ≤ kN |y1 − y2|, ∀y1, y2 > 0 ,

and that lim supN,n kN < 1. Using the mere definition of yN,t and (65), we obtain:

E(ŷN,t)− yN,t =
1

1 + κ(E(ŷN,t))
− 1

1 + κ(yN,t)
+ O(M−2) ,

=
κ(yN,t)− κ(E(yN,t))

(1 + κ(E(yN,t)))(1 + κ(yN,t))
+ O(M−2) .

Hence,
|E(ŷN,t)− yN,t| ≤ kN |E(ŷN,t)− yN,t|+ O(M−2) ,

thus proving that |E(ŷN,t)− yN,t| = O(M−2), which concludes the proof.
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