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Chapter I

Convolution operations
arising from Vandermonde
matrices

Abstract

Different types of convolution operations involving large Vandermonde matrices
are considered. The convolutions parallel those of large Gaussian matrices and
additive and multiplicative free convolution. First additive and multiplicative
convolution of Vandermonde matrices and deterministic diagonal matrices are
considered. After this, several cases of additive and multiplicative convolution
of two independent Vandermonde matrices are considered. It is also shown that
the convergence of any combination of Vandermonde matrices is almost sure.
We will divide the considered convolutions into two types: those which depend
on the phase distribution of the Vandermonde matrices, and those which depend
only on the spectra of the matrices. A general criterion is presented to find which
type applies for any given convolution. A simulation is presented, verifying the
results. Implementations of all considered convolutions are provided and dis-
cussed, together with the challenges in making these implementations efficient.
The implementation is based on the technique of Fourier-Motzkin elimination,
and is quite general as it can be applied to virtually any combination of Vander-
monde matrices. Generalizations to related random matrices, such as Toeplitz
and Hankel matrices, are also discussed.

I.1 Introduction

Certain random matrices have in the large dimensional limit a deterministic
behavior of the eigenvalue distributions, meaning that one can compute the
eigenvalue distributions of AB and A + B based only on the individual eigen-
value distributions of A and B, when the matrices are independent and large.
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The process of computing theses eigenvalues is called convolution, or de-

convolution when one would like to compute the inverse operation. Gaussian-
like matrices fit into this setting, and the concept which can be used to find
the eigenvalue distribution from that of the component matrices in this case is
called freeness [1]. Free probability theory [1], which uses the concept of free-
ness, is not a new tool but has grown into an entire field of research since the
pioneering work of Voiculescu in the 1980’s ([2, 3, 4, 5]). However, the basic
definitions of free probability are quite abstract and this has hinged a burden on
its actual practical use. The original goal was to introduce an analogy to inde-
pendence in classical probability that can be used for non-commutative random
variables like matrices. These more general random variables are elements of
what is called a noncommutative probability space. The convolution/deconvolu-
tion techniques used are various. The classical ones are either analytic (using R
and S transforms [6, 1]) or based on moments [?, 8, 9, 10]. Recent deconvolu-
tion techniques based on statistical eigen-inference methods using large Wishart
matrices [?], random Matrix theory [?] or other deterministic equivalents à la

Girko [13, 14, 15, 16] were proposed and are possible alternatives. Each one
has its advantages and drawbacks. Unfortunately, although successfully applied
[17, 18], all these techniques can only treat very simple models i.e. the case
where one of the considered matrices is unitarily invariant. This invariance has
a special meaning in wireless networks and supposes that there is some kind
of symmetry in the problem to be analyzed. The moments technique, which
will be the focus of this work, is very appealing and powerful in order to derive
the exact asymptotic moments of ”non-free matrices”, for which we still do not
have a general framework. It requires combinatorial skills and can be used for a
large class of random matrices. The main drawback of the technique (compared
to other tools such as the Stieltjes transform method [19]) is that it can rarely
provide the exact eigenvalue distribution. However, in many applications, one
needs only a subset of the moments depending on the number of parameters to
be estimated.

Recently [20], Vandermonde matrices (which do not fall within the free prob-
ability framework) were shown to be a case of high interest in wireless commu-
nications. Such matrices have various applications in signal reconstruction [21],
cognitive radio [22], physical layer security [23], and MIMO channel modeling
[24]. A Vandermonde matrix with entries on the unit circle is on the form

V =
1

√
N





1 · · · 1
e−jω1 · · · e−jωL

...
. . .

...

e−j(N−1)ω1 · · · e−j(N−1)ωL




(I.1)

V will in this paper always denote a Vandermonde matrix, and its dimension will
be denoted N×L. The ω1,...,ωL, also called phase distributions, will be assumed
i.i.d., taking values in [0, 2π). We will also assume, as in many applications,
that N and L go to infinity at the same rate, and write c = limN→∞

L
N for

the aspect ratio. If necessary, we will write Vω to emphasize the actual phase
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distribution, or Vω,c to also emphasize the aspect ratio. In [20], the limit
eigenvalue distributions of combinations of VHV and diagonal matrices D(N)
were shown to be dependent on only the limit eigenvalue distributions of the two
matrices. Important combinations are the multiplicative and additive models,

D(N)VHV and D(N) + VHV. (I.2)

In the large N -limit, (I.2) thus gives rise to two convolution operations,

1) limN→∞ D(N)VHV and limN→∞(D(N) + VHV),

which thus depend only on the input spectra. Here lim is used to denote the limit
of the eigenvalue distribution of the considered matrix, in an appropriate metric.
However, it is not clear from [20] how 1) can be computed algorithmically, as
only sketches for this were provided. We also have the operations

2) limN→∞ D(N)VVH and limN→∞(D(N) + VVH),

for which it is unknown whether the result only depends on the spectra. This
case happens in practical scenarios (for cognitive applications [22] as well as
secure transmissions [23]) when a Vandermonde precoder V is used in a given
Toeplitz channel matrix D(N) independent from V. One can then compute
cognitive and secrecy rates. When we replace with independent Vandermonde
matrices V1 and V2 which may or may not have the same phase distributions,
it is also unknown if the convolution operations

3) limN→∞ VH
1 V1V

H
2 V2 and limN→∞(VH

1 V1 + VH
2 V2),

4) limN→∞ V1V
H
1 V2V

H
2 and limN→∞(V1V

H
1 + V2V

H
2 ),

only depend on the spectra of V1 and V2. These cases are important for the
recovery of the distribution of sensors (which are deployed in a clustered manner
with different mean positions) and in the case of MIMO multi-fold scattering
[25].

Expressions such as 4), when different types of matrices are multiplied, will
in the following be called mixed moments.

In this contribution we explain which of the above operations depend only
on the spectra of the matrices, state expressions for those convolutions (in fact,
we also state expressions for the cases where the result can not be written
in terms of the spectra), explain how these expressions have been obtained
algorithmically, and explain an accompanying software implementation [26, 27]
of the corresponding algorithms. We also attempt to complete the analysis
started in [20], by stating a very general criterion for when the mixed moments
of (many) Vandermonde matrices and deterministic matrices depend only on
the input spectra:

If there are no terms on the form VH
1 V2 in a mixed moment, with V1

and V2 independent and with different phase distributions, the mixed moment

will depend only on the spectra of the input matrices. In all other cases, we
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can’t expect dependence on just the spectra of the input matrices, and the mixed

moment can depend on the entire phase distributions of the input matrices.

The software implementation can in fact be extended to handle all cases
which meet this criterion, as well as cases where knowledge of the phase distri-
bution also is required. In this way it is an indispensable tool, as it automates
the very tedious computations inherent in the presented formulas, for which no
simple expressions are known.

Concluding from the criterion, 1) will depend only on the spectra (as shown
in [20]), as does 3). 4) may not depend on only the spectra when the two phase
distributions are different. Despite this, 4) is interesting in its own right, since it
has a geometric interpretation in terms of phase distributions, and is therefore
handled separately. For case 2), we state more generally that when the pattern
D(N)V appears in a mixed moment, we can not expect dependence only on the
spectrum.

It turns out that other types of random matrices can use the same methods as
for Vandermonde matrices to compute their moments, such as Toeplitz matrices
and Hankel matrices. We will explain how the software implementation has been
extended to handled these matrices as well.

The paper is organized as follows. Section I.2 provides background essentials
on random matrix theory needed for the main results, which are stated in I.3.
The results include the precise statement of the criterion above for when we
only have dependence on the spectra of the matrices, results on the convolution
operations 1)-4), and extensions to related random matrices such as Toeplitz
and Hankel matrices. A generalization of our results to almost sure convergence
of matrices is also made. All presented formulas are obtained from the imple-
mentation, and the major pieces in this implementation are gone through in
Section I.4, such as partition iteration, and Fourier-Motzkin elimination [28].
Section I.5 presents a simulation which verifies the results.

I.2 Random matrix Background Essentials

In the following, upper (lower boldface) symbols will be used for matrices (col-
umn vectors), whereas lower symbols will represent scalar values, (.)T will de-
note the transpose operator, (.)⋆ conjugation, and (.)H =

(
(.)T

)⋆
hermitian

transpose. IL will represent the L × L identity matrix. We let Tr be the (non-
normalized) trace for square matrices, defined by,

Tr(A) =

L∑

i=1

aii,

where aii are the diagonal elements of the L × L matrix A. We also let tr be
the normalized trace, defined by tr(A) = 1

LTr(A).
In the following we will implicitly assume that L and N go to infinity in such

a way that L
N → c. Dr(N), 1 ≤ r ≤ n will denote non-random diagonal L × L

matrices. We will have use for the following definition:
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Definition 1. We will say that the {Dr(N)}1≤r≤n have a joint limit distribu-

tion as N → ∞ if the limit

Di1,...,is
= lim

N→∞
tr (Di1(N) · · ·Dis

(N)) (I.3)

exists for all choices of i1, ..., is ∈ {1, .., n}.

A joint limit distribution for the Dr(N) will always be assumed in the fol-
lowing. The corresponding concept for random matrices is the following:

Definition 2. Let {An}
∞
n=1 be an ensemble of (square) random matrices. We

say that {An}
∞
n=1 converge in distribution if the limit

lim
n→∞

E[tr((An)r)] (I.4)

exists for all r. We will say that ensembles {A1n,A2n, ...}∞n=1 of random ma-

trices converge in distribution if the limit

lim
n→∞

E[tr(Ai1nAi2n · · ·Aisn)] (I.5)

exists whenever the matrix product Ai1nAi2n · · ·Aisn is well-defined, and square.

When we refer to moments, we will generally mean (I.4), while mixed mo-
ments refer to (I.5). A stronger form of convergence, which we will generalize our
results to, is almost sure convergence in distribution. This type of convergence
requires that (I.4), (I.5) are replaced with

tr ((An)
r
)

a.s.
→ Cr

tr(Ai1nAi2n · · ·Aisn)
a.s.
→ Ci1,...,is

,

where Cr, Ci1,...,is
are constants.

We will also need some basic concepts from partition theory. P(n) will denote
the partitions of {1, ..., n}. For a partition ρ = {W1, ..., Wr} ∈ P(n), W1, ..., Wr

denote its blocks, while |ρ| = r denotes the number of blocks, ‖ρ‖ = n the
number of elements in the partition. We will write k ∼ρ l when k and l belong
to the same block of ρ. We will also write b(i) for the index of the block in ρ
i belongs to. Partition notation is adapted to the mixed moment (I.3) in the
following way:

Definition 3. For ρ = {W1, ..., Wk}, with Wi = {wi1, ..., wi|Wi|}, we define

DWi
= Diwi1

,...,iwi|Wi|
(I.6)

Dρ =
k∏

i=1

DWi
. (I.7)
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The set of partitions is a partially ordered set under the refinement order,
i.e. ρ1 ≤ ρ2 whenever any block of ρ1 is contained within a block of ρ2. By
ρ1 ∨ ρ2 we will mean the smallest partition (w.r.t. the refinement order) which
is larger than both ρ1 and ρ2. ∨ will in our results be used in conjunction with
the partition [0, 1]n ∈ P(2n), defined by

[0, 1]n = {{1, 2}, {3, 4}, ..., {2n− 1, 2n}}.

[0, 1]n is an example of what is called an interval partition, meaning that each
block consists solely of successive numbers. We will also write [·, ·] for the
intervals in an interval partition, so that we could also have written

[0, 1]n = {[1, 2], [3, 4], ..., [2n− 1, 2n]}.

We will in the following consider the trace of a general mixed moment of
Vandermonde matrices and deterministic matrices, the only requirement being
that matrices and their adjoints appear in alternating order so that the resulting
matrix is square:

tr
(
D1(N)VH

i1 Vi2 · · ·Dn(N)VH
i2n−1

Vi2n

)
, (I.8)

where V1,V2, ... are assumed independent and with phase distributions ω1, ω2, ....
In particular, we assume that Ni2k

= Ni2k−1
when the Vi are Ni × L, in order

for the dimensions of the matrices in (I.8) to match. It turns out we can obtain
the asymptotic behavior of (I.8) for arbitrary continuous phase distributions ωi.
For (I.8) we will let σ be the partition in P(2n) defined by equality of the phase
distributions, i.e. j ∼σ k if and only if ωij

= ωik
(ij and ik may or may not be

different for this). Similarly we will let σ1 be the partition in P(2n) defined by
dependence of the Vandermonde matrices, i.e. j ∼σ1

k if and only if ij = ik.
Obviously, σ1 ≤ σ.

I.3 Statement of main results

The main result of the paper addresses moments on the form (I.8), and goes as
follows.

Theorem 1. Let Vi be independent Ni ×L Vandermonde matrices with aspect

ratios ci = limNi→∞
L
Ni

and phase distributions ωi with continuous densities on

[0, 2π). The mixed moment

lim
N→∞

tr
(
D1(N)VH

i1 Vi2 · · ·Dn(N)VH
i2n−1

Vi2n

)
. (I.9)

always exists when Di(N) have a joint limit distribution. When σ ≥ [0, 1]n (i.e.

there are no terms on the form VH
i Vj, with Vi and Vj independent and with

different phase distributions), (I.9) depends only on the moments

V (i)
n = lim

N→∞
E
[
tr
((

VH
i Vi

)n)]

Di1,...,is
= lim

N→∞
tr (Di1 (N) · · ·Dis

(N)) ,
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the aspect ratios ci, and σ, and assumes the form

∑

s,r,it,jt,kt

ai1,...,is,j1,...,jr,k1,...,kr
Di1,...,is

r∏

t=1

V
(kt)
jt

, (I.10)

where the ai1,...,is,j1,...,jr,k1,...,kr
are rational numbers.

Theorem 1 is proved in Appendix A, and states exactly when we can hope
for performing deconvolution, either by inferring on the spectrum of Di(N), or
on the spectrum or the phase distribution of Vi from (I.9). The proof will also
state concrete expressions for the mixed moments which parallel the expressions
of [20], and also summarize the algorithm needed to compute these expressions,
as performed by the implementation. The implementation is thus moment-

based, in that it computes the moments as defined in (I.4), from the moments of
the input matrices. We do not know any other methods than that of moments
to infer on the spectra of such matrices, since other analytical tools have not
been developed yet.

As an example, Theorem 1 states that

tr
((

(V1 + V2 + · · · )H(V1 + V2 + · · · )
)p)

, (I.11)

which characterize the singular law of a sum of independent Vandermonde ma-
trices, depend only on the moments when the Vi are independent with the
same phase distribution. When the phase distributions are different, however,
the same can not be said. The final observation in Theorem 1 about the polyno-
mial form of the mixed moment is also important, since it is a property shared
with freeness. Although (I.10) is seen not to be multi-linear in the moments in
general, several of the particular convolutions we consider will be seen to have
such a multi-linearity property.

In the following, we state expressions for the convolutions 1)-4) on the form
(I.10). Their proofs will be apparent from the proof of Theorem 1, and can be
found in Appendix B. The aspect ratio c will be handled in a particular way
in these results, so that it is applied outside the algorithm itself. The results
are stated so that it is possible to turn them around for ”deconvolution”: for
instance, from the moments of D(N)VHV, one can infer on the moments of
D(N). The application of the theorems in terms of deconvolution is certainly
as important as the limit results themselves, since it enables us to infer on the
parameters in an underlying model (here represented by D(N) and V). The
accompanying implementation of this paper also supports deconvolution.

As for the convolutions 2), this form is not compatible with the form (I.9)
due to the placement of the D(N). We will therefore not handle this operation,
only state in Appendix B why one in this case can’t expect that the result only
depends on the spectra of D(N) and V.

All formulas in the following are generated by the accompanying software
implementation, which is gone through in Section I.4. Implementation details
pertaining to the different convolutions are gone through in Appendix B. Note
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that the software implementation is capable not only of generating the listed
mathematical formulas for the convolutions, but also to perform the computa-
tions numerically, as would be needed in real-time applications.

I.3.1 The convolutions limN→∞
D(N)VHV and limN→∞

(D(N)+
VHV)

In Theorem 1 of [20], the moments limN→∞ tr
((

D(N)VHV
)n)

were expressed
in terms of the integrals

Ik,ω = (2π)k−1

∫ 2π

0

pω(x)k, (I.12)

pω being the density of the phase distribution. These again determine the
moments of VHV uniquely ((13) and (20) in [20]), so that, indeed, the moments
of the matrices (I.2) depend only on the spectra of the input matrices. This
gives the following result for the multiplicative convolution in 1):

Theorem 2. Assume that V has a phase distribution with continuous density,

Vn = lim
N→∞

tr
((

VHV
)n)

(I.13)

Dn = c lim
N→∞

tr (D(N)n) (I.14)

Mn = c lim
N→∞

tr
((

D(N)VHV
)n)

, (I.15)

where c = limN→∞
L
N . Then we have that

M1 = D1

M2 = D2 − D2
1 + D2

1V2

M3 = D3 − 3D2D1 + 3D2D1V2

+2D3
1 − 3D3

1V2 + D3
1V3

M4 = D4 −
8

3
D2

2 +
8

3
D2

2V2 − 4D3D1

+4D3D1V2 + 12D2D
2
1 − 18D2D

2
1V2

+6D2D
2
1V3 −

19

3
D4

1 +
34

3
D4

1V2

−6D4
1V3 + D4

1V4

where all coefficients are rational numbers. Also, whenever {Mn}1≤n≤k are

known, and {Vn}1≤n≤k(or {Dn}1≤n≤k) also are known, then {Dn}1≤n≤k(or

{Vn}1≤n≤k) are uniquely determined.

The proof of Theorem 2 can be found in Appendix B. Restricting to uniform
phase distribution we get the following result, also generated by the implemen-
tation.
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Corollary 1. When V has uniform phase distribution, we have that

M1 = D1

M2 = D2 + D2
1

M3 = D3 + 3D2D1 + D3
1

M4 = D4 +
8

3
D2

2 + 4D3D1 + 6D2D
2
1 + D4

1

The additive convolution in 1) can be split into sums of many terms similar
to (I.15), and for each term, the results of [20] can be applied. We obtain the
following result, also proved in Appendix B:

Theorem 3. Assume that has a phase distribution with continuous density,

Mn = c lim
N→∞

tr
((

D(N) + VHV
)n)

,

where c = limN→∞
L
N . With Vn as in (I.13) and Dn as in (I.14), we have that

M1 = D1 + 1

M2 = D2 + 2D1 + V2

M3 = D3 + 3D2 + 3D1V2 + V3

M4 = D4 + 4D3 + 2D2 + 4D2V2

−2D2
1 + 2D2

1V2 + 4D1V3 + V4

where all coefficients are rational numbers. Also, whenever {Mn}1≤n≤k are

known, and {Vn}1≤n≤k(or {Dn}1≤n≤k) also are known, then {Dn}1≤n≤k (or

{Vn}1≤n≤k) are uniquely determined.

Restricting to uniform phase distribution we get another specialized result:

Corollary 2. When V has uniform phase distribution, we have that

M1 = D1 + 1

M2 = D2 + 2D1 + 2

M3 = D3 + 3D2 + 6D1 + 5

M4 = D4 + 4D3 + 10D2 + 2D2
1 + 20D1 +

44

3

I.3.2 The convolutions limN→∞
VH

1 V1V
H

2 V2 and limN→∞
(VH

1 V1+
VH

2 V2)

The following result says that the convolution 3) only depends on the spectra
of the input matrices:
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Theorem 4. Assume that V1 and V2 are independent Vandermonde matrices

where the phase distributions have continuous densities, and set

V
(n)
1 = lim

N→∞
tr
((

VH
1 V1

)n)

V
(n)
2 = lim

N→∞
tr
((

VH
2 V2

)n)

Mn = lim
N→∞

tr
(
(VH

1 V1V
H
2 V2)

n
)

(I.16)

Nn = lim
N→∞

tr
(
(VH

1 V1 + VH
2 V2)

n
)

(I.17)

Mn, Nn are completely determined by V
(i)
2 , V

(i)
3 , ..., and the aspect ratios c1 =

limN1→∞
L

N1

, c2 = limN2→∞
L

N2

. Moreover, Mn, Nn are higher degree polyno-

mials in the V
(i)
2 , V

(i)
3 , ... on the form (I.10). Also, whenever {Mn}1≤n≤k (or

{Nn}1≤n≤k) are known, and {V
(n)
1 }1≤n≤k also are known, then {V

(n)
2 }1≤n≤k

are uniquely determined.

The proof can be found in Appendix B. Due to the complexity in the
expressions , we do not state formulas for the first moments in Theorem 4.

Interestingly, since the joint distribution of {VHV,D(N)} is not multi-linear
in the moments of D(N), while the joint distribution of {VH

1 V1,V
H
2 V2} is, it

is seen that the joint distributions are different in the two cases, even if the
moments of the component matrices are the same.

I.3.3 The convolution limN→∞
V1V

H

1 V2V
H

2 when the matri-
ces have equal phase distribution

When the phase distributions are different, Theorem 1 explains that the mo-
ments of V1V

H
1 V2V

H
2 are not necessarily expressible in terms of the moments

of the component matrices. This is, however, the case when the phase distribu-
tions are equal. We thus have the following result, which proof can be found in
Appendix B:

Theorem 5. Assume that V1 and V2 are independent Vandermonde matrices

with the same phase distribution, and that this has a continuous density, and

set

Vn = lim
N→∞

tr
((

VH
i Vi

)n)

Mn = lim
N→∞

tr
(
(VH

1 V2V
H
2 V1)

i
)
.

Then we have that

M1 = −1 + V2

M2 = −3 + 6V2 − 4V3 + V4

M3 = −58 + 123V2 − 96V3 + 39V4 − 9V5 + V6

M4 = −
21532

5
+

410726

45
V2 −

321191

45
V3 +

44516

15
V4

−772V5 + 136V6 − 16V7 + V8
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Restricting to uniform phase distribution we get another specialized result:

Corollary 3. When V1 and V2 have uniform phase distribution, we have that

M1 = 1

M2 = 2

M3 = 5

M4 =
44

3

I.3.4 The convolution limN→∞

(
V

(1)
ω1

(
V

(1)
ω1

)H

+ V
(2)
ω2

(
V

(2)
ω2

)H
)

VHV can be viewed as the sample covariance matrix of the random vector
(1, e−jω, ..., e−j(N−1)ω). A similar interpretation of the convolution(
V

(1)
ω1

(
V

(1)
ω1

)H

+ V
(2)
ω2

(
V

(2)
ω2

)H
)

is thus as a sample covariance matrix of a

random vector of the same type, but where the phase distribution is ω1 parts
of the time, and ω2 the rest of the time. This convolution does not satisfy
the requirement σ ≥ [0, 1]n from Theorem 1, so there is no guarantee that the
result only depends on the spectra of the input matrices. It will be apparent
from Theorem 6 below that the dependence is, indeed, on more than just these
spectra: Knowledge about the phase distributions is also required, and we will
in fact interpret this convolution instead as an operation on phase distributions.

Consider first two independent Vandermonde matrices V
(1)
ω,c1

, V
(2)
ω,c2

with an
equal number of rows N and with a common phase distribution ω. By stacking

V
(1)
ω,c1

, V
(2)
ω,c2

horizontally into one larger matrix, it is straightforward to show
that the distribution of

V(1)
ω,c1

(
V(1)

ω,c1

)H

+ V(2)
ω,c2

(
V(2)

ω,c2

)H

(I.18)

equals that of Vω,c1+c2
VH

ω,c1+c2
. This case when the phase distributions are

equal is therefore trivial.

When V
(1)
ω1,c, V

(2)
ω2,c are independent with the same number of rows, but with

different phase distributions, computing the distribution of

V(1)
ω1,c1

(
V(1)

ω1,c1

)H

+ V(2)
ω2,c2

(
V(2)

ω2,c2

)H

(I.19)

seems, however, to be more complex. The following result explains that, at
least in the limit, the situation is simpler. There the sum can be replaced by
another Vandermonde matrix, whose phase distribution can be constructed in
a particular way from the original ones:

Theorem 6. Let Vω1,c1
and Vω2,c2

be independent N × L1, N × L2 random

Vandermonde matrices with phase distributions ω1, ω2, respectively, and with

12



aspect ratios c1 = limN→∞
L1

N , c2 = limN→∞
L2

N , respectively. Then the limit

distribution of

Vω1,c1
VH

ω1,c1
+ Vω2,c2

VH
ω2,c2

(I.20)

equals that of

Vω1∗c1,c2
ω2,c1+c2

VH
ω1∗ω2,c1+c2

, (I.21)

where ω1 ∗c1,c2
ω2 denotes the phase distribution with density 1

c1+c2

(c1pω1
+

c2pω2
), where pω1

, pω2
are the densities of the phase distributions ω1, ω2.

The proof of Theorem 6 can be found in Appendix C. The result is only
asymptotic, meaning that the mean eigenvalue distribution for finite N of the
two mentioned matrices are in fact different. This can be seen by setting L =
N = 2, and observing that the distribution of 1

2

(
ejω1 + ejω2

)
is in general

different from that of eω1∗1,1ω2 . No trivial proof for Theorem 6 is thus known,
since the strategy of stacking the Vandermonde matrices (from the reasoning
for (I.18)) will not work.

Theorem 6 says that one depends on knowledge about the phase distributions
for Convolution 4). To verify this, set ω1 and ω2 equal to the uniform distri-
butions on [0, π), and then change ω2 to the uniform distribution on [π, 2π).
The phase distributions here give the same moments (since they are shifted ver-
sions). However, the two versions of 1

2 (pω1
+ pω2

) give phase distributions with
different moments, since we get the uniform distribution on [0, π) in the first
case, and the uniform distribution on [0, 2π) in the second case: the moments
of these are different, since the uniform distribution on [0, 2π) minimizes the
moments of Vandermonde matrices [20]. For the same reason, Theorem 6 says
that the moments of (I.20) are minimized when ω1 ∗c1,c2

ω2 equals the uniform
distribution.

I.3.5 Hankel and Toeplitz matrices

[20] states that the moments of VHV can be expressed in terms of volumes of
certain convex polytopes. It turns out that the moments of Hankel, Markov and
Toeplitz matrices can be expressed in terms of a subset of these polytopes [29],
so that we can use the same strategy to compute the moments of these matrices
also. The proof of the following theorem relating to the moments of Toeplitz
matrices is therefore explained in Appendix B.

Theorem 7. Define the Toeplitz matrix

Tn =
1
√

n





X0 X1 X2 · · · Xn−2 Xn−1

X1 X0 X1 Xn−2

X2 X1 X0
. . .

...
...

. . . X2

Xn−2 X0 X1

Xn−1 Xn−2 . . . X2 X1 X0





,

13



where Xi are i.i.d., real-valued random variables with variance 1. Let Mi be the

2i’th asymptotic moment of Tn (the odd moments vanish). These moments are

given by

M1 = 1

M2 =
8

3
M3 = 11

M4 =
1435

24

A similar result for Hankel matrices also holds:

Theorem 8. Define the Hankel matrix

Hn =
1
√

n





X1 X2 · · · · · · Xn−1 Xn

X2 X3 Xn Xn+1

... Xn+1 Xn+2

. . .

Xn−2 Xn−1

...

Xn−1 Xn X2n−3 X2n−2

Xn Xn+1 · · · · · · X2n−2 X2n−1.





,

where Xi are i.i.d., real-valued random variables with variance 1. Let Mi be the

2i’th asymptotic moment of Hn (the odd moments vanish). These moments are

given by

M1 = 1

M2 =
8

3
M3 = 14

M4 = 100

Similar results can also be written down for Markov matrices, but these
expressions are skipped. It seems that expressions for the joint distribution of
Hankel and Toeplitz matrices and matrices D(N) on the same form as before do
not exist, meaning that the mixed moments may not exist, or that they depend
on more than the spectra of the component matrices. The details of this are
also skipped.

I.3.6 Generalizations to almost sure convergence

Up to now, we have only shown convergence in distribution for the different
convolutions and mixed moments. The same results also hold when we replace
convergence in distribution with almost sure convergence in distribution. We
summarize this in the following result:

14



Theorem 9. Assume that the matrices Di(N) have a joint limit distribution

as N → ∞, and that V1,V2, ... are independent, with continuous phase distri-

butions. Any combination of matrices on the form (I.8) converges almost surely

in distribution, whenever the matrix product is well-defined and square.

The proof of Theorem 9 can be found in Appendix D. In particular, the ma-
trices we have considered in our convolution operations, such as VH

1 V1V
H
2 V2,

VH
1 V1 + VH

2 V2, all converge almost surely in distribution.

I.3.7 Generalized Vandermonde matrices

We have not considered generalized Vandermonde matrices up to now, i.e. ma-
trices were the columns in V are not uniform distributions of powers [30, 20].
Although similar results can also be stated for these matrices, we only explain
how they will differ.

In case of uniform power distribution, the column sum of (I.1) is

1 − ejNx

1 − ejx
, (I.22)

and this is substituted into the integrand of the expression defining the Van-
dermonde mixed moment expansion coefficients (see Appendix A). For gen-
eralized Vandermonde matrices, one can also define these coefficients [20], the
difference being that one replaces the sum of the powers (I.22) with a different
function, and requires that the function has the property proved in Lemma 2
in Appendix A. The details for computing the mixed moments (I.9) go other-
wise the same way as the expressions in Appendix A, with the exception that we
have different values for the Vandermonde mixed moment expansion coefficients.
However, the integrals defining these coefficients may be hard to compute for a
non-uniform power distribution, even for the case of uniform phase distribution,
since Fourier-Motzkin elimination (see Section I.4) can be applied only in the
case of uniform power- and phase distribution.

We conjecture that Theorem 6 holds also for general power distributions. It
is likely that a similar calculation as in Appendix C can prove this, but we do
not go into details on this.

I.4 Software implementation

In this section, we will repeatedly refer to the implementation [26], which con-
tains all code needed to verify all results in this paper. Implementations therein
have two purposes:

1. to generate the exact coefficients in the formulas in this paper (generated
directly in latex),

2. to compute the convolution with a given set of moments numerically.
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In Appendix A, we explain why iteration through partitions and Fourier-Motzkin
elimination are two main things needed in the implementation. In this section,
we will explain how these tasks can be implemented efficiently.

I.4.1 Reducing the complexity in iterating over partitions

Formulas in [20] and in this paper sum over sets of partitions. Iterating over
partitions is very time-consuming, and must therefore be performed efficiently.
There are several ways how this can be performed1. It turns out that one can
reduce the number of partitions needed for computations considerably.

Assume that V has uniform phase distribution, and consider

tr
(
VHV · · ·VHV

)
. (I.23)

To compute (I.23), we traverse all partitions. For each partition an equation
system is constructed, and the partition contributes with the volume of the
corresponding solution set to the equation system in (I.23). The following ob-
servations [31, 20] simplifies this computation:

• If a block is a singleton, then the corresponding volume is the same as
that of the partition with that block removed. By using this observation
repeatedly, we obtain that any noncrossing partition gives 1 in volume
contribution.

• If a block contains two successive elements, then the corresponding volume
is the same as that of the partition with any one of the two elements
removed

• If a partition is a cyclic shift of another, then the corresponding volumes
are the same.

These observations can reduce the number of the computations dramatically.
To make precise how these observations can be used, we state two definitions:

Definition 4. A partition π is said to be alternating if i and i+1 (where the sum

is taken cyclically mod n) are in different blocks for all i, and no blocks in π are

singletons. The alternating partition obtained by removing all singleton blocks

and all successive elements in all blocks incrementally is called the standard form

of the partition. The set of alternating partitions of {1, ..., n} with k blocks is

denoted A(n, k).

Definition 5. We say that two partitions are equivalent whenever one is a

cyclic shift (with a fixed number of elements) of the other.

Note that the standard form of any noncrossing partitions is the empty
partition. The first two observations above say that computations only need

1The implementation in this paper uses an implementation [26] which lists all partitions
of n elements with a given number of blocks
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to be performed for alternating partitions (since any partition can be reduced
to an alternating one in standard form), while the third observation says that
computations are only needed for one representative in each equivalence class,
with equivalence defined as in Definition 5. For instance, there are 678570
partitions of {1, ..., 11}. The number of alternating partitions of the same set is
4427. The number of equivalence classes of alternating partitions is 715.

The moments of Vandermonde matrices can thus be computed by iterating
over the smaller set of cyclic equivalence classes of alternating partitions. This
iteration can be accomplished with a computer program2. We also need to keep
track of the size of each equivalence class of alternating partitions. This is done
by a program which efficiently hashes all partitions. This is a computationally
intensive process, but which needs to be done only once for the required number
of moments.

I.4.2 Constructing linear equation systems

For a partition ρ = {W1, ..., Wr} ∈ P(n), [20] relates (I.23) to the corresponding
volume of the solution set of the equations

∑

k∈W1

xk−1 =
∑

k∈W1

xk

∑

k∈W2

xk−1 =
∑

k∈W2

xk

...
...∑

k∈Wr

xk−1 =
∑

k∈Wr

xk, (I.24)

where all variables are constrained to lie between 0 and 1. ρ reflects how the ωi

are grouped into independent sets of variables: The left sides in (I.24) represent
the VH -terms in the entries of the matrix product VHV, whereas the right
sides represent the V-terms in the same matrix product. Equations of the form
(I.24) also apply to the more general form [20]

tr
(
Vi1V

H
i1 · · ·Vik

VH
ik

)
, (I.25)

where V1,V2, ... are independent and with uniform phase distribution.
In Appendix A, it is shown that in order to express the arbitrary mixed

moments of Vandermonde matrices (independent or not), we need to solve sys-
tems similar to (I.24), with the difference that different number of variables may
appear on the left and right hand sides. Note that the volume of the solution
set of (I.24) is always a rational number. This enables our implementation to
generate exact formulas. For Toeplitz and Hankel matrices, it turns out that a
subset of these equation systems serve the same role in order to compute their
moments.

2It is not obvious how the observations can be applied in an efficient implementation. The
implementation [26] first generates all partitions, and then picks out those which have the
alternating property and no singleton blocks
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I.4.3 Solving the linear equation systems

In all cases of Toeplitz, Hankel, and Vandermonde, the coefficient matrix of
the equations we construct has rank r − 1 (r being the number of blocks), and
we need to find the number of solutions. Since we also have the constraints
that 0 ≤ xi ≤ 1, this really corresponds to finding all solutions to a set of
linear inequalities. A much preferred method for doing so is Fourier-Motzkin
elimination [28]. The first step before we perform this elimination would be
to bring the equations into a standard form. We do this by expressing the
r − 1 pivot variables (after row reduction) by means of the free variables. Since
all variables are between 0 and 1 (which are split into two inequalities), our
equations are ∑n−r+1

j=1 a1jxj ≤ 1∑n−r+1
j=1 −a1jxj ≤ 0∑n−r+1

j=1 a2jxj ≤ 1∑n−r+1
j=1 −a2jxj ≤ 0

...
...∑n−r+1

j=1 a(r−1)jxj ≤ 1∑n−r+1
j=1 −a(r−1)jxj ≤ 0

x1 ≤ 1
−x1 ≤ 0

x2 ≤ 1
−x2 ≤ 0

...
...

xn−r+1 ≤ 1
−xn−r+1 ≤ 0,

(I.26)

where we have re-indexed the variables so that x1, ..., xn−r+1 are the free vari-
ables, xn−r+2, ..., xn are the pivot variables. The coefficients aij are taken from
−1, 0, 1, and are the coefficients we obtain when the pivot variables are expressed
in terms of the free variables. By reordering the equations, we get what we call
the standard form (where the equations are sorted by the first coefficient):

x1 +
∑n−r

j=1 b1jxj+1 ≤ e1

...
...

...

x1 +
∑n−r

j=1 br1jxj+1 ≤ er1∑n−r
j=1 c1jxj+1 ≤ f1

...
...∑n−r

j=1 cr2jxj+1 ≤ fr2

−x1 +
∑n−r

j=1 d1jxj+1 ≤ g1

...
...

...

−x1 +
∑n−r

j=1 dr3jxj+1 ≤ gr3
.

(I.27)
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Fourier-Motzkin elimination now consists of eliminating the first variable, and
working on the remaining equations to eliminate variables iteratively. Most of
the coefficient matrices here are combinatorial matrices on the same form as
those in [28].

Fourier-Motzkin elimination is computationally intensive, in the sense that
the number of inequalities grow rapidly during elimination. Our aim is to com-
pute the volume of the solution set rather than finding specific solutions. The
volume can be split into many smaller disjoint parts, each part corresponds to
a choice of minimum (min) for the first equations, and a choice of maximum
(max) for the last equations Each part corresponds to the solution of a set of
equations with one less variable. More precisely, let the equations in (I.27) have
coefficient vectors B1, ..., Br1

, C1, ..., Cr2
, D1, ..., Dr3

, so that

Bi = (1, bi1, ..., bi(n−r), ei) 1 ≤ i ≤ r1

Ci = (0, ci1, ..., ci(n−r), fi) 1 ≤ i ≤ r2

Di = (−1, di1, ..., di(n−r), gi) 1 ≤ i ≤ r3.

Each choice of min, max, with 1 ≤ min ≤ r1, 1 ≤ max ≤ r3 gives rise to a volume
described by the solution to the set of equations

Bk − Bmin 1 ≤ k ≤ r1 k 6= min

Dk − Dmax 1 ≤ k ≤ r3 k 6= max

Dmax + Bmin

Ck 1 ≤ k ≤ r2,

where the equations are described by row vectors as above. There are r1 − 1 +
r3 − 1+1+ r2 = r1 + r2 + r3 − 1 equations here, which is one less equation than
what we started with. Note that the first element is zero in all these equations,
so that the first column can be removed in the coefficient matrix. Therefore,
the original system has been reduced to one with one equation less and one less
variable. There may be more zero leading columns also, and all these can be
removed. When the leading column is nonzero, the rows are sorted so that we get
a new system on the form (I.27), and the procedure continues. In the process,
the choice of max and min have decided the lower and upper integral bounds for
the x1-variable. These are stored, and after all Fourier-Motzkin elimination we
have a full set of integral bounds, and the corresponding volume is computed
by integrating over these bounds. This can be implemented easily [26], since
integration over a volume with integral bounds which are linear in the variables
can be defined in terms of simple row operations and integration by parts.

I.4.4 Optimizations for Fourier-Motzkin elimination

The challenge in computing the volumes of the solution sets in Fourier-Motzkin
elimination lies in that there are many eliminations which need to be peformed,
and we do this for every partition in a large set of partitions. The Fourier-
Motzkin elimination steps themselves can be stored and reused, but this of
little help since we have to keep track of the corresponding integral bounds for
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the solution sets. There are however, a couple of optimizations which can be
used during elimination:

• if both row and the negative of that row are present as an equation, the
solution set is empty, so that we can stop elimination

• Duplicate rows can be deleted

• Rows where only the last elements differ can be merged.

I.5 Simulations

Results in this paper have been concerned with finding the spectral limit dis-
tribution from those of the input matrices. However, in practice, one has a
certain model where one or more parameters are unknown, one observes output
from that model, and would like to infer on the parameters of the model. The
strengths in the results of this paper lie in that this kind of ”deconvolution” is
made possible to infer on the parameters of various models. As an example,

1. From observations of the form D(N)VHV or D(N)+VHV, one can infer
on either the spectrum of D(N), or the spectrum or phase distribution of
V, when exactly one of these is unknown.

2. From observations of the form VH
1 V1V

H
2 V2 or VH

1 V1 + VH
2 V2, one can

infer on the spectrum or phase distribution of one of the Vandermonde
matrices, when one of the Vandermonde matrices is known.

Moreover, the complexity in this inference is dictated by the number of moments
considered. We do not go into depths on all the different types of deconvolutions
made possible, only sketch a very simple example of inference as in 1). The other
types of deconvolution go similarly, since the implementation supports each of
them through functions with similar signatures. The example only makes an
estimate of the first lower order moments of the component matrix D(N). These
moments can give valuable information: in cases where it is known that there
are few distinct eigenvalues, and the multiplicities are known, only some lower
order moments are needed in order to get an estimate of these eigenvalues. We
remark that this kind of deconvolution can be improved by further development
of a second order theory for Vandermonde matrices.

In Figure I.1, we have, for Vandermonde matrices of size N ×L with L = N ,
and for increasing N , formed 10 observations of the form D(N)VHV. The
average of the moments of these observations are then taken, and a method
in the framework [26] is applied to get an estimate of the moments of D(N).
In the simulation, we have compared the estimate for the second and third
moment of D(N) obtained by the implementation, with the actual second and
third moments. The diagonal matrix D(N) is chosen so that the distribution
of its eigenvalues is 1

3δ0.5 + 1
3δ1 + 1

3δ1.5, i.e. 0.5, 1, 1.5 are the only eigenvalues,
and they have equal probability. The simulation seems to indicate that the
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Figure I.1: Estimation of the second and third moment of D(N) from the
average of 10 observations of the form D(N)VHV, for increasing values of N .
V has dimensions N × N .

implementation performs better estimation when the matrices grow large, in
accordance with the fact that only an asymptotic result is applied.

Although it is difficult to make a full picture of the spectral distribution of
VH

1 V1 (or the phase distribution of V1) from deconvolution on models such as
VH

1 V1V
H
2 V2 (although the moments in many cases determine the distribution

of the eigenvalues [?]), such deconvolution can still be useful. For instance, from
the lower order moments one can to a certain amount say ”how far away V1 is
from having uniform phase distribution”, since the uniform phase distribution
achieves the lowest moments of all Vandermonde matrices [20].

I.6 Conclusion and further directions

This contribution has explained how all types of moments in Vandermonde-type
expressions can be obtained, and when one can expect that the moments/spec-
trum of the result only depend on the moments/spectrum of the input matrices
(which is a requirement for performing deconvolution). The results can be used
to compute the moments of any singular law involving a combination of many
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independent matrices. An implementation which is capable of performing these
moment computations is also presented, and moment formulas generated by the
implementation were presented. The applications to wireless communications
are still under study [32]. We have also described convolution operations on
Vandermonde matrices which can not be performed in terms of the spectrum,
but rather in terms of the phase distributions. We have also expanded known
results on convergence of Vandermonde matrices to almost sure convergence.

Interestingly, Vandermonde matrices fit into a framework similar to that of
freeness. Future papers will address a unified framework, where a more general
theory which addresses when deconvolution is possible is presented.

It is still an open problem to find exact formulas for any moment of a Vander-
monde matrix. The same applies to identifying these moments as the moments
of a certain density. Future papers may also address how the implementation
presented here can be made more efficient.

Appendices

A The proof of Theorem 1

Let us first assume that all phase distributions are uniform. Writing out the
matrix product in (I.9) we get

∑

(i1,...,in)

∑

(j1,...,jn)

|σ1|∏

i=1

N
−|σ1i|/2
i L−1

×E(ei2(ωσ1(1),j1
−ωσ1(2),j2

) × · · ·

×ei1(ωσ1(2n−1),jn
−ωσ1(2n),j1

))

×D1(N)(j1, j1) × · · · × Dn(N)(jn, jn), (I.28)

where

1. 1 ≤ j1, ..., jn ≤ L (as in [20])

2. 0 ≤ i1, ..., in ≤ Nl − 1 for appropriate l (as in [20]),

3. σ1 = {σ11, ..., σ1|σ1|} with σ1k = {j|ij = k},

4. ωσ1(i),ji
is the phase for column ji in the i’th matrix entry.

Define the partition π = π(j1, ..., jn) ∈ P(n) by equality of the ji, i.e. k ∼π l
if and only if jk = jl. Noting that ωσ1(k),jk

, ωσ1(l),jl
are equal if and only if

σ1(k) = σ1(l) and jk = jl (if not they are independent), we define ρ(π) ≤ σ1 ∈
P(2n) as the partition in P(n) generated by the relations:

k ∼ρ(π) l if

{
⌊k/2⌋+ 1 ∼π ⌊l/2⌋+ 1 and
k ∼σ1

l
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Here ⌊x⌋ means the largest whole number less than x. In other words, k and l
are in the same block of ρ(π) if and only if the corresponding phases ωσ1(k),jk

and ωσ1(l),jl
from the k’th and l’th matrix entries are dependent. We will have

use for the following relation between ρ(π) and π, which will help us to limit
our calculations to a certain class of partitions.

Lemma 1. The following holds:

|π| ≤ |ρ(π)| − r(π) + 1, (I.29)

Moreover, both equality and strict inequality can occur in (I.29).

Proof. Since each block in π is associated with at least one block in ρ(π) by
definition, we have that |π| ≤ |ρ(π)|. Moreover, if ρ1 is adjacent to ρ2, they
have a j-value common at their border, so that |π| ≤ |ρ(π)| − 1. If ρ3 is
adjacent to {ρ1, ρ2}, they also have a j-value common at their border, so that
also |π| ≤ |ρ(π)|−2. We can continue in this way for ρ4, ρ5, ..., ρr, and we obtain
in the end that |π| ≤ |ρ(π)| − r(π) + 1. It is also clear from this construction,
by considering different border possibilities for the ρ1, ρ2, ..., that both equality
and strict inequality can occur.

In the following we will denote the set of partitions where (I.29) holds by B(n)
(note that B(n) will also depend on σ1, but this dependency will be implicitly
assumed, and will thus not be mentioned in the following). Writing ρ(π) =
{W1, ..., W|ρ(π)|}, there are |ρ(π)| independent phases in the corresponding term,
which we denote ωW1

, ..., ωW|ρ(π)|
. Write Wj = W ·

j ∪WH
j , where W ·

j consists of

the even elements of Wj (corresponding to the V-terms), WH
j consists of the

odd elements of Wj (corresponding to the VH -terms). (I.9) can now be written
(computations are similar to Appendix 1 in [20])

∑

π∈P(n)

∑

(i1,...,in)

∑

(j1,...,jn)

π(j1,...,jn)=π

|σ1|∏

i=1

N
−|σ1i|/2
i L−1

×

|ρ(π)|∏

r=1

E

(
e

j
(∑

k∈W H
r

i(k+1)/2+1−
∑

k∈W ·
r

ik/2+1

)
ωWr

)

×D1(N)(j1, j1) × · · · × Dn(N)(jn, jn). (I.30)

Since E
(
ejnω

)
= 0 when ω is uniform and n 6= 0, we get that the i1, ..., in

contribute in (I.30) only if
∑

k∈W H
r

i(k+1)/2+1 =
∑

k∈W ·
r

ik/2+1 (I.31)

for 1 ≤ r ≤ |ρ(π)|. The coefficient matrix of this system, denoted A, is a
|ρ(π)| × n with entries from {−1, 0, 1}. The rank of A is at most k − 1, since
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the sum of all rows is 0. Note that the number of solutions to (I.31) can also be
written ∫

[0,2π)|ρ(π)|

F (x)dx1 · · · dx|ρ(π)|, (I.32)

where

F (x) =

n∏

k=1

1 − ejNi
2k

(xb(2k−1)−xb(2k))

1 − ej(xb(2k−1)−xb(2k))
, (I.33)

where b(k) means the block in ρ(π) which k belongs to. This follows (as in [20])
from summing over all possible choices of i1, ..., in in (I.30), and using the for-
mula for the sum of a geometric series.

It is easily seen that the rank of A is exactly k− 1 when ρ(π)∨ [0, 1]n = 12n.
More generally, if ρ(π) ∨ [0, 1]n = {ρ1, ..., ρr} with each ρi ≥ [0, 1]‖ρi‖/2, the
rank of the system is |ρ(π)| − r. This follows since the equations corresponding
to each ρi have no variables in common with those from other ρj , and since
the sum of the equations corresponding to ρi is 0, so that the coefficient matrix
corresponding to ρi has one less than full rank. Also, note that Nis+2

= Nit+2

whenever 2s +1, 2s+ 2, 2t+ 1, 2t+ 2 all belong to the same such ρi, and denote
this common value by Nρi

(meaning that there is a common upper limit Nρi

to all variables il occurring in connection with the same block ρi). This means
that the number of solutions to (I.31) is of order

O

(
r∏

i=1

N‖ρi‖/2−|ρi|+1
ρi

)

= O

(
r∏

i=1

L‖ρi‖/2−|ρi|+1

)
= O

(
Ln−|ρ|+r

)
.

Since r depends only on π, we will also write r = r(π). Since the number of
solutions to (I.31) is given by (I.32), the limit

lim
L→∞

1
∏r

i=1 N
‖ρi‖/2−|ρi|+1
ρi

∫

[0,2π)|ρ(π)|

F (x)dx1 · · · dx|ρ(π)| (I.34)

exists (here u denotes the uniform distribution), and we will denote this limit
by Kρ(π),u. Moreover Kρ(π),u =

∏r
i=1 Kρi,u, since the splitting ρ(π) ∨ [0, 1]n =

{ρ1, ..., ρr} actually splits the equations into r sets where each set has no vari-
ables in common with other sets. This definition extends that of Vandermonde
mixed moment expansion coefficients from [20] to the case where the equations
(I.31) may have an unequal number of variables on each side. Note that in [20],
those coefficients were defined in terms of π ∈ P(n), while here they are defined
in terms of ρ(π), which captures any σ1, which is new in the analysis given here.
Also in accordance with [20], we will denote by Kρ(π),u,L the quantity inside the
limit of (I.34), so that the number of solutions to (I.31) is

r∏

i=1

N‖ρi‖/2−|ρi|+1
ρi

Kρ(π),u,L. (I.35)
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The number of blocks in the partitions ρ(π), π say how many distinct choices
from (i1, ..., in) and (j1, ..., jn), respectively, contribute in (I.30). By substituting

∑

jk

Di(N)(jk, jk) = Ltr(D(N)),

and using (I.29), we see that (I.30) is

O(L−n−1+n−|ρ(π)|+r+|π|)

≤ O(L−n−1+n−|ρ(π)|+r+|ρ(π)|−r+1) = O(1),

with equality if and only if π ∈ B(n) by Lemma 1. To check if π belongs to
B(n), ρ(π) needs to be computed, and it is checked if equality in (I.29) holds.
If so, the corresponding equation system (I.31) is constructed, and solved using
Fourier-Motzkin elimination. Adding contributions for all partitions, we obtain
(I.9).

For π ∈ B(n), noting that we can write
∏|σ1|

i=1 N
−|σ1i|/2
i =

∏r
i=1 N

−‖ρi‖/2
ρi ,

and using (I.35), we can write the contribution from π in (I.30) as

r∏

i=1

N−‖ρi‖/2
ρi

L−1L|π|
r∏

i=1

N‖ρi‖/2−(|ρi|−1)
ρi

Kρ(π),u,LDπ

= L|ρ(π)|−r(π)
r∏

i=1

N−(|ρi|−1)
ρi

Kρ(π),u,LDπ

=
r∏

i=1

L|ρi|−1
r∏

i=1

N−(|ρi|−1)
ρi

Kρ(π),u,LDπ

=
r∏

i=1

(
L

Nρi

)|ρi|−1

Kρ(π),u,LDπ.

Thus, if ω is uniform, taking limits in (I.30) gives

∑

π∈B(n)

r∏

i=1

(
L

Nρi

)|ρi|−1

Kρ(π),u,LDπ

→
∑

π∈B(n)

r∏

i=1

c|ρi|−1
ρi

Kρ(π),uDπ

=
∑

π∈B(n)

r∏

i=1

(
c|ρi|−1
ρi

Kρi,u

)
Dπ,

where we have substituted cρi
= limL→∞

L
Nρi

. When the ωi are not uniform,

we can still in (I.30) sum over the different i1, ..., in to factor out the term

∫

[0,2π)|ρ(π)|

F (ω)dω1 · · ·dω|ρ(π)|, (I.36)
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where F is defined by (I.33), and where the only difference from (I.32) is that
the uniform distribution u has been replaced with ω. The analysis is otherwise
the same as in the uniform case, the major issue being the existence of the limits

lim
L→∞

1
∏r

i=1 N
‖ρi‖/2−|ρi|+1
ρi

∫

[0,2π)|ρ(π)|

F (ω)dω1 · · · dω|ρ(π)|, (I.37)

which thus also will be called Vandermonde mixed moment expansion coef-
ficients, and denoted Kρ(π),ω. As in the uniform case, note that Kρ(π),ω =∏r

i=1 Kρi,ω, and if these limits exist, we get as in the uniform case a limit on
the form

∑

π∈B(n)

r∏

i=1

(
c|ρi|−1
ρi

Kρi,ω

)
Dπ.

In [20], it was shown that the limits Kπ,ω exist when ω has a continuous density.
We will show that the same holds for Kρ(π),ω, and the proof of this will follow
from the following lemma, which is a generalization of Lemma 2 in [20]:

Lemma 2. Let ρ(π) ≤ σ1 ∈ P(2n) be any partition such that ρ(π)∨[0, 1]n = 12n.

For any ǫ > 0,

lim
N→∞

1

Nn+1−|ρ(π)|

∫

Bǫ,k

F (ω)dω = 0, (I.38)

where

Bǫ,k = {(ω1, ..., ω|ρ(π)|)||ωb(2k−1) − ωb(2k)| > ǫ}, (I.39)

and where b(k) denotes the block in ρ(π) which k belongs to.

Proof. The condition ρ(π)∨ [0, 1]n = 12n implies that when ω ∈ Bǫ,k, ωi −ωj <
2nǫ for all i, j, which means that the definition of Bǫ,k is similar to the definition
of Bǫ,r in Lemma 2 in Appendix H in [20]. The proof otherwise follows the same
lines as [20].

Using Lemma 2 repeatedly, we see also that

lim
N→∞

1

Nn+r−|ρ(π)|

∫

∪iBǫ,ki

F (ω)dω = 0

Letting N → ∞, we obtain as in Appendix H of [20] in the limit

lim
N→∞

1

Nn+r−|ρ(π)|

∫
F (ω)dω

= Kρ(π),u

r∏

i=1

(2π)|ρi∩σ1j |−1

∫ ∏

j

pωj
(x)|ρi∩σ1j |dx

= Kρ(π),u

r∏

i=1

(2π)|ρi∩σj |−1

∫ ∏

j

pωj
(x)|ρi∩σj |dx,
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where σj are the blocks of σ. Things have now been reduced to the case of
uniform phase distribution. In summary, (I.30) can be written

∑

π∈B(n)

Dπ

r∏

i=1

(
(2πcρi

)|ρi|−1Kρi,u

) r∏

i=1

∫ ∏

j

pωj
(x)|ρi∩σj |dx, (I.40)

This is the standard form which the implementation uses, where the output of
Fourier-Motzkin elimination is substituted into Kρ(π),u. In (I.40), we recognize
the integrals Ik,ω in (I.12). We will therefore substitute Ik,ω in the following.

The requirement from Theorem 1 that σ ≥ [0, 1]n (which happens whenever
terms of the form VH

ω1
Vω2

(with ω1, ω2 different and Vω1
,Vω2

independent) do
not occur) translates to the fact that, for any π ∈ P(n), in all ρi the correspond-
ing random matrices have equal phase distributions (with no assumptions on
whether the random matrices are independent or not). From this it follows from
(I.40) that no integrand in (I.40) will contain two different densities. Therefore,
the mixed moment is completely determined from the integrals Ik,ω . To make
the connection between these quantities and the moments, we need the following
lemma, compiled from [20]:

Lemma 3. Let V be a Vandermonde matrix with phase distribution ω and

aspect ratio c. For each n there exists an invertible n × n matrix An so that




1
cI2,ω

c2I3,ω

...

cn−1In,ω




= An





1
V2

V3

...

Vn




(I.41)

Inserting (I.41) in (I.40) when each ρi consists of equal phase distributions,

we obtain that (I.9) is completely determined from the moments V
(i)
n . Since

there are r integrals multiplied together in (I.40), its general form is seen to
coincide with that of (I.10). We have thus proved Theorem 1. When terms of
the form VH

ω1
Vω2

occur, Section I.3.4 shows that we can’t expect dependence
on only the moments. Instead the mixed moment depends on the entire phase
distribution.

A Handling the aspect ratio

We will finally comment on appropriate forms of (I.40) which are useful in
implementations of convolution. We first turn to the case when there are deter-
ministic matrices present. Assume that all matrix aspect ratios are equal to c,

so that
∏r

i=1

(
c
|ρi|−1
ρi

)
= c|ρ|−r = c|π|−1 when π ∈ B(n). Defining mn = cMn

and dn = cDn as in [20]) in this case, (I.40) can also be written

mn =
∑

ρ(π)≤σ1

π∈B(n)

dπKρ(π),u

r∏

i=1

∫ ∏

j

pωj
(x)|ρi∩σj |dx, (I.42)

27



i.e. the aspect ratio c can be handled as in [20], providing a clear parallel with
Proposition 3 in that paper.

When there are no deterministic matrices present, and σ ≥ [0, 1]n, the right
hand side in (I.40) is

r∏

i=1

c|ρi|−1
ρi

I|ρi|,ωi
Kρi,u, (I.43)

where we recognize the elements in the vector on the left hand side in (I.41).
Therefore, an implementation of convolution would first compute the ck−1Ik,ωi

using Lemma 3, and substitute these directly into (I.43). For deconvolution,
(I.43) would be computed first for one of the unknown component matrices,
and then the moments would be recovered in a second step using Lemma 3.

In summary, in order to compute the mixed moments (I.9) of Vandermonde
matrices, we need to

1. iterate through partitions π ∈ P(n), compute ρ(π), and determine whether
π ∈ B(n),

2. perform Fourier-Motzkin elimination in order to solve the set of equations
given by (I.31),

3. compute the quantities in (I.43), either from direct knowledge of the phase
distribution, or by computing them from the moments using (I.41),

4. compute the final result by inserting the results from 1), 2), and 3) into
(I.40).

This explains why Section I.4 focuses on the implementation perspectives of
these tasks.

B The proofs of the convolution formulas

In this appendix, we provide additional remarks, which together with the proof
in Appendix A will suffice to prove the different convolution formulas. We
first provide a short explanation why convolution 2) does not depend only on
the spectra of the component matrices. When Di(N) only occurs in patterns
of the form VD(N)VH , we factored out the moments of D(N) in (I.30) in
Appendix A. For other patterns, one ends instead up with integral expressions
along the diagonal of D(N) (the diagonal elements of D(N) are multiplied
with different complex exponentials), which are hard to express in terms of the
moments of D(N).

A The proof of Theorem 2

We can sum over all π in (I.40) for these convolutions, since r(π) = 1 and
|ρ(π)| = |π| for all π whenever σ = σ1 = 12n. The implementation has obtained
the result by inserting (I.41) into (I.40). Dπ in (I.40) can be handled in the
following way: Let Rn be the set of multi-indices r = (r1, ..., rs) such that
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• The ri are decreasing, and all are integers > 0.

•
∑

ri = n,

and set dr =
∏s

i=1 dri
for r = (r1, ..., rs) ∈ Rn. Set also

D1 = (d1)

D2 = (d2, d
2
1)

D3 = (d3, d2d1, d
3
1)

D4 = (d4, d
2
2, d3d1, d2d

2
1, d

4
1)

D5 = (d5, d3d2, d4d1, d
2
2d1, d3d

2
1, d2d

3
1, d

5
1),

and so on. It is clear from Appendix A that we can find a vector Kn such that




M1

M2

M3

...
Mn




= DT

n KnAn





1
V2

V3

...
Vn




. (I.44)

Moreover, the matrices Kn and An can be computed once and for all.
We see that there is only one term on the right hand side in (I.44) here

containing dn, so that this term can be found once d1, ..., dn−1 have been found.
This enables us to perform deconvolution.

B The proof of Theorem 3

Write tr
(
(D + VHV)n

)
as

=
∑

k,s

∑

(r1, ..., rk)∑
ri = n − k − s

tr



D · · ·D︸ ︷︷ ︸
r1 times

VHV D · · ·D︸ ︷︷ ︸
r2 times

VHVD · · ·D︸ ︷︷ ︸
s times





=
∑

k,s

∑

(r1, ..., rk)∑
ri = n − k
r1 ≥ s

tr
(
Dr1VHV · · ·DrkVHV

)
.

Each summand here can be computed by inserting (I.41) into (I.40) as above.
Also, the multi-indices (r1, ..., rk) are easily traversed. It is clear that one can
generalize (I.44) to compute each summand (the vector Kn is simply expanded
to handle more mixed moments). This explains how the implementation com-
putes the formulas for Theorem 3.

Deconvolution for Theorem 3 follows the exact same argument as for Theo-
rem 2.
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C The proof of Theorem 4

(I.16) corresponds to the case where

σ = σ1 = {{1, 2, 5, 6, 9, 10, ...}, {3, 4, 7, 8, 11, 12, ...}}.

Following the notation in (I.30) in Appendix A, when π = 12n in (I.16), ρ(π) =
[0, 1]2n, so that the contribution is

k

∫
pn

ω1
(x)dx

∫
pn

ω2
(x)dx

contributes, where k is a scalar. Also, for all other choices of π, the integral
In,ω2

does not contribute, so that the equation for th n’th moment uniquely
determines In,ω2

, when the lower order integrals {Ik,ω2
}k<n are known. Due

to Lemma 3, the same can be said for the moments, so that it is possible to
perform deconvolution.

Similarly, the contribution from π = 1n in (I.17) for the term when the
second summand is always chosen is kIn,ω2

, where k is a scalar. Moreover,
In,ω2

contributes only for this term and this π, so that the equation for th n’th
moment uniquely determines In,ω2

. It follows as above that it is possible to
perform deconvolution.

D The proof of Theorem 5

This case corresponds to σ = 12n, and

σ1 = {[2, 3], [4, 5], ..., [2n− 2, 2n− 1], [2n, 1]}.

From (I.40) it is clear that we can write





M1

M2

...
Mn




= Kn





V1

V2

...
V2n




, (I.45)

where Kn is an n × 2n matrix, depending only on the values computed from
Fourier-Motzkin elimination.

Deconvolution in general for (Theorem 5) is impossible, since the equation
system (I.45) has twice as many unknowns as equations. So, in this case, we
need some prior knowledge about the phase distribution in order to perform
deconvolution.

E The proofs of Theorem 7 and Theorem 8

For Toeplitz matrices, [29] shows that we can compute the moments in the same
way as for Vandermonde matrices, but that we need only consider equations on
the form (I.24) with all blocks of ρ of cardinality two. The case of Hankel
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matrices is similar, however here the variables in (I.24) are placed differently on
the left and right sides3.

C The proof of Theorem 6

Assume first that all aspect ratios are equal to c. In (25) in Theorem 7 in [20],
set Di(N) = IL, and place the last matrix Vi1 in front instead to obtain

limN→∞ E[tr(Vi1V
H
i1 Vi2V

H
i2 × · · · × Vin

VH
in

)]
=
∑

ρ≤σ∈P(n) Kρ,ωc|ρ|
(I.46)

(note that c|ρ| appears instead of c|ρ|−1 since Vi1 is moved to front, and thus
the additional c-factor is due to the fact that we take the trace of a matrix with
different dimensions). As in Appendix A it is straightforward to generalize this
to the case where the independent Vandermonde matrices have different aspect
ratios, i.e. (I.46) is

∑

ρ≤σ∈P(n)

Kρ,ω

|σ|∏

i=1

c
|ρ∩σi|
i ,

where ρ∩σi is the partition consisting of the blocks of ρ contained in σi. Using
Theorem 8 in [20] (i.e. we also assume that the phase distributions are different,
with Vi having phase distribution ωi), we thus generalize (25) to

∑

σ≥ρ

Kρ,u(2π)|ρ|−1

∫ 2π

0

s∏

i=1

pωi
(x)|ρ∩σi|dx

|σ|∏

i=1

c
|ρ∩σi|
i

=
∑

σ≥ρ

Kρ,u(2π)|ρ|−1

∫ 2π

0

s∏

i=1

(cipωi
(x))|ρ∩σi|dx

= Kρ,u(2π)|ρ|−1

∫ 2π

0

s∏

i=1

(c1pω1
(x) + c2pω1

(x))|ρ|dx

= (c1 + c2)
|ρ|Kρ,u(2π)|ρ|−1

×

∫ 2π

0

s∏

i=1

(
1

c1 + c2
(c1pω1

(x) + c2pω1
(x))

)|ρ|

dx

= lim
N→∞

E[tr(Vω1∗c1,c2
ω2,c1+c2

VH
ω1∗c1,c2

ω2,c1+c2
)n],

where we have used (I.46) on the density 1
c1+c2

(c1pω1
(x) + c2pω1

(x)).

3In the software described for this paper, Toeplitz, Hankel, and Vandermonde matrices all
reuse the same code, but different sets of partitions are considered, depending on the type
of the matrix. Also, the way the corresponding equation is constructed from the partition
depends on the type of the matrix
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D The proof of Theorem 9

We will first concentrate on the proof for almost sure convergence for a single
Vandermonde matrix, as this case is the simplest. This proof will follow the same
lines as that of almost sure convergence in [29], in that one uses Chebyshev’s
inequality, the Borel Cantelli lemma, and the following result:

Lemma 4. Assume that V is an ensemble of random Vandermonde matrices

with a continuous phase distribution, such that L
N → c. For any r ≥ 1 there

exists a constant Cr such that, for all L,

E

[(
tr
((

VHV
)r)

− E

[
tr
((

VHV
)r)])4

]
≤ CrL

−3. (I.47)

Comparing with [29, 1], Lemma 4 suggests that Vandermonde matrices con-
verge somewhat faster than Hankel- and Toeplitz matrices, but somewhat slower
than Gaussian matrices.

Proof. We can write

E

[(
tr
((

VHV
)r)

− E

[
tr
((

VHV
)r)])4

]

= E

[(
tr
((

VHV
)r))4

]

−4E

[
tr
((

VHV
)r)]

E

[(
tr
((

VHV
)r))3

]

+6
(
E

[
tr
((

VHV
)r)])2

E

[(
tr
((

VHV
)r))2

]

−3
(
E

[
tr
((

VHV
)r)])4

. (I.48)

We use certain interval partitions to define the following classes of partitions in
P(4r):

• P0: partitions π such that

π ≤ {[1, r], [r + 1, 2r], [2r + 1, 3r], [3r + 1, 4r]},

• P1,2: partitions π 6∈ P0 such that

π ≤ {[1, 2r], [2r + 1, 3r], [3r + 1, 4r]},

• P2,3: partitions π 6∈ P0 such that

π ≤ {[1, r], [r + 1, 3r], [3r + 1, 4r]}

(all other Pi,j are defined similarly),
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• P1,2,3: partitions π 6∈ P0 ∪ P1,2 ∪ P1,3 ∪ P1,4 ∪ P2,3 ∪ P2,4 ∪ P3,4 such that

π ≤ {[1, 3r], [3r + 1, 4r]}

(all other Pi,j,k are defined similarly),

• P1,2,3,4: partitions which are in none of the sets P0, Pi,j , Pi,j,k.

These classes of partitions are indexed by which intervals in {[1, r], [r+1, 2r], [2r+
1, 3r], [3r + 1, 4r]} are joined (in the sense that at least one block in a partition
π in P1,2 should contain elements from both the first and second interval in
{[1, r], [r + 1, 2r], [2r + 1, 3r], [3r + 1, 4r]}), and we can write P(4r) as a disjoint
union:

P(4r) = P0 ∪ P1,2 ∪ P1,3 ∪ P1,4 ∪ P2,3 ∪ P2,4 ∪ P3,4

∪P1,2,3 ∪ P1,2,4 ∪ P1,3,4 ∪ P2,3,4

∪P1,2,3,4. (I.49)

We will denote the set of sets on the right hand side in (I.49) by S. Write

ST,π =
∑

(j1,...,j4r )

π(j1,...,j4r)=π

∑

(i1,...,i4r)

N−4rL−4

×ET

(
n∏

k=1

(
ej(ωb(k−1)−ωb(k))ik

))
, (I.50)

where

1. π = π(j1, ..., j4r) is defined as in Appendix A,

2. T is a subset of {1, 2, 3, 4},

3. ET (x1 · · ·x4) = E(
∏

i∈T xi)
∏

i∈T c E(xi) (i.e. T dictates which random
variables xi are grouped within the same expectation),

4. b(k) means the block of π which k belongs to (with ωW1
, ..., ωWs

indepen-
dent when W1, ...Ws are the blocks of π).

5. k− 1 is formed modulo {[1, r], [r +1, 2r], [2r +1, 3r], [3r+1, 4r]}, meaning
that the values of k → k − 1 actually takes the form

1 → r

r + 1 → 2r

2r + 1 → 3r

3r + 1 → 4r

k → k − 1, k 6∈ {1, r + 1, 2r + 1, 3r + 1},

6. N−4r are all normalizing factors in (I.1), L−4 are the normalizing factors
which come from taking the four traces for each term in (I.48).
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When we write out (I.48) (by writing out the matrix product as in Appendix A,
we end up with sums of the form

∑
π ST,π , with various values for T . We have

in particular

∑

π∈P(4n)

S{1,2,3,4},π = E

[(
tr
((

VHV
)r))4

]

∑

π∈P(4n)

S{},π =
(

E

[
tr
((

VHV
)r)])4

.

However, since only one Vandermonde matrix appears here, the analysis from
Appendix A simplifies to the case σ1 = σ = 14r, for which the quantities can
be expressed directly in terms of π ∈ P(4r) rather than ρ(π) ∈ P(8r) (as in
Appendix A), so that the notation from [20]) can be followed more closely. As
with (I.30), (I.48) thus becomes

∑

π∈P(4r)

(
S{1,2,3,4},π − 4S{2,3,4},π + 6S{3,4},π − 3S{},π

)

=
∑

S∈S

∑

π∈S

(S{1,2,3,4},π − 4S{2,3,4},π

+6S{3,4},π − 3S{},π), (I.51)

due to the ordering of the expectations in (I.48). We now consider all possibilities
for S ∈ S in (I.51). For π ∈ P0 it is clear that one can split the expectations
further to obtain

S{1,2,3,4},π = S{2,3,4},π = S{3,4},π = S{},π,

and by adding up we see that the contribution from S ∈ P0 in (I.51) is 0.
Similarly, by splitting up the expectations as much as possible, the contributions
for other π in (I.51) is seen to be

π ∈ P1,2 : S{1,2},π − 4S{},π + 6S{},π − 3S{},π

π ∈ P1,3 : S{1,3},π − 4S{},π + 6S{},π − 3S{},π

π ∈ P1,4 : S{1,4},π − 4S{},π + 6S{},π − 3S{},π

π ∈ P2,3 : S{2,3},π − 4S{2,3},π + 6S{},π − 3S{},π

π ∈ P2,4 : S{2,4},π − 4S{2,4},π + 6S{},π − 3S{},π

π ∈ P3,4 : S{3,4},π − 4S{3,4},π + 6S{3,4},π − 3S{},π

π ∈ P1,2,3 : S{1,2,3},π − 4S{2,3},π + 6S{},π − 3S{},π

π ∈ P1,2,4 : S{1,2,4},π − 4S{2,4},π + 6S{},π − 3S{},π

π ∈ P1,3,4 : S{1,3,4},π − 4S{3,4},π + 6S{3,4},π − 3S{},π

π ∈ P2,3,4 : S{2,3,4},π − 4S{2,3,4},π + 6S{3,4},π − 3S{},π

π ∈ P1,2,3,4 : S{1,2,3,4},π − 4S{2,3,4},π + 6S{3,4},π − 3S{},π.

Adding everything here, and using that the contributions from Pi,j,k all are
equal for different i, j, k, and that the contributions from Pi,j all are equal for
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different i, j (which is obvious by associating each interval [kr+1, (k+1)r] with
r values on a circle, noting that the different classes of partitions can be viewed
as different ways of connecting the circles, and that the actual circles being
joined does not matter for the final value), we obtain that (I.48) equals

∑

π∈P1,2,3,4

(
S{1,2,3,4},π − 4S{2,3,4},π + 6S{3,4},π − 3S{},π

)
,

i.e. we need only sum over π ∈ P1,2,3,4 (all other terms cancel). If the phase
distribution is uniform, we consider the coefficient matrix for the equation sys-
tem corresponding to π ∈ P1,2,3,4 (formed as in Appendix A). This has rank
|π| − 1, so that the number of solutions (i1, ..., i4r) solving the equation system
has order N4r−|π|+1. Since the number of j1, ..., j4r such that π(j1, ..., j4r) = π
is of order O

(
L|π|

)
, (I.50) is

O
(
N−4rL−4L|π|N4r−|π|+1

)
= O(L−3). (I.52)

This proves the claim for the uniform distribution. When the Vandermonde
matrices do not have uniform phase distribution, as long as the phase distri-
bution is continuous, we can reduce to the case of uniform phase distribution
using Lemma 2 and the techniques in Appendix A. The constant Cr needs only
to be modified by taking into account the maximum of all Vandermonde mixed
moment expansion coefficients of order 4r.

To prove the general case, we must in (I.47) replace VHV with the combina-
tion appearing in (I.9). One in this case instead considers the interval partition

{[1, nr], [nr + 1, 2nr], [2nr + 1, 3nr], [3nr + 1, 4nr]}

instead of the interval partition {[1, r], [r+1, 2r], [2r+1, 3r], [3r+1, 4r]}. The sets
of partitions P0, P1,2, ... are defined similarly, and they are now sets in P(4rn).
For a mixed moment as in (I.48) (with VHV replaced with combinations as
in(I.9)), one shows as before that only partitions in P1,2,3,4 contribute (i.e. all
other terms cancel as above). Since the form (I.9) is used, one needs to construct
the partition ρ(π) ∈ P(8rn) from π ∈ P(4rn), and as in Appendix A, only
partitions satisfying (I.29) contribute (i.e. π ∈ B(4rn)), and (I.52) becomes in
this case

O
(
N−4rnL−4L|π|L4rn−|ρ(π)|+r(π)

)

= O
(
N−4rnL−4L|π|L4rn+1−|π|

)
= O(L−3),

and the result follows.
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Chapter II

Structured Spatio-temporal
Sample Covariance Matrix
Enhancement with
Application to Blind
Channel Estimation in
Cyclic Prefix systems

Abstract

Multichannel aspect allows the introduction of blind channel estimation tech-
niques. Most existing such techniques for frequency-selective channels are quite
complex. In this paper, we consider the blind channel estimation problem for
Single Input Multi Output (SIMO) cyclic prefix (CP) systems. We have shown
before [1] that blind channel estimation becomes computationally much more
attractive and more straight forward to analyze in terms of performance in CP
systems. Inspired by the iterative sample covariance matrix (SCM) structure
enhacement techniques of Cadzow and others [2], we propose here an algorithm
to structure the sample block circulant covariance matrix by enforcing two es-
sential properties: rank and FIR structure. These two properties are exhibited
by the true covariance matrix in the case of FIR SIMO channels with spatially
white noise and CP transmission. The proposed enhancement procedure leads
to an interesting enhanced SCM, even for the single CP symbol case. A simula-
tion study for some classical channel estimators that depend on the SCM (with
and without structuring) is presented, indicating that structuring allows for
considerable performance gain in terms of the channel normalized mean square
error (NMSE) over a wide SNR range.
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II.1 Introduction

A wealth of blind channel estimation techniques have been introduced for spatio-
temporal channels over the past decade, based on the singularity of the received
signal power spectral density matrix [3]. This singularity can be exploited to
separate the white noise contribution. The main problem characteristic in fact
that allows channel identifiability is the minimum phase characteristic of the
Single-Input Multiple-Output (SIMO) or MIMO matrix channel transfer func-
tion of the spatio-temporal channel. Spatio-temporal channels arise in mobile
communications when multiple antennas or polarizations or beams are used at
the receiver. Physical multi-channels can also arise in xDSL systems when the
receiver has access to a complete cable bundle. Other problem formulations
that lead to multi-channel models are the use of oversampling at the receiver
or the decoupling of inphase and in-quadrature components when real symbols
get modulated or the reception of multiple signal copies in ARQ protocols. A
variety of blind symbol/channel estimation strategies can be developed depend-
ing on the amount of a priori information that gets formulated on the unknown
symbols. In general, the less structure that gets exploited about the symbol al-
phabet, the less problems tend to be encountered with local minima. Of course,
more estimation accuracy is obtained by exploiting more information. A rea-
sonable strategy is hence to exploit a progressive range of algorithms exploiting
increasing a priori information levels. The algorithm at the next level can be ini-
tialized with the estimate obtained at the previous level of a priori information.
The memory introduced by a convolutive channel leads to the requirement of
having to treat all available data in a contiguous observation interval in one shot
if no suboptimality is allowed. This leads to problem formulations with large
convolution matrices, large covariance matrices and high complexity. Attempts
have been made by our own group to introduce asymptotic approximations,
by approximating large Toeplitz convolution matrices by circulant matrices, to
allow transformation to the frequency domain, or by others by introducing ap-
proximate DFT operations. Cyclic prefixes have been introduced in a number of
existing systems such as OFDM systems for ADSL and wireless LANs. Recently,
Orthogonal Frequency Division Multiple Access (OFDMA) has been adopted
as a multiple access scheme for the Frequency Domain Duplexing Down-Link
(FDD-DL)in LTE (Long Term Evolution) systems. The introduction of a cyclic
prefix renders the transformation to the frequency domain clean and exact even
for a finite data length. The resulting algorithmic simplifications will be detailed
for a number of classical blind channel estimation methods. Furthermore, the
same framework can be used to analyze the performance of the algorithms and
the algorithmic simplifications also translate into much simplified performance
expressions, which allow a direct and insightful analytical performance compar-
ison between a number of algorithms.

This paper is organized as follows. Section II starts with the description
of the basic baseband SIMO-cyclic prefix model. In section III we develope
a unified framework for cyclic prefix system channel estimators. Section IV
defines some classical blind channel estimators within the framework introduced
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in section III. The algorithm for structuring the covariance matrix is developed
in section V. In section VI, we provide the experimental results and finally a
conclusion is drawn in Section VII.

II.2 SIMO Cyclic Prefix Block TX Systems

Consider a SIMO system with M outputs:

u[m]︸ ︷︷ ︸
M×1

=
∑Lh−1

j=0 h[j]︸︷︷︸
M×1

a[m−j]︸ ︷︷ ︸
1×1

+w[m]︸ ︷︷ ︸
M×1

= H(q)︸ ︷︷ ︸
M×1

a[m]︸︷︷︸
1×1

+w[m]︸ ︷︷ ︸
M×1

(II.1)

where H(q) =

L∑

j=0

h[j] q−j is the SIMO system transfer function corresponding

to the z transform of the impulse response h[.]. Equation (II.1) mixes time
domain and z transform domain notations to obtain a compact representation.
In H(q), z is replaced by q to emphasize its function as an elementary time
advance operator over one sample period. Its inverse corresponds to a delay
over one sample period: q−1a[n] = a[n−1].

Consider a (OFDM or single-carrier) CP block transmission system with
N samples per block. The introduction of a cyclic prefix of K samples means
that the last K samples of the current block (corresponding to N samples) are
repeated before the actual block. If we assume w.l.o.g. that the current block
starts at time 0, then samples a[N−K] · · ·a[N−1] are repeated at time instants
−K, . . . , −1. This means that the output at sample periods 0, . . . , N−1 can be
written in matrix form as




u[0]

...
u[N−1]



 = U[0] = H A[0] + W[0] (II.2)

where the matrix H is not only (block) Toeplitz but even (block) circulant: each
row is obtained by a cyclic shift to the right of the previous row. Consider now
applying an N -point FFT to both sides of (II.2) at block m:

FN,MU[m] = FN,MH F−1
N FNA[m] + FN,MW[m] (II.3)

or with new notations:

Y[m] = H X[m] + V[m] (II.4)

where FN,M = FN ⊗ IM (Kronecker product: A ⊗ B = [aijB]), FN is the N -
point N ×N DFT matrix, H = diag {h0, . . . ,hN−1} is a block diagonal matrix

with diagonal blocks hn =
∑Lh−1

l=0 h[l] e−j2π 1

N
nl, the M × 1 channel transfer
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function at tone n (frequency = n/N times the sample frequency). In OFDM,
the transmitted symbols are in X[m] and hence are in the frequency domain.
The corresponding time domain samples are in A[m]. The OFDM symbol period
index is m. In Single-Carrier (SC) CP systems, the transmitted symbols are in
A[m] and hence are in the time domain. The corresponding frequency domain
data are in X[m]. The components of W are considered white noise, hence the
components of V are white also. At tone (subcarrier) n ∈ {0, . . . , N−1} we get
the following input-output relation

yn[m]︸ ︷︷ ︸
M×1

= hn︸︷︷︸
M×1

xn[m]︸ ︷︷ ︸
1×1

+vn[m]︸ ︷︷ ︸
M×1

(II.5)

where the symbol xn[m] belongs to some finite alphabet (constellation) in the
case of OFDM.

II.3 Frequency domain Framework for CIR Es-

timation

The basic idea relies on the fact that to get the cost function or information
for the temporal channel response it suffices to sum up the cost functions or
information over the tones after transforming back to the time domain. To be
a bit more explicit, let h be the vectorized channel impulse response then there
exists transformation matrices Gk (containing DFT portions)such that

hk = Gk h . (II.6)

To be more accurate, Gk is of size M × MLh such that it contains the first
MLh elements of the kth block row of FN,M . Now, if at tone k we have a cost
function of the form

hH
k Qk hk (II.7)

then this induces a cost function for the overall channel impulse response of the
form

hH

[
N−1∑

k=0

GH
k Qk Gk

]
h (II.8)

and similarly for Fisher information matrices. So in what follows, we shall
concentrate on the cost function for a given tone.

II.4 Blind SIMO Channel Estimation

II.4.1 Subchannel Response Matching (SRM)/Cross Re-
lation method (CR)

The subchannel response Matching (SRM) estimator which was (re)invented
four times in [5],[6],[7],[8], is based on a linear parametrization of the noise
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subspace in terms of the channel coefficients [9] so that P⊥
hk

= Ph⊥H
k

where h⊥
k

is given by

h⊥
k bal,min

=





−hk,2 hk,1 0 · · · 0

0 −hk,3 hk,2 · · ·
...

...
. . .

. . . 0
hk,M 0 · · · 0 −hk,1




. (II.9)

In (II.9) we choose the minimum number of rows in h⊥
k which has a size

(M − δM,2)×M . This noise parametrization is balanced in the sense that every
subchannel appears the same number of times, in this case twice. A balanced
h⊥

k leads to tr{h⊥
k h⊥H

k } = α||hk||
2, where α = 2 − δM,2. In the noiseless case,

yk = hkxk and we have h⊥
k yk = Ykhk = 0. Based on this relation the channel

at tone k can be uniquely determined up to a scale factor [7],[8], as the unique
right singular vector of Yk corresponding to the singular value zero. When noise
is present, Ykhk 6= 0 and the SRM criterion is solved in the least-squares sense
||h⊥

k yk||
2
2 = tr{h⊥

k yky
H
k h⊥H

k }. By the law of large numbers, asymptotically this
criterion can be replaced by its expected value: tr{h⊥

k Sykyk
h⊥H

k }. Practically,
Sykyk

is not available so it is replaced by the sampled spectrum per each tone

Ŝykyk
which is computed directly from the fourier transformed version of the

received data as we will show in the next section. Moreover, the SRM criterion
can be written in the form shown in (II.8) where Qk =

∑M
i=1 DiŜ

∗
ykyk

DH
i where

Di+1 = CDiC.

D1 =





0 1 0 · · ·
−1 0 · · ·

0
...

. . .
...




. (II.10)

C =





0 · · · 0 1
1 0 · · · 0

0
. . .

...
... 0 1 0




. (II.11)

Then, we attempt to minimize the sum of the SRM criteria (cost functions)
over all tones jointly to obtain an estimate of the channel impulse response h.
The SRM cost function is shown below:

min
h

hH

[
N−1∑

k=0

GH
k

{
M∑

i=1

DiŜ
∗
ykyk

DH
i

}
Gk

]
h (II.12)

We denote the matrix between the braces in (II.12) by QSRM , it has the

size of MLh × MLh. The estimated channel impulse response ĥSRM that is
obtained by solving (II.12) is the eigen vector that corresponds to the minimum
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eigen value of QSRM . This solution has a scalar ambiguity that can be solved
by forcing a least square constraint as follows: min

α
||h0−αĥSRM ||2. This yields

the following solution:

ˆ̂
hSRM =

ĥH
SRMh0

||ĥSRM ||2
ĥSRM (II.13)

II.4.2 Noise Subspace Fitting (NSS)

The sampled spectrum per each tone Ŝykyk
can be decomposed into signal and

noise subspace contributions:

Ŝykyk
= Ŝyk,S + Ŝyk,N

= Ês,kΛ̂s,kÊH
s,k + Ên,kΛ̂n,kÊH

n,k

(II.14)

The basic idea of the NSF is to fit the estimated noise subspace that we
obtain from the sampled spectrum to the true noise subspace which is spanned
by the columns of h⊥H

k .

min
hk,T

||h⊥H
k − Ên,kT ||F (II.15)

where ||X ||F = tr{XHX}. This criterion differs from the original subspace
fitting strategy proposed in [10], which would propose min

hk,T
||Ên,k −h⊥H

k T ||F as

criterion. We propose (II.15) because it leads to a simpler optimization problem.
Both approaches can be made to be equivalent by the introduction of column
space weighting. The cost function in (II.15) is separable. In particular, it
is quadratic in T. Minimization w.r.t. T leads to T = ÊH

n,kh
⊥H
k and h⊥H

k −

Ên,kÊH
n,kh

⊥
k = P⊥

Ên,k

h⊥H
k where P⊥

Ên,k

= I − PÊn,k
= PÊs,k

and PÊn,k
, PÊs,k

denote respectively the projection matrix on the noise subspace (Ên,k) and the

signal subspace (Ês,k).
Hence,

min
hk,T

||h⊥H
k − Ên,kT ||F = min

hk

||PÊs,k
h⊥H

k ||F

= min
hk

tr{h⊥
k Ês,kÊH

s,kh
⊥H
k }

(II.16)

Similar to the case of SRM, the NSF criterion can be written in the form
shown in (II.8) where Qk =

∑M
i=1 DiÊs,kÊH

s,kDH
i and Di is the same as for the

SRM criterion. Again, we attempt to minimize the NSF jointly over all the
tones subject to the least square constraint to avoid introducing N constraints
and to exploit the correlation exists between the different tones. Therefore, the
NSF cost functions takes the following form:

min
h

hH

[
N−1∑

k=0

GH
k

{
M∑

i=1

DiÊs,kÊH
s,kDH

i

}
Gk

]
h (II.17)
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Following the same discussion as in case of SRM we get the following solution:

ˆ̂
hNSF =

ĥH
NSF h0

||ĥNSF ||2
ĥNSF (II.18)

The substanial computational power saving offered by our farmework namely,
working per tones instead of working in the time domain, is elucidated by re-
marking that we perform Eigen Value Decomposition (EVD) of N matrices
Ŝykyk

each of size (M ×M) while working in the time domain requires the EVD

of a huge matrix ŜUUof size (MN ×MN). Knowing that the number of opera-
tions required to perform the EVD of a matrix is proportional to the cubic of its
size and the number of tones N for some systems (eg. LTE downlink) may reach
to 2048, then the great advantage of our framework in terms of computational
power saving becomes evident.

II.5 Block Toeplitz Covariance Matrix Enhance-
ment

Here we go back to sample covariance refinements suggested by Cadzow in the
eighties [2] and which we tried to exploit to enhance the dereverberation of
the acoustic channel [4]. The idea is to iteratively reinforce several structural
properties, the reinforcement of which consists of a projection onto a convex
set. The iterations then converge to the joint reinforcement of all properties.
Theoretically, the matrix valued vector signal spectrum is of the form

Syy(z) = h(z)Sxx(z)h†(z) + Svv(z) (II.19)

where .† denotes paraconjugate which is defined as h†(z) = h(1/z∗)H and
Svv(z) = σ2

v I is the white noise spectrum. Saking for the simplicity of notations,
we omit the index k in Syy. The signal part of the spectrum, h(z)Sxx(z)h†(z)
is singular, not because of spectral poverty as in the SISO case, but because
of limited rank in the matrix dimension. In the SISO case, a stationary signal
covariance matrix can only be singular if the signal consists of a number of
(complex) sinusoids, with their number being smaller than the covariance ma-
trix dimension. Singularity in the MIMO case has nothing to do with spectral
poverty but with matrix singularity of the matrix spectrum at every frequency.

Inspired by [2], (II.19) suggests the following procedure. First we start with
the sample spectrum at each tone:

Ŝyy(zn) = 1
P

∑P
m=1 yn[m]yH

n [m] ,

n = 0, . . . , N − 1
(II.20)

where P is the number of OFDM symbols over which we compute the sample
spectrum and zn = ej2πn/2N , with the following properties: Ŝ†

y(zn) = ŜH
y (zn)

(Hermitian transpose).
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Now, at each frequency bin n, Sy(zn) is of the form

Sy(zn) = Sy,S(zn) + Sy,N(zn)

= h(zn)Sx(zn)h†(zn) + σ2
v IM

= Vmax,n (λmax,n − σ2
v)V H

max,n + σ2
v IM

(II.21)

where Sy,S(zn), Sy,N(zn) are the signal and noise components of Sy(zn), and
λmax,n and Vmax,n are its maximum eigenvalue and corresponding eigenvector.

Now, the Ŝy(zn) can be forced to the closest (in Frobenius norm) matrix of the

form in (II.21) by computing its spatial eigen decomposition. Let λ̂1,n ≥ λ̂2,n ≥

· · · ≥ λ̂M,n be its eigenvalues, hence λ̂max,n = λ̂1,n, V̂max,n = V̂1,n. Then we

get Ŝy(zn) = Ŝy,S(zn) + Ŝy,N(zn) = V̂max,n (λ̂max,n − σ̂2
v) V̂ H

max,n + σ̂2
v IM with

σ̂2
v = 1

N(M−1)

∑N−1
n=0

∑M
i=2 λ̂i,n due to the spatiotemporal white noise assump-

tion. Note that in fact at every frequency bin only λmax,n and Vmax,n need to

be computed since
∑M

i=2 λ̂i,n = tr {Ŝy(zn)}− λ̂max,n. Since the noise spectrum

Ŝy,N(zn) = σ̂2
v IM is fairly simple, there is no further structure to be imposed.

The signal spectrum Ŝy,S(zn) = V̂max,n (λ̂max,n−σ̂2
v) V̂ H

max,n on the other hand is
supposed to be spectrum of a FIR correlation sequence. This FIR character can
be imposed by windowing in the time domain. The resulting source whitened
signal spectrum Ŝy,S(zn) then undergoes IFFT to obtain the corresponding ma-
trix correlation sequence. The frequency-wise rank structure enforcement will
have destroyed the FIR character of the correlation sequence, which can then
simply be enforced in the time domain by proper windowing (without forget-
ting the symmetry structure of the first block column of the block circulant
matrix). The operations of eigen structure enforcement in frequency domain
and FIR structure enforcement in the time domain can then be iterated untill
convergence. Typically a few iterations suffice. We are now ready to state the
following iterative process:

1. Compute the matrix spectrum Ŝy(zn) at each frequency bin as illustrated
in (II.20).

2. Compute the eigendecomposition of the spectrum Ŝy(zn) at each fre-
quency bin n = 0, 1, . . . , N − 1. Determine the noise variance σ̂2

v =
1

N(M−1)

∑N−1
n=0

∑M
i=2 λ̂i,n and the signal part of the spectrum Ŝy,S(zn) =

V̂max,n (λ̂max,n − σ̂2
v) V̂ H

max,n.

3. Compute the acoustic channel correlations





r̂y(0)
r̂y(1)

...
r̂H
y (1)




=

1

N
(F ∗

N ⊗IM )





Ŝy(z0)

Ŝy(z1)
...

Ŝy(zN−1)




(II.22)
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Put the correlations outside the range n ∈ {0, 1, . . . , Lh−1} to zero to
obtain the Hermitian of the following block row
[r̂y(0) r̂H

y (1) · · · r̂H
y (Lh−1) 0 · · · 0 r̂y(Lh−1) · · · r̂y(1)].

4. Compute the spectrum of the thus windowed correlation sequence





Ŝy(z0)

Ŝy(z1)
...

Ŝy(zN−1)




= (FN ⊗IM )





r̂y(0)
r̂y(1)

...
r̂H
y (1)




(II.23)

Go back to step 2 untill convergence. Note that the IFFTs and FFTs in
(II.22) and (II.23) can be carried out efficiently in Matlab by reshaping
the N × 1 vectors of M × M blocks into N × M2 matrices.

After convergence, we make use of the refined spectrum we get at step (4)
to get an enhanced channel impulse response estimation within the framework
described in the previous section.

II.6 Experimental Results

We run our simulations within the framework of an SIMO-OFDM system where
each OFDM symbol is composed of 128 tones. The performance of the different
deterministic channel estimators (structured and non structured) are evaluated

by means of the NMSE vs. SNR. The NMSE is defined as ||h0−ĥ||2

||h0||2 and the SNR

is defined as
∑N−1

k=0
||hk||

2σ2

xk

σ2
vMN . The symbols are drawn from QPSK constellation

and the NMSE is averaged over 10000 Monte-Carlo runs of the noise, symbols
and the channel. We consider Rayleigh fading channel realizations where each
one is composed of five i.i.d. channel coefficients. It is worthy to note that for
SNR less than 20 dB the algorithm always converges typically after three or four
iterations while at higher SNR the convergence is guranteed at no more than ten
iterations. However, we consider a convergence is achieved when the following

condition is fulfilled:
σ̂2

v,i−σ̂2

v,i−1

σ̂2

v,i

≤ 0.1 where i denotes the number of the current

iteration at which the convergence is checked. Figure II.1 shows the performance
of both SRM and NSF with and without structuring where three antennas have
been utilized at the receiver and the sampled spectrum has been computed from
just one OFDM symbol. We remark that SRM yields better performance than
NSF. This is due to the fact that when we work with one OFDM symbol then
SRM is a weighted version of NSF with the weight being the largest eigen value
of the sampled spectrum at each tone. However, when structuring is used both
estimators show at least 3 dB gain even at very high SNR. It is also obvious that
after structuring the performance of both estimators is congruent whatever is
the SNR. To elaborate more the advantage of our structuring algorithm we plot
in Figure II.2 the BER versus SNR where we have used the estimated channels
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by various algorithms to equalize the received signal using MMSE equalizer and
a hard decision decoding to extract the received bits. This result shows that
our algorithm outperforms the non-structured ones by more than 2 dB at BER
= 10−2.
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Figure II.1: The NMSE versus SNR for structured and non-structured estima-
tors.

II.7 Conclusions

To sum up, we have shown in this article the capabiltiy to exploit the classical
blind deterministic channel estimators with a great computational power saving
within the cyclic prefix systems. This is accomplished by minimizing the sum
of the cost functions at different tones instead of minimizing the ordinary cost
function in the time domain. Moreover, we propose a spatio-temporal based
algorithm to enhance the sample covariance matrix upon which a class of well-
known estimators rely. The enhancement is achieved by enforcing both the
rank and the FIR structure properties. The simulations show that the proposed
algorithm has the potential to provide a 5 dB gain (in terms of NMSE) at low
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Figure II.2: The BER versus SNR for structured and non-structured estimators.

to moderate SNR while it still has the capabiltiy to provide a noticeable gain
at high SNR.
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