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Abstract—This paper is devoted to the problem of source
detection with large sensor networks, in a context where the
number of available samples N and the number of antennas
M are of the same order of magnitude. We focus here on the
popular likelihood penalization (LP) methods, such as Minimum
Description Length (MDL) or Akaike Information Criterion
(AIC). Such methods have been widely studied in the context
where N >> M , and in particular the consistency of the MDL
and the inconsistency of the AIC estimator were established in the
asymptotic regime where N → ∞ while M remains constant. We
propose here an analysis in the asymptotic regime where M,N
both converge to ∞ at the same rate, and using results from
random matrix theory, we establish conditions on the penalty
term to ensure consistency of LP methods in this latter regime.
As a consequence, we deduce that the MDL method is always
inconsistent while the AIC method can be consistent in certain
situations.

I. INTRODUCTION

The problem of detection, i.e, estimating the number of
sources from noisy observations is a fundamental problem
in signal processing, as well as in many other fields like
geophysics, finance or biomedical engineering. In the context
of array processing, detection is performed by using N ob-
servations collected by an array of M sensors. In general,
detection is a first step to obtain more precise informations on
source localization (Direction of Arrival estimation), power of
noise and source signals, or to perform advanced techniques
like source separation. Numerous methods have been proposed
since the past 40 years, and in particular, likelihood penaliza-
tion (LP) methods, which are among the most popular. These
methods consist in estimating the number of source signals
by computing the global maximum of a certain cost function,
composed of a part due to the log-likelihood of the model and
a penalty term. A lot of works have been devoted to build
LP-based estimators, and especially the so-called Minimum
Description Length (MDL) and Akaike Information Criteria
(AIC) estimators (see Wax & Kailath [1]), which are now
widely used in array processing. The statistical performance
of these estimators have been mainly studied in the asymptotic
regime where the number of available snapshots N converges
to ∞ while the number of antennas M remains constant. In
particular, it was shown by Zhao et al. [2] that the MDL
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estimator is consistent in the latter regime while the AIC
estimator is inconsistent. In practical situations, LP methods
are used for N >> M . However, it is not always possible
to have such an amount of samples, e.g. due to stationarity
constraints or when the number of antennas is large. In
this context, it was recently proposed (see e.g. Mestre &
Lagunas [3] in the context of DoA estimation) to consider the
asymptotic regime in which M,N both converge to ∞ while
the ratio M

N converges to a positive constant. In this latter
regime, LP methods, which rely on the eigenvalues of the
sample covariance matrix of the observations, do not behave
as usual, essentially because these sample eigenvalues exhibit
a new behaviour, which is not taken into account.

The purpose of this paper is therefore to study how LP
methods behave in this new asymptotic regime, and especially
to provide a first order approximation of the likelihood term.
This study will allow to deduce conditions on the penalty
term which guaranty the consistency of LP methods. For this,
we use recent random matrix theory results describing the
behaviour of the largest sample eigenvalues, providing the fact
that the number of sources to estimate is small compared to
M .

We mention here that some studies have been devoted to
study the performance of AIC and MDL estimator using tools
from random matrix theory, see Nadler [4], Nadakuditi &
Edelman [5], but none of these works addressed the consis-
tency of LP methods in the asymptotic regime considered here.

The paper is organized as follows. In section II, we present
the model of signals used in the remainder of the paper as
well as the addressed problem. In section III, we summarize
some results from random matrix theory, and especially results
concerning the asymptotic behaviour of the largest sample
eigenvalues. In section IV, we compute the asymptotic deter-
ministic equivalent of LP cost function, and provide constraints
of the penalty term to ensure consistency. Finally, we provide
some numerical examples in section V.

II. MODEL AND PROBLEM’S STATEMENT

We consider K narrow-band source signals impinging on
an array of M sensors, with K < M . At time n, the received
signal yn ∈ CM is represented by

yn = Asn + vn, (1)



where A is the M × K matrix of steering-vectors, assumed
full rank K, sn is the signal transmitted by the K sources at
time n and where vn is an additive white Gaussian noise with
covariance σ2I. In this paper, the signals sn are i.i.d. accross
n and follow a complex Gaussian distribution with zero mean
and covariance matrix Γ, so that E [yny

∗
n] = AΓA∗+σ2I. We

stress the fact that the analysis provided in this paper could be
easily extended to the case of unknown deterministic signals,
by using recent results on large information-plus-noise random
matrices (see e.g. the introduction of [6]). Assuming we collect
N > M samples of (1), the observed signal writes

YN = ASN +VN , (2)

with YN = [y1, . . . ,yN ], SN = [s1, . . . , sN ] and VN =
[v1, . . . ,vN ]. Under the additional assumption that Γ is full
rank, the signal covariance matrix AΓA∗ has rank K. By
denoting its eigenvalues λ1,N , . . . , λM,N (in decreasing order),
we have λ1,N ≥ . . . ≥ λK,N > λK+1,N = . . . = λM,N = 0.
In the same way, we denote by λ̂1,N ≥ . . . ≥ λ̂M,N the
eigenvalues of the sample covariance matrix YNY∗

N

N .
The detection by LP methods consists in estimating the

number of sources K by

K̂ = argmin
k=1,...,M

ĴN (k), (3)

where ĴN (k) is a cost function given by

ĴN (k) = L̂N (k) + PN (k), (4)

In (4), L̂N (k) is the log-likelihood (LL) term given by

L̂N (k) =
1

MN
log


(∏M

i=k+1 λ̂i,N

)N
(

1
M−k

∑M
i=k+1 λ̂i,N

)N(M−k)

 , (5)

and PN (k) a penalty term, which is given, for the AIC and
MDL methods, respectively by 1 (see e.g. [1])

PAIC,N (k) = −k(2M − k)

MN
, (6)

PMDL,N (k) = −k(2M − k) log(N)

2MN
.

In the asymptotic regime where M is constant and N → ∞,
it was shown in [2] that, with probability one (w.p.1)

YNY∗
N

N
= AΓA∗ + σ2I+O

(√
log (log(N))

N

)
,

which in turn allows to obtain the consistency of the estimate
K̂ defined in (3), i.e. K̂ = K w.p.1 for N large. However,
in the asymptotic regime where M,N → ∞ such that M

N
converges to a positive constant,∥∥∥∥YNY∗

N

N
−
(
AΓA∗ + σ2

)∥∥∥∥
does not converge to 0 anymore (Silverstein [7]), and the
consistency of K̂ is not guarantied.

1Notice that we normalized L̂N (k) and PN (k) by 1
MN

, compared to [1].
Of course, it does not change the estimate K̂, and it will be convenient for
the asymptotic analysis provided in the next section.

III. RANDOM MATRIX THEORY RESULTS

From now on, we assume the following asymptotic regime:
M = M(N) function of N so that cN = M

N → c ∈ (0, 1)
when N → ∞. We first describe the behaviour of the sample
eigenvalues in the case where there are no source signals
(section III-A) and next study the case where a small number
of source signals are received (section III-B).

A. Pure noise case

Under the assumption that no source signals are received
by the array, we have YN = VN . The global asymptotic
behaviour of the sample eigenvalues is described through the
empirical eigenvalue distribution of YNY∗

N

N , defined as the
random distribution

µ̂N =
1

M

M∑
k=1

δλ̂k,N
.

where δx is the Dirac measure at x. The behaviour of µ̂N is
given by the following result.

Theorem 1 (Marcenko & Pastur [8]). There exists a determin-
istic distribution µ, called the Marcenko-Pastur distribution,
such that

µ̂N
D−−−−→

N→∞
µ, w.p.1, (7)

having density given by

dµ(x)

dx
=

√
(x− x−)(x+ − x)

2πσ2cx
1[x−,x+](x),

where x− = σ2(1−
√
c)2 and x+ = σ2(1 +

√
c)2.

In addition to this result, we have (Bai & Silverstein [9]), for
each ε > 0, that λ̂1,N , . . . , λ̂M,N ∈ [x− − ε, x+ + ε] w.p.1 for
N large, that is, asymptotically, no sample eigenvalue escapes
outside the compact support [x−, x+] of the Marcenko-Pastur
distribution. This result implies in particular that λ̂1,N → x+

and λ̂M,N → x− w.p.1 as N → ∞.

B. Perturbation by a small number of sources

We now evaluate the effect of the presence of a small
number of signals, and we consider YN = ASN +VN , with
K = rank (AΓA∗) independent of N . In this case, YN is
of course a multiplicative small rank perturbation of the pure
noise model, since

YN
D
=
(
AΓA∗ + σ2I

)1/2
XN ,

with XN having independent standard Gaussian entries.
By standard techniques, it is possible to show that we

still have µ̂N
D−→ µ w.p.1. as N → ∞. Hence, a fixed

number of sources does not modify the global asymptotic
behaviour of the sample eigenvalues. The difference with the
pure noise case will naturally occur in the behaviour of the
largest eigenvalues, which is given by the following result.



Theorem 2 (Baik et al. [10]). Assume that λ1,N , . . . , λK,N
converge to λ1, . . . , λK . Then, for k = 1, . . . ,K

λ̂k,N
a.s.−−−−→
N→∞

ψ(λk) ,
{
x+ if λk ≤ σ2

√
c,

(λk+σ
2)(λk+σ

2c)
λk

if λk > σ2
√
c.

(8)

and λ̂K+1,N
a.s.−−−−→
N→∞

x+.

Thus, if λK is above the threshold σ2
√
c, exactly K

sample eigenvalues will escape from the support [x−, x+] of
the Marcenko-Pastur distribution. Consequently, the condition
λK

σ2 >
√
c can be seen as a detectability threshold, in the

sense that is ensures asymptotic separation between "signal"
and "noise" sample eigenvalues. It can be also interpreted as
a SNR threshold, if we define the SNR as λK

σ2 . The escape of
the K largest sample eigenvalues is illustrated in figure 1.
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Figure 1. Density of the Marcenko-Pastur distribution and samples eigen-
values (black crosses), with M = 100, N = 200, σ = 1, K = 3 and signal
eigenvalues λ1,N = 2, λ2,N = 5, λ3,N = 7.

IV. ASYMPTOTIC BEHAVIOUR OF LP METHODS

In this section, we use the previous results on the be-
haviour of the largest sample eigenvalues to study first order
approximation of the log-likelihood L̂N (k) given in (5), and
then deduce conditions on the penalty term PN (k) to ensure
consistency. We therefore assume that M = M(N) is a
function of N so that cN = M

N → c ∈ (0, 1) when N → ∞,
and K is independent of N . From now on, we define the
function f(x) = x− log(x).

Proposition 1. Assume the conditions of Theorem 2 and set
λK+1 = 0. Then we have, for k = 1, . . . ,K + 1, w.p.1,

L̂N (k) =

c− 1

c
log(1− c)− 1

+
1

M

k∑
i=1

[
f

(
ψ(λi)

σ2

)
− 1

]
+ δN + o

(
1

N

)
,

where δN = o(1) a.s. and does not depend on k.

Proof: We first express the LL, for k = 1, . . . ,K +1, as

L̂N (k) =

1

M

M∑
i=k+1

log
(
λ̂i,N

)
− M − k

M
log

(
1

M − k

M∑
i=k+1

λ̂i,N

)
.

(9)

Using Theorem 2 and a Taylor expansion of the logarithm, the
first term on the right-hand side (r.h.s) of (9) writes w.p.1

1

M

M∑
i=k+1

log
(
λ̂i,N

)
=

1

M
log det

(
YNY∗

N

N

)
− 1

M

k∑
i=1

log (ψ(λi)) + o

(
1

N

)
.

We clearly have

1

M
log det

(
YNY∗

N

N

)
=

∫
R

log(x)dµ̂N (x), (10)

and from the results of Section III-A and III-B, (10) converges
to
∫ x+

x− log(x)dµ(x) w.p.1. as N → ∞. From Bai & Silver-
stein [11],∫ x+

x−
log(x)dµ(x) = log(σ2) +

c− 1

c
log(1− c)− 1,

and thus

1

M

M∑
i=k+1

log
(
λ̂i,N

)
=

log(σ2) +
c− 1

c
log(1− c)− 1

− 1

M

k∑
i=1

log (ψ(λi)) + εN + o

(
1

N

)
, (11)

where εN = o(1) w.p.1 and is independent of k. Similarly, the
second term on the r.h.s. of (9) writes

log

(
1

M − k

M∑
i=k+1

λ̂i,N

)
=

log

(
1

M
Tr

(
YNY∗

N

N

))
+

k

M − k
−

1
M−k

∑k
i=1 ψ(λi)

1
MTr

(
YNY∗

N

N

) + o

(
1

N

)
.

As previously, we also have

1

M
Tr

(
YNY∗

N

N

)
a.s.−−−−→
N→∞

∫ x+

x−
xdµ(x).

But it also holds that

1

M
Tr

(
VNV∗

N

N

)
a.s.−−−−→
N→∞

∫ x+

x−
xdµ(x),



and the law of large number implies
∫ x+

x− xdµ(x) = σ2. Thus,

log

(
1

M − k

M∑
i=k+1

λ̂i,N

)
=

log
(
σ2
)
+

k

M − k
− 1

M − k

k∑
i=1

ψ(λi)

σ2
+ ε′N + o

(
1

N

)
.

(12)

with ε′N = o(1) w.p.1 independent of k. Gathering the
estimates (11) and (12) with (9), we obtain after simple algebra
the desired result.

As a first immediate consequence of Proposition 1, we see
that the MDL estimator is not consistent. Indeed, in the LL
term L̂N (k), the information about k is carried by a O

(
1
N

)
term and is overshadowed by the MDL penalty term which is
O
(

log(N)
N

)
, for N large.

Since the AIC penalty term is O
(

1
N

)
, we need precise

constraints on the penalty term PN (k), to guaranty consistency
of LP methods, which are given in the following result, whose
proof is straightforward and therefore omitted.

Corollary 1. Assume the conditions of Theorem 2 and that all
the sources are asymptotically detectable, i.e. λK > σ2

√
c. Let

0 < η < f
(
ψ(λK)
σ2

)
− f

(
(1 +

√
c)2
)

and

PN (k) = − k

M

(
f
(
(1 +

√
c)2
)
− 1 + η

)
. (13)

Then w.p.1, for all large N ,

ĴN (0) < . . . < ĴN (K) and ĴN (K) > ĴN (K + 1).

By defining

K̂ = min
{
k : ĴN (k) > ĴN (k + 1)

}
, (14)

Corollary 1 thus implies that w.p.1, for N large, K̂ = K. The
fact that all the sources are detectable, i.e. λK > σ2

√
c, is of

course necessary (but not sufficient) for the consistency of LP
methods, and it can be easily checked that if this condition
is not verified, then ĴN (k) will have a local maximum at
the point max

{
k : λk > σ2

√
c
}

(or at 0 if no sources are
detectable), and therefore K will be underestimated w.p.1. for
N large.

Comparing the penalty term of the AIC (6), which is equal
to −2kc

M + o
(

1
N

)
, to (13), we deduce that the AIC estimator

defined by (14) with penalty term (6), is consistent iff

1 + 2c < f

(
ψ(λK)

σ2

)
,

a condition which holds iff ψ(λK)
σ2 is large enough.

V. NUMERICAL EXAMPLES

In this section, we illustrate the performance of the MDL
and AIC estimator in terms of probability of misdetection.
We consider a ratio cN = c = 0.5, a noise variance σ2 = 1
and a matrix AΓA∗ having K = 3 non-zero eigenvalues at
λ1,N = σ2

√
c+4, λ2,N = σ2

√
c+3 and λ3,N = σ2

√
c+0.3.
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Figure 2. Emp. prob. of misdetection (1000 trials) vs number of sensors

In this case, f
(
ψ(λ3)
σ2

)
< 1 + 2c and consistency of the AIC

is not guarantied. Figure 2 shows the empirical probability of
misdetection vs the number of sensors (with N = M

c = 2M
samples), for the AIC and MDL estimator, as well as a generic
LP estimator having a penalty term as in (13) selected with

η = 0.05

(
f

(
ψ(λ3)

σ2

)
− f

(
(1 +

√
c)2
))

.

Both MDL and AIC estimator are not consistent, while the
LP estimator with selected penalty term is consistent, thus
validating Corollary 1. We stress the fact that the selected LP
estimator is used to illustrate Corollary 1, and is of course not
usable in practice, since η is not available.
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