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Abstract. A large deviation principle is proved for the empirical mea-
sures of independent identically distributed random variables with a topol-
ogy based on functions having only some exponential moments. The rate
function differs from the usual relative entropy: It involves linear forms
which are no longer measures. Following D.W. Stroock and O. Zeitouni,
the Gibbs Conditioning Principle (GCP) is then derived with the help of
the previous result. Besides a rather direct proof, the main improvements
with respect to already published GCP’s are the following: Convergence
holds in situations where the underlying log-Laplace transform (the pres-
sure) may not be steep and the constraints are built on energy functions
admitting only some finite exponential moments. Basic techniques from
Orlicz spaces theory appear to be a powerful tool.
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1. Introduction

Let (Yi)i≥1 be a sequence of independent identically distributed random vari-
ables with common law µ on a measurable space (Σ,A). The empirical measures

LY
n =

1

n

n∑
i=1

δYi

(δa is the Dirac measure at a) are random elements in the set P of the proba-
bility measures on (Σ,A).
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1.1. Sanov’s theorem. Sanov’s theorem describes the limiting behaviour of
1
n

log P(LY
n ∈ ·) as n tends to infinity, by means of a Large Deviation Principle

(LDP) whose good rate function is given for any ν ∈ P by

H(ν | µ) =

∫
Σ

log
(dν

dµ

)
dν if ν � µ,

and ∞ otherwise: The relative entropy of ν with respect to µ. For this LDP,
the topology on P is σ(P , B) : The coarsest topology which makes the evalua-
tions ν ∈ P 7→

∫
Σ

f dν ∈ R continuous for all f in the space B of the bounded
measurable functions on Σ.
In the present paper, this LDP is extended by considering a stronger topol-
ogy where B is replaced by the space Lτ of all functions f with some finite
exponential moments with respect to µ :∫

Σ

ea|f | dµ < ∞, for some a > 0. (1.1)

We identify this space as the Orlicz space associated with the following norm:

‖f‖τ = inf

{
a > 0,

∫
Σ

τ
(f

a

)
dµ ≤ 1

}
where τ(x) = e|x| − |x| − 1.

A precise description of the space of continuous linear forms of this non-reflexive
Banach space allows us to define the state space for the extended Sanov theorem
(see Section 2 for details). This space is not P anymore, but a different set Q of
all non-negative continuous linear forms on Lτ with a unit mass. In particular,
the effective domain of the relative entropy H is a strict subset of Q. The
topology on Q is σ(Q,Lτ ) and the rate function I has the following form (for
any ` ∈ Q such that I(`) < ∞)

I(`) = H(`a | µ) + sup

{
〈`s, f〉; f,

∫
Σ

ef dµ < ∞
}

,

where ` = `a + `s is uniquely decomposed into the sum of a probability mea-
sure `a which is absolutely continuous with respect to µ, and a non-negative
continuous linear form `s on Lτ which is not σ-additive (if non null).

The space of singular forms is the annihilator of the space Mτ of all functions
admitting all exponential moments (see Section 2.1). In particular, the “mass”
of `s is 〈`s,1〉 = 0, although `s ≥ 0 may not be zero. For more details on this
subject see [12] and [14]. In the context of Csiszár’s example (Section 3.4),
the singular parts are approximated in a certain sense by probability measures
(Proposition 3.10 and Remark 3.6). For a precise statement of the extended
Sanov theorem, see Theorem 3.2 below.
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1.2. Gibbs conditioning principle. The Gibbs conditioning principle de-
scribes the limiting behaviour as n tends to infinity of the law of k tagged
particles Y1, . . . , Yk under the constraint that LY

n belongs to some subset A0 of
P with P(LY

n ∈ A0) positive for all n ≥ 1. Typically, the expected result is

lim
n→∞

P
(
(Y1, . . . , Yk) ∈ · | LY

n ∈ A0

)
= νk

∗ (·), (1.2)

where ν∗ minimizes ν 7→ H(ν | µ) subject to ν ∈ A0. This question is of interest
in statistical mechanics since this conditional law is a canonical distribution.
A typical conditioning set is

A0 =

{
ν ∈ P ;

∫
Σ

ϕ dν = E

}
, (1.3)

where ϕ is an energy function on the one-particle phase space Σ.
The close relationship between Sanov’s theorem and the Gibbs conditioning
principle is well known. It has been exploited by I. Csiszár in [6] and by
D. W. Stroock and O. Zeitouni in [21]. As in [6] and [21], we shall not be
able to handle the difficult and important case where P(LY

n ∈ A0) = 0 for
n ≥ 1. We follow [21] by introducing blow-ups Aδ of A0 =

⋂
δ>0 Aδ such that

P(LY
n ∈ Aδ) > 0 for all n ≥ 1 and δ > 0.

With the extended Sanov theorem in hand, rather than its usual version, the
proof of the Gibbs conditioning principle is more direct and its assumptions
can be significantly relaxed. On one hand, conditioning sets A0 as in (1.3)
are naturally built on energy functions ϕ in Lτ , that is satisfying (1.1). On
the other hand, the following restriction, assumed in [21]: For all δ > 0,
limn→∞ νn

∗ ({LY
n ∈ Aδ}) = 1, is removed. As a consequence, it is proved that

the Gibbs conditioning principle still holds in situations where a lack of steep-
ness of the pressure β 7→ log

∫
Σ

eβϕ dµ occurs (see Csiszár’s example in Sections
3.4 and 4.4). The Gibbs conditioning principle we have obtained is stated in
Theorem 4.2.

Let us emphasize that the introduction of Orlicz spaces and specifically of
basic duality results for Orlicz spaces (recalled in Section 2) is of prime necessity
to get direct proofs of our main results.

1.3. About the literature. I. N. Sanov [19] proved the LDP for LY
n with

Σ = R and the weak topology on P . This LDP is extended to the situa-
tion where Σ is a Polish space by M. D. Donsker and S. R. S. Varadhan
[9] and R. R. Bahadur and S. Zabell [3] for the weak topology. P. Groene-
boom, J. Oosterhoff and F. H. Ruymgaart [13] dropped the Polish requirement
and considered Hausdorff spaces. They obtained Sanov’s theorem for the so-
called τ -topology: σ(P , B). A. de Acosta improved this result and simplified
the proof in [7]. In [6], I. Csiszár proved Sanov’s theorem in a general set-
ting by means of an alternative approach based on projection in information.
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In [10], P. Eichelsbacher and U. Schmock consider the U -empirical measures
LY,k

n = 1
n···(n−k+1)

∑
(i1,...,ik) δ(Xi1

,...,Xik
) where the sum is taken over all k-tuples

in {1, . . . , n}k with pairwise distinct components. The special case k = 1
is an extension of Sanov’s theorem: The rate function is the usual relative
entropy. The lower bound is obtained for a topology which is slightly weaker
than σ(Pτ ,Lτ ) and the upper bound holds for a topology on P which is slightly
weaker than σ(Pτ ,Mτ ), whereMτ stands for the space of all functions f which
admit finite exponential moments of all orders with respect to µ :∫

Σ

ea|f | dµ < ∞, for all a > 0, (1.4)

and Pτ stands for the set of all probability measures which integrate all func-
tions in Lτ or Mτ . Our result for k = 1 is stronger, but on the other hand, the
LDP for LY,k

n in [10] for k ≥ 2 is far from being trivial and is not a consequence
of our results.

As already mentioned, the Gibbs conditioning principle (GCP) has been
studied by I. Csiszár in [6] and by D. W. Stroock and O. Zeitouni in [21].
An updated presentation of the second approach is available in the textbook
of A. Dembo and O. Zeitouni ([8], Section 7.3). In [4], E. Bolthausen and
U. Schmock proved a GCP for the occupation measures of uniformly ergodic
Markov chains. Based on [6], A. Aboulalaâ [1] obtained a GCP for the empirical
measures LY

n of Markov jump processes. With the LDP for LY,k
n in hand,

P. Eichelsbacher and U. Schmock [10] derived a GCP, following the approach
of [21]. They obtained it for k tagged particles with an energy function ϕ in
Mτ (see (1.3) and (1.4)) and for a topology on Pτ which is slightly weaker
than σ(Pτ ,Mτ ).

In [6], I. Csiszár obtained alternative results with an alternative powerful
approach. In particular, he proved the convergence in information of the con-
ditioned laws which implies their convergence in variation and the notion of
generalized I-projection is introduced so that the GCP holds even with energy
functions satisfying (1.1).

1.4. Outline of the paper. We recall in Section 2 a few definitions and results
about Orlicz spaces: It is natural and worthy to express exponential moment
conditions ((1.1) and (1.4)) in terms of Orlicz spaces (see Section 2.3).
We prove the LDP in Section 3. The main result is Theorem 3.2 which states
the LDP and describes the associated rate function.
We study the Gibbs Conditioning Principle in Section 4 whose main statement
is Theorem 4.2.
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2. Definitions and results about Orlicz spaces

In this section, elementary facts about Orlicz spaces and their dual spaces
are recalled for future use, without proof.

2.1. Basic definitions and results. A Young function θ is an even, con-
vex, [0,∞]-valued function satisfying lims→∞ θ(s) = ∞ and θ(s0) < ∞ for
some s0 > 0. Let µ be a probability measure on the measurable space (Σ,A).
Consider the following vector spaces of measurable functions:

Lθ =

{
f : Σ → R, ∃a > 0,

∫
Σ

θ
(f

a

)
dµ < ∞

}
,

Mθ =

{
f : Σ → R, ∀a > 0,

∫
Σ

θ
(f

a

)
dµ < ∞

}
.

The spaces Lθ and Mθ correspond to Lθ and Mθ when µ-almost everywhere
equal functions are identified. Consider the following Luxemburg norm on Lθ:

‖f‖θ = inf

{
a > 0,

∫
Σ

θ
(f

a

)
dµ ≤ 1

}
. (2.1)

Then, (Lθ, ‖.‖θ) is a Banach space called the Orlicz space associated with θ.
Mθ is a subspace of Lθ. If θ is a finite function, Mθ is the closure of the space
of step functions

∑n
i=1 ai1Ai

under ‖ · ‖θ. For references, see [2], [17]. Let θ∗

be the convex conjugate of the Young function θ:

θ∗(t) = sup
s∈R
{st− θ(s)}.

As θ∗ is a Young function, one can consider the Orlicz space Lθ∗ .
Hölder’s inequality holds between Lθ and Lθ∗ : For all f ∈ Lθ and g ∈ Lθ∗ ,

fg ∈ L1(µ) and

∫
Σ

|fg| dµ ≤ 2‖f‖θ‖g‖θ∗ . (2.2)

A Young function θ satisfies the ∆2-condition if there exists K > 0, s0 ≥ 0
such that for all s ≥ s0, θ(2s) ≤ Kθ(s). If θ satisfies the ∆2-condition, then
Mθ = Lθ, see ([17], Corollary 5, p. 77).

2.2. Duality in Orlicz spaces. By (2.2), any g in Lθ∗ defines a continuous
linear form on Lθ for the duality bracket 〈f, g〉 =

∫
fg dµ. In the general case,

the topological dual space of (Lθ, ‖.‖θ) may be larger than Lθ∗ . Nevertheless,
we always have the following result:

Theorem 2.1. Let θ be a finite Young function and θ∗ its convex conjugate.
The topological dual space of Mθ can be identified, by means of the previous
duality bracket, with Lθ∗: M ′

θ ' Lθ∗ .

For a proof of this result, see [17] or ([15], Section 4).
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Remark 2.1. If θ satisfies the ∆2-condition, then L′θ ' Lθ∗

As Lθ is a Riesz space (see [5]), one can define the absolute value |`| of any
` ∈ L′θ .

Definition 2.2. Let ` ∈ L′θ, ` is said to be µ-singular if there exists a sequence
A1 ⊃ A2 ⊃ A3 ⊃ · · · of measurable sets such that

lim
k

µ(Ak) = 0 and 〈|`|,1Σ\Ak
〉 = 0, ∀k ≥ 1.

Let us denote by Ls
θ the subspace of all µ-singular elements of L′θ.

Theorem 2.3. Let θ be a finite Young function, the topological dual space L′θ
of (Lθ, ‖ · ‖θ) is the direct sum:

L′θ ' (Lθ∗ · µ)⊕ Ls
θ.

Therefore any continuous linear form ` on Lθ is uniquely decomposed as ` =
`a + `s, where `a and `s are continuous, d`a

dµ
∈ Lθ∗ and `s is µ-singular.

For a proof of this result, see ([14], Theorem 2.2) or ([15], Theorem 4.3).
`a is called the absolutely continuous part of ` and `s its singular part.

Proposition 2.4. Let θ be a finite Young function. Then for any f ∈ Mθ and
`s ∈ Ls

θ, we have 〈`s, f〉 = 0

For a proof of this result, see [14] or ([15], Proposition 4.2).

2.3. Orlicz spaces and exponential moment conditions. Consider

γ(s) = es − s− 1 and τ(s) = γ(|s|). (2.3)

Then, τ is a Young function and the two following equivalences are straight-
forward: (

∃a > 0,

∫
ea|f | dµ < ∞

)
⇔ f ∈ Lτ ,(

∀a > 0,

∫
ea|f | dµ < ∞

)
⇔ f ∈Mτ .

In case f ∈ Lτ , we shall say that f admits some exponential moments; in case
f ∈Mτ , we will say that f admits all its exponential moments.

3. An extension of Sanov’s Theorem

The main result of this section is Theorem 3.2 which states the LDP and
describes the associated rate function. The LDP is partially proved in Section
3.2 via a projective limit technique which yields a convex conjugate rate func-
tion Θ∗. In Section 3.3, we identify the rate function by comparing it to an
auxiliary function J and by using a result of R. T. Rockafellar on the repre-
sentation of convex functionals. In Section 3.4, we study an example due to
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Csiszár in order to show the existence of singular parts.

3.1. Statement of the extended Sanov theorem. Let us consider Lτ and
its algebraic dual space L∗τ . Note that almost everywhere equal functions are
not identified when dealing with Lτ . Consider the collection of linear forms
on L∗τ denoted by Gf : ` 7→ 〈`, f〉, f ∈ Lτ . Denote by σ(L∗τ ,Lτ ) the coarsest
topology on L∗τ which makes all the Gf ’s continuous and by E the smallest
σ-field on L∗τ which makes them measurable. We are interested in the large
deviation behaviour of

LY
n =

1

n

n∑
i=1

δYi
∈ L∗τ ,

where {Yi}i≥1 is a sequence of Σ-valued, independent and identically µ-distributed
variables.

An identity between function spaces. The following identifications prevail
in the remainder of the paper

Lτ∗ ⊂ L′τ ⊂ L∗τ ⊂ L∗τ , (3.1)

where

· Lτ∗ is the Orlicz space associated with the Young function τ ∗

· L′τ (resp. L∗τ ) is the topological (resp. algebraic) dual of Lτ and
· L∗τ is the algebraic dual of Lτ .

For the first identification, take f ∈ Lτ∗ , then fµ ∈ L′τ by Hölder’s inequality
(2.2): We write Lτ∗ = Lτ∗ .µ for short. The second identification is straigh-

forward. For the third identification, let ` ∈ L∗τ and consider ˜̀ defined on L∗τ
by 〈˜̀, f〉 = 〈`, ḟ〉 where f ∈ Lτ and ḟ ∈ Lτ is the equivalence class of f with

respect to µ-almost everywhere equality. The form ˜̀ is well-defined and the
third identification holds.

The state space. The state space of the extended Sanov theorem is

Q 4
= { ` ∈ L∗τ ; ` ≥ 0, 〈`,1〉 = 1 }.

It is endowed with EQ : The σ-field induced by E on Q. Note that Lτ , Q, E
and EQ depend on µ.

The rate function. The rate function of the extended Sanov theorem is

I(`) =

{ ∫
Σ

log
(

d`a

dµ

)
d`a + supf∈Dµ

〈`s, f〉 if ` ∈ Q ∩ L′τ
∞ otherwise.

,

where ` = `a + `s is the decomposition stated in Theorem 2.3, Dµ = {f ∈
Lτ ; E ef(Y ) < ∞} and E stands for the expectation with respect to µ.

Remark 3.1. Due to (3.1), the set Q∩ L′τ is well-defined.
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Definition 3.1. The above rate function I(`) is the extended relative entropy
of ` with respect to µ.

We shall denote I(`) = Ia(`) + Is(`) = Ia(`
a) + Is(`

s) where:

Ia(`) =

∫
Σ

log
(d`a

dµ

)
d`a,

Is(`) = sup{〈`s, f〉; f, E ef(Y ) < ∞}.
where `a and `s are the absolutely continuous and singular parts of ` (see
Theorem 2.3). The following theorem is the main result of the section.

Theorem 3.2. (Extended Sanov theorem). The empirical measures {LY
n }n≥1

satisfy the LDP in Q endowed with the σ-field EQ and the topology σ(Q,Lτ )
with the rate function I. This means that

(1) for all measurable closed subset F of Q,

lim sup
n→∞

1

n
log P(LY

n ∈ F ) ≤ − inf
`∈F

I(`),

(2) for all measurable open subset G of Q,

lim inf
n→∞

1

n
log P(LY

n ∈ G) ≥ − inf
`∈G

I(`).

Moreover, I is convex and is a good rate function: Its sublevel sets {I ≤ α},
α ≥ 0, are compact.

Proof. The LDP in σ(L∗τ ,Lτ ) is proved in Lemma 3.4 with the rate function
Θ∗ which is convex as a convex conjugate. By Proposition 3.8, Θ∗ = I. But the
domain of I is included inQ, thus the LDP holds on σ(Q,Lτ ) (for this argument
see [8], Lemma 4.1.5(b)). This completes the proof of the theorem. �

Remark 3.2. Let I(`) < ∞, then ` ∈ L′τ , `a ≥ 0 and by Proposition 2.4,
〈`a,1〉 = 1. Hence d`a

dµ
is a probability density and Ia is close to the usual

relative entropy H(· | µ). The difference lies in the fact that Ia is defined over
L∗τ whereas H is defined over P .

Remark 3.3. The trace of the decomposition of L′τ into absolutely continuous

and singular components (Theorem 2.3) onQ isQ∩L′τ =
(
Lτ∗∩P

)
⊕(Ls

τ∩{` ≥
0}).

Remark 3.4. We cannot expect the LDP with the good rate function H(· | µ).
Indeed, A. Schied proved in [20] that if the topology is too wide (the so-called
τφ-topology where φ admit only some exponential moments), then {H ≤ α} is
no longer compact. The same argument holds in our context: {` ∈ Q; H(`a) ≤
α} = {fµ; f ∈ Lτ∗ , f ≥ 0,

∫
Σ

f dµ = 1,
∫

Σ
f ln f dµ ≤ α}+(Ls

τ ∩{` ≥ 0}) which
is not compact.
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Let Pτ denote the set of all probability measures which integrate all functions
in Mτ : Pτ = {ν ∈ P ;

∫
Σ
|f | dν < ∞,∀f ∈ Mτ}. Let us endow it with the

σ-field σ
(
ν 7→

∫
Σ

f dν; f ∈Mτ

)
and with the topology σ(Pτ ,Mτ ).

Corollary 3.3. The empirical measures {LY
n }n≥1 satisfy the LDP in (Pτ , σ(Pτ ,Mτ ))

with the good rate function H(· | µ).

This is in accordance with the result obtained by P. Eichelsbacher and
U. Schmock ([10], Theorem 1.8).

Proof. This is a direct consequence of the contraction principle applied to
the transformation ` ∈ Q → `|Mτ ∈ M∗

τ . Indeed, by Proposition 2.4 we
have `|Mτ = `a

|Mτ
= `a (where the last equality is an identification). Hence,

inf{I(`); `|Mτ = ν} = inf{Ia(ν)+Is(`
s); `a = ν} = Ia(ν) = H(ν | µ). The result

follows from the obvious continuity of the considered transformation. �

3.2. Proof of the LDP. Lemma 3.4 below states the LDP with the rate
function Θ∗ expressed as the convex conjugate of

Θ(f) = log E ef(Y ) = log

∫
Σ

ef dµ ∈ (−∞,∞], f ∈ Lτ .

Lemma 3.4. The empirical measures {LY
n }n≥1 satisfy the LDP (in the sense

of Theorem 3.2) in L∗τ endowed with the σ-field E and the topology σ(L∗τ ,Lτ )
with the good rate function Θ∗(`) = supf∈Lτ

{〈`, f〉 −Θ(f)}.

Proof. It is based on Dawson-Gärtner’s projective limit approach. By Theo-
rem 4.6.9 in [8], it is sufficient to check that for all d ≥ 1 and f1, . . . , fd ∈ Lτ ,
(〈LY

n , f1〉, . . . , 〈LY
n , fd〉) satisfies a LDP.

But (〈LY
n , f1〉, . . . , 〈LY

n , fd〉) = 1
n

∑n
i=1(f1(Yi), . . . , fd(Yi)) = 1

n

∑n
i=1

~f(Yi) where
~f(x) =

(
f1(x), . . . , fd(x)

)
is a Rd-valued function. Then, {~f(Yi)} is a sequence

of i.i.d., Rd-valued random variables. Since f1, . . . , fd ∈ Lτ , ~f(Yi) admits expo-
nential moments. By Cramér’s theorem in Polish spaces (Theorem 6.1.3 and

Corollary 6.1.6 in [8]), 1
n

∑n
i=1

~f(Yi) satisfies the LDP in Rd with the good rate
function

Id(x) = sup
λ∈Rd

{λ · x− log E eλ·~f(Y )}, x ∈ Rd.

By Dawson-Gärtner’s theorem, LY
n = 1

n

∑n
i=1 δYi

satisfies the LDP with the
good rate function, given for any ` ∈ L∗τ , by:

sup{
∑d

i=1 λi〈`, fi〉 − log E e
∑

λifi(Y ); d ≥ 1, λ ∈ Rd, f1, . . . , fd ∈ Lτ} =
supf∈Lτ

{〈`, f〉 − log E ef(Y )} = Θ∗(`), which is the desired result. �
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3.3. Identification of the rate function. In this section, we prove the iden-
tity I = Θ∗ in Proposition 3.8. Lemmas 3.5, 3.6 and 3.7 are preliminary results
for the proof of this identity.
Let us consider J(`) = supf∈Lτ

{
〈`− µ, f〉 −

∫
Σ

γ(f) dµ
}

, where γ is given by
(2.3).

Lemma 3.5. Let ` ∈ L∗τ , then

(1) Θ∗(`) < ∞⇒ ` ∈ L∗τ ,
(2) J(`) ≤ Θ∗(`),
(3) Θ∗(`) < ∞⇒ ` ∈ Q ∩ L′τ .

Proof. 1. Let f ∈ Lτ be such that f = 0 µ-a.e. Then, for any real λ, Θ(λf) = 0
and λ〈`, f〉 ≤ Θ∗(`) + Θ(λf) = Θ∗(`). Hence, Θ∗(`) < ∞ implies 〈`, f〉 = 0.
Thus ` is constant over the equivalence classes, that is ` ∈ L∗τ .
2. As for all t ≥ 0, log t ≤ t− 1, we have: −E ef(Y ) + 1 ≤ − log E ef(Y ) and

J(`) = sup
f∈Lτ

{
〈`, f〉 −

∫
Σ

(ef − 1) dµ

}
≤ Θ∗(`).

3. As Θ∗(`) < ∞ implies ` ∈ L∗τ , let us consider ` ∈ L∗τ .
For all f ∈ Lτ , 〈` − µ, f〉 ≤ J(`) +

∫
Σ

γ(f) dµ. As γ(s) ≤ τ(s) = γ(|s|), we
have 〈` − µ, f〉 ≤ J(`) +

∫
Σ

τ(f) dµ. Choosing η = ±1/‖f‖τ when f 6= 0, the
definition of the Luxemburg norm (2.1) yields

∫
Σ

τ(ηf) dµ = 1 which implies
|〈` − µ, f〉| ≤ (J(`) + 1)‖f‖τ . This inequality still holds with ‖f‖τ = 0.
Therefore `− µ ∈ L∗τ is ‖ · ‖τ -continuous: ` ∈ L′τ , since J(`) ≤ Θ∗(`) < ∞.
Suppose that 〈`,1〉 = a 6= 1. Then Θ∗(`) ≥ 〈`, λ1〉− log E eλ1 = λ(a−1) which
tends to ∞ as λ tends to infinity with the sign of a − 1. Therefore, 〈`,1〉 = 1
if Θ∗(`) < ∞.
Suppose now that there exists f ≥ 0 with 〈`, f〉 < 0. Let λ ≥ 0, then Θ∗(`) ≥
〈`,−λf〉− log E e−λf ≥ 〈`,−λf〉 tends to ∞ as λ tends to ∞. Thus Θ∗(`) < ∞
implies ` ≥ 0 and Lemma 3.5 is proved. �

Lemma 3.6. Let ` ∈ L′τ . Then, for all f ∈ Lτ

(1) limn→∞〈`, fn〉 = 〈`a, f〉 where (fn) is any sequence of bounded measur-
able functions which converges pointwise to f and such that |fn| ≤ |f |,
for all n ≥ 1,

(2) limn→∞〈`,1{|f |>n}f〉 = 〈`s, f〉.

Proof. 1. Since fn is bounded, 〈`s, fn〉 = 0 (see Proposition 2.4). Therefore
〈`, fn〉 = 〈`a, fn〉 =

∫
fn

d`a

dµ
dµ with d`a

dµ
∈ Lτ∗ . The limit follows from the

dominated convergence theorem.
2. We have 〈`,1{|f |>n}f〉 = 〈`s,1{|f |>n}f〉 + 〈`a,1{|f |>n}f〉. The dominated
convergence theorem implies that limn→∞〈`a,1{|f |>n}f〉 = 0 and since 1{|f |≤n}f
is bounded, 〈`s, f〉 = 〈`s,1{|f |>n}f〉 (see Proposition 2.4). �
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Lemma 3.7. For all ` in L′τ , Θ∗(`) = Θ∗(`a)+sup{〈`s, f〉; f ∈ dom Θ} where
dom Θ = {f ∈ Lτ , Θ(f) < ∞} is the effective domain of Θ.

Remark 3.5. Clearly, dom Θ = Dµ.

Proof. We first introduce some notations which are customary in convex anal-
ysis. Let A be a convex subset of Lτ and let ` be in L′τ . The convex indi-

cator function of A is δ(f |A) =

{
0 if f ∈ A
+∞ otherwise

and its convex conjugate

δ∗(`|A) = supf∈Lτ
{〈`, f〉 − δ(f |A)} = supf∈A〈`, f〉 is called the support func-

tional of A. For any ` ∈ L′τ , we have

Θ∗(`) = sup
f∈Lτ

{〈`a, f〉 −Θ(f) + 〈`s, f〉 − δ(f |dom Θ)}

≤ Θ∗(`a) + δ∗(`s|dom Θ).

To prove the converse, let f, g ∈ Lτ . For n ≥ 1, define un = fn + g1{|g|>n} with
fn = (−n ∨ f ∧ n)1{|f |≤n}. Then

Θ∗(`) ≥ 〈`, un〉 −Θ(un) = 〈`, fn〉 −Θ(un) + 〈`, g1{|g|>n}〉.

Since eun ≤ 1 + ef + eg, it follows from the dominated convergence theorem
that Θ(un) → Θ(f). Hence, Θ∗(`) ≥ 〈`a, f〉 − Θ(f) + 〈`s, f〉 by Lemma 3.6.
This completes the proof of the proposition. �

Proposition 3.8. The identity Θ∗ = I holds on L∗τ .

Proof. By Lemma 3.5, the effective domain of Θ∗ is included in Q∩L′τ and by
Lemma 3.7, for all ` ∈ L′τ , Θ∗(`) = Θ∗(`a) + Is(`

s). Taking Remark 3.3 into
account, it remains to prove that for all ` ∈ P ∩ Lτ∗ , Θ∗(`) = H(` | µ). Let
` = hµ belong to P ∩ Lτ∗ , that is h ∈ Lτ∗ , h ≥ 0,

∫
Σ

h dµ = 1. By a direct
computation, we have, for all f ∈ dom Θ,

Θ(f) = inf
λ∈R

{
−λ− 1 + eλ

∫
Σ

ef dµ

}
. (3.2)
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Therefore,

Θ∗(hµ) = sup
f∈dom Θ

{〈hµ, f〉 −Θ(f)}

(a)
= sup

λ∈R,f∈dom Θ

{
〈hµ, f〉+ λ + 1− eλ

∫
Σ

ef dµ

}
(b)
= sup

λ∈R,f∈dom Θ

{
〈hµ, λ + f〉 −

∫
Σ

(eλ+f − 1) dµ

}
= sup

g∈dom Θ

{∫
Σ

hg dµ−
∫

Σ

(eg − 1) dµ

}
(c)
=

∫
Σ

(h log h− h + 1) dµ

(d)
=

∫
Σ

h log h dµ = H(hµ | µ),

where (a) comes from (3.2), (b) and (d) follow from the fact that µ and hµ are
probability measures and (c) follows from a general result of R. T. Rockafellar
([18], Theorem 2), noting that the convex conjugate of es − 1 is t log t− t + 1.
This completes the proof of the proposition. �

3.4. Csiszár’s example. In this section, we encounter a minimizer of the
extended relative entropy under a linear constraint with a non null singular
part. We deal here with a probability distribution µ which already appears
in ([6], Example 3.2) and in ([8], Exercise 7.3.11). Let µ be the probability

measure on Σ = [0,∞) defined by µ(dy) = c e−y

1+y3 dy. Let {Yi} be a sequence of

i.i.d. [0,∞)-valued random variables, with distribution µ. We consider:

LY
n =

1

n

n∑
i=1

δYi
and Ŝn =

1

n

n∑
i=1

Yi.

By the usual Sanov theorem, LY
n satisfies the LDP with the good rate func-

tion H(· | µ) in (P , σ(P , B)). By Cramér’s theorem, Ŝn also satisfies the
LDP with the good rate function Λ∗(x) = supλ∈R{xλ − Λ(λ)}, where Λ(λ) =

log
∫

[0,∞)
c e(λ−1)y

1+y3 dy. One can ask if the Contraction Principle (CP) holds be-

tween LY
n and Ŝn. Let us denote u : [0,∞) → [0,∞), u(y) = y, so that

〈LY
n , u〉 = Ŝn. As u is not bounded, one cannot apply the CP to the usual

Sanov theorem to obtain:

inf{H(ν | µ), ν ∈ P , 〈ν, u〉 = x} = Λ∗(x), x ≥ 0. (3.3)

It turns out that this equality holds (see Proposition 3.10 below) but that the
infimum is not attained in P when x is large. With the notations of Section
2.3, u belongs to Lτ (µ). Therefore, Gu : L∗τ (µ) → R, Gu(`) = 〈`, u〉 is a
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σ(L∗τ ,Lτ )-continuous linear form. One can notice here the advantage of using
the σ(L∗τ ,Lτ )-topology which is wider than the σ(P , B)-topology. By Theorem

3.2 and the CP, Gu(L
Y
n ) = 1

n

∑n
i=1 Yi = Ŝn satisfies the LDP with the good

rate function

I ′(x) = inf{I(`); ` ∈ Q; 〈`, u〉 = x}.
As I is a good rate function, there exists at least one minimizing argument
`x ∈ Q satisfying I(`x) = I ′(x) and 〈`x, u〉 = x. By the uniqueness of the rate
function ([8], Lemma 4.1.4), I ′ = Λ∗. Therefore, the following identification
holds:

Λ∗(x) = inf{I(`); ` ∈ Q; 〈`, u〉 = x} = I(`x), (3.4)

for some `x ∈ Q satisfying 〈`x, u〉 = x.

Proposition 3.9. Let us denote x∗ = Λ′(1−).

(1) For any 0 < x < x∗, there exists a unique minimizer `x in (3.4). It is
given by `x = νx where

νx(dy) = exp(λxy − Λ(λx))µ(dy)

and λ = λx is the unique solution of Λ′(λ) = x.
(2) For x = x∗, the statement (1) still holds with λx∗ = 1, Λ′(1−) = x∗ and

νx∗ = ν∗ given by

ν∗(dy) = ey−Λ(1) µ(dy) =
c′

1 + y3
dy.

(3) For all x ≥ x∗ and all minimizing arguments `x of (3.4), we have
`a
x = ν∗.

Moreover, 〈ν∗, u〉 = x∗, 〈`s
x, u〉 = x− x∗ and

I(`x) = H(ν∗|µ) + Is(`
s
x), (3.5)

with H(ν∗|µ) = Λ∗(x∗) and Is(`
s
x) = x− x∗.

This proposition means that when x > x∗, the minimizers of (3.4) cannot
be probability measures. The contribution of the absolutely continuous part
is stopped at x∗: 〈ν∗, u〉 = x∗. It is the singular parts (not unique in general,
see Prop. 4.4) which fill the gap between x∗ and x: 〈`s

x, u〉 = x− x∗. Moreover
the contribution of these singular parts appear in the rate function (see (3.5)).
Finally, Is(`

s) = supf∈Dµ
〈`s, f〉 implies that these singular parts are non-null,

whenever x > x∗.

Proof of Proposition 3.9. Proof of 1. and 2. Clearly, for all 0 < x ≤ x∗, we
have 〈νx, u〉 = x. Let ` be such that 〈u, `〉 = x and (without loss of generality)
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I(`) < ∞. Then, ` = `a+`s with `a ∈ P and `s ≥ 0. Let us denote: 〈`a, u〉 = x′.
We have 〈`s, u〉 = x− x′ ≥ 0 and

I(`)− I(νx) = H(`a | µ)−H(νx | µ) + I(`s)

= H(`a | νx) +

∫
log

(dνx

dµ

)
d(`a − νx) + I(`s)

= H(`a | νx) + I(`s)− λx(x− x′)
(a)

≥ H(`a | νx) + 〈`s, u〉 − λx(x− x′)
(b)

≥ H(`a | νx)

≥ 0,

where (a) follows from I(`s) = sup{〈`s, v〉; v ∈ Dµ} ≥ 〈`s, u〉 and (b) follows
from 〈`s, u〉 − λx(x− x′) = (1− λx)(x− x′) ≥ 0.

For the equality to hold, it is necessary that `a = νx. Hence, I(`s) = 0 which
in turn implies that `s = 0. Finally, νx is the unique minimizer of (3.4).

Proof of 3.: For all λ ≤ 1, both Λ(λ) and Λ′(λ) are finite, while Λ(λ) = ∞,
when λ > 1. As Λ′(1−) = x∗ is finite, Λ is not steep. Standard convexity
arguments lead to Λ∗(x∗) = x∗ − Λ(1) and an easy computation yields

Λ∗(x) = Λ∗(x∗) + x− x∗, x ≥ x∗. (3.6)

The rest of the proof is divided into three steps.
Step 1: Let `x (resp. `y) be any minimizing argument of I ′(x) (resp. I ′(y)):

I(`x) = I ′(x) = inf{I(`), 〈`, u〉 = x}. Let us prove that for all 0 ≤ α, β ≤ 1,
α + β = 1, the following identity holds:

∀x, y ≥ x∗, I(α`x + β`y) = αI(`x) + βI(`y). (3.7)

By definition of `x and `y, we get 〈`x, u〉 = x and 〈`y, u〉 = y and by (3.6),
I(`x) = Λ∗(x) = (x− x∗) + Λ∗(x∗). Similarily, I(`y) = (y − x∗) + Λ∗(x∗). The
convexity of I implies that

I(α`x + β`y) ≤ αI(`x) + βI(`y) = Λ∗(x∗) + αx + βy − x∗

= Λ∗(αx + βy) = I ′(αx + βy).

But I ′(αx + βy) = inf{I(`); ` ∈ L′τ ; 〈`, u〉 = αx + βy} and α`x + β`y satisfies
the constraint 〈α`x + β`y, u〉 = αx + βy. Thus I ′(αx + βy) ≤ I(α`x + β`y) and
(3.7) holds.

Step 2: Let us show that for any x, y ≥ x∗ and `x (resp. `y) minimizing

argument of I ′(x) (resp. I ′(y)), we have `a
x = `a

y

4
= ν where `x = `a

x + `s
x (resp.

`y = `a
y + `s

y).
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By the definition of I, we have:

I(α`x + β`y) = Ia(α`a
x + β`a

y) + Is(α`s
x + β`s

y),
αI(`x) + βI(`y) = αIa(`

a
x) + βIa(`

a
y) + αIs(`

s
x) + βIs(`

s
y).

The convexity of Ia and Is implies{
Ia(α`a

x + β`a
y) ≤ αIa(`

a
x) + βIa(`

a
y),

Is(α`s
x + β`s

y) ≤ αIs(`
s
x) + βIs(`

s
y).

By (3.7), I(α`x + β`y) = αI(`x) + βI(`y). Therefore, equality must hold in the
two previous inequalities. But due to the strict convexity of Ia, Ia(α`a

x +β`a
y) =

αIa(`
a
x) + βIa(`

a
y) implies that `a

x = `a
y = ν.

Step 3: Let us show that for all x ≥ x∗, Ia(`
a
x) = Λ∗(x∗) and Is(`

s
x) = x−x∗.

Considering ν∗(dy) = ey−Λ(1)µ(dy), one shows that 〈ν∗, u〉 = x∗, I(ν∗) =
Ia(ν∗) = Λ∗(x∗). Hence, ν∗ satisfies (3.4) at x∗. Thus, ν∗ = ν and for all
x ≥ x∗, `a

x = ν∗. It follows that Ia(`
a
x) = Λ∗(x∗) and Is(`

s
x) = x− x∗. �

Proposition 3.10. The equality (3.3) holds for all x ≥ 0.

Remark 3.6. In the proof below, we show that νn = (1 − 1
n
)ν∗ + 1

n

1In

µ(In)
µ is a

sequence satisfying

H(νn|µ) > Λ∗(x), 〈νn, µ〉 = x and lim
n→∞

H(νn|µ) = Λ∗(x).

In Proposition 3.9 (3), it is shown that the minimizers `x have the form `x =

ν∗ + `s
x. Therefore, 1

n

1In

µ(In)
µ contributes asymptotically to `s

x in the sense that

lim
n→∞

〈 1
n

1In

µ(In)
µ, u〉 = 〈`s

x, u〉 = x− x∗.

Proof of Proposition 3.10. For x = 0, Λ∗(0) = ∞ and there is no ν ∈ P such
that ν � µ and 〈ν, u〉 = 0. For 0 < x ≤ x∗, the desired equality is a consequence
of Proposition 3.9, (1) and (2). Let us now consider the case x > x∗. First note
that

inf{H(ν | µ), ν ∈ P , 〈ν, u〉 = x, }
= inf{I(ν), ν ∈ P , 〈ν, u〉 = x}
≥ inf{I(`), ` ∈ Q, 〈`, u〉 = x} = Λ∗(x).

In particular, H(ν|µ) ≥ Λ∗(x) if 〈ν, u〉 = x (in fact, > by Proposition 3.9, (3)).
Therefore, it is sufficient to exhibit a minimizing sequence (νn) satisfying νn ∈
P , 〈νn, u〉 = x and limn→∞ H(νn | µ) = Λ∗(x). We take it of the form

νn = (1− 1

n
)ν∗ +

1

n

1In

µ(In)
µ,
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where the interval In must be chosen such that 〈νn, u〉 = x. As 〈ν∗, u〉 = x∗, In

must satisfy ∫
In

u dµ

µ(In)
= x∗ + n(x− x∗).

Consider In(t) = [x∗ + n(x− x∗)− t, x∗ + n(x− x∗) + 1] and

φ(t) =

∫
In(t)

u dµ

µ(In(t))
=

∫
In(t)

yf(y) dy

µ(In(t))
,

where f is µ’s density. Simple computations yield

φ(0) > x∗ + n(x− x∗) and φ(1) < x∗ + n(x− x∗).

As φ is continuous, there exists αn ∈ [0, 1] such that φ(αn) = x∗ + n(x − x∗).

We denote by In
4
= In(αn). We now estimate H(νn|µ).

H(νn | µ) =

∫
[0,∞)\In

log
(dνn

dµ

)
dνn +

∫
In

log
(dνn

dµ

)
dνn

≤ H(ν∗ | µ) +

∫
In

log
(dνn

dµ

)
dνn = Λ∗(x∗) +

∫
In

log
(dνn

dµ

)
dνn,

and
dνn

dµ
(y) = ey−Λ(1)(1 +

1

n
) +

1In(y)

nµ(In)
. (3.8)

We shall use the following inequality.

(a + b) log(a + b) ≤ (a log a)

(
1 +

b

a

)2

, ∀a ≥ e, b > 0. (3.9)

Expressions (3.8) and (3.9) yield∫
In

log
(dνn

dµ

)
dνn

≤
∫

In

1

nµ(In)
log

( 1

nµ(In)

) (
1 + ey−Λ(1)(1 +

1

n
)nµ(In)

)2

dµ(y).

But if y ∈ In then ey−Λ(1)(1+ 1
n
)nµ(In) −−−→

n→∞
0. On the other hand, limn→∞

1
n

log 1
nµ(In)

=

x− x∗. Consequently,

lim
n→∞

∫
In

1

nµ(In)
log

( 1

nµ(In)

) (
1 + ey−Λ(1)(1 +

1

n
)nµ(In)

)2

dµ(y) = x− x∗,

and the proof is completed. �
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4. The Gibbs Conditioning Principle

In this section, we apply Theorem 3.2 to derive the following Gibbs condi-
tioning principle:

lim
δ→0

lim
n→∞

P
(
(Y1, . . . , Yk) ∈ · | LY

n ∈ Aδ

)
= νk

∗ (·).

This is stated in Theorem 4.2, the main result of the section. This result
holds true without any underlying law of large numbers. Namely, the following
equation might not hold:

lim
n→∞

νn
∗ {LY

n ∈ Aδ} = 1 for all δ > 0, (4.1)

as shown in Remark 4.5. Moreover, ν∗ might not belong to the minimizers
of the set {I(`); ` ∈ A0} where A0 and (Aδ)δ>0 are subset of Q specified in
Assumptions (A-0) and (A-1) below.

These features are illustrated via Csiszár’s example in Section 4.4. In our
presentation, we shall closely follow the framework of Section 7.3.5 in [8].

4.1. Notations and statement of the assumptions. As before, let us con-
sider LY

n = 1
n

∑n
i=1 δYi

∈ L∗τ where {Yi}i≥1 is a sequence of Σ-valued indepen-
dent and identically µ-distributed variables. Let µn be the product measure
induced by µ on Σn and Qn be the probability measure induced by µn on (Q,
EQ), where Q is equipped with the topology σ(Q,Lτ ) and its σ-field EQ:

Qn(A) = µn{Ly
n ∈ A}, A ∈ EQ.

We are interested in the limiting behaviour of the distribution of (Y1, · · · , Yk)
under the conditioning constraint {LY

n ∈ Aδ}, for n → ∞ followed by δ → 0.
We denote this distribution:

µn
Y k|Aδ

(·) = µn
(
(y1, . . . , yk) ∈ · | Ly

n ∈ Aδ

)
. (4.2)

In case k = 1, we write µn
Y k|Aδ

= µn
Y |Aδ

. We follow D. W. Strook and O. Zeitouni

in [21] by considering the constraint set {LY
n ∈ Aδ} rather than {LY

n ∈ A0}
where Aδ is a blow-up of A0. By Assumption (A-1) below, Aδ must satisfy
Qn(Aδ) > 0 whereas A0 may be a Qn-negligible set. The following conventions
prevail in this section: Γn = {LY

n ∈ Γ}, A◦ is the σ(Q,Lτ )-interior of A and
I(A) = inf{I(`); ` ∈ A} for all A ⊂ Q.

Assumption A-0. The set A0 can be written A0 =
⋂

δ>0 Aδ, where (Aδ)δ>0 is
a family of nested measurable σ(Q,Lτ )-closed sets satisfying

I(A◦
δ) ≤ I(A0), for all δ > 0. (4.3)

Two important cases where (4.3) is satisfied may be considered:

(1) A0 ⊂ A◦
δ , for all δ > 0.

(2) Aδ = A0 for all δ > 0, and I(A◦
0) = I(A0).
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Remark 4.1. The topology σ(Q,Lτ ) and the σ-field EQ which appear in the
statement of the assumption (A-0) are both wider than the usual τ -topology
σ(P , B), and the σ-field Bcy (see ([8], Section 6.2) for its definition). Hence
more open sets and more measurable sets are available. As an example, con-
sider the family defined by

Aδ = {` ∈ Q; |〈`, u〉 − 1| ≤ δ}, A0 = {` ∈ Q; 〈`, u〉 = 1},
where u satisfies condition (1.1). This family satisfies Assumption (A-0).

The following assumption is the counterpart of Assumption (A-1) in ([8], Sec-
tion 7.3).

Assumption A-1. I(A0) < ∞ and for all δ > 0, n ≥ 1, Qn(Aδ) > 0.

Remark 4.2. Equation (4.1) which is part of the assumptions in [8] (see also
[10], Condition 1.16) enforces a law of large numbers under the minimizing law
ν∗ which appears in (1.2). This is not required in the present approach: By
Assumption (A-0), one can apply Sanov’s lower bound (see the proof of Lemma
4.3 below) so that no underlying law of large numbers is necessary. Moreover,
there exist cases where (4.1) fails while (A-1) is still satisfied (see Remark 4.5
below).

4.2. Convex constraints. The set of minimizers is denoted by

M 4
= {` ∈ A0; I(`) = I(A0)}.

The following result states that M has a special form when the constraint A0

is convex.

Lemma 4.1. Suppose that A0 is convex, then

M = ν∗ + S,

where ν∗ is a probability measure and S is a set of singular parts. In other
words, if ` ∈ M, then ` = ν∗ + `s where ν∗ is `’s absolutely continuous part
and `s ∈ S is `’s singular part.

Remark 4.3. In this case, ν∗ is the I-generalized projection of µ over the set of
constraint A0 in the sense of Csiszár (see [6]).

Proof of Lemma 4.1. Let ` and ˜̀ stand in M. By the convexity of A0 and I,
we have

I(A0) ≤ I(α` + β ˜̀) ≤ αI(`) + βI(˜̀) = I(A0),

for all α, β ≥ 0 such that α + β = 1. Similarly, as Ia and Is are convex, we
obtain: {

Ia(α`a + β ˜̀a) ≤ αIa(`
a) + βIa(˜̀

a),

Is(α`s + β ˜̀s) ≤ αIs(`
s) + βIs(˜̀

s).
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Suppose that at least one of these inequalities is strict. We obtain by summing:
I(A0) < αI(`)+βI(˜̀) = I(A0) which is false. Hence, Ia(α`a +β ˜̀a) = αIa(`

a)+

βIa(˜̀
a) and Is(α`s+β ˜̀s) = αIs(`

s)+βIs(˜̀
s). As Ia is strictly convex, we obtain

`a = ˜̀a 4
= ν∗. As Is is not strictly convex, `s and ˜̀s may differ. �

We shall see in Section 4.4 that within the scope of Csiszár’s example, M =
ν∗ + S where S is not reduced to a single point.

4.3. Convergence of µn
Y k|Aδ

to a probability distribution. In this section,

it is assumed that Σ is a separable metric space and that its σ-field is its Borel
σ-field. Denote by Cb(Σ

k) the set of continuous and bounded functions over
Σk. Theorem 4.2 below is the counterpart of Corollary 7.3.5 in [8]. It is a
corollary of Lemma 4.3.

Theorem 4.2. Let us assume that (A-0), (A-1) hold, Σ is a separable metric
space and the constraint set A0 is convex. Then, for all f in Cb(Σ

k), we have:

〈µn
Y k|Aδ

, f〉 → 〈νk
∗ , f〉

for n → ∞ followed by δ → 0 where ν∗ is the common absolutely continuous
part of the elements of M (see Lemma 4.1).

Theorem 4.2 improves Corollary 7.3.5 in [8] in two directions:

(1) The constraint sets Aδ can be based on functions with possibly infinite
exponential moments, for instance

Aδ = {` ∈ Q; |〈`, u〉 − 1| ≤ δ} with u ∈ Lτ .

Such functions u may grow quite fast.
(2) It has been previously remarked that the present Assumptions (A-0)

and (A-1) do not require an underlying law of large numbers. For
an illustration of the benefit, see Section 4.4 below and in particular
Remark 4.5.

Remark 4.4. In the case k = 1, the convergence even holds for all f ∈ Mτ , that
is

〈µn
Y |Aδ

, f〉 → 〈ν∗, f〉 for f ∈ Mτ .

However, this result relies on a finer estimate than Lemma 4.3 below. The
estimate and the convergence theorem can be found in ([16], Lemma 2.10 and
Theorem 2.11).

The following lemma is the counterpart of Theorem 7.3.3 in [8].

Lemma 4.3. Assume (A-0) and (A-1). Then, M is a nonempty σ(Q,Lτ )-
compact subset of Q and for any open measurable subset Γ ∈ EQ with M⊂ Γ,
we have:

lim sup
δ→0

lim sup
n→∞

1

n
log µn

(
LY

n /∈ Γ|LY
n ∈ Aδ

)
< 0.
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Proof. Standard arguments yield M 6= ∅ and M = A0∩{I ≤ I(A0)}. As I is a
good rate function, {I ≤ I(A0)} is a compact set. A0 being closed (see (A-0)),
it follows that M is compact. As (Aδ)δ>0 is a nested family of measurable sets,
we obtain

lim sup
δ→0

lim sup
n→∞

1

n
log µn

(
LY

n /∈ Γ|LY
n ∈ Aδ

)
≤ lim

δ→0
lim sup

n→∞

1

n
log Qn

(
Γc ∩ Aδ

)
− lim

δ→0
lim inf
n→∞

1

n
log Qn

(
Aδ

)
.

(4.4)

With the help of the upper and lower bounds of Theorem 3.2, the same argu-
ment as in [8] (Sanov’s upper bound) yields:

lim
δ→0

lim sup
n→∞

1

n
log Qn

(
Γc ∩ Aδ

)
< −I(A0). (4.5)

On the other hand, by Sanov’s lower bound, we obtain for all δ > 0

lim inf
n→∞

1

n
log Qn

(
Aδ

)
≥ − inf{I(`), ` ∈ A◦

δ}. (4.6)

Combining these arguments with (4.3), we obtain:

lim
δ→0

lim inf
n→∞

1

n
log Qn

(
Aδ

)
≥ −I(A0)

One completes the proof of the lemma using this inequality together with (4.5)
in (4.4). �

Proof of Theorem 4.2. As A0 is assumed to be convex, by Lemma 4.1, M is
decomposed as ν∗ + S.
Let the function f(x1, . . . , xk) =

∏k
i=1 fi(xi) be fixed where each fi ∈ Cb(Σ).

By the definition of µn
Y k|Aδ

(see (4.2)),

dµn
Y k|Aδ

dµk
(y1, . . . , yk) =

∫
Σn−k

1Aδ,n
(y1, . . . , yn)

Qn(Aδ)
µ(dyk+1) · · ·µ(dyn). (4.7)

where Aδ,n = {LY
n ∈ Aδ}. Consider

Γ(η) =
k⋂

i=1

{` ∈ Q; |〈`, fi〉 − 〈ν∗, fi〉| < η},

and let Γn(η) = {LY
n ∈ Γ(η)}. Then Γ(η) satisfies the assumptions of Lemma

4.3, since it is open measurable and M ⊂ Γ(η). Let us prove this inclusion.
If ` ∈ M, then ` = ν∗ + `s by the assumption on M. As fi ∈ Mτ for 1 ≤
i ≤ k, 〈`s, fi〉 = 0 by Proposition 2.4. Hence 〈`, fi〉 = 〈ν∗, fi〉 and M ⊂ Γ(η).
Therefore,

lim
δ→0

lim
n→∞

µn
(
LY

n /∈ Γ|LY
n ∈ Aδ

)
= 0
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by Lemma 4.3. The rest of the proof follows step by step the proof of Corollary
7.3.5 in [8]. Hence Theorem 4.2 is proved. �

4.4. Back to Csiszár’s example. Within the scope of Section 3.4, we are
interested in the limiting behaviour of µn

Y |Aδ(x) where

Aδ(x) = {` ∈ Q; |〈`, u〉 − x| ≤ δ} with u(y) = y,

A0(x) = {` ∈ Q; 〈`, u〉 = x}.
The sets of constraint are {LY

n ∈ Aδ(x)} = {(y1, · · · , yn); | 1
n

∑n
1 yi − x| ≤ δ}

and µn
Y |Aδ(x) represents the law of Y1 under the constraint that the mean 1

n

∑n
1 Yi

is close to x. Let us denote by Mx the corresponding set of minimizers of (3.4).

Proposition 4.4. For any x ≥ x∗, ` belongs to Mx if and only if

(1) `a = ν∗ with ν∗(dy) = ey−Λ(1) µ(dy),
(2) 〈`s, u〉 = x− x∗ where u(y) = y, y ≥ 0,
(3) sup{〈`s, f〉; f,

∫
[0,∞)

ef dµ < ∞} = 〈`s, u〉.
In particular, for any x > x∗, there are infinitely many elements in Mx.

Proof. A careful look will convince the reader that the equivalence is already
proved in Proposition 3.9.

Let us show that there are infinitely many minimizers when x > x∗. Because
of the item 3) of the proposition, it is sufficient to prove that the gauge function
p(g) = inf{λ > 0; g/λ ∈ Dµ} of Dµ = {f ;

∫
[0,∞)

ef dµ < ∞} is not Gâteaux-

differentiable at u (for this argument see for instance [11], p. 123). This means
that there exists f ∈ Lτ such that

lim
t→0, t>0

p(u + tf)− p(u)

t
6= lim

t→0, t<0

p(u + tf)− p(u)

t
. (4.8)

Consider

f(y) =

{
ay if y ∈ ∪n≥0[2n, 2n + 1)
−by if y ∈ ∪n≥0[2n + 1, 2n + 2)

where a 6= b, a > 0, b > 0.

A straightforward computation yields

lim
t→0, t>0

p(u + tf)− p(u)

t
= a and lim

t→0, t<0

p(u + tf)− p(u)

t
= −b.

Hence (4.8) holds and the proposition is proved. �

For an alternative proof and more details, see ([15], Proposition 10.5).

Applying Theorem 4.2 to µn
Y |Aδ(x), we see that for all x > x∗ : Mx = ν∗ +Sx

and for any f ∈ Cb([0,∞)), 〈µn
Y |Aδ(x), f〉 tends to 〈ν∗, f〉, as n → ∞, followed

by δ → 0.
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Moreover, the convergence of 〈µn
Y |Aδ(x), f〉 to 〈ν∗, f〉 even holds for f ∈

Mτ ([0,∞)) (see Remark 4.4).

Remark 4.5. In this example, one can easily check that:

lim
n→∞

νn
∗ {LY

n ∈ Aδ(x∗)} = 1 for δ > 0,

lim
n→∞

νn
∗ {LY

n ∈ Aδ(x)} = 0 for x > x∗ and δ ∈ (0, x− x∗).

Hence, Equation (4.1) which enforces a LLN under ν∗, is not satisfied when
x > x∗ whereas the convergence of µn

Y |Aδ(x) toward ν∗ still occurs. Note that

the approach developped by I. Csiszár in [6], which is based on the convergence
in information also does not rely on such a restrictive LLN-assumption.
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[12] E. Giner. Décomposabilité et dualité des espaces d’orlicz, (in french). Travaux du
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