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In array processing, a common problem is to estimate the angles of arrival of K determin-
istic sources impinging on an array of M antennas, from N observations of the source
signal, corrupted by Gaussian noise. In the so-called subspace methods, the problem
reduces to estimate a quadratic form (called “localization function”) of a certain pro-
jection matrix related to the source signal empirical covariance matrix. The estimates
of the angles of arrival are then obtained by taking the K deepest local minima of
the estimated localization function. Recently, a new subspace estimation method has
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been proposed, in the context where the number of available samples N is of the same
order of magnitude than the number of sensors M . In this context, the traditional sub-

space methods tend to fail because they are based on the empirical covariance matrix
of the observations which is a poor estimate of the source signal covariance matrix.
The new subspace method is based on a consistent estimator of the localization func-
tion in the regime where M and N tend to +∞ at the same rate. However, the con-
sistency of the angles estimator was not addressed, and the purpose of this paper is
to prove this consistency in the previous asymptotic regime. For this, we prove the
property that the singular values of M × N Gaussian information plus noise matrix
escape from certain intervals is an event of probability decreasing at rate O(N−p) for
all p. A regularization trick is also introduced, which allows to confine these singular
values into certain intervals and to use standard tools as Poincaré inequality to char-
acterize any moments of the estimator. These results are believed to be of independent
interest.

Keywords: Information plus noise model; localization of the eigenvalues; subspace
estimation; MUSIC.

Mathematics Subject Classification 2010: 15B52, 62F10

1. Introduction

1.1. Motivation

This paper is motivated by the problem of source localization using a large sensor
network. In this context, the observation is a complex valued M -variate time series
(yn)n∈Z (M represents the number of sensors of the array) given by

yn =
K∑
k=1

sk,na(θk) + vn = A(θ)sn + vn,

where

• The K < M scalar (in general complex-valued) time series (sk,n)n∈Z for k =
1, . . . ,K are non-observable, and represent the signals transmitted by K trans-
mitters. The vector sn is given by sn = (s1,n, . . . , sK,n)T .

• For each k, θk is a scalar real parameter characterizing the direction of arrival of
transmitter k. θ → a(θ) is a known CM -valued function depending on the sensor
network geometry, and matrix A(θ) is defined as A(θ) = (a(θ1), . . . ,a(θK)).

• (vn)n∈Z finally represents an additive complex Gaussian noise, i.e. vn =
(v1,n, . . . , vM,n)T where the M time series ((vk,n)n∈Z)k=1,...,M are mutually inde-
pendent identically distributed (iid) sequences such that Re(vk,n) and Im(vk,n)
are independent real Gaussian random variables with zero mean and variance
σ2/2.

The classical source localization problem consists in estimating vector θ =
(θ1, . . . , θK)T from N samples collected in the M ×N matrix YN = (y1, . . . ,yN ).
This problem was extensively studied in the past (see e.g. [21] and the references
therein). The so-called subspace estimator of θ = (θ1, . . . , θK)T is based on the
observation that if matrices A(θ) and SN = (s1, . . . , sN ) have both full rank K,
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then the angles (θk)k=1,...,K are solutionsa of the equation a(θ)∗ΠNa(θ) = 0,
where ΠN represents the orthogonal projection matrix on the kernel of matrix
A(θ)SNS∗

NA(θ)∗. The subspace method is therefore irrelevant if K ≥ M , which
explains why it is assumed that K < M . The existing subspace methods consist in
estimating for each θ the quadratic form ηN (θ) = a(θ)∗ΠNa(θ) of ΠN by a certain
term η̂N (θ), and then to estimate the K angles as the argument of the K most
significant local minima of function θ → η̂N (θ). This approach has been extensively
developed when N → +∞ and M fixed. In this context, ηN (θ) can be estimated
consistently for each θ by η̂N (θ) = a(θ)∗Π̂Na(θ) with Π̂N the orthogonal projection
matrix on the eigenspace associated to the M−K smallest eigenvalues of the empir-
ical covariance matrix 1

NYNY∗
N . It clearly holds that supθ∈[−π,π] |η̂N (θ) − ηN (θ)|

converges towards 0 almost surely, and this allows to prove that the corresponding
estimators (θ̂k)k=1,...,K of the direction of arrivals are consistent.

If however M and N are of the same order of magnitude, a quite common
situation if the number of sensors M is large, then the above estimators show poor
performances because Π̂N is no longer an accurate estimator of ΠN . In order to
study this context, Mestre and Lagunas [18] were the first to propose consistent
estimators of ηN (θ) when M,N → +∞ in such a way that cN = M

N → c, with c > 0.
In Mestre and Lagunas [18], it is assumed that the source signals (sk,n)k=1,...,K are
mutually independent complex Gaussian iid time series with unit variance elements.
Under this assumption, yn can be written as

yn = R1/2
y xn,

where Ry = A(θ)A(θ)∗ + σ2IM represents the covariance matrix of the time series
(yn)n∈Z and xn is a complex standard Gaussian vector. Matrix ΠN coincides with
the orthogonal projection matrix over the eigenspace of Ry associated to the eigen-
value σ2, and Mestre and Lagunas addressed the problem of estimating consistently
any quadratic form of ΠN from the empirical covariance matrix 1

NYNY∗
N where

YN = R1/2
y XN and XN = (x1, . . . ,xN ). Mestre and Lagunas [18] used prop-

erties (see Silverstein and Choi [20], Bai and Silverstein [1, 2]) of the empirical
covariance matrix, and were able to exhibit an M ×M matrix Π̃iid,N such that
a∗
NΠ̃iid,NaN − a∗

NΠNaN → 0 for each deterministic bounded sequence of vectors
(aN ) when M,N → +∞ in such a way that cN = M

N → c, with c > 0. In some
sense, matrix Π̃iid,N can be viewed as a consistent estimate of ΠN but in a weak
sense because in general, it does not hold that ‖Π̃iid,N −ΠN‖ → 0, where we have
denoted by ‖ · ‖ the usual spectral norm. Mestre and Lagunas concluded that for
each θ, a(θ)∗Π̃iid,Na(θ) is a consistent estimate of ηN (θ). However, the consistency
of the angular estimates was not established. Note that these results do not require
any hypothesis on K which may scale with N or not.

The estimator proposed in [18] is in principle valid only when the source signals
(sk,n)k=1,...,K are mutually independent complex Gaussian time series, each time

aThe K angles are the unique solutions under certain assumptions on function θ → a(θ).
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series being independent and identically distributed. This is clearly a strong hypoth-
esis which is not verified in a number of applicative contexts. In particular, the source
signals may be non-Gaussian and/or correlated in the time domain. In Vallet et al.
[23], a more general case was considered where the time series (sk,n)k=1,...,K are
deterministic signals for which the spectral norm of matrix 1√

N
A(θ)SN is bounded

with respect to the dimensions M,N,K. As a realization of any discrete time ran-
dom process can be interpreted as a deterministic signal, the results of [23] can be
used whatever the properties of the (sk,n)k=1,...,K . In particular, it is proved in [23]
that if the source signals are realizations of independent Gaussian iid sequences,
then the estimators of [18, 23] have the same behavior. In the deterministic source
signals case considered in the present paper, random matrix YN is non-zero mean,
and corresponds to the so-called “Information plus Noise model” investigated in var-
ious works of Girko (see e.g. [11]) and Dozier and Silverstein (see [9, 8]). Using new
results on the almost sure localization of the eigenvalues of the empirical covariance
matrix 1

NYNY∗
N , [23] generalized the estimator of Mestre and Lagunas [18], and

derived a “weakly consistent estimator” Π̃N of ΠN , i.e. a∗
N Π̃NaN −a∗

NΠNaN → 0
for each deterministic bounded sequences of vectors (aN ). Therefore, it holds that
for each θ, η̃N (θ) = a(θ)∗Π̃Na(θ) is a consistent estimate of ηN (θ) if a(θ) is uni-
formly bounded in N .

In order to emphasize on the practical interest of doubly infinite consistent
estimators of [18, 23], we refer to the various numerical experiments of [18, 23].
The possible values of (M,N) (20, 15), (20, 40), (20, 75), (20, 150), and for each
case, the gain produced by the doubly consistent estimator over the traditional
subspace method appeared to be quite substantial, even for the case (20, 150) for
which cN is far from 1. This tends to indicate that the use of the new estimators
can be recommended in practice in the context of large sensor networks whatever
the values of M and N .

The goal of the present paper is to pursue the work [23], and to establish that
the angle estimates defined as the K most significant local minima of function
θ → a(θ)∗Π̃Na(θ) are consistent. As it will be shown below, the consistency of the
angle estimates is based on the property

sup
θ∈[−π,π]

|η̃N (θ) − ηN (θ)| a.s.−−−−→
N→∞

0, (1.1)

that we shall refer to as the uniform consistency of the estimate η̃N (θ) of ηN (θ).
This paper is organized as follows. In Sec. 2, we provide some background mate-

rial on the asymptotic eigenvalue distribution of the large information plus noise
model, on the almost sure localization of the eigenvalues of the empirical covariance
matrix, and on the consistent estimator of a∗

NΠNaN proposed in [23]. The new
results of this paper are essentially presented in Sec. 3 devoted to the proof of the
uniform consistency (1.1). As in [23], the proofs are based on Gaussian techniques
introduced by Haagerup and Thorbjornsen in [12]. However, (1.1) is much more
demanding than the consistency of η̃N (θ) proved in [23], and needs the introduction
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of new tools. Using a classical discretization scheme of the parameter space, we show
that it is sufficient to prove that for each θ and each α > 0, P(|η̃N (θ)− ηN (θ)| > α)
converges towards 0 fast enough. For this, a tempting choice is to use the Markov
inequality, and to evaluate the behavior of the moments of η̃N (θ)−ηN (θ). However,
these moments do not necessarily exist for some technical reasons. We therefore
introduce a well-chosen regularization term χN , for which P(χN �= 1) decreases
at rate 1

N l for each integer l, and such that the moments of η̃N (θ)χN exist. We
establish that for each l ∈ N, E|η̃N (θ)χN − ηN (θ)|2l decreases at rate 1

N l . This,
in turn, allows to establish that (1.1) holds. The properties of the regularized fac-
tor χN heavily rely on results concerning the probability that the eigenvalues of
YNY∗

N

N and of a related matrix escape from the intervals in which they are located
almost surely for N large enough. These results are new, and are believed to be of
independent interest. We also mention that the uniform consistency is proved when
function a(θ) is defined by

a(θ) =
1√
M

(1, eiθ, . . . , ei(M−1)θ)T , (1.2)

for all θ ∈ [−π, π]. (1.1) of course holds for more general functions. In particular, if
a(θ) is any function satisfying the conditions ‖a(θ)‖ = 1 for all θ and

‖a(θ1) − a(θ2)‖ ≤ CN r|θ1 − θ2|s, (1.3)

for s > 0 and r ≥ 0, then, the last step of the proof of (1.1) (see Sec. 3.3) can be
easily adapted to model (1.3) (the function a(θ) defined by (1.2) verifies (1.3) for
r = s = 1). Note that in (1.3), we have mentioned that function a(θ) depends on
the dimensions of the system. As model (1.2) is very popular, we prefer to present
our results in this context for the sake of simplicity.

In Sec. 4, we finally deduce from (1.1) the consistency of the K most significant
local minima of function θ → η̃N (θ) by following the approach in [15].

1.2. General notations and useful results

We now introduce various notations and results used throughout the paper.

• If E ⊂ R, Int(E) and ∂E represent the interior and the boundary of E

respectively.
• If z ∈ C, the complex conjugate of z is denoted z or z∗. For a complex matrix A,

we denote its transpose by AT and its Hermitian adjoint by A∗.
• We denote by C∞(R,R) (respectively C∞

c (R,R)) the set of all smooth real-valued
functions (respectively, compactly supported smooth real values functions).

• The quantity C will represent a generic positive constant whose main feature is
to be deterministic and independent of M and N . The value of C may change
from one line to another.

• Similarly, P1 and P2 will denote generic polynomials, independent of M and N ,
with positive coefficients. The polynomials may change from one line to another.
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• Complex Gaussian distribution: A complex-valued random variable Z = X + iY

follows the distribution CN (α+ iβ, σ2) if X and Y are independent real Gaussian
random variablesN (α, σ

2

2 ) and N (β, σ
2

2 ), respectively. The variance of Z, denoted
as Var(Z) is defined as Var(Z) = E|Z − E[Z]|2 = σ2.

• Poincaré inequality (see Chen [6]): Let Z1 = X1 + iY1, . . . , Zp = Xp + iYp be p
iid CN (0, σ2) random variables and consider a function γ defined on R2p con-
tinuously differentiable with polynomially bounded partial derivatives. Then, if
X = (X1, . . . , Xp)T and Y = (Y1, . . . , Yp)T , the random variable γ(X,Y) can be
written as γ(X,Y) = γ̃(Z,Z) and

Var[γ(X,Y)] = Var[γ̃(Z,Z)]

≤ σ2

p∑
i=1

(
E

∣∣∣∣∂γ̃(Z,Z)
∂zi

∣∣∣∣
2

+ E

∣∣∣∣∂γ̃(Z,Z)
∂zi

∣∣∣∣
2
)
,

where we define as usual the differential operators ∂
∂z = 1

2 ( ∂∂x − i ∂∂y ) and ∂
∂z =

1
2 ( ∂∂x + i ∂∂y ). If γ is real-valued, it is clear that ∂γ̃(Z,Z)

∂zi
coincides with the complex

conjugate of ∂γ̃(Z,Z)
∂zi

. In this case, the Poincaré inequality reduces to

Var(γ(X,Y)) ≤ 2σ2
∑
i

E

∣∣∣∣∂γ̃(Z,Z)
∂zi

∣∣∣∣
2

.

• Stieltjes transform: Let µ be a positive finite measure on R. Its Stieltjes transform
m is the function defined by

m(z) =
∫

R

dµ(λ)
λ− z

, ∀z ∈ C\supp(µ),

where supp(µ) represents the support of measure µ. Function m is holomorphic
on C\supp(µ) and satisfies Im(m(z))

Im(z) > 0 for z ∈ C\R and m(iy) → 0 when

y → +∞. Moreover, supp(µ) ⊂ R+ if and only if Im(zm(z))
Im(z) > 0 for z ∈ C\R. The

mass of the measure µ can be evaluated through the formula

µ(R) = lim
y→+∞−iym(iy).

We also notice that if m(z) is the Stieltjes transform of positive measure µ, then
it holds that

|m(z)| ≤ µ(R)
dist(z, supp(µ))

≤ µ(R)
|Im(z)| ,

and that m′(z) =
∫

R

dµ(λ)
(λ−z)2 satisfies

|m′(z)| ≤ µ(R)
dist(z, supp(µ))2

≤ µ(R)
|Im(z)|2 ,

on C\supp(µ). We finally recall the following version of the inverse Stieltjes trans-
form formula: for each function ψ ∈ C∞

c (R,R), we have∫
R

ψ(λ)dµ(λ) =
1
π

lim
y↓0

Im
(∫

R

ψ(λ)m(λ + iy)dλ
)
. (1.4)
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2. Background on the Information Plus Noise Model
and on the Estimator of [23]

All along this paper, we consider integers M,N,K ∈ N∗ such that 1 ≤ K < M ,
K = K(N) and M = M(N) are functions of N with cN = M

N → c > 0 as N → ∞.
We assume that

Assumption A-1. 0 < cN < 1 and 0 < c < 1.

Assumption A-1 is formulated in order to simplify the exposition. The case
cN > 1 and c > 1 is also relevant, and the consistent estimator η̃N (θ) can be
easily generalized. However, certain intermediate results proved in Sec. 3 have to
be modified, but the uniform consistency is still valid. We refer the reader to the
discussion of Sec. 3.4 for more information on the case cN > 1 and c > 1. The case
c = 1 is more intricate, and would need a specific treatment because the density of
the asymptotic eigenvalue distribution µN of matrix ΣNΣ∗

N (to be defined below)
may become singular at the origin when cN → 1. This complicates the description
of the support of µN as well as certain proofs. We therefore do not consider this
specific case in the following.

In this section, ΣN represents the complex-valued M × N random matrix
given by

ΣN =
YN√
N

= BN + WN ,

where BN = A(θ)SN√
N

and WN = VN√
N

. Matrices BN and WN are assumed to satisfy
the following assumptions:

Assumption A-2. Matrix BN is deterministic and satisfies supN ‖BN‖ < +∞.

Assumption A-3. Rank(BNB∗
N ) = K < M where K may scale with N or not.

Assumption A-4. The entries of matrix WN are iid and follow the complex
normal distribution CN (0, σ

2

N ).

We assume moreover that the non-zero eigenvalues of BNB∗
N have multiplicities

1 in order to simplify the notations. In the following, we denote by 0 = λ1,N = · · · =
λM−K,N < λM−K+1,N < · · · < λM,N and (uk,N )k=1,...,M the ordered eigenvalues
and associated eigenvectors of BNB∗

N . The eigenvalues and the eigenvectors of
matrix ΣNΣ∗

N are denoted (λ̂k,N )k=1,...,M and (ûk,N )k=1,...,M , and µ̂N represents
the empirical eigenvalue distribution of ΣNΣ∗

N defined by

µ̂N =
1
M

M∑
k=1

δλ̂k,N
.

As we assume cN < 1, the joint probability distribution of (λ̂k,N )k=1,...,M is abso-
lutely continuous (see e.g. James [16]) and it holds that the (λ̂k,N )k=1,...,M have
multiplicity 1 almost surely. We finally denote by QN (z) the resolvent of matrix
ΣNΣ∗

N , i.e. QN (z) = (ΣNΣ∗
N − zIM )−1.
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2.1. The asymptotic eigenvalue distribution µN of µ̂N

It is well-known ([11, Theorem 7.4], [9, Theorem 1.1]) that it exists a sequence of
deterministic probability measures (µN ) such that µ̂N − µN →N 0 weakly almost
surely. Measure µN is characterized by its Stieltjes transformmN (z) which is known
to satisfy the equation

mN (z) =
1
M

Tr
[
−z(1 + σ2cNmN (z))IM + σ2(1 − cN )IM +

BNB∗
N

1 + σ2cNmN (z)

]−1

,

(2.1)

for each z ∈ C\R+. In the following, we denote by SN the support of µN . As
µ̂N − µN →N 0 weakly almost surely, it holds that

m̂N (z) −mN (z) → 0 (2.2)

almost surely for each z ∈ C\R+. The following result will be of help.

Lemma 2.1 ([12, 4]). Let ψ ∈ C∞
c (R,R) and (rN ) a sequence of holomorphic

functions on C\R such that

|rN (z)| ≤ P1(|z|)P2

(
1

|Im(z)|

)
,

with P1 and P2 two polynomials with positive coefficients, independent of N .
Then,

lim sup
y↓0

∣∣∣∣
∫

R

ψ(x)rN (x+ iy)dx
∣∣∣∣ ≤ C <∞,

with C a constant independent of N .

Taking into account the previous result, it is shown in [23] that

E[m̂N (z)] = mN (z) +
rN (z)
N2

, (2.3)

with rN as in Lemma 2.1. Using the inverse Stieltjes transform formula (1.4), we
obtain that for each function ψ ∈ C∞

c (R,R), it holds that

1
M

E[Trψ(ΣNΣ∗
N )] =

1
M

M∑
k=1

E[ψ(λ̂k,N )] =
∫
SN

ψ(λ)µN (dλ) + O
(

1
N2

)
. (2.4)

If we denote by TN (z) the matrix-valued function defined by

TN (z) =
[
−z(1 + σ2cNmN (z))IM + σ2(1 − cN)IM +

BNB∗
N

1 + σ2cNmN(z)

]−1

,

then TN coincides with the Stieltjes transform of a positive matrix-valued measure
µN with support SN such that µN (SN ) = IM (see Hachem et al. [13, Theorem 2.4

1150006-8
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and Proposition 2.2]), i.e.

TN (z) =
∫
SN

dµN (λ)
λ− z

.

As mN (z) verifies Eq. (2.1), it is clear that 1
MTrµN = µN .

In the remainder of the paper, we will make use of the following result proved
in [23] if WN is complex Gaussian and in Hachem et al. [14] in the non-Gaussian
case.

Theorem 2.1. Consider two sequences of deterministic vectors (bN ), (dN ) such
that supN ‖bN‖ < +∞ and supN ‖dN‖ < +∞. Then, under Assumptions A-1, A-2
and A-4, it holds that

b∗
NQN (z)dN − b∗

NTN (z)dN −→
N

0, (2.5)

almost surely for each z ∈ C\R+.

2.2. The characterization of the support SN of µN

The support SN of µN was first studied in Dozier and Silverstein [8] and a more
convenient characterization was presented in [23]. We first recall (see [8]) that if
z ∈ C+ converges towards x ∈ R, then, mN (z) converges towards a finite limit
still denoted mN (x). Function x→ mN (x) is continuous on R, continuously differ-
entiable on R\∂SN , and verifies Eq. (2.1) on R\∂SN . Moreover, µN is absolutely
continuous and its density coincides with function 1

π Im(mN (x)).
In order to present the characterization of SN , we first introduce the following

notations. We denote by fN , φN and wN the functions defined by

fN (w) =
1
M

Tr(BNB∗
N − wIM )−1, (2.6)

φN (w) = w(1 − σ2cNfN (w))2 + σ2(1 − cN )(1 − σ2cNfN(w)), (2.7)

wN (z) = z(1 + σ2cNmN(z))2 − σ2(1 − cN )(1 + σ2cNmN (z)). (2.8)

We are now in position to characterize SN .

Theorem 2.2. Assume Assumptions A-1–A-4 hold. The function φN admits 2Q
non-negative local extrema counting multiplicities (with 1 ≤ Q ≤ K + 1) whose
preimages are denoted w−

1,N < 0 < w+
1,N ≤ w−

2,N · · · ≤ w−
Q,N < w+

Q,N . Define
x−q,N = φN (w−

q,N ) and x+
q,N = φN (w+

q,N ) for q = 1, . . . , Q. Then,

x−1,N < x+
1,N < x−2,N < · · · < x−Q,N < x+

Q,N ,

and the support SN of µN is given by

SN =
Q⋃
q=1

[x−q,N , x
+
q,N ].
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Moreover, for q = 1, . . . , Q, each interval ]w−
q,N , w

+
q,N [ contains at least an element

of the set {0, λM−K+1,N , . . . , λM,N} and each eigenvalue of BNB∗
N belongs to one

of these intervals.

The second statement of the theorem shows that each eigenvalue of BNB∗
N

corresponds to a certain interval of SN . More precisely, an eigenvalue of BNB∗
N

will be said to be associated to cluster [x−q,N , x
+
q,N ] if it belongs to the interval

(w−
q,N , w

+
q,N ). We note that the eigenvalue 0 is necessarily associated to the first

cluster [x−1,N , x
+
1,N ].

We finally recall the useful properties of function wN defined by (2.8) (see [23]).
We still denote by wN (x) the limit of wN (z) when z ∈ C+ converges towards x ∈ R.

Proposition 2.1. Under Assumptions A-1–A-4, function wN : C → C satisfies the
following properties:

• Function x → wN (x) is continuous on R and continuously differentiable on
R\∂SN ,

• Im(wN (z)) > 0 if Im(z) > 0,
• wN is real and strictly increasing on R\SN ,
• wN (x−q,N ) = w−

q,N and wN (x+
q,N ) = w+

q,N for each 1 ≤ q ≤ Q,

• Im(wN (x)) > 0 if and only if x ∈ Int(SN ).

2.3. Some useful evaluations

In this paragraph, we gather some useful bounds related to certain Stieltjes trans-
forms. We first recall that the inequality

|1 + σ2cNmN(z)| ≥ Re(1 + σ2cNmN (z)) ≥ 1/2 (2.9)

holds for z ∈ C (see Loubaton and Vallet [17]). We now consider function z →
−1

z(1+σ2cNmN (z)) . [13, Proposition 2.2] implies that it coincides with the Stieltjes
transform of a probability measure carried by R+. Moreover, (2.9) shows that the
support of this measure is included in SN ∪ {0}. Therefore, we obtain that

1
|1 + σ2cNmN(z)| ≤

|z|
|Im(z)| (2.10)

for each z ∈ C\R as well as

1
|1 + σ2cNmN (z)| ≤

|z|
dist(z,SN)

for each z ∈ C∗\SN . We also recall that matrix TN (z) satisfies TN (z)TN (z)∗ ≤
IM

Im(z)2 for z ∈ C+ (see [13, Proposition 5.1]). We now claim that the inequality

TN (z)TN (z)∗ ≤ IM
dist(z,SN )2

(2.11)
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also holds on C\SN . In order to establish (2.11), we follow the proof of [13,
Proposition 5.1]. We first remark that function m̃N (z) defined by

m̃N(z) = cNmN (z) − 1 − cN
z

is the Stieltjes transform of probability measure µ̃N = cNµN + (1 − cN)δ0. The
support of µ̃N thus coincides with SN ∪ {0}, and is included in R+. Therefore, it
holds that Im(zm̃N (z))

Im(z) > 0 if z ∈ C\R. We remark that

TN (z) − TN (z)∗

2i
= Im(z)

∫
SN

dµN (λ)
|λ− z|2 .

By using the identity, TN (z)−TN (z)∗ = TN (z)(TN (z)−∗ −TN (z)−1)TN (z)∗, we
get after some algebra

Im(z)
∫
SN

dµN (λ)
|λ− z|2 = Im(z)TN (z)TN (z)∗ + σ2 Im(zm̃N(z))TN (z)TN (z)∗

+
σ2cN

|1 + σ2cNmN (z)|2 Im(mN (z))TN (z)BNB∗
NTN (z)∗,

for each z ∈ C\R, or equivalently∫
SN

dµN (λ)
|λ− z|2 = TN (z)TN (z)∗ + σ2 Im(zm̃N(z))

Im(z)
TN (z)TN (z)∗

+
σ2cN

|1 + σ2cNmN (z)|2
Im(mN (z))

Im(z)
TN (z)BNB∗

NTN (z)∗.

Consequently, we obtain that

TN (z)TN (z)∗ ≤
∫
SN

dµN (λ)
|λ− z|2

for z ∈ C\R, but also for z ∈ C\SN because both members of above inequality are
continuous on C\SN . This immediately leads to (2.11). This inequality also implies
that for each z ∈ C\SN ,

min
k=1,...,M

|λk,N − wN (z)| ≥ 1
2
dist(z,SN ). (2.12)

Indeed, TN (z) can be written as

TN (z) = (1 + σ2cNmN (z))(BNB∗
N − wN (z)IM )−1.

Therefore, ‖TN (z)‖ is equal to

‖TN (z)‖ =
|1 + σ2cNmN (z)|

mink=1,...,M |λk,N − wN (z)|

so that (2.12) follows from (2.11) and (2.9).
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Since m̂N(z) is the Stieltjes transform of the distribution 1
M

∑M
k=1 δλ̂k,N

, it
holds that

|m̂N (z)| ≤ 1
dist(z, {λ̂1,N , . . . , λ̂M,N})

,

as well as

|m̂′
N (z)| ≤ 1

dist(z, {λ̂1,N , . . . , λ̂M,N})2
.

We now consider the rational function z �→ 1
1+σ2cNm̂N (z) which will play an impor-

tant role in the following. Its poles are solutions of the equation 1+σ2cNm̂N (z) = 0,
and satisfy some useful properties. From now on, we denote by Λ̂N the diagonal
matrix Λ̂N = Diag(λ̂1,N , . . . , λ̂M,N ) and by Ω̂N the matrix

Ω̂N = Λ̂N +
σ2cN
M

11T , (2.13)

where 1 denotes vector 1 = (1, 1, . . . , 1)T . We denote ω̂1,N ≤ · · · ≤ ω̂M,N its
eigenvalues. Then we have the following straightforward properties.

• The zeros of z �→ 1 + σ2cNm̂N (z) are included in the set {ω̂1,N , . . . , ω̂M,N}.
• If the eigenvalues λ̂1,N , . . . , λ̂M,N of ΣNΣ∗

N have multiplicity 1, the equation
1 + σ2cNm̂N(z) = 0 has M multiplicity 1 solutions which coincide with the
(ω̂k,N )k=1,...,M . Moreover, λ̂1,N < ω̂1,N < · · · < λ̂M,N < ω̂M,N .

• If the eigenvalue λ̂k,N has multiplicity p > 1, i.e.

λ̂k−1,N < λ̂k,N = λ̂k+p−1,N < λ̂k+p,N ,

then,

ω̂k−1,N < λ̂k,N = ω̂k,N = · · · = λ̂k+p−2,N = ω̂k+p−2,N

= λ̂k+p−1,N < ω̂k+p−1,N < λ̂k+p,N ,

and the ω̂k,N that do not coincide with some eigenvalues of ΣNΣ∗
N are zeros of

1 + σ2cNm̂N (z).

Remark 2.1. Since cN < 1, we recall that the eigenvalues (λ̂k,N )k=1,...,M have
multiplicity 1 almost surely. However, in Sec. 3.2, it will be necessary to define
properly the solutions of 1 + σ2cNm̂N (z) = 0 everywhere. This explains why the
case where some of the (λ̂k,N )k=1,...,M are multiple has to be considered.

Function z �→ −1
z(1+σ2cNm̂N (z)) is the Stieltjes transform of a probability measure

whose support coincides with the set of all roots of the equation z(1+σ2cNm̂N (z)) =
0, which is included into the set {0, ω̂1,N , . . . , ω̂M,N}. Therefore, it holds that

1
|1 + σ2cNm̂N (z)| ≤

|z|
dist(z, {0, ω̂1,N , . . . , ω̂M,N})
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for z ∈ C\{0, ω̂1,N , . . . , ω̂M,N} and

1
|1 + σ2cNm̂N (z)| ≤

|z|
|Im(z)| (2.14)

for z ∈ C\R. We eventually notice that

‖QN(z)‖ ≤ 1
dist(z, {λ̂1,N , . . . , λ̂M,N})

.

2.4. Almost sure localization of the eigenvalues (λ̂k,N)k=1,...,M

We recall the two following useful results of [23, 17].

Theorem 2.3 ([23]). Assume Assumptions A-1–A-4 hold. Let a, b ∈ R, ε > 0 and
N0 ∈ N such that

]a− ε, b+ ε[∩SN = ∅,

for each N > N0. Then, with probability one, no eigenvalue of ΣNΣ∗
N belongs to

[a, b] for N large enough.

Theorem 2.4 ([17]). Assume Assumptions A-1–A-4 hold. Let a, b ∈ R, ε > 0,
N0 ∈ N such that ]a− ε, b+ ε[∩SN = ∅ for N > N0. Then, with probability one,

card{k : λ̂k,N < a} = card{k : λk,N < wN (a)}, (2.15)

card{k : λ̂k,N > b} = card{k : λk,N > wN (b)}, (2.16)

for N large enough.

It is useful to mention that supN x
+
QN ,N

< +∞ and that these two theorems are
still valid if b = +∞ (see [17]).

2.5. The consistent estimate of quadratic forms of ΠN

Let ΠN be the orthogonal projection matrix on the kernel of BNB∗
N and

let (aN )N∈N be a sequence of deterministic M -dimensional vectors such that
supN ‖aN‖ <∞. Then, [23] proposed a consistent estimate of ηN defined by

ηN = a∗
NΠNaN .

The approach of [23] is valid under the following assumptions.

Assumption A-5. For N large enough, none of the strictly positive eigenvalues
of BNB∗

N is associated to the first cluster [x−1,N , x
+
1,N ], i.e. λM−K+1,N > wN (x+

1,N )
for N large enough.

Assumption A-6. It holds that

0 < lim inf
N→+∞

x−1,N < lim sup
N→+∞

x+
1,N < lim inf

N→+∞
x−2,N .
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Using Theorems 2.3 and 2.4, we deduce that if t−1 , t
+
1 , t

−
2 , t

+
2 are real numbers

independent of N satisfying

0 < t−1 < lim inf
N→+∞

x−1,N < lim sup
N→+∞

x+
1,N < t+1 < t−2

< lim inf
N→+∞

x−2,N ≤ lim sup
N→+∞

x+
QN ,N

< t+2 (2.17)

then, almost surely, for N large enough, it holds that

0 < t−1 < λ̂1,N < · · · < λ̂M−K,N < t+1 < t−2 < λ̂M−K+1,N < · · · < λ̂M,N < t+2 .

(2.18)

Assumptions A-5 and A-6 thus imply that, almost surely, the smallest M − K

eigenvalues of ΣNΣ∗
N are separated from the K greatest ones for N large enough

in the sense that the two sets of eigenvalues are included into two disjoint inter-
vals that do not depend on N . It is interesting to remark that Assumptions A-5
and A-6 are “deterministic conditions” depending only on σ2, cN = M

N , and on
the eigenvalues of BNB∗

N . If K remains fixed, recent results of Benaych–Rao
[3] (see also [17]) imply that Assumptions A-5 and A-6 and hold if and only if
lim infN→+∞ λM−K+1,N > σ2√c. If however K scales with N , the derivation of
more explicit conditions equivalent to Assumptions A-5 and A-6 is still an open
problem.

We are now in position to present the consistent estimator of ηN proposed in
[23]. It is based on the observation that

ΠN =
1

2iπ

∫
C−

(BNB∗
N − λIM )−1dλ,

where C represents a contour enclosing 0 and not the strictly positive eigenvalues
of BNB∗

N , and the symbol C− means that the contour is oriented clockwise. The
estimator of [23] is based on the observation that under Assumptions A-5 and A-6,
function wN (z) provides such a contour for N large enough. In the following, for
y > 0 and ε > 0, ε < y

3 small enough, we consider the rectangle Ry defined by

Ry = {z = x+ iv, 0 < t−1 − 3ε ≤ x ≤ t+1 + 3ε < t−2 − 3ε,−y ≤ v ≤ y} (2.19)

and its boundary ∂Ry. Then, the properties of function wN (z) (see Proposition 2.1)
imply that for N large enough, the set wN (∂Ry) is a contour enclosing the origin,
but not the other eigenvalues of BNB∗

N . Therefore, ΠN can also be written as

ΠN =
1

2iπ

∫
∂R−

y

(BNB∗
N − wN (z)IM )−1w′

N (z)dz

or equivalently

ΠN =
1

2iπ

∫
∂R−

y

TN (z)
w′
N (z)

1 + σ2cNmN (z)
dz (2.20)

because (BNB∗
N − wN (z)IM )−1 = TN (z)

1+σ2cNmN (z) . Using (2.2) and (2.5) as well as
the following lemma
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Lemma 2.2. Under Assumptions A-1–A-6, almost surely, for N large enough, the
M solutions (ω̂k,N )k=1,...,M of the equation 1 + σ2cNmN (z) = 0 satisfy

t−1 < λ̂1,N < ω̂1,N < · · · < λ̂M−K,N < ω̂M−K,N < t+1 < t−2

< λ̂M−K+1,N < ω̂M−K+1,N < · · · < λ̂M,N < ω̂M,N < t+2 .

It is showed in [23] that matrix Π̃N defined by

Π̃N =
1

2iπ

∫
∂R−

y

QN(z)
ŵ′
N (z)

1 + σ2cNm̂N(z)
dz (2.21)

where ŵN (z) = z(1 + σ2cNm̂N (z))2 − σ2(1 − cN )(1 + σ2cNm̂N (z)), satisfies
a∗
NΠ̃NaN − a∗

NΠNaN → 0 almost surely. We note that the poles of the integrand
of the right-hand side of (2.21) coincide with the set {λ̂k,N , ω̂k,N : k = 1, . . . ,M},
which by (2.18) and Lemma 2.2, verifies

dist(∂Ry , {(λ̂k,N , ω̂k,N )k=1,...,M}) > 3ε (2.22)

almost surely for N large enough. In practice, the above estimator is quite
easy to implement because, as the localization of the poles of the integrand in
(2.21) with respect to the contour ∂Ry is known (see Lemma 2.2), the contour
integral in (2.21) can be solved, and expressed in closed form in terms of the
(ûk,N , λ̂k,N , ω̂k,N )k=1,...,M .

3. Statement and Proof of the Uniform Consistency
of Estimate η̃N(θ)

From now on, we assume that vector a(θ) is given by (1.2) and that Assumptions A-5
and A-6 hold. We consider t−1 , t+1 , t−2 and t+2 satisfying (2.17) as well a rectangle
Ry defined by (2.19). We prove here the following result.

Theorem 3.1. Under Assumptions A-1–A-6, it holds

sup
θ∈[−π,π]

|η̃N (θ) − ηN (θ)| a.s.−−−−→
N→∞

0.

In order to prove Theorem 3.1, we show that it is sufficient to establish that
for each α > 0 and for each θ ∈ [−π, π], P(|a(θ)∗(Π̃N − ΠN )a(θ)| > α) decreases
fast enough towards 0. For this, a tempting choice is to use the Markov inequality,
and to establish that the moments of a(θ)∗(Π̃N − ΠN )a(θ) decrease fast enough.
However, the observation that (2.22) holds for N greater than a random integer
does not necessarily imply the existence of the moments of a(θ)∗Π̃Na(θ). In order
to solve this technical problem, we establish that the probability that at least one
element of {λ̂k,N , ω̂k,N : k = 1, . . . ,M} escapes from [t−1 − 2ε, t+1 + 2ε] ∪ [t−2 −
2ε, t+2 + 2ε] decreases at rate 1

N l for any l ∈ N, and prove that the moments
of a convenient regularized version of a(θ)∗(Π̃N − ΠN )a(θ) converge fast enough
towards 0.
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In the following, we denote by Tε the set

Tε = [t−1 − ε, t+1 + ε] ∪ [t−2 − ε, t+2 + ε].

We first establish in Secs. 3.1 and 3.2 that the events E1,N and E2,N defined by

E1,N = {at least one of the (λ̂k,N )k=1,...,M escapes from Tε}, (3.1)

E2,N = {at least one of the (ω̂k,N )k=1,...,M escapes from Tε}, (3.2)

verify P(Ei,N ) = O( 1
N l ) for each l ∈ N. Using this result, we introduce in Sec. 3.3

the regularization term, denoted χN , defined as follows. We consider a function
φ ∈ C∞

c (R,R+) satisfying

φ(λ) =

{
1, for λ ∈ Tε,
0, for λ ∈ R\([t−1 − 2ε, t+1 + 2ε] ∪ [t−2 − 2ε, t+2 + 2ε]),

(3.3)

and φ(λ) ∈ (0, 1) elsewhere, and define the random variable

χN = detφ(ΣNΣ∗
N ) detφ(Ω̂N ), (3.4)

which verifies 1Ec
N
≤ χN where EN = E1,N ∪E2,N . We will prove that, considered as

a function of the real and imaginary part of the entries of WN , χN is a C1 function,
and using Poincaré inequality, we will establish that

E|a(θ)∗(Π̃N − ΠN )a(θ)χN |2l = O
(

1
N l

)
,

for each integer l. The above-mentioned properties eventually allow to prove the
uniform consistency of estimator η̃N (θ).

3.1. Evaluation of the escape probability of (λ̂k,N)k=1,...,N

The purpose of this section is to prove the following technical result.

Proposition 3.1. Under Assumptions A-1–A-6, for each l ∈ N, it holds that

P(E1,N ) = O
(

1
N l

)
.

To prove this result, we consider a function ψ0 ∈ C∞(R,R+) such that

ψ0(λ) =

{
1, for λ ∈ T c

ε ,

0, for λ ∈ [t−1 , t
+
1 ] ∪ [t−2 , t

+
2 ]

(3.5)

and ψ0(λ) ∈ (0, 1) elsewhere. From this definition, we clearly have

P(E1,N ) ≤ P(Trψ0(ΣNΣ∗
N ) ≥ 1) ≤ E[(Trψ0(ΣNΣ∗

N ))2l]

for l ∈ N. In order to establish Proposition 3.1, it is therefore sufficient to prove
that E[(Trψ0(ΣNΣ∗

N))2l] = O( 1
N2l ) for each integer l which is the object of the

next lemma.
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Lemma 3.1. Assume Assumptions A-1–A-6 hold. Then, for all function ψ ∈
C∞(R,R) constant over the complementary of a compact interval and which van-
ishes on the support SN of µN for all N large enough, it holds that

E[(Trψ(ΣNΣ∗
N ))2l] = O

(
1
N2l

)
(3.6)

for each l ∈ N.

Proof. We prove Lemma 3.1 by induction on l. We first consider the case l = 1,
and consider a function ψ as above, and denote by C the constant value taken
by ψ over the complementary of a certain compact interval. We follow [12] and
write ψ as ψ = ψ̃ + C, where ψ̃ ∈ C∞

c (R,R), and verifies ψ̃ = −C over SN for N
large enough. Using the technique developed in [12] based on (2.4) and Poincaré
inequality, we have

Var[Trψ(ΣNΣ∗
N )] = Var[Tr ψ̃(ΣNΣ∗

N )] = O
(

1
N2

)
,

E[Tr ψ̃(ΣNΣ∗
N )] = M

∫
R

ψ̃(λ)dµN (λ) + O
(

1
N

)
= −MC + O

(
1
N

)
.

As E[Trψ(ΣNΣ∗
N )] = CM + E[Tr ψ̃(ΣNΣ∗

N )], this leads to E[Trψ(ΣNΣ∗
N )] =

O( 1
N ). As

E[(Trψ(ΣNΣ∗
N ))2] = (E[Trψ(ΣNΣ∗

N )])2 + Var[Trψ(ΣNΣ∗
N )] (3.7)

we finally obtain that (3.6) holds for l = 1.
We now assume that (3.6) holds until the order l − 1 for each function of

C∞(R,R) vanishing on SN for N large enough and constant over the complementary
of a compact interval. We consider such a function ψ and evaluate the behavior of
the 2lth-order moment of Trψ(ΣNΣ∗

N ). We have

E[(Trψ(ΣNΣ∗
N ))2l] = (E[(Trψ(ΣNΣ∗

N ))l])2 + Var[(Trψ(ΣNΣ∗
N ))l]. (3.8)

The first term of the right-hand side of (3.8) can be upperbounded as follows

(E[(Trψ(ΣNΣ∗
N ))l])2 ≤ E[(Trψ(ΣNΣ∗

N ))2]E[(Trψ(ΣNΣ∗
N ))2(l−1)]

= O
(

1
N2l

)
,

using that (3.6) holds until the order l − 1. The second term of the right-hand
side of (3.8) can be evaluated using the Poincaré inequality. Using that the partial
derivative of Trψ(ΣNΣ∗

N ) with respect to Wi,j,N and Wi,j,N are equal respectively
to eTj Σ∗

Nψ
′(ΣNΣ∗

N )ei and eTi ψ
′(ΣNΣ∗

N )ΣNej, we immediately obtain that

Var[(Trψ(ΣNΣ∗
N ))l] ≤ CE

[
1
N

Tr(ψ′(ΣNΣ∗
N )2ΣNΣ∗

N )(Trψ(ΣNΣ∗
N ))2l−2

]
.
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Using Hölder’s inequality, we get immediately that

E

[
1
N

Tr(ψ′(ΣNΣ∗
N )2ΣNΣ∗

N )(Trψ(ΣNΣ∗
N ))2l−2

]

≤ C

(
E

∣∣∣∣ 1
N

Tr (ψ′(ΣNΣ∗
N )2ΣNΣ∗

N )
∣∣∣∣
l
) 1

l

(E[(Trψ(ΣNΣ∗
N ))2l])

l−1
l . (3.9)

Since the function λ → ψ′(λ)2λ belongs to C∞
c (R,R) and has a support disjoint

from SN for N large enough, it holds that

E

∣∣∣∣ 1
N

Tr([ψ′(ΣNΣ∗
N )]2ΣNΣ∗

N )
∣∣∣∣
l

≤

√
E

∣∣∣∣ 1
N

Tr([ψ′(ΣNΣ∗
N )]2ΣNΣ∗

N )
∣∣∣∣
2
√

E

∣∣∣∣ 1
N

Tr([ψ′(ΣNΣ∗
N )]2ΣNΣ∗

N )
∣∣∣∣
2(l−1)

= O
(

1
N2l

)
.

Plugging the previous estimates into (3.9), we get

Var[(Trψ(ΣNΣ∗
N ))l] ≤ C

N2
(E[(Trψ(ΣNΣ∗

N ))2l])
l−1

l .

Define xN = E[(Trψ(ΣNΣ∗
N ))2l] and uN = N2lxN . From (3.8), we have the inequal-

ities xN ≤ C1
N2x

l−1
l

N + C2
N2l and uN ≤ C1u

l−1
l

N +C2. We claim that the sequence (uN )
is bounded. If this is not the case, it exists a subsequence ukN extracted from uN
which converges towards +∞. However, the inequality C1

u
1/l
kN

+ C2
ukN

≥ 1 must hold

for N large enough. As ukN → +∞, this leads to a contradiction. Therefore, uN is
bounded and xN ≤ C

N2l for N large enough. This proves Lemma 3.1.

3.2. Evaluation of the escape probability of the (ω̂k,N)k=1,...,N

In this section, we will prove the following result.

Proposition 3.2. Under Assumptions A-1–A-6, for each l ∈ N, it holds that

P(E2,N ) = O
(

1
N l

)
.

We follow the same approach than in Sec. 3.1 and first prove that the
(ω̂k,N )k=1,...,M satisfy a property similar to (2.4). For this, we study the behav-
ior of the Stieltjes transform n̂N (z) of the distribution 1

M

∑M
k=1 δω̂k,N

defined by

n̂N (z) =
1
M

Tr(Ω̂N − zI)−1

and use Lemma 2.1 as well as the inverse Stieltjes transform formula (1.4). Our
starting point is the following result showing that the empirical eigenvalue distri-
bution of Ω̂N is very similar to the distribution of the eigenvalues of ΣNΣ∗

N . The
following auxiliary result will be useful.
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Lemma 3.2. Under Assumptions A-1–A-6, it holds that

E[m̂′
N (z)] −m′

N (z) =
tN (z)
N2

, (3.10)

where tN is analytic on C\R and can be upper bounded by P1(|z|)P2( 1
|Im(z)| ) on

C\R.

Proof. The proof is given in Appendix A.1.

We now prove the fundamental following result.

Lemma 3.3. Under Assumptions A-1–A-6, for each z ∈ C\R, it holds that

E[n̂N (z)] =
∫
SN

dµN (λ)
λ− z

− 1
M

∫
SN

dκN (λ)
λ− z

+
rN (z)
N2

,

with κN a finite signed measure carried by SN such that κN ([x−q,N , x
+
q,N ]) = 0 for

q = 1, . . . , QN , and rN a holomorphic function on C\R satisfying

|rN (z)| ≤ P1(|z|)P2

(
1

|Im(z)|

)
,

with P1, P2 two polynomials with positive coefficients independent of N .

Proof. Using that Ω̂N is a rank 1 perturbation of Λ̂N , we obtain immediately that

n̂N (z) = m̂N (z) − 1
M

σ2cNm̂
′
N (z)

1 + σ2cNm̂N(z)
.

Therefore, for z ∈ C\R, it holds that

E[n̂N (z) = E[m̂N (z)] − 1
M

E

[
σ2cNm̂

′
N (z)

1 + σ2cNm̂N (z)

]
. (3.11)

We first establish that

E

[
σ2cNm̂

′
N(z)

1 + σ2cNm̂N (z)

]
=

σ2cNm
′
N (z)

1 + σ2cNmN (z)
+
cN
N
rN (z), (3.12)

where rN (z) is holomorphic on C\R and satisfies |rN (z)| ≤ P1(|z|)P2( 1
|Im(z)| ). For

this, we write

σ2cNm̂
′
N (z)

1 + σ2cNm̂N (z)
− σ2cNm

′
N (z)

1 + σ2cNmN (z)

=
σ2cN (m̂′

N (z) −m′
N (z))

(1 + σ2cNm̂N (z))(1 + σ2cNmN (z))

+
(σ2cN )2(mN (z)(m̂′

N (z) −m′
N (z)) +m′

N (z)(mN (z) − m̂N(z)))
(1 + σ2cNm̂N(z))(1 + σ2cNmN (z))

. (3.13)

In order to study the expectation of this expression, we use (2.10) and (2.14).
Moreover, (2.3) and a straightforward application of the Poincaré inequality to
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m̂N (z) considered for z fixed as a function of the entries of WN leads immediately to

E|m̂N (z) −mN (z)|2 ≤ 1
N2

P1(|z|)P2

(
1

|Im(z)|

)
,

for some polynomials P1, P2 with positive coefficients and independent of N .
Therefore,

E|m̂N (z) −mN (z)| ≤ 1
N

(
P1(|z|) + P2

(
1

|Im(z)|

))
.

Applying also Poincaré inequality to bound Var[m̂′
N (z)], together with Lemma 3.2,

we get

E|m̂′
N (z) −m′

N (z)|2 ≤ 1
N2

P1(|z|)P2

(
1

|Im(z)|

)
.

Therefore, it holds that

E|m̂′
N (z) −m′

N (z)| ≤ 1
N

(
P1(|z|) + P2

(
1

|Im(z)|

))
.

Using |mN (z)| ≤ 1
|Im(z)| , |m′

N (z)| ≤ 1
|Im(z)|2 , as well as (2.10) and (2.14), we even-

tually get from (3.13) that

E

∣∣∣∣ σ2cNm̂
′
N (z)

1 + σ2cNm̂N (z)
− σ2cNm

′
N (z)

1 + σ2cNmN (z)

∣∣∣∣ ≤ 1
N

P1(|z|)P2

(
1

|Im(z)|

)
.

This immediately implies (3.12). Now define the function hN (z) by

hN (z) =
σ2cNm

′
N (z)

1 + σ2cNmN(z)
.

This function coincides with the Stieltjes transform of a signed measure κN sat-
isfying the conditions of Lemma 3.3: Using (2.9), we obtain that |hN (z)| ≤
2σ2cN |m′

N (z)|. As |m′
N (z)| ≤ 1

dist(z,K)2 where K is a compact containing SN , it
holds that |hN (z)| ≤ C 1

dist(z,K)2 . Using [5, Theorem 4.3], we obtain that hN (z) is
the Stieltjes transform of a finite signed measure κN , the support of which is the
set of singular points of hN (z), i.e. SN . In order to evaluate κN ([x−q,N , x

+
q,N ]), we

use the inverse Stieltjes transform formula,

κN ([x−q,N , x
+
q,N ]) =

1
π

lim
y↓0

Im

(∫
[x−

q,N ,x
+
q,N ]

hN (x+ iy)dx

)
. (3.14)

It is clear that hN (x + iy) = ∂ log(1+σ2cNmN (x+iy))
∂x , where the complex logarithm

corresponds to the principal determination defined on C\R−. We note that (2.9)
justifies the use of the principal determination. Therefore,∫

[x−
q,N ,x

+
q,N ]

hN (x+ iy)dx = log(1 + σ2cNmN (x+
q,N + iy))

− log(1 + σ2cNmN (x−q,N + iy)). (3.15)
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As x±q,N ∈ ∂SN , then mN (x±q,N ) ∈ R. Moreover, (2.9) implies that 1 +
σ2cNmN(x±q,N ) > 0. When y → 0, the right-hand side of (3.15) converges towards
log(1 + σ2cNmN(x+

q,N ))− log(1 + σ2cNmN (x−q,N )), a real quantity. This shows that
κN ([x−q,N , x

+
q,N ]) = 0. Consequently,

E

[
σ2cNm̂

′
N(z)

1 + σ2cNm̂N (z)

]
=
∫
SN

dκN (λ)
λ− z

+
cNrN (z)

N
,

where rN (z) is holomorphic on C\R such that |rN (z)| ≤ P1(|z|)P2( 1
|Im(z)| ).

Lemma 3.3 follows immediately from (3.11).

We now handle the proof of Proposition 3.2. Although certain steps of the
present proof are similar to the proof of Proposition 3.1, more work is needed
because matrix Ω̂N considered as a function of the entries of WN is more compli-
cated than ΣNΣ∗

N . We still consider function ψ0 ∈ C∞(R,R+) defined by (3.5) and
remark that

P(E2,N ) ≤ P(Trψ0(Ω̂N ) ≥ 1) ≤ E[(Trψ0(Ω̂N ))2l]

for l ∈ N. In order to establish Proposition 3.2, it is therefore sufficient to prove
that E[(Trψ0(Ω̂N ))2l] = O( 1

N2l ) for each integer l. For this, we still use the Poincaré
inequality. However, in contrast with the context of Proposition 3.1, the entries of
Ω̂N , considered as functions of the real and imaginary parts of the entries of WN ,
are not continuously differentiable on R2MN because function WN → λ̂k,N is not
differentiable at points for which eigenvalue λ̂k,N has multiplicity strictly larger
than 1. The use of Poincaré inequality has therefore to be justified carefully. The
following useful lemma is proved in the Appendix.

Lemma 3.4. Assume Assumptions A-1–A-6 hold. Let ψ̃ be a function of C∞
c (R,R).

Then, Tr ψ̃(Ω̂N ), considered as a function of the real and imaginary parts of the
entries of WN , is continuously differentiable. Moreover, if the eigenvalues of ΣNΣ∗

N

have multiplicity 1, it holds that

∂

∂Wi,j,N

{
1
M

Tr(ψ̃(Ω̂N))
}

=
1
M

[
Σ∗
N

M∑
l=1

[ψ̃′(Ω̂N )]l,lΠ̂l,N

]
j,i

, (3.16)

where Π̂l,N represents the orthogonal projection matrix on the one-dimensional
eigenspace associated to the eigenvalue λ̂l,N of ΣNΣ∗

N .

We will also need that

Lemma 3.5. Under Assumption A-4, for each integer p > 0, it holds that

sup
N

E[‖WNW∗
N‖p] < +∞,

a property also established in the Appendix.
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We now prove the following result.

Lemma 3.6. Assume Assumptions A-1–A-6 hold. For all function ψ ∈ C∞(R,R)
constant over the complementary of a compact interval and which vanishes on the
support SN of µN for all N large enough, it holds that

E[(Trψ(Ω̂N ))2l] = O
(

1
N2l

)
(3.17)

for each l ∈ N.

Proof. As previously, we prove Lemma 3.6 by induction on l. We first consider the
case l = 1, and consider a function ψ as above, and denote by b the constant value
taken by ψ over the complementary of a certain compact interval, and by ψ̃ the
function of C∞

c (R,R) defined by ψ̃(λ) = ψ(λ) − b, which, of course, is equal to −b
on SN . Using Lemmas 2.1 and 3.3, we obtain

E

[
1
M

Tr ψ̃(Ω̂N )
]

=
∫
SN

ψ̃(λ)dµN (λ) − 1
M

∫
SN

ψ̃(λ)dκN (λ) + O
(

1
N2

)
. (3.18)

Using that κN ([x−q,N , x
+
q,N ]) = 0 for each q = 1, . . . , QN , we get that∫

SN
ψ̃(λ)dκN (λ) = 0 and that

E

[
1
M

Tr ψ̃(Ω̂N )
]

= −b+ O
(

1
N2

)
.

Therefore, it holds that

E

[
1
M

Trψ(Ω̂N )
]

= O
(

1
N2

)
.

Moreover, we prove the following lemma.

Lemma 3.7. Under Assumptions A-1–A-6, it holds that

Var
[

1
M

Tr(ψ(Ω̂N ))
]

= O
(

1
N4

)
. (3.19)

Proof. We first note that, considered as a function of (Re(Wi,j,N ),
Im(Wi,j,N ))1≤i≤M,1≤j≤N , function 1

MTr ψ̃(Ω̂N ) is continuously differentiable by
Lemma 3.4. Therefore, function 1

MTrψ(Ω̂N ) is continuously differentiable as well.
It is thus possible to use the Poincaré inequality to evaluate the left-hand side of
(3.19). Furthermore, as the probability that the eigenvalues (λ̂k,N )k=1,...,M have
multiplicity 1 is equal to 1, it is sufficient to evaluate the partial derivatives of func-
tion 1

MTrψ(Ω̂N ) when WN is such that the (λ̂k,N )k=1,...,M have multiplicity 1. As
the derivative of ψ coincides with ψ̃′, (3.16) and Poincaré inequality lead to

Var
[

1
M

Tr(ψ(Ω̂N ))
]
≤ C

N2
E

[
1
M

Tr

(
ΣNΣ∗

N

M∑
l=1

|[ψ′(Ω̂N )]l,l|2Π̂l,N

)]
,
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or equivalently,

Var
[

1
M

Tr(ψ(Ω̂N ))
]
≤ C

N2
E

[
1
M

M∑
l=1

λ̂l,N |[ψ′(Ω̂N )]l,l|2
]
.

We claim that

|[ψ′(Ω̂N )]l,l|2 ≤ ([ψ′(Ω̂N )]2)l,l. (3.20)

Indeed, if (v̂k,N )k=1,...,M represent the eigenvectors of Ω̂, then

[ψ′(Ω̂N )]l,l =
M∑
k=1

ψ′(ω̂k,N )|eTl v̂k,N |2.

As
∑M

k=1 |eTl v̂k,N |2 = 1, Jensen’s inequality yields to (3.20). Therefore, it holds
that

Var
[

1
M

Tr(ψ(Ω̂N ))
]
≤ C

N2
E

[
‖ΣNΣ∗

N‖
1
M

M∑
l=1

ψ′(ω̂l)2
]
. (3.21)

As supN ‖BNB∗
N‖ < +∞, we get using Lemma 3.5 that

sup
N

E[‖ΣNΣ∗
N‖p] < +∞.

We remark that ‖ΣNΣ∗
N‖ < t+2 + ε on the set Ec1,N , and write the right-hand side

of (3.21) as

C

N2
E

[
‖ΣNΣ∗

N‖(1E1,N + 1Ec
1,N

)
1
M

M∑
l=1

ψ′(ω̂l)2
]
.

It holds that

E

[
‖ΣNΣ∗

N‖1Ec
1,N

1
M

M∑
l=1

ψ′(ω̂l)2
]
≤ (t+2 + ε)E

[
1
M

Tr (ψ′(Ω̂N ))2
]
.

Function ψ′2 belongs to C∞
c (R,R) and vanishes on SN . Therefore, Lemma 3.3 implies

that E[ 1
MTr (ψ′(Ω̂N ))2] = O( 1

N2 ) (see Eq. (3.18)). Moreover, as 1
MTr(ψ′(Ω̂N )2) ≤

supλ ψ
′(λ)2 < C, we have

E

[
‖ΣNΣ∗

N‖1E1,N

1
M

M∑
l=1

ψ′(ω̂l)2
]
< CE[‖ΣNΣ∗

N‖1E1,N ],

which is itself upperbounded by

C(E[‖ΣNΣ∗
N‖2])1/2P(E1,N)1/2 = O

(
1
Np

)
,

for each integer p. This completes the proof of Lemma 3.7.
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Assume that (3.17) holds until integer l − 1. We write as previously that

E[(Trψ(Ω̂N ))2l] = (E[(Trψ(Ω̂N ))l])2 + Var[(Trψ(Ω̂N ))l]. (3.22)

The Cauchy–Schwarz inequality leads immediately to

(E[(Trψ(Ω̂N ))l])2 ≤ E[(Trψ(Ω̂N ))2]E[(Trψ(Ω̂N ))2l−2]

= O
(

1
N2l

)
. (3.23)

For the second term of the right-hand side of (3.22), we use Poincaré inequality and
Hölder’s inequality to obtain

Var[(Trψ(Ω̂N ))l] ≤ CE

[
(Trψ(Ω̂N ))2(l−1) 1

M

M∑
k=1

λ̂k,N ([ψ′(Ω̂N )]k,k)2
]
,

≤ C


E

∣∣∣∣∣ 1
M

M∑
k=1

λ̂k,N ([ψ′(Ω̂N )]k,k)2
∣∣∣∣∣
l



1
l

(E[(Trψ(Ω̂N ))2l])
l−1

l .

Jensen’s inequality leads again to

E

∣∣∣∣∣ 1
M

M∑
k=1

λ̂k,N ([ψ′(Ω̂N )]k,k)2
∣∣∣∣∣
l

≤ E

∣∣∣∣‖ΣNΣ∗
N‖ 1

M
Trψ′(Ω̂N )2

∣∣∣∣
l

.

We write again that

E

∣∣∣∣‖ΣNΣ∗
N‖ 1

M
Trψ′(Ω̂N )2

∣∣∣∣
l

= E

∣∣∣∣‖ΣNΣ∗
N‖

1
M

Trψ′(Ω̂N)21E1,N

∣∣∣∣
l

+ E

∣∣∣∣‖ΣNΣ∗
N‖ 1

M
Trψ′(Ω̂N )21Ec

1,N

∣∣∣∣
l

,

and obtain as previously that

E

∣∣∣∣‖ΣNΣ∗
N‖ 1

M
Trψ′(Ω̂N )2

∣∣∣∣
l

≤ C

(
E

∣∣∣∣ 1
M

Trψ′(Ω̂N )2
∣∣∣∣
l

+ (P(E1,N ))1/2
)
.

But, applying Cauchy–Schwarz inequality as in (3.23) to E|Trψ′(Ω̂N )2|l leads to
E| 1

MTrψ′(Ω̂N )2|l = O( 1
N2l ). Gathering all the previous inequalities, we find that

E[(Trψ(Ω̂N ))2l] ≤ C

N2
(E[(Trψ(Ω̂N ))2l])

l−1
l + O

(
1
N2l

)
,

and in the same way as in the proof of Proposition 3.1, we obtain E[(Trψ(Ω̂N ))2l] =
O( 1

N2l ). This concludes the proof of Lemma 3.6.
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3.3. End of the proof of Theorem 3.1

We now complete the proof of Theorem 3.1 when function θ → a(θ) is given by

a(θ) =
1√
M

[1, eiθ, . . . , ei(M−1)θ]T ,

for θ ∈ [−π, π]. We recall that EN is defined by

EN = E1,N ∪ E2,N ,

where (Ei,N )i=1,2 are defined by (3.1) and (3.2), and that 1Ec
N

≤ χN where
χN = detφ(ΣNΣ∗

N )detφ(Ω̂N ). We first give a useful lemma which appears as
a straightforward consequence of the evaluations of Sec. 2.3.

Lemma 3.8. Under Assumptions A-1–A-6, for each N, it holds that

sup
z∈∂Ry

‖TN (z)‖ ≤ C,

sup
z∈∂Ry

∣∣∣∣ 1
1 + σ2cNmN (z)

∣∣∣∣ ≤ C,

sup
z∈∂Ry

∣∣∣∣ w′
N (z)

1 + σ2cNmN (z)

∣∣∣∣ ≤ C,

and for N large enough, we have

sup
z∈∂Ry

‖QN(z)‖χN ≤ C,

sup
z∈∂Ry

∣∣∣∣ χN
1 + σ2cNm̂N (z)

∣∣∣∣ ≤ C,

sup
z∈∂Ry

∣∣∣∣ ŵ′
N (z)

1 + σ2cNm̂N (z)

∣∣∣∣χN ≤ C.

We consider the set

ϑN =
{
−π +

2(k − 1)π
N2

: k = 1, . . . , N2

}
,

and remark that for each θ ∈ [−π, π] and for each N , there exists θN ∈ ϑN such
that |θ − θN | ≤ 2π

N2 . For each θ ∈ [−π, π], it holds that

η̃N (θ) − ηN (θ) = [η̃N (θ) − η̃N (θN )] + [η̃N (θN ) − ηN (θN )] + [ηN (θN ) − ηN (θ)].

(3.24)

It is easy to check that the third term of the right-hand side of (3.24) satisfies

sup
θ∈[−π,π]

|ηN (θN ) − ηN (θ)| ≤ 2 sup
θ∈[−π,π]

‖a(θ) − a(θN )‖ = O
(

1
N

)
. (3.25)
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In order to evaluate the behavior of the supremum over θ of the first term of the
right-hand side of (3.24), we prove that for each α > 0,

P

(
sup

θ∈[−π,π]

|η̃N (θ) − η̃N (θN )| > α

)
= O

(
1

N1+β

)
,

where β > 0. We first remark that for each l ∈ N, it holds that

P

(
sup

θ∈[−π,π]

|η̃N (θ) − η̃N (θN )| > α

)

≤ P

(
sup

θ∈[−π,π]

|η̃N (θ) − η̃N (θN )|1Ec
N
> α

)
+ P(EN )

≤ 1
αl

E

[
sup

θ∈[−π,π]

|η̃N (θ) − η̃N (θN )|l1Ec
N

]
+ O

(
1
N l

)
.

Moreover,

|η̃N (θ) − η̃N (θN )|l1Ec
N

≤ C

∮
∂R−

y

∣∣∣∣(a(θ) − a(θN ))∗QN (z)
ŵ′
N (z)

1 + σ2cNm̂N (z)
a(θN )

∣∣∣∣
l

1Ec
N
|dz|.

Lemma 3.8 and the inequality 1Ec
N
≤ χN imply that

sup
z∈∂Ry

‖QN(z)‖
∣∣∣∣ ŵ′

N (z)
1 + σ2cNm̂N (z)

∣∣∣∣1Ec
N
< C (3.26)

for some constant term C. Inequality (3.25) thus implies that

sup
θ∈[−π,π]

∣∣∣∣(a(θ) − a(θN ))∗QN(z)
ŵ′
N (z)

1 + σ2cNm̂N (z)
a(θN )

∣∣∣∣
l

1Ec
N
≤ C

N l

thus showing that

P

(
sup

θ∈[−π,π]

|η̃N (θ) − η̃N (θN )| > α

)
= O

(
1
N l

)

for each integer l. Borel–Cantelli’s lemma eventually implies that

sup
θ∈[−π,π]

|η̃N (θ) − η̃N (θN )| → 0

almost surely.
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We finally study the supremum of the second term of (3.24). We denote by νk,N
the elements of ϑN . Let α > 0, then

P

(
sup

θ∈[−π,π]

|η̃N (θN ) − ηN (θN )| > α

)

≤ P

(
sup

k=1,...,N2
|η̃N (νk,N ) − ηN (νk,N )| > α

)

≤
N2∑
k=1

P(|η̃N (νk,N ) − ηN (νk,N )| > α)

≤
N2∑
k=1

[P({|η̃N (νk,N ) − ηN (νk,N )| > α} ∩ EcN )] + O
(

1
N l

)

for each integer l. We now introduce in the above term the regularization term
χN = detφ(ΣNΣ∗

N ) detφ(Ω̂N ) defined in (3.4). As χN is equal to 1 on EcN , it holds
that

P({|η̃N(νk,N ) − ηN (νk,N )| > α} ∩ EcN )

= P({|η̃N (νk,N ) − ηN (νk,N )|χ2
N > α} ∩ EcN )

≤ P(|η̃N (νk,N ) − ηN (νk,N )|χ2
N > α)

≤ 1
α2l

E|(η̃N (νk,N ) − ηN (νk,N ))χ2
N |2l.

The introduction of χN is in part motivated by the observation that the moments
of η̃N (νk,N )χ2

N are finite. Moreover, it holds that

E|(η̃N (νk,N ) − ηN (νk,N ))χ2
N |2l

≤ C

∮
∂R−

y

E

[∣∣∣∣a(νk,N )∗
(
QN(z)

ŵ′
N (z)

1 + σ2cNm̂N (z)

−TN (z)
w′
N (z)

1 + σ2cNmN (z)

)
a(νk,N )χ2

N

∣∣∣∣
2l
]
|dz|.

In order to complete the proof of Theorem 3.1, we establish the following
proposition.

Proposition 3.3. If (aN )N∈N is sequence of deterministic vectors satisfying
‖aN‖ = 1, then, under Assumptions A-1–A-6, for each integer l, it holds that

sup
z∈∂Ry

E

[∣∣∣∣a∗
N

(
QN (z)

ŵ′
N (z)

1 + σ2cNm̂N (z)
− TN (z)

w′
N (z)

1 + σ2cNmN (z)

)
aNχ2

N

∣∣∣∣
2l
]

≤ C

N l
, (3.27)

where the constant C does not depend on the sequence (aN ).
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Proof. In order to shorten the notations, we denote by ĝN (z) and gN(z) the
functions defined by

ĝN(z) = a∗
NQN (z)aN

ŵ′
N (z)

1 + σ2cNm̂N(z)
,

and

gN (z) = a∗
NTN (z)aN

w′
N (z)

1 + σ2cNmN (z)
.

In order to evaluate E|ĝN (z)−gN (z)χ2
N |2l, we use the Poincaré inequality. For this,

we first state the following lemma proved in the Appendix. We recall that if H
is a Hermitian matrix with a spectral decomposition H =

∑
l γlxlx

∗
l , its adjoint

(i.e. the transpose of its cofactor matrix) denoted by adj(H) is given by adj(H) =∑
l(
∏
k 	=l γk)xlx

∗
l . When H is invertible, adj(H) = det(H)H−1. Next, we state the

following lemma proved in the Appendix.

Lemma 3.9. Assume Assumptions A-1–A-6. Considered as functions of the
real and imaginary parts of the entries of WN , functions detφ(ΣNΣ∗

N ) and
detφ(Ω̂N ) belong to C1(R2MN ), and their partial derivatives with respect to Wi,j,N

denoted by

[D1]i,j,N :=
∂

∂Wi,j,N
{detφ(ΣNΣ∗

N )},

[D2]i,j,N :=
∂

∂Wi,j,N
{detφ(Ω̂N )},

are given almost surely by

[D1]i,j,N = e∗jΣ
∗
N adj(φ(ΣNΣ∗

N ))φ′(ΣNΣ∗
N )ei, (3.28)

[D2]i,j,N =

[
Σ∗
N

M∑
l=1

[adj(φ(Ω̂N ))φ′(Ω̂N )]llΠ̂l,N

]
ji

. (3.29)

If we denote by A1,N and A2,N the events defined by

A1,N = {∃k : λ̂k,N �∈ Tε} ∩ {λ̂1,N , . . . , λ̂M,N ∈ supp(φ)},

A2,N = {∃k : ω̂k,N �∈ Tε} ∩ {ω̂1,N , . . . , ω̂M,N ∈ supp(φ)},

then [D1]i,j,N = 0 on Ac
1,N and [D2]i,j,N = 0 on Ac

2,N .

We now establish (3.27) by induction on l, and first consider the case l = 1. We
write the second moment of (ĝN (z) − gN (z))χ2

N as

E|(ĝN (z) − gN(z))χ2
N |2 = |E((ĝN (z) − gN (z))χ2

N )|2 + Var((ĝN (z) − gN(z))χ2
N ).
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We evaluate Var[(ĝN (z) − gN(z))χ2
N ] using the Poincaré inequality and get

Var[(ĝN (z) − gN (z))χ2
N ] ≤ σ2

N

∑
i,j

E

[
χ4
N

(∣∣∣∣ ∂ĝN (z)
∂Wi,j,N

∣∣∣∣
2

+
∣∣∣∣∂ĝN(z)
Wi,j,N

∣∣∣∣
2
)]

+ 2E

[
|ĝN (z) − gN (z)|2

∣∣∣∣ ∂χ2
N

∂Wi,j,N

∣∣∣∣
2
]
. (3.30)

It is clear that

∂ĝN(z)
∂Wi,j,N

= a∗
N

∂QN(z)
∂Wi,j,N

aN
ŵ′
N (z)

1 + σ2cNm̂N (z)

+ a∗
NQN (z)aN

∂

∂Wi,j,N

{
ŵ′
N (z)

1 + σ2cNm̂N (z)

}
.

We verify that

a∗
N

∂QN (z)
∂Wi,j,N

aN = −a∗
NQN(z)eiejΣ∗

NQN (z)aN ,

so that

∑
i,j

∣∣∣∣a∗
N

∂QN(z)
∂Wi,j,N

aN

∣∣∣∣
2

= a∗
NQN(z)QN (z)∗aNa∗

NQN(z)ΣNΣ∗
NQN (z)∗aN .

As χN �= 0 implies that λ̂M,N = ‖ΣNΣ∗
N‖ ≤ t+2 + 2ε, Lemma 3.8 implies that

sup
z∈∂Ry

χ2
Na∗

NQN(z)QN (z)∗aNa∗
NQN(z)ΣNΣ∗

NQN (z)∗aN ≤ C.

Using again Lemma 3.8, we get that

sup
z∈∂Ry

χ4
N

∣∣∣∣ ŵ′
N (z)

1 + σ2cNm̂N (z)

∣∣∣∣
2∑
i,j

∣∣∣∣a∗
N

∂QN(z)
∂Wi,j,N

aN

∣∣∣∣
2

≤ C. (3.31)

We obtain similarly that

sup
z∈∂Ry

χ4
N |a∗

NQN (z)aN |2
∑
i,j

∣∣∣∣ ∂

∂Wi,j,N

{
ŵ′
N (z)

1 + σ2cNm̂N (z)

}∣∣∣∣
2

≤ C

N
. (3.32)

The same conclusions hold when the derivatives with respect to variables Wi,j,N

are considered. This shows that the first term of the right-hand side of (3.30) is
a O( 1

N ) term. We now evaluate the behavior of the second term of the right-hand
side of (3.30), and establish that

sup
z∈∂Ry

E


|ĝN (z) − gN(z)|2

∑
i,j

∣∣∣∣ ∂χ2
N

∂Wi,j,N

∣∣∣∣
2

 = O

(
1
Np

)
(3.33)
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for each integer p. We express ∂χ2
N

∂Wi,j,N
as 2χN ∂χN

∂Wi,j,N
. Lemma 3.8 implies that

supz∈∂Ry
χ2
N |ĝN(z) − gN(z)|2 < C. Therefore, it is sufficient to check that

E


∑
i,j

∣∣∣∣ ∂χNWi,j,N

∣∣∣∣
2

 = O

(
1
Np

)

for each integer p. ∂χN

∂Wi,j,N
can be written as

∂χN
∂Wi,j,N

= [D1]i,j,N detφ(Ω̂N ) + [D2]i,j,N detφ(ΣNΣ∗
N ).

It holds that

E


∑
i,j

|[D1]i,j,N detφ(Ω̂N )|2



= E[detφ(Ω̂N )2 Tr(ΣNΣ∗
Nφ

′(ΣNΣ∗
N )2 adj(φ(ΣNΣ∗

N ))2)1A1,N ]

Moreover, we can write

Tr(ΣNΣ∗
Nφ

′(ΣNΣ∗
N )2 adj(φ(ΣNΣ∗

N ))2) =
∑
k

λ̂k,Nφ
′(λ̂k,N )2

∏
l 	=k

φ(λ̂l,N )2

≤ Tr(ΣNΣ∗
Nφ

′(ΣNΣ∗
N )2),

because φ(λ) ≤ 1 on R. Therefore, it holds that

E


∑
i,j

|[D1]i,j,N detφ(Ω̂N )|2

 ≤ E[detφ(Ω̂N )2Tr(ΣNΣ∗

Nφ
′(ΣNΣ∗

N )2)1A1,N ]

≤ CNP(A1,N ),

because detφ(Ω̂N ) ≤ 1, and Tr(ΣNΣ∗
Nφ

′(ΣNΣ∗
N )2) ≤ CN on A1,N . As A1,N ⊂

E1,N , Proposition 3.1 implies that

E


∑
i,j

|[D1]i,j,N detφ(Ω̂N )|2

 = O

(
1
Np

)

for each integer p. Using similar calculations and Proposition 3.2, we obtain that

E


∑
i,j

|[D2]i,j,N detφ(ΣNΣ∗
N )|2


 = O

(
1
Np

)

for each integer p. This completes the proof of (3.33) and establishes that

sup
z∈∂Ry

Var[(ĝN (z) − gN(z))χ2
N ] = O

(
1
N

)
.

In order to evaluate the term |E[(ĝN (z) − gN (z))χ2
N ]|2, we also need the following

auxilliary lemma proved in the Appendix.
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Lemma 3.10. Under Assumptions A-1–A-6, it holds that

sup
z∈∂Ry

|E[a∗
NQN (z)aNχN − a∗

NTN (z)aN ]| = O
(

1
N

3
2

)
, (3.34)

sup
z∈∂Ry

|E[m̂N (z)χN −mN (z)]| = O
(

1
N2

)
, (3.35)

sup
z∈∂Ry

|E[m̂′
N (z)χN −m′

N (z)]| = O
(

1
N2

)
. (3.36)

We express (ĝN (z) − gN (z))χ2
N as β1,N (z) + β2,N (z) where

β1,N (z) = χN(a∗
NQN (z)aN − a∗

NTN (z)aN )
ŵ′
N (z)χN

1 + σ2cNm̂N (z)

and

β2,N (z) = χ2
Na∗

NTN (z)aN

(
ŵ′
N (z)

1 + σ2cNm̂N (z)
− w′

N (z)
1 + σ2cNmN (z)

)
,

and establish that

sup
z∈∂Ry

E|β1,N |2 = O
(

1
N

)
and sup

z∈∂Ry

E|β2,N |2 = O
(

1
N2

)
. (3.37)

Using Lemma 3.8, (3.37) for β1,N will be established if we show that

sup
z∈∂Ry

E|χN (a∗
NQN (z)aN − a∗

NTN (z)aN )|2 = O
(

1
N

)
.

For this, we write that

E|χN (a∗
NQN (z)aN − a∗

NTN (z)aN )|2

= Var(χNa∗
NQN(z)aN ) + |E(χN (a∗

NQN(z)aN − a∗
NTN (z)aN ))|2.

The above calculations prove that supz∈∂Ry
Var[χNa∗

NQN (z)aN ] = O( 1
N ), while

(3.34) and 1 − E(χN ) = O( 1
Np ) for each p imply that

E[χN (a∗
NQN(z)aN − a∗

NTN (z)aN )] = O
(

1
N

3
2

)
.

This completes the proof of (3.37) for β1,N . In order to show (3.37) for β2,N , we
first remark that by Lemma 3.8, |a∗

NTN (z)aN | is uniformly bounded on ∂Ry, and
write that

χ2
N

(
ŵ′
N (z)

1 + σ2cNm̂N (z)
− w′

N (z)
1 + σ2cNmN (z)

)

= σ2cNχ
2
N (m̂N (z) −mN (z)) + 2zσ2cNχ

2
N (m̂′

N (z) −m′
N (z))

− σ4cN (1 − cN )χ2
N

(
m̂′
N (z)

1 + σ2cNm̂N (z)
− m′

N (z)
1 + σ2cNmN (z)

)
,
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or equivalently that

χ2
N

(
ŵ′
N (z)

1 + σ2cNm̂N (z)
− w′

N (z)
1 + σ2cNmN (z)

)

= σ2cNχ
2
N (m̂N (z) −mN (z)) + 2zσ2cNχ

2
N (m̂′

N (z) −m′
N (z))

−(σ2cN )2σ2(1 − cN )

× mN (z)χN(m̂′
N (z) −m′

N (z)) −m′
N (z)χN (m̂N (z) −mN (z))

(1 + σ2cNm̂N(z))(1 + σ2cNmN (z))
χN

− σ2cNσ
2(1 − cN )

χN (m̂′
N (z) −m′

N (z))
(1 + σ2cNm̂N (z))(1 + σ2cNmN (z))

χN .

The Poincaré inequality and Lemma 3.10 imply that

sup
z∈∂Ry

E|χN (m̂N (z) −mN (z))|2 = O
(

1
N2

)

and

sup
z∈∂Ry

E|χN (m̂′
N (z) −m′

N (z))|2 = O
(

1
N2

)
.

Equation (3.37) follows immediately from

sup
z∈∂Ry

∣∣∣∣ χN
(1 + σ2cNm̂N(z))(1 + σ2cNmN (z))

∣∣∣∣ ≤ C,

for some deterministic constant C (see Lemma 3.8). This completes the proof of
(3.27) for l = 1.

We now assume that (3.27) holds until integer l − 1 and write that

E|χ2
N (ĝN (z) − gN (z))|2l = |E[(χ2

N (ĝN (z) − gN(z)))l]|2

+ Var[(χ2
N (ĝN (z) − gN (z)))l].

The Cauchy–Schwarz inequality implies that

|E[(χ2
N (ĝN (z) − gN (z)))l]|2

≤ E|χ2
N (ĝN (z) − gN(z))|2E|χ2

N (ĝN (z) − gN (z))|2(l−1),

and shows that

sup
z∈∂Ry

|E(χ2
N (ĝN (z) − gN(z)))l|2 = O

(
1
N l

)
.
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The Poincaré inequality gives

Var[(χ2
N (ĝN (z) − gN (z)))l]

≤ σ2l2

N
E


|χ2

N (ĝN (z) − gN (z))|2(l−1)χ4
N

∑
i,j

(∣∣∣∣ ∂ĝN (z)
∂Wi,j,N

∣∣∣∣
2

+
∣∣∣∣ ∂ĝN(z)
∂Wi,j,N

∣∣∣∣
2
)


+
8σ2l2

N
E


|ĝN (z) − gN (z)|2lχ4l−2

N

∑
i,j

∣∣∣∣ ∂χN
∂Wi,j,N

∣∣∣∣
2

. (3.38)

Finally, (3.31) and (3.32) imply that

sup
z∈∂Ry

χ4
N

∑
i,j

(∣∣∣∣ ∂ĝN(z)
∂Wi,j,N

∣∣∣∣
2

+
∣∣∣∣ ∂ĝN (z)
∂Wi,j,N

∣∣∣∣
2
)

≤ C,

for some deterministic constant C. Therefore, the supremum over z ∈ ∂Ry of first
term of the right-hand side of (3.38) is a O( 1

N l ). Moreover, it can be shown as in the
case l = 1 that the supremum over z ∈ ∂Ry of the second term of the right-hand
side of (3.38) is a O( 1

Np ) for each integer p. This completes the proof of Proposition
3.3 and of the uniform consistency of estimator η̃N (θ).

3.4. A brief discussion on the case c > 1

We now briefly explain how the previous results can be adapted to the case c > 1
and assume without restriction in this section that cN = M

N > 1 for each N . In this
context, the smallest M − N eigenvalues λ̂1,N , . . . , λ̂M−N,N of matrix ΣNΣ∗

N are
identically 0. The behavior of the empirical eigenvalue distribution µ̂N of ΣNΣ∗

N

is still characterized by the results of Sec. 2.1 which do not depend on the value
of cN . However, the characterization of the support SN of µN has to be adapted
because {0} is carried by µN , the corresponding mass being equal to 1− 1

cN
. Using

the results of Sec. 2.2 to the dual model

Σ∗
N = B∗

N + W∗
N , (3.39)

it is easily seen that SN is given by

SN = {0} ∪
(

Q⋃
q=1

[x−q,N , x
+
q,N ]

)
,

where the points (x−q,N , x
+
q,N )q=1,...,Q are still defined by the Q positive extrema

of function φN (w) defined by (2.7). Note that ∪Qq=1[x
−
q,N , x

+
q,N ] coincides with the

support of the measure µ̃N = cNµN + (1 − cN )δ0, i.e. the asymptotic eigenvalue
distribution of the empirical eigenvalue distribution 1

N

∑M
k=M−N+1 δλ̂k,N

of matrix
Σ∗
NΣN . Moreover, function wN (z) defined by (2.8) still verifies Proposition 2.1

where (w−
q,N , w

+
q,N )q=1,...,Q are the preimages of the (x−q,N , x

+
q,N )q=1,...,Q. Also, the

N non-zero eigenvalues (λ̂k,N )k=M−N+1,...,M satisfy Theorems 2.3 and 2.4. Finally,
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under Assumptions A-5 and A-6, matrix ΠN is still given by (2.20), and η̃N (θ) =
aN (θ)∗Π̃NaN (θ) where Π̃N is defined by (2.21) is still a consistent estimator of
ηN (θ). We note that the properties of the zeros of 1 + σ2cNm̂N (z) and of the
eigenvalues (ω̂k,N )k=1,...,M of matrix Ω̂N defined by (2.13) slightly differ from the
case cN < 1. Indeed, as 0 is eigenvalue of matrix Λ̂N with multiplicity M − N ,
ω̂1,N = · · · = ω̂M−N−1,N = 0 < ω̂M−N,N . The zeros of 1 + σ2cNm̂N (z) are the
(ω̂k)k=M−N,...,M and they verify

0 < ω̂M−N,N < λ̂M−N+1,N < ω̂M−N+1,N < · · · < ω̂M−1,N < λ̂M,N < ω̂M,N .

It can be shown as in [23] that almost surely, for N large enough,

0 < ω̂M−N,N < t−1 − 4ε,

ω̂M−N+1,N , . . . , ω̂M−K,N ∈ (t−1 , t
+
1 ),

ω̂M−K+1,N , . . . , ω̂M,N ∈ (t−2 , t
+
2 ).

Note that we have to assume here that ε < y
4 .

We now discuss on the uniform consistency of η̃N (θ) in the case cN > 1. It is
easily seen that the probability that the non-zero eigenvalues (λ̂k,N )k=M−N+1,...,M

escape from the set Tε still decreases at rate 1
N l for each integer l. In order to

extend property (1.1), the reader may check that it is sufficient to prove that the
probability that the (ω̂k)k=M−N,...,M escape from [0, t−1 − 4ε) ∪ Tε converge to 0 at
rate 1

N l for each integer l. For this, we have to prove that Lemma 3.6 is still valid.
In the case cN < 1, Lemma 3.6 depends on Lemma 3.3. In the case cN > 1, the
statement of Lemma 3.3 has to be adapted because the properties of the signed
measure κN are slightly different. More precisely, it can be shown that for cN > 1,
it holds that

κN ({0}) = 1, κN ([x−1,N , x
+
1,N ]) = −1, κN ([x−q,N , x

+
q,N ]) = 0, q ≥ 2,

(3.40)

κN ([x−1,N , x
+
1,N ]) = −1 because in contrast with the case cN < 1, it can be

shown that 1 + σ2cNmN (x−1,N ) is real and negative if cN > 1; therefore, log(1 +
σ2cNmN (x−1,N )) is equal to iπ, and (3.14) leads to κN ([x−1,N , x

+
1,N ]) = −1. As

κN ({0}) + κN ([x−1,N , x
+
1,N ]) = 0, it is easy to check that the proof of Lemma 3.6 is

still valid.

4. Consistency of the Angular Estimates

We now address the consistency of the DoA estimates defined as the local minima of
function θ → η̃N (θ). For this, we assume that the number of sources K is fixed, i.e.
that K does not scale with N . In other words, model ΣN = BN +WN corresponds
to a finite rank perturbation of the complex Gaussian iid matrix WN .

Remark 4.1. In this context, it is possible to derive in a simpler way than above
an alternative consistent estimator, say θ → η̂N,spike(θ) of function θ �→ ηN (θ).
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This estimator is obtained by assuming from the very beginning that K is fixed,
and is based on the recent work of Benaych–Nadakuditi [3]; see [22] for more details.
However, as shown in [22], estimator η̃N (θ) always leads in practice to the same
performance as η̂N,spike(θ) if K

M � 1 (typical value 1
10 in [22]), but outperforms

η̂N,spike(θ) for greater values of K
M (typical value 1

4 in [22]). Therefore, the use of
estimator η̃N (θ) appears in practice more relevant than η̂N,spike(θ).

In order to define the estimators of θ1, . . . , θK properly, we consider K disjoint
intervals I1, . . . , IK , such that θk ∈ Ik, and define for each k the estimator θ̃k,N of
θk by θ̃k,N = argminθ∈Ik

|η̃N (θ)|. We prove the following result.

Proposition 4.1. Under Assumptions A-1–A-6, for k = 1, . . . ,K,

N(θ̃k,N − θk)
a.s.−−−−→

N→∞
0.

In order to establish the proposition, we follow a classical approach initiated
by Hannan [15] to study sinusoid frequency estimates. For this, we first recall the
following useful lemma.

Lemma 4.1. Let (αM ) a real-valued sequence of a compact subset of (−π, π], and
converging to α as M → ∞. Define qM (αM ) = 1

M

∑M−1
k=0 eikαM . If α �= 0 or if

α = 0 and M |αM | → ∞, then qM (αM ) → 0. If α = 0 and MαM −−−−→
M→∞

β ∈ R,

then qM (αM ) → ei
β
2 sinc(β/2).

We denote by A the matrix A(Θ) corresponding to the true angles Θ =
(θ1, . . . , θK)T . It is clear that ηN (θ) = 1 − a(θ)∗A(A∗A)−1A∗a(θ). By the very
definition of θ̃k,N , |η̃N (θ̃k,N )| ≤ |η̃N (θk)|. From Theorem 3.1 and the equality
ηN (θk) = 0, we have |η̃N (θ̃k,N )| → 0 w.p.1., as N → ∞. Consequently,

|ηN (θ̃k,N )| ≤ |ηN (θ̃k,N ) − η̃N (θ̃k,N )| + |η̃N (θ̃k,N )|

≤ sup
θ∈[−π,π]

|ηN (θ) − η̃N (θ)| + |η̃N (θ̃k,N )|

a.s.−−−−→
N→∞

0. (4.1)

From Lemma 4.1, (A∗A)−1 converges to IK as N → ∞. Since (θ̃k,N ) is bounded,
we can extract a converging subsequence (θ̃k,ϕ(N)). Let αN = θ̃k,ϕ(N) − θk. From
Lemma 4.1, if αN → α �= 0 as N → ∞, then

a(θ̃k,ϕ(N))∗A(A∗A)−1A∗a(θ̃k,ϕ(N))
a.s.−−−−→

N→∞
0, (4.2)

and thus ηN (θ̃k,ϕ(N)) → 1, a contradiction with (4.1). This implies that the whole
sequence (θ̃k,N ) converges towards θk. If N |θ̃k,N−θk| is not bounded, we can extract
a subsequence such that φ(N)|θ̃k,φ(N) − θk| → +∞ and Lemma 4.1 again implies
that (4.2) holds, a contradiction. N |θ̃k,N − θk| is thus bounded, and we consider a
subsequence such that N(θ̃k,ϕ(N)−θk) → β/2 where β ∈ (−π, π]. From Lemma 4.1,
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if β �= 0, we get

ηϕ(N)(θ̃k,ϕ(N))
a.s.−−−−→

N→∞
1 −

(
sin(β/2)
β/2

)2

> 0,

which is again in contradiction with (4.1). Therefore, β = 0 and all converging
subsequences of (N |θ̂k,ϕ(N) − θk|) converge to 0, which of course implies that the
whole sequence (N |θ̂k,N−θk|) converges to 0. We finally end up withN(θ̃k,N−θk) →
0 w.p.1., as N → ∞.

Appendix A

A.1. Proof of Lemma 3.2: Estimate of E[m̂′
N(z)]

We first give the following useful technical result. Its proof, based on Poincaré’s
inequality, is elementary and therefore omitted.

Lemma A.1. Let (MN(z)) a sequence of deterministic complex M ×M matrix-
valued functions defined on C\R such that

‖MN(z)‖ ≤ P1(|z|)P2(|Im(z)|−1).

Then, under Assumptions A-1, A-2 and A-4,

Var
[

1
N

TrQN (z)MN(z)
]
≤ 1
N2

P1(|z|)P2(|Im(z)|−1),

Var
[

1
N

TrΣ∗
NQN (z)MN(z)

]
≤ 1
N2

P1(|z|)P2(|Im(z)|−1).

Moreover, the same results still hold when QN(z) is replaced by QN (z)2.

We are now in position to establish Lemma 3.2. We have to establish that

|E[m̂′
N (z)] −m′

N (z)| ≤ 1
N2

P1(|z|)P2(|Im(z)|−1). (A.1)

For clarity, we recall results from [10, 23, 14], on which the proof heavily relies.
We have first to introduce some new notations extensively used in [10, 23, 14]. We
define δN(z) = σcNmN (z) = σ 1

NTr (TN (z)), as well as δ̃N (z) = δN (z) − σ(1−cN )
z

which coincides with the Stieltjes transform of finite measures cNµN + (1 − cN)δ0.
In the following, matrix T̃N (z) is defined by

T̃N (z) =
(
−z(1 + σδN (z))IM +

B∗
NBN

1 + σδ̃N (z)

)−1

,

and is related to δ̃N (z) through the equation δ̃N(z) = σ 1
NTr (T̃N (z)) (cf. [13, 23]).

We also remark that matrix TN (z) can be written as

TN (z) =
(
−z(1 + σδ̃N (z))IM +

BNB∗
N

1 + σδN (z)

)−1

,

1150006-36



2nd Reading

November 25, 2011 10:32 WSPC/S2010-3263 RMTA 1150006

Large Information Plus Noise Random Matrix Models

and that wN (z) coincides with z(1 + σδN (z))(1 + σδ̃N (z)). We also denote Q̃N (z)
the resolvent of matrix Σ∗

NΣN , i.e.

Q̃N (z) = (Σ∗
NΣN − zIN )−1

and define αN (z) = E[ σNTrQN (z)], α̃N (z) = E[ σNTr Q̃N (z)], and the matrices

RN (z) =
(
−z(1 + σα̃N (z))IM +

BNB∗
N

1 + σαN (z)

)−1

,

R̃N (z) =
(
−z(1 + σαN (z))IN +

B∗
NBN

1 + σα̃N (z)

)−1

.

It is shown in [10, 23] that the entries of QN(z) (respectively, Q̃N (z)) have the
same behavior as the entries of RN (z) and TN (z) (respectively, of R̃N (z) and
T̃N (z)). It is also useful to recall that |αN (z)|, |α̃N (z)|, |−z(1 + σαN (z))|−1,
|−z(1 + σα̃N (z))|−1, ‖TN (z)‖, ‖T̃N(z)‖, ‖RN(z)‖ and ‖R̃N (z)‖ are bounded on
C\R by P1(|z|)P2(|Im(z)|−1). We remark that our new notations are symmetrical
with respect to the substitution ΣN → Σ∗

N , and are easier to use in the forthcoming
calculations.

We first notice that (A.1) is equivalent to

|α′
N (z) − δ′N (z)| ≤ 1

N2
P1(|z|)P2(|Im(z)|−1). (A.2)

In order to prove (A.2), we first show that

∣∣∣α′
N (z) − σ

N
TrR′

N(z)
∣∣∣ ≤ 1

N2
P1(|z|)P2(|Im(z)|−1) (A.3)

and deduce from this that (A.2) holds. Using results on the behavior of αN (z) −
σ
NTrRN (z) established in [10, 23, 14], we first establish that (A.3) holds. For this,
we recall the following lemma.

Lemma A.2 ([10], [23, Proof of Proposition 6]). Under Assumptions A-1,
A-2 and A-4, for z ∈ C\R, it holds that

E[QN (z)] = RN(z) + ∆N (z)RN (z) +
(
σ2

N
Tr∆N (z)

)
E[QN (z)]RN(z), (A.4)

where ∆N (z) is given by ∆N (z) = ∆1,N (z) + ∆2,N(z) + ∆3,N (z) with

∆1,N (z) =
σ

1 + σαN (z)
E

[
QN(z)ΣNΣ∗

N

σ

N
Tr (QN (z) − E[QN (z)])

]
,

∆2,N (z) =
σ2

1 + σαN (z)
E

[
(QN (z) − E[QN (z)])

σ

N
TrΣ∗

NQN (z)BN

]
,
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∆3,N (z) = − σ2

(1 + σαN (z))2
E[QN (z)]E

[
σ

N
Tr (QN (z)

−E[QN (z)])
σ

N
TrΣ∗

NQN(z)BN

]
.

If MN (z) is a sequence of deterministic complex matrix-valued functions defined on
C\R such that

‖MN(z)‖ ≤ P1(|z|)P2(|Im(z)|−1),

then 1
NTr(∆i,N (z)MN (z)), for i = 1, 2, 3, is bounded by 1

N2 P1(|z|)P2(|Im(z)|−1).
Therefore,

αN (z) =
σ

N
TrRN(z) +

ε1,N(z)
N2

, (A.5)

where ε1,N (z) is the holomorphic function on C\R defined by

ε1,N(z)
N2

=
(
σ

N
Tr∆N (z)RN (z) +

σ

N
Tr E[QN (z)]RN (z)

σ2

N
Tr∆N (z)

)
,

and satisfies |ε1,N(z)| ≤ P1(|z|)P2(|Im(z)|−1). Finally, α̃N (z) can also be written as

α̃N (z) =
σ

N
Tr R̃N (z) +

ε̃1,N(z)
N2

, (A.6)

where ε̃1,N (z) is equal to

ε̃1,N (z) =
1 + σα̃N (z)
1 + σαN (z)

ε1,N (z),

and satisfies |ε̃1,N (z)| ≤ P1(|z|)P2(|Im(z)|−1).

In order to evaluate the behavior of α′
N (z)− σ

NTrR′
N (z), we differentiate (A.5)

with respect to z and get the following result.

Proposition A.1. Under Assumptions A-1, A-2 and A-4, for z ∈ C\R, the
derivatives ε′1,N(z) and ε̃′1,N(z) of ε1,N(z) and ε̃1,N(z) with respect to z satisfy
|ε′1,N(z)| ≤ P1(|z|)P2(|Im(z)|−1) and |ε̃′1,N (z)| ≤ P1(|z|)P2(|Im(z)|−1).

Proof. The proof uses Lemma A.1 and the observation that the spectral norms
‖R′

N(z)‖ and‖R̃′
N (z)‖ are bounded by P1(|z|)P2(|Im(z)|−1). The details are

omitted.

In order to complete the proof of the lemma, we establish that

Proposition A.2. Under Assumptions A-1, A-2 and A-4, for z ∈ C\R,

α′
N (z) = δ′N (z) +

ε2,N(z)
N2

,

α̃′
N (z) = δ̃′N (z) +

ε̃2,N(z)
N2

,

where |ε2,N (z)| and |ε̃2,N(z)| are both bounded by P1(|z|)P2(|Im(z)|−1).
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Proof. We first observe that (A.5) and (A.6) imply that

α′
N (z) − δ′N (z) = σ

1
N

Tr (R′
N (z)) − δ′N (z) +

ε′1,N (z)
N2

, (A.7)

α̃′
N (z) − δ̃′N (z) = σ

1
N

Tr (R̃′
N (z)) − δ̃′N (z) +

ε̃′1,N (z)
N2

. (A.8)

We start with the classical identities

RN(z) − TN (z) = RN (z)(TN (z)−1 − RN(z)−1)TN (z),

R̃N (z) − T̃N (z) = R̃N (z)(T̃N (z)−1 − R̃N (z)−1)T̃N (z),

and get that

σ

N
Tr (RN (z) − TN (z)) = (α̃N (z) − δ̃N (z))zvN (z)

+ (αN (z) − δN(z))uN (z), (A.9)

σ

N
Tr (R̃N (z) − T̃N (z)) = (α̃N (z) − δ̃N (z))ũN (z)

+ (αN (z) − δN(z))zṽN (z), (A.10)

with

uN (z) =
σ2

N
Tr

RN(z)BNB∗
NTN (z)

(1 + σαN (z))(1 + σδN (z))
,

ũN (z) =
σ2

N
Tr

R̃N (z)B∗
NBN T̃N (z)

(1 + σα̃N (z))(1 + σδ̃N (z))
,

and

vN (z) =
σ2

N
TrRN (z)TN (z) ṽN (z) =

σ2

N
Tr R̃N (z)T̃N (z).

Note that it is easy to check that uN (z) = ũN(z). We differentiate (A.9), (A.10)
with respect to z, we use (A.7), (A.8) and Proposition A.1, and recall that both
|αN (z)− δN (z)| and |α̃N (z)− δ̃N (z)| are bounded that 1

N2 P1(|z|)P2(|Im(z)|−1) (see
[23]). We check that uN(z), zvN (z), zṽN (z) and their derivatives are bounded by
P1(|z|)P2(|Im(z)|−1), and obtain eventually that[

α′
N (z) − δ′N(z)

α̃′
N (z) − δ̃′N(z)

]
=

[
uN(z) zvN (z)

zṽN (z) uN(z)

][
α′
N (z) − δ′N (z)

α̃′
N (z) − δ̃′N (z)

]
+

1
N2

[
ε3,N(z)

ε̃3,N(z)

]
,

with |ε3,N(z)|, |ε̃3,N (z)| bounded by P1(|z|)P2(|Im(z)|−1). We denote by ∆N (z) the
determinant of the above system, i.e.

∆N (z) = (1 − uN (z))2 − zvN(z)ṽN (z). (A.11)
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The determinant ∆N (z) was studied in [14] and in [23] where it was proved that
|∆N (z)−1| ≤ P1(|z|)P2(|Im(z)|−1) on a subset DN of C defined as

DN =
{
z ∈ C − R,

1
N2

Q1(|z|)Q2(|Im(z)|−1) < 1
}

where Q1 and Q2 are two polynomials independent of N . Thus, we can invert the
previous system on DN to get[

α′
N (z) − δ′N (z)

α̃′
N (z) − δ̃′N (z)

]
=

1
∆N (z)

[
1 − uN (z) zvN(z)

zṽN (z) 1 − uN(z)

]
1
N2

[
ε3,N(z)

ε̃3,N(z)

]
.

This implies that |α′
N (z)− δ′N (z)| is bounded by 1

N2 P1(|z|)P2(|Im(z)|−1) on DN . If
z ∈ C\{R ∪ DN}, we use the trick in [12]. We remark that

|α′
N (z) − δ′N (z)| ≤ |α′

N (z)| + |δ′N (z)| ≤ C

|Im z| ,

for each z, and that 1 ≤ 1
N2 Q1(|z|)Q2(|Im(z)|−1) on C\{R ∪ DN}. Therefore,

|α′
N (z) − δ′N(z)| ≤ C

|Im z|
1
N2

Q1(|z|)Q2(|Im(z)|−1) ≤ 1
N2

P1(|z|)P2(|Im(z)|−1)

on C\{R ∪DN}. This in turn shows that (A.2) holds on C\R.

A.2. Proof of Lemma 3.4: Differentiability of 1
M

Tr ψ̃(Ω̂N)

We first need to establish the following useful lemma.

Lemma A.3. Given an integer D > 0, let f be a continuous real function on RD.
Let O be an open set of RD such that RD\O has a zero Lebesgue measure. Assume
that f is a C1 function on O and that its gradient f ′ on O can be continuously
extended to RD. Then f is C1 on the whole RD with gradient f ′.

Proof. We only need to prove that for any x ∈ RD −O and any sequence xn → x,

f(xn) − f(x) = 〈f ′(x), xn − x〉 + o(dn),

where dn = ‖xn − x‖. Since f is uniformly continuous on any small neighborhood
of x, there exists a sequence δn such that for every y and y′ in this neighborhood
for which ‖y − y′‖ < δn, |f(y) − f(y′)| ≤ d2

n. Since RD − O has a zero Lebesgue
measure, there exists yn and zn in O such that

‖xn − yn‖ < min(δn, d2
n) and ‖x− zn‖ < min(δn, d2

n).

Therefore, it holds that max(|f(xn)− f(yn)|, |f(zn)− f(x)|) < d2
n. Writing f(xn)−

f(x) = f(xn)−f(yn)+f(yn)−f(zn)+f(zn)−f(x), we obtain that f(xn)−f(x) =
f(yn) − f(zn) + o(dn). By differentiability of f on O and continuity of f ′ at x,

f(yn) − f(zn) = 〈f ′(zn), yn − zn〉 + o(‖yn − zn‖) = 〈f ′(x), xn − x〉 + o(dn)

which proves the lemma.
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We now complete the proof of the lemma. We consider ψ̃ ∈ C∞
c (R,R), and

establish that, considered as a function of the real and imaginary parts of WN ,
function 1

MTr ψ̃(Ω̂N ) is continuously differentiable on R
2MN , i.e. that for each pair

(i, j), the partial derivatives

∂

∂Wi,j,N

{
1
M

Tr ψ̃(Ω̂N )
}

exist, and are continuous.b We denote by O the open subset of R2MN for which the
eigenvalues (λ̂l,N )l=1,...,M of ΣNΣ∗

N have multiplicity 1. It is clear that R2MN\O has
a zero Lebesgue measure. On O, it is standard that the eigenvalues (λ̂l,N )l=1,...,M

are C1 functions and that

∂λ̂l,N
∂Wi,j,N

= [Σ∗
NΠ̂l,N ]j,i. (A.12)

Using Lemma 4.6 in Haagerup–Thorbjornsen [12], we obtain

∂

∂Wi,j,N
{Tr ψ̃(Ω̂N )} = Tr

(
ψ̃′(Ω̂N )

∂

∂Wi,j,N
{Ω̂N}

)

=

[
Σ∗
N

M∑
l=1

[ψ̃′(Ω̂N )]llΠ̂l,N

]
j,i

(A.13)

and get that 1
MTr ψ̃(Ω̂N ) is a C1 on O. By Lemma A.3, it remains to establish that

the right-hand side of (A.13) can be continuously extended to any point W0
N of

R2MN \O. For this, we first prove the following useful result.

Lemma A.4. If λ̂k,N = λ̂l,N , then [ψ̃(Ω̂N )]kk = [ψ̃(Ω̂N )]ll.

Proof. We start by observing that for any integers m1,m2, . . . ,mt, matrix A =
Λ̂
m1

N 11T Λ̂
m2

N · · ·11T Λ̂
mt

N writes

A =



λ̂m1

1,N · · · λ̂m1
1,N

...
...

...

λ̂m1
M,N · · · λ̂m1

M,N


 · · ·



λ̂
mt−1
1,N · · · λ̂

mt−1
1,N

...
...

...

λ̂
mt−1
M,N · · · λ̂

mt−1
M,N


 Λ̂

mt

N ,

hence [A]kk = [A]ll if λ̂k,N = λ̂l,N . The same can be said about 11TA and A11T .
Consequently, the result of the lemma is true when ψ̃ is a polynomial. Since any
continuous function ψ̃ is the uniform limit of a sequence of polynomials on compact
subsets of R, the result is true for such ψ̃.

bψ̃ is real-valued, the partial derivatives with respect to Wi,j,N thus coincide with the complex
conjugate of the partial derivative with respect to Wi,j,N . It is therefore sufficient to consider these
derivatives.
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We consider an element W0
N of R2MN\O, and denote by m1, . . . ,mL, with M =∑L

l=1ml, the respective multiplicities of the eigenvalues of Σ0
NΣ0∗

N where Σ0
N =

BN + W0
N . We also denote by (Πl,N )l=1,...,L the orthogonal projection matrices

over the corresponding eigenspaces. Lemma A.4 implies that for each i = 1, . . . , L,

[ψ̃
′
(Ω̂)]m1+···+mi,m1+···+mi

= · · · = [ψ̃
′
(Ω̂)]m1+···+mi+mi+1−1,m1+···+mi+mi+1−1 = κi.

Therefore, for any sequence (WN,n)n∈N converging toward W0
N , it holds that

lim
n→∞

∂

∂Wi,j,N

{
1
M

Tr ψ̃(Ω̂N )
}∣∣∣∣

WN=WN,n

=

[
Σ∗
N

L∑
l=1

κlΠl,N

]
j,i

.

This completes the proof of Lemma 3.4.

A.3. Proof of Lemma 3.5: Uniform boundedness of E[‖WN‖p]

It is clear that it is sufficient to prove the boundedness of E[‖WN‖p] if the entries
of WN are real. We thus consider the case of real matrices and denote by XN the
largest singular value of WN

σ . The following concentration result is well-known.

Theorem A.1 ([7, Theorem II.13]). Under Assumption A-4, it holds that
E[XN ] ≤ 1 +

√
cN and for all t > 0, P(XN > 1 +

√
cN + t) ≤ exp(−Nt2/2).

Using Theorem A.1 and for p ≥ 2 the inequality,

E[Xp
N ] =

∫ +∞

0

P(XN ≥ t)ptp−1dt

≤ p(1 +
√
cN )p +

∫ +∞

0

P(XN ≥ t+ 1 +
√
cN )p(t+ 1 +

√
cN )p−1dt,

we easily obtain E[Xp
N ] ≤ K < ∞, with K a constant independent of N , for all

p ∈ N.

A.4. Proof of Lemma 3.9: Differentiability of the

regularization factor

We first establish that detφ(ΣNΣ∗
N ) is a C1 function, and that (3.28) holds. We

use the same approach as in Haagerup–Thorbjornsen [12, Lemma 4.6]. We begin
by showing that the differential of detφ(X) is given by

detφ(X)′ ·H = Tr(adj(φ(X))φ′(X)H). (A.14)

As det (X)′ ·H = Tr(adj(X)H) and (Xn)′ ·H =
∑n−1

i=0 XiHXn−1−i for any n ∈ N,
we have

det(Xn)′ · H = Tr(adj(Xn)(nXn−1)H)

since adj(Xn) and X commute. So (A.14) is true when φ is a polynomial. By
choosing a sequence of polynomials Pn such that Pn → φ and P ′

n → φ′ uniformly
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on compact subsets of R, we generalize (A.14) to any φ ∈ C1. Now one can check that

∂(ΣNΣ∗
N)

∂Wi,j,N
= eie∗jΣ

∗
N , (A.15)

and it remains to apply the composition formula for differentials to obtain (3.28).
We also remark that at a point WN for which there exists a λ̂l,N �∈ supp(φ),

we have

adj(φ(ΣNΣ∗
N ))φ′(ΣNΣ∗

N ) =
M∑
l=1


∏
k 	=l

φ(λ̂k,N )


φ′(λ̂l,N )ûl,N û∗

l,N = 0,

hence the derivative (3.28) is zero on Ac
1,N .

It is easy to check that detφ(Ω̂N ) is a C1 function on the open set O of all
matrices WN for which the eigenvalues of ΣNΣ∗

N are simple, and that (3.29) holds
if WN ∈ O, i.e. on a set of probability one. In order to show that detφ(Ω̂N ) is a
C1 function on R2MN \O, we use again Lemma A.3, and verify that (3.29) can be
continuously extended to R2MN \O. For this, we claim that

[adj(φ(Ω̂N ))φ′(Ω̂N )]k,k = [adj(φ(Ω̂N ))φ′(Ω̂N )]l,l (A.16)

if λ̂k,N = λ̂l,N . Indeed, given ε > 0, let φε(x) = φ(x) + ε. Since φε(Ω̂N ) > 0,

adj(φε(Ω̂N ))φ′ε(Ω̂N ) = det(φε(Ω̂N ))φ−1
ε (Ω̂N )φ′ε(Ω̂N ).

Applying Lemma A.4 to ψ̃ = φ−1
ε × φ′ε, we obtain that

[adj(φε(Ω̂N ))φ′ε(Ω̂N )]kk = [adj(φε(Ω̂N ))φ′ε(Ω̂N )]ll if λ̂k,N = λ̂l,N

and letting ε → 0, we obtain the same result for adj(φ(Ω̂N ))φ′(Ω̂N ). Similarly to
the proof of Lemma 3.4, this proves that (3.29) can be continuously extended to
R2MN \O.

A.5. Proof of Lemma 3.10: Various estimates

In this section, we denote by αr,N (z), α̃r,N (z),Rr,N(z) and R̃r,N(z) the regular-
ized versions of the respective functions αN (z), α̃N (z),RN(z) and R̃N(z) defined
in Sec. A.1, i.e.

αr,N (z) = σE

(
1
N

Tr (QN (z))χN

)
and α̃r,N (z) = σE

(
1
N

Tr (Q̃N (z))χN

)
,

and

Rr,N(z) =
(

BNB∗
N

1 + σαr,N (z)
− z(1 + σα̃r,N (z))

)−1

,

R̃r,N(z) =
(

B∗
NBN

1 + σα̃r,N (z)
− z(1 + σαr,N (z))

)−1

.
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It is clear that αr,N and α̃r,N are the Stieltjes transforms of positive measures
carried by C\supp(φ) and C∗\supp(φ) respectively and with mass σcNE[χN ] and
σE[χN ]. This implies that the following uniform bounds hold: Let K and K̃ be
compact subsets of C\supp(φ) and C∗\supp(φ) respectively, then we have

sup
z∈K

|αr,N(z)| < C and sup
z∈K̃

|α̃r,N (z)| < C. (A.17)

In order to establish Lemma 3.10, it is necessary to show that similar bounds hold
for functions 1

1+σαr,N (z) , ‖Rr,N(z)‖ and ‖R̃r,N (z)‖. For this, we introduce function
wr,N (z) = z(1 + σαr,N (z))(1 + σα̃r,N (z)) and prove the following lemma.

Lemma A.5. Under Assumptions A-1–A-6, for any compact subset K of
C\supp(φ), it holds that

sup
z∈K

|αr,N (z) − δN (z)| −−−−→
N→∞

0, (A.18)

inf
z∈K

min
k=1,...,M

|λk,N − wr,N (z)| > C > 0. (A.19)

Proof. Define κN (z) := αr,N (z)−δN(z) where we recall that δN (z) = σcNmN(z) =
σ
NTr (TN (z)). Since δN(z) and αr,N (z) are Stieltjes transforms of positive measures
carried by C\supp(φ), κN is holomorphic on C\supp(φ) and satisfies

|κN (z)| ≤ C

d(z, supp(φ))
.

This implies that the sequence (κN ) is uniformly bounded on each compact sub-
set of C\supp(φ). By Montel’s theorem, (κN ) is a normal family. Let (κψ(N))
a subsequence of (κN ) which converges uniformly to κ on each compact subset
of C\supp(φ). Then κ is holomorphic on C\supp(φ). From [23, Proposition 6],
E[ 1

NTrQN (z)]− 1
NTrTN (z) −→

N
0 for z ∈ C\R+ and since χN −→

N
1 a.s., dominated

convergence theorem implies

κN (z) = E

[
σ

N
TrQN(z)χN

]
− σ

N
TrTN (z) −→

N
0

for z ∈ C\R+. Thus, κ(z) = 0 for z ∈ C\R+, and by analytic continuation, κ(z) =
0 for all z ∈ C\supp(φ). Therefore, all converging subsequences extracted from
the normal family (κN (z)) converge to 0 uniformly on each compact subset of
C\supp(φ). Consequently, the whole sequence (κN ) converges uniformly to 0 on
each compact subset of C\supp(φ). This completes the proof of (A.18). We also
notice that

α̃r,N (z) = αr,N (z) − σ(1 − cN )
z

+
σ(1 − cN )

z
(1 − E(χN )) (A.20)

and recall that δ̃N (z) = δN (z)− σ(1−cN )
z . As 1−E(χN ) = O( 1

Np ) for each integer p,
(A.18) implies

sup
z∈K

|z(α̃r,N(z) − δ̃N(z))| → 0.
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Hence, it holds that

sup
z∈K

|wr,N (z) − wN (z)| → 0.

Thus, (A.19) follows immediately from (2.12).

Lemma A.5 immediately implies that the following uniform bounds hold.

Lemma A.6. Let K and K̃ be compact subsets of C − supp(φ) and C∗ − supp(φ)
respectively. Under Assumptions A-1–A-6, for N large enough, we have

sup
z∈K

∣∣∣∣ 1
1 + σαr,N (z)

∣∣∣∣ < C, (A.21)

sup
z∈K

‖Rr,N(z)‖ < C, (A.22)

sup
z∈K̃

‖R̃r,N (z)‖ < C, (A.23)

sup
z∈K

‖Rr,N(z) − TN (z)‖ → 0, (A.24)

sup
z∈K̃

‖R̃r,N (z) − T̃N (z)‖ → 0. (A.25)

Proof. We first recall that inequality (2.9) holds. Therefore, the uniform conver-
gence result (A.18) implies that

inf
z∈K

|1 + σαr,N (z)| > 1
4

for N large enough. This establishes (A.21) that holds for N large enough. In order
to prove (A.22), we express Rr,N(z) as

Rr,N(z) = (1 + σαr,N (z))(BNB∗
N − wr,N (z))−1

and use (A.17) and (A.19). The proof of (A.23) is similar, and is based on the
identity

R̃r,N (z) = (1 + σα̃r,N (z))(B∗
NBN − wr,N (z))−1.

We remark that function α̃r,N(z) has a pole at z = 0. Hence, any compact K̃ over
which ‖R̃r,N(z)‖ is supposed to be uniformly bounded should not contain 0. The
proof of (A.24) follows immediately from (A.18) and from (A.21), (A.22), (A.23).
Finally, to establish (A.25), we remark that

R̃r,N(z) =
B∗
NRN(z)BN

wr,N (z)
− IN

1 + σαr,N (z)
,

T̃r,N (z) =
B∗
NTN (z)BN

wN (z)
− IN

1 + σδN (z)
,

and that |wr,N (z)| and |wN (z)| are uniformly bounded from below by (2.12) and
(A.19) (recall that 0 is one of the eigenvalues of BNB∗

N ).
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We now establish (3.34) and (3.35). In order to prove that αN (z) − δN (z) =
O( 1

N2 ) on C\R
+, [10, 23] used the integration by parts formula (see e.g. [19]) and

the Poincaré inequality to show that the entries of E[QN (z)] are close from the
entries of RN (z) (see the fundamental equation (A.4)). Then, αN (z) − δN(z) was
evaluated by solving a linear system whose determinant ∆N (z) given by (A.11) was
shown to be bounded from below. Lemma A.6 allows to follow exactly the same
approach to establish (3.34) and (3.35). However, functions αN , α̃N ,RN , R̃N have
to be replaced by their regularized versions. The following results show that the
presence of the regularization term χN does not modify essentially the calculations
of [10, 23]. We first indicate how the integration by parts formula is modified. Vec(·)
denotes the column by column vectorization operator of a matrix.

Lemma A.7. Let (fN )N≥1 be a sequence of continuously differentiable functions
defined on CM(M+N) with polynomially bounded partial derivatives satisfying the
condition

sup
z∈∂Ry

|fN (Vec(QN (z)),Vec(ΣN))χN | < C.

Then, under Assumptions A-1–A-6, for all p ∈ N, we have

E[f(Vec(QN (z)),Vec(ΣN ))χN ] = E[f(Vec(QN (z)),Vec(ΣN ))χkN ] +
ε1,N (z)
Np

,

(A.26)

for all k ∈ N∗, and

E[Wij,N f(Vec(QN (z)),Vec(ΣN ))χN ]

=
σ2

N
E

[
∂f(Vec(QN (z)),Vec(ΣN ))

∂Wij,N

χN

]
+
ε2,N (z)
Np

, (A.27)

E[Wij,Nf(Vec(QN (z)),Vec(ΣN ))χN ]

=
σ2

N
E

[
∂f(Vec(QN (z)),Vec(ΣN ))

∂Wij,N
χN

]
+
ε3,N (z)
Np

, (A.28)

with supz∈∂Ry
|εi,N (z)| ≤ C <∞.

As for the use of the Poincaré inequality, we have:

Lemma A.8. Let (MN(z)) a sequence of deterministic complex M ×M matrix-
valued functions defined on C\R such that

sup
z∈∂Ry

‖MN(z)‖ ≤ C.

Then, under Assumptions A-1–A-6,

sup
z∈∂Ry

Var
[

1
N

TrQN (z)MN(z)χN

]
≤ C

N2
,
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and for aN ∈ CM such that supN ‖aN‖ <∞,

sup
z∈∂Ry

Var[a∗
NQN(z)MN (z)aNχN ] ≤ C

N
.

Moreover, the same kind of uniform bounds still hold when QN(z) is replaced by
QN (z)2.

The proofs of these results are based on elementary arguments, and are thus
omitted. Following the calculations of [10, 23], we obtain that

E[QN (z)χN ] = Rr,N (z) + ∆r,N (z)Rr,N(z)

+ E[QN (z)χN ]Rr,N(z)
σ2

N
Tr∆r,N (z) + ΘN (z)Rr,N(z) (A.29)

for each z ∈ C\supp(φ) where ΘN (z) is a matrix whose elements are uniformly
bounded on ∂Ry by C

Np for each p, and where ∆r,N (z) is the regularized version of
matrix ∆N (z) introduced in Lemma A.2 defined by

∆r,N(z) = − 1
(1 + σαr,N (z))2

E[QN (z)χN ]

×E

[(
σ2

N
TrQN (z)χN − E

[
σ2

N
TrQN (z)χN

])
σ2

N
TrΣ∗

NQN (z)BNχN

]

+
1

1 + σαr,N (z)
E

[(
σ2

N
TrΣ∗

NQN (z)BNχN

−E

[
σ2

N
TrΣ∗

NQN (z)BNχN

])
QN (z)χN

]

+
1

1 + σαr,N (z)
E

[(
σ2

N
TrQN (z)χN − E

[
σ2

N
TrQN (z)χN

])

×QN (z)ΣNΣ∗
NχN

]
. (A.30)

After some calculations using Lemmas A.6–A.8, we eventually obtain that

sup
z∈∂Ry

|a∗
N (E[QN (z)χN ] − Rr,N(z))aN | ≤ C

N
3
2
,

sup
z∈∂Ry

∣∣∣αr,N (z) − σ

N
Tr (Rr,N (z))

∣∣∣ ≤ C

N2
, (A.31)

sup
z∈∂Ry

∣∣∣α̃r,N (z) − σ

N
Tr (R̃r,N (z))

∣∣∣ ≤ C

N2
, (A.32)

for all large N . In order to prove (3.34) and (3.35), it remains to handle the terms
involving the difference Rr,N(z) − TN (z). We show in the following that

sup
z∈∂Ry

|a∗
N (Rr,N (z) − TN (z))aN | ≤ C

N2
(A.33)
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for all large N . We start as usual with the identity

Rr,N(z) − TN (z) = Rr,N(z)(TN (z)−1 − Rr,N(z)−1)TN (z),

to get

a∗
N (Rr,N (z) − TN (z))aN

= σ
αr,N (z) − δN (z)

(1 + σαr,N (z))(1 + σδN (z))
a∗
NRr,N (z)BNB∗

NTN (z)aN

+ zσ(α̃r,N(z) − δ̃N (z))a∗
NRr,N(z)TN (z)aN .

The expression (A.20) of α̃r,N implies that z(α̃r,N(z) − δ̃N (z)) = z(αr,N (z) −
δN (z)) + O( 1

Np ) for each integer p. Thus, to prove (3.34) and (3.35), it is suffi-
cient to check that

sup
z∈∂Ry

|αr,N (z) − δN(z)| ≤ C

N2
.

We will use the same ideas as in Sec. A.1 and remark that (αr,N (z)−δN(z), α̃r,N (z)−
δ̃N (z)) can be interpreted as the solution of a 2×2 linear system whose determinant
is a regularized version of (A.11), and appears uniformly bounded away from zero
on ∂Ry.

Using again the previous expression of Rr,N(z) − TN (z) together with (A.31),
(A.32) and repeating the procedure for R̃r,N (z) − T̃N (z), we obtain[

αr,N (z) − δN(z)

α̃r,N (z) − δ̃N(z)

]
=

[
ur,N(z) zvr,N(z)

zṽr,N(z) ur,N (z)

][
αr,N (z) − δN (z)

α̃r,N (z) − δ̃N (z)

]

+
1
N2

[
εN (z)

ε̃N (z)

]
, (A.34)

with

ur,N(z) =
σ2

N
Tr

Rr,N(z)B∗
NBNTN (z)

(1 + σαr,N (z))(1 + σδN (z))
, vr,N (z) =

σ2

N
TrRr,N (z)TN (z)

and

ṽr,N (z) =
σ2

N
Tr R̃r,N(z)T̃N (z).

The quantities εN (z), ε̃N (z) satisfy supz∈∂Ry
|εN (z)| < C, supz∈∂Ry

|ε̃N (z)| < C.
The determinant of the system is given by

∆r,N (z) = (1 − ur,N(z))2 − z2vr,N (z)ṽr,N (z).

Lemma A.6 implies that for all large N , ur,N(z), vr,N (z) and ṽr,N (z) are uniformly
bounded on ∂Ry. Therefore, to conclude the proof of (A.33), it remains to check
that for all large N ,

inf
z∈∂Ry

|∆r,N (z)| ≥ C > 0.
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Consider the function ∆̌N (z) where we have replaced the matrix Rr,N(z) and
R̃r,N(z) by TN (z) and T̃N (z), i.e.

∆̌N (z) = (1 − ǔN(z))2 − z2v̌N (z)ˇ̃vN (z),

with

ǔN (z) =
σ2

N
Tr

TN (z)B∗
NBNTN (z)

(1 + σδN (z))(1 + σδN (z))
, v̌N (z) =

σ2

N
TrTN (z)2,

and

ˇ̃vN (z) =
σ2

N
Tr T̃N (z)2.

Lemmas A.5 and A.6 imply that |ǔN (z)−ur,N(z)|, |vr,N (z)− v̌N (z)| and |ṽr,N (z)−
ˇ̃vN (z)| converge to 0 uniformly on ∂Ry which of course implies

sup
z∈∂Ry

|∆N (z) − ∆̌N (z)| −−−−→
N→∞

0. (A.35)

Using Cauchy–Schwarz inequality, we get

|∆̌N (z)| ≥ ∆N (z) := (1 − uN (z))2 − |z|2vN (z)ṽN (z),

with

uN (z) =
σ2

N
Tr

TN (z)BNB∗
NTN (z)∗

|1 + σδN (z)|2 ,

vN (z) =
σ2

N
TrTN (z)TN (z)∗

and

ṽN (z) =
σ2

N
Tr T̃N (z)T̃N (z)∗.

Now, we use the following lemma.

Lemma A.9. Under Assumptions A-1–A-6, there exists a constant C > 0 inde-
pendent of N such that

inf
z∈∂Ry

∆N (z) ≥ C.

Proof. It is shown in [23, 14] that ∆N (z) is the determinant of the following 2× 2
linear system[

Im(δN (z))

Im(zδ̃N (z))

]
=

[
uN (z) vN(z)

|z|2ṽN (z) uN (z)

] [
Im(δN (z))

Im(zδ̃N(z))

]
+

Im(z)
σ

[
vN (z)

uN (z)

]
,

(A.36)

and that for z ∈ C\R, ∆N (z) > 0. Solving the system, and looking at the corre-
sponding expression of Im(δN (z)), we easily get that

∆N (z) =
Im(z)

Im(δN (z))
σ

N
TrTN (z)TN (z)∗
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for z ∈ C\R. Expressing TN (z) − TN (z)∗ as TN (z)(TN (z)−∗ − TN (z)−1)TN (z)∗,
and using the equation δN(z) = σ

NTr (TN (z)), we obtain that

Im(δN (z)) = Im(wN (z))
σ

N
TrTN (z)TN (z)∗

and deduce the useful formula

∆N (z) =
Im(z)

Im(wN (z))
. (A.37)

Using the integral representation δN (z) =
∫
SN

dµN (λ)
λ−z , we obtain after straightfor-

ward computations that the expression Im(z)
Im(wN (z)) extends to C\SN , and therefore

to C\supp(φ), and satisfies

sup
z∈∂Ry

|Im(wN (z))|
|Im(z)| < C.

Equation (A.37) thus implies that

sup
z∈∂Ry

|∆N (z)|−1 ≤ C,

which concludes the proof.

We deduce from this that infz∈∂Ry |∆N (z)| ≥ C > 0 for all large N . Therefore,
we can invert the system (A.34) and obtain

sup
z∈∂Ry

|αr,N (z) − δN(z)| ≤ C

N2
,

for all large N . This establishes (3.35) and completes the proof of (3.34).
The proof of (3.36) is similar to the proof of Lemma 3.2, but as above,

αN (z), α̃N (z),RN(z) and R̃N (z) have to be replaced by their regularized versions
αr,N (z), α̃r,N(z),Rr,N(z) and R̃r,N (z). The reader can check that the properties
of these regularized functions allow to follow the various steps of the proof of
Lemma 3.2.
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