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Abstract—We consider the blind multichannel dereverberation
problem for a single source. We have shown before [5] that
the single-input multi-output (SIMO) reverberation filter can be
equalized blindly by applying MIMO Linear Prediction (LP) to
its output (after SISO input pre-whitening). In this paper, we
investigate the LP-based dereverberation in a noisy environment,
and/or under acoustic channel length underestimation. Consid-
ering ambient noise and late reverberation as additive noises,
we propose to introduce a postfilter that transforms the MIMO
prediction filter into a somewhat longer equalizer. The postfilter
allows to equalize to non-zero delay. Both MMSE-ZF and MMSE
design criteria are considered here for the postfilter. We also focus
here on computationally efficient (FFT based) block Toeplitz
covariance matrix enhancement that enforces the SIMO filtered
source plus white noise structure before applying MIMO LP. A
second suggested refinement is an iterative refinement between
SISO and MIMO LP. Simulations show that the proposed scheme
is robust in noisy environments, and performs better compared
to the classic Delay-&-Predict equalizer and the Delay-&-Sum
beamformer.

I. INTRODUCTION

Blind dereverberation is the process of removing the effect

of reverberation from an observed reverberant signal. Reduc-

ing the distortion caused by reverberation is a difficult blind

deconvolution problem, due to the colored and non-stationary

nature of speech and the length of the equivalent impulse

response from the speaker’s mouth to the microphone(s).

Consider a clean speech signal, sk, produced in a reverberant

room. The reverberant speech signal observed on M distinct

microphones can be written as:

yk = h(q) sk (1)

where yk = [y1,k · · · yM,k]T is the reverberant speech signal,

h(z) = [h1(z) · · ·hM (z)]T =
∑Lh−1

i=0 hiz
−i is the SIMO

FIR channel transfer function, Lh is the channel length. The

introduction of q, where q−1 is the one sample time delay

operator: q−1sk = sk−1, allows to introduce the compact

notation of transfer functions in the time domain (whereas

z in the z-transform is a complex number).

Blind dereverberation faces the channel/speech source iden-

tifiability problem. In fact, for any invertible scalar filter α(q),
(α(q)h(q), (1/α(q)) sk) is also an acceptable solution for (1).

In [1], the authors compute a multichannel FIR equalizer

using a subspace based method. The identifiability problem

is solved using accurate information of the ”source” (or

”noise”) subspace dimension. The validity of the technique

hinges critically on the true channel impulse response being

of strictly finite duration, and its successful identification

requires knowledge of the channel length [2]. For the acoustic

case, the true channel impulse response length is generally

unknown and/or ill-defined. This is a major limitation to the

practical applicability of the subspace based methods to speech

dereverberation.

In contrast, the alternative Linear Prediction (LP) based tech-

nique (proposed and refined by Slock et al. [3], [4]) proved

to be consistent in the presence of channel order error. This

makes the LP equalizer one of the more attractive solutions for

blind speech dereverberation, as proposed in [5]. One tricky

issue though is that in order for the LP to perform zero delay

channel equalization, the source should be white, otherwise LP

will perform both channel equalization and source whitening.

Hence, in the case of speech dereverberation, some additional

processing is required. In [5], [6], the speech correlation gets

compensated via a SISO pre-whitening at the LP equalizer

input (microphone signals). Next, the multivariate LP can be

computed, and applied to the reverberant microphone signals

yk:

uk︸︷︷︸
M×1

= A(q)︸︷︷︸
M×M

yk︸︷︷︸
M×1

= h0︸︷︷︸
M×1

sk︸︷︷︸
1×1

since A(z)h(z) = h0 (2)

where A(q) is the MIMO linear prediction error filter, and

h0 = h(z = +∞) is the multichannel precursor coefficient.

The LP equalizer is obtained by performing Maximum Ratio

Combining (MRC) (hT
0 ) on the prediction error signal uk

components.

In [8] a somewhat related approach has been proposed,

in which only the first microphone signal (assumed to have

the shortest delay) is predicted in terms of the past samples

on all microphones (MISO prediction). Compared to MIMO

prediction, MISO prediction loses the MRC advantage. Since

the MISO prediction is applied directly to yk , a dereverberated

but also whitened source signal gets produced. Now, multivari-

ate channel prediction assumes that the individual microphone

channel transfer functions hi(z) (i = 1, . . . , M ) have no SISO
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transfer function factor in common. If such a common factor

exists, or equivalently if the source is colored, the multivariate

LP will model this factor with an all-pole filter and the LP filter

will contain a scalar transfer function factor that is the inverse

of the all-pole model. This scalar factor can be determined

as the common roots of the M MISO LP component transfer

function polynomials or, as in [8], as the eigenvalues of a

large matrix of which the MISO LP coefficients constitute one

column. Postfiltering of the MISO LP residual with the inverse

of the extracted factor then allows to recover in principle the

unwhitened source. This common root extraction approach is

prone to ill-conditioning, as the results in [8] tend to confirm.

Indeed, due to the tapered off behavior of the late reverberation

on all microphones, the hi(z) tend to have zeros that cluster

near the origin and hence that are close or (almost) in common.

This is not a big problem for the MIMO LP approach in

[5], [6] where the effect is that the reverberation tail will not

get equalized, but it is small anyway. For the purpose of the

determination of the source color as in [8] on the other hand,

the effect of such ill-conditioning is more severe.

In [9],[10] the so-called TRINICON method was intro-

duced for blind separation of acoustic sources. One of the

main characteristics of the objective function optimized by

the TRINICON method, which is also based completely on

second-order statistics (SOS), is that the extracted sources at

the output of a MIMO FIR filter are as jointly decorrelated

as possible, apart from intra-source correlations. In other

words, the MIMO FIR demixing filter tries to produce source

estimates with as little inter-source correlation as possible.

As a result the cascade of the MIMO demixing and mixing

filters will tend to a diagonal MIMO filter (apart from source

permutations) and hence the sources may appear in a filtered

fashion. Hence the problem solved is not so much that of

dereverberation but of source separation. Also, the method is

only applicable starting with at least two sources. And in spite

of being SOS based, the objective function is not quadratic and

requires an iterative (natural gradient based) solution.

Dereverberation techniques are generally introduced in a

noiseless environment (the problem is already quite difficult

even under these ideal conditions). In this paper, we propose

a robust scheme for dereverberation in the presence of noise.

This noise may be either additive acoustic noise or residual

late reverberation due to underestimation of the reverberation

delay spread (for computational complexity reasons or for

estimation considerations in non-stationary environments). We

investigate the resulting dereverberation performance in a

noisy environment.

We next summarize the basic D-&-P equalization technique

from [5], [6], [7]. At first yk gets replaced by D(q)yk , a

microphone-wise delayed version of the microphone signals

so that the source signal arrives with the same delay at all

microphones. We shall denote the aligned version of yk still

by yk. Next, a SISO source LP filter As(z) gets determined

by performing LP on the yi,k SOS averaged over the M
microphones. We then obtain xk = As(q)yk = h(q) s̃k where

s̃k = As(q) sk is the whitened source signal. MIMO LP on

xk yields a prediction error

x̃k = Ax(q)xk = h0 s̃k with Ax(z)h(z) = h0 . (3)

Finally, the dereverberated source gets estimated as ŝk =
hT

0 Ax(q)yk .

II. ROBUST DELAY-&-PREDICT EQUALIZATION IN NOISY

ENVIRONMENTS

In a noisy environment, the microphone signals can be

written as

yk = h(q) sk + vk (4)

where the noise vk represents acoustic noise and/or the effect

of modeling error in h(z). We shall model vk as spatiotempo-

rally white noise (with spectrum Sv(z) = σ2
v IM ), independent

of sk. Such noise, for given noise power, is the worst case

noise. In any case, at medium to high SNR, the correlation

of the noise is a secondary effect compared to accounting

for the noise power. The SISO and MIMO LP problems

in the dereverberation approach considered here should still

be formulated for the noise-free signals, even in the noisy

case. However, since the LP problems only involve SOS, the

noiseless SOS can easily be obtained from the noisy SOS in

the white noise hypothesis, especially in the multichannel con-

figuration considered here in which signal and noise subspaces

arise. The simplest SOS denoising would be to subtract the

noise covariance matrix (σ2
vI) from the covariance matrix Ry

of yk by estimating σ2
v from the noise subspace eigenvalue(s)

of Ry. Various degrees of sophistication are possible, some of

which will be evoked later. Applying the (noiseless) MIMO

LP to the noisy microphone signals, we get

uk = Ax(q)yk = h0 sk + Ax(q)vk . (5)

The robustified D&P equalizer then gets constructed as

FD−&−P (q) = w(q)Ax(q) , ŝk = FD−&−P (q)yk = w(q)uk (6)

whereas the basic D&P equalizer uses w(q) = hT
0 , which

maximizes the power of the desired signal part but not

necessarily the output SNR. In [7], we have proposed the

postfilter w(q) with a MMSE-ZF design using explicitely the

white noise hypothesis (in a multichannel configuration, there

is an infinity of zero-forcing designs, one of which will be

MMSE). The filter length of w(q) allows the design of non-

zero-delay equalizers. Here we shall consider the design of the

postfilter using the MMSE-ZF and MMSE criteria, without a

white noise hypothesis.

A. MMSE-ZF Design

For a given filter length Lw and an equalization delay

0 ≤ d ≤ (Lw−1), the weighting filters are optimized by

maximizing the output SNR (under the d-delay zero-forcing

constraint), i.e.




w = argmax
w

σ2
s∮

w(z)Su(z)w†(z)
dz

2πjz
− σ2

s

w(z)h0 = z−d

(7)
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where w†(z) denotes the paraconjugate (matched filter, Hermi-

tian transpose in the Fourier domain, Hermitian transpose and

time reversal of the coefficients in the time domain) of w(z),
and Su(z) = Ax(z)Sy(z)A†

x(z) is the matrix spectrum of

uk. For a time domain formulation, let w = [w0 · · ·wLw−1],
Uk = [uT

k · · ·u
T
k−Lw+1]

T , H0 = ILw
⊗ h0 and ed =

[0 . . . 0 1 0 . . . 0] with a 1 in position d+1. Hence ŝk = wUk .

The optimization in (7) becomes
{

w
zf
Lw,d = argmin

w
wRUwT

wH0 = ed

(8)

where RU is short for RUU = E UkU
T
k , the covariance

matrix of uk of (block) size Lw. The optimal postfilter is

w
zf
Lw,d = ed

(
HT

0 R−1
U H0

)−1
HT

0 R−1
U (9)

with corresponding optimal

SNR
zf
Lw,d =

σ2
s

ed

(
HT

0 R−1
U H0

)−1
eT

d − σ2
s

. (10)

The optimal delay (maximum SNR) corresponds to the posi-

tion of the smallest diagonal element of
(
HT

0 R−1
U H0

)−1
.

B. MMSE Design

The MMSE design corresponds to wmmse
Lw,d =

Rq−ds UR−1
UU. Now Rq−ds U = ed RSS HT

0 where RSS is

the source covariance matrix of size Lw, to be constructed

using an AR model using the SISO LP filter. Note that

ed RSS means that only row d+1 of RSS needs to be

computed. Hence wmmse
Lw,d = ed RSS HT

0 R−1
U and

SNRmmse
Lw,d =

σ2
s

ed RSS HT
0 R−1

U H0 RSS eT
d

− 1 . (11)

III. ENHANCEMENTS

Before elaborating on the enhancements, let’s consider the

details of the basic signal denoising operations.

A. Basic Denoising Operations

First we start with the sample correlations on the basis of

the (delay aligned) signal {yk , k = 1, . . . , Ny}

r̂y(n) = 1
Ny−Lx−Ls

∑Ny−Lx−Ls

k=1 yk+nyT
k ,

n = 0, 1, . . . , Lx+Ls

(12)

where Lx is the desired order of the MIMO prediction error

filter Ax(q), and Ls is the order of the source whitening

filter As(q). Several variations on (12) are possible, including
1

Ny−n

∑Ny−n
k=1 and the biased estimate 1

Ny

∑Ny−n
k=1 . This last

choice (called ”pre- and post-windowed”) guarantees positive

semidefiniteness when the sample correlations are put in

a block Toeplitz symmetric covariance matrix R̂Y of size

Nn × Nn with [r̂y(0) r̂T
y (1) · · · r̂T

y (Nn−1)] as first block

row and Nn = Lx+Ls+1 (note that r̂y(−n) = r̂T
y (n)).

Alternatively, R̂Y can be obtained directly as

R̂Y =
1

Ny − Lx − Ls

Ny−Lx−Ls∑

k=1

YNn,k YT
Nn,k (13)

with YNn,k = [yT
k−Nn+1 · · ·y

T
k−1 yT

k ]T . R̂Y can optionally

be made block Toeplitz by averaging along block diagonals

(”block Toeplitzification”).

The sample covariance matrix can be denoised as follows

R̂Y ← ⌊R̂Y − σ̂2
vI⌋+ (14)

where ⌊R⌋+ denotes the positive semidefinite part of sym-

metric matrix R, which can be computed by setting either

the negative eigenvalues or diagonal values to zero in resp.

the eigen decomposition or the LDU decomposition of R.

One possible noise variance estimate is σ̂2
v = λmin(R̂Y),

the minimum eigenvalue of R̂Y. It is computationally not too

complex, only affects r̂y(0) in case of block Toeplitz R̂Y, and

allows to avoid the use of ⌊.⌋+, but it underestimates σ2
v . The

better (spatial ML) estimate is to take the arithmetic average

of the noise subspace eigenvalues [4], which has dimension

MNn−(Nn+Lh) (> 0 assumed). The ⌊.⌋+ operation destroys

the block Toeplitz character and hence block Toeplitzification

may be performed if a denoised correlation sequence r̂y(n) is

desired.

The source correlation sequence can now be obtained as

r̂s(n) = tr {r̂y(n)} , n = 0, 1, . . . , Ls (15)

where tr {.} denotes trace (sum of diagonal elements). From

which the (scalar) source prediction error (whitening) filter

As(z) can be obtained. The source whitened and denoised

matrix correlations can then be obtained as

r̂x(n) = As(q) A†
s(q) r̂y(n) , n = −Lx, . . . , Lx. (16)

The r̂x(n) can be put in a block Toeplitz matrix R̂X. Al-

ternatively, R̂X can be obtained from R̂Y by filtering left

and right with As(z). R̂X allows the computation of the

MIMO prediction error filter Ax(z) and the M×M prediction

error covariance matrix Σex. Since R̂X should be essentially

of rank Lx+Lh, the solution Ax(z) of the normal equations

can be obtained either by finding the prediction filter order

recursively by the multichannel Levinson algorithm and stop

at the order where things get singular. Or regularize before

solving: R̂X ← R̂X + δ I where δ = 10−n λmax(R̂X) with

n ∈ [4, 10]. Finally, h0 = Vmax(Σex) where Vmax(.) denotes

the eigen vector corresponding to the maximum eigen value.

B. Block Toeplitz Covariance Matrix Enhancement

Here we go back to sample covariance refinements sug-

gested by Cadzow in the eighties [13]. The idea is to iteratively

reinforce several structural properties, the reinforcement of

which consists of a projection onto a convex set. The iterations

then converge to the joint reinforcement of all properties.

Theoretically, the matrix valued vector signal spectrum is of

the form

Syy(z) = h(z)Sss(z)h†(z) + Svv(z) (17)

where .† denotes paraconjugate, and Svv(z) = σ2
v I is

the white noise spectrum. The signal part of the spectrum,

h(z)Sss(z)h†(z) is singular, not because of spectral poverty
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as in the SISO case, but because of limited rank in the matrix

dimension. In the SISO case, a stationary signal covariance

matrix can only be singular if the signal consists of a number

of (complex) sinusoids, with their number being smaller than

the covariance matrix dimension. Singularity in the MIMO

case has nothing to do with spectral poverty but with matrix

singularity of the matrix spectrum at every frequency.

Inspired by [13], (17) suggests the following procedure.

First construct a N × N (blocks) block Toeplitz sample

covariance matrix R̂Y. This can be done in principle either

by stacking sample correlation estimates r̂y(n) in a symmetric

block Toeplitz matrix (simplest) or by block-Toeplitzification

of an appropriately sized sample covariance matrix R̂Y (more

complex). The size N should exceed the sum of Lh and the

memory of the source correlations, and should in any case be

much larger than Lh (possibly attained by some supplementary

zero padding). Then, we would like to use FFT techniques for

computational efficiency, which require block circulant matri-

ces. Rather then approximating the block Toeplitz covariance

matrix of given dimension by a block circulant matrix, we

propose (riminiscent of overlap-save techniques) to embed the

N×N block Toeplitz covariance matrix into a 2N×2N block

circulant matrix of double size, of which the upper-left quarter

submatrix is the unmodified block Toeplitz covariance matrix.

So we obtain the 2N×2N block circulant matrix R̂Y with first

block row [r̂y(0) r̂T
y (1) · · · r̂T

y (N−1) 0 r̂y(N−1) · · · r̂y(1)].
A block circulant matrix can be block diagonalized by (block)

DFT/FFT

(F2N⊗IM ) R̂Y (F−1
2N⊗IM )=




Ŝy(z0) 0 · · · 0

0 Ŝy(z1) · · · 0
...

...
. . .

...

0 0 · · · Ŝy(z2N−1)




where F2N is the DFT matrix of size 2N , F−1
2N = 1

2N F ∗
2N

(complex conjugate). This leads directly to



Ŝy(z0)

Ŝy(z1)
...

Ŝy(z2N−1)


 = (F2N⊗IM )




r̂y(0)
r̂y(1)

...

r̂T
y (1)


 (18)

where at each FFT frequency bin we get a sample matrix

spectrum Ŝy(zn), zn = ej2πn/2N , n = 0, . . . , 2N−1, with

the following properties: Ŝ†
y(zn) = ŜH

y (zn) (Hermitian trans-

pose), Ŝy(zn) = ŜT
y (z2N−n) , n = 1, . . . , N . Note that the

FFTs in (18) can be carried out efficiently in Matlab by

reshaping the 2N×1 vectors of M×M blocks into 2N×M2

matrices.

Now, at each frequency bin n, Sy(zn) is of the form

Sy(zn) = Sy,S(zn) + Sy,N (zn)

= h(zn)Ss(zn)h†(zn) + σ2
v IM

= Vmax,n (λmax,n − σ2
v)V H

max,n + σ2
v IM

(19)

where Sy,S(zn), Sy,N (zn) are the signal and noise compo-

nents of Sy(zn), and λmax,n and Vmax,n are its maximum

eigenvalue and corresponding eigenvector. Now, the Ŝy(zn)
can be forced to the closest (in Frobenius norm) matrix of the

form in (19) by computing its spatial eigen decomposition.

Let λ̂1,n ≥ λ̂2,n ≥ · · · ≥ λ̂M,n be its eigenvalues, hence

λ̂max,n = λ̂1,n, V̂max,n = V̂1,n. Then we get Ŝy(zn) =

Ŝy,S(zn)+Ŝy,N (zn) = V̂max,n (λ̂max,n−σ̂2
v) V̂ H

max,n+σ̂2
v IM

with σ̂2
v = 1

2N(M−1)

∑2N−1
n=0

∑M
i=2 λ̂i,n due to the spatiotem-

poral white noise assumption. Note that in fact at every

frequency bin only λmax,n and Vmax,n need to be computed

since
∑M

i=2 λ̂i,n = tr {Ŝy(zn)} − λ̂max,n. Since the noise

spectrum Ŝy,N (zn) = σ̂2
v IM is fairly simple, there is no fur-

ther structure to be imposed. The signal spectrum Ŝy,S(zn) =

V̂max,n (λ̂max,n − σ̂2
v) V̂ H

max,n on the other hand is supposed

to be spectrum of a FIR correlation sequence. This FIR

character can be imposed by windowing in the time domain.

However, before imposing this FIR character on correlations

corresponding to the acoustic channel, the effect of source

correlations has to be removed by source linear prediction.

The resulting source whitened signal spectrum Ŝy,S(zn) then

undergoes IFFT to obtain the corresponding matrix correlation

sequence. The frequency-wise rank structure enforcement will

have destroyed the FIR character of the correlation sequence,

which can then simply be enforced in the time domain by

proper windowing (without forgetting the symmetry structure

of the first block column of the block circulant matrix).

The operations of eigen structure enforecement in frequency

domain and FIR structure enforcement in the time domain can

then be iterated untill convergence. Typically a few iterations

suffice. We are now ready to state the following iterative

process:

1) Compute the matrix spectrum



Ŝy(z0)

Ŝy(z1)
...

Ŝy(z2N−1)


 = (F2N⊗IM )




r̂y(0)
r̂y(1)

...

r̂T
y (1)


 (20)

2) Compute the eigendecomposition of the

spectrum Ŝy(zn) at each frequency bin

n = 0, 1, . . . , N . Determine the noise variance

σ̂2
v = 1

2N(M−1)

∑2N−1
n=0

∑M
i=2 λ̂i,n and the signal part of

the spectrum Ŝy,S(zn) = V̂max,n (λ̂max,n− σ̂2
v) V̂ H

max,n.

3) Determine the source spectrum Ŝs(zn) = tr {Ŝy,S(zn)}.
Find the source correlations r̂s(n) , n = 0, 1, . . . , Ls

by IFFT. Determine the source AR model Âs(q) (of

order Ls) by linear prediction on the source correlations

and determine its DFT Âs(zn) of size 2N (via zero

padding) Find the source whitened signal spectrum

Ŝx(zn) = Ŝy(zn) |Âs(zn)|2.

4) Compute the acoustic channel correlations



r̂x(0)
r̂x(1)

...

r̂T
x (1)


 =

1

2N
(F ∗

2N⊗IM )




Ŝx(z0)

Ŝx(z1)
...

Ŝx(z2N−1)


 (21)
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Put the correlations outside the range

n ∈ {0, 1, . . . , Lh−1} to zero to obtain the transpose

of the following block row

[r̂x(0) r̂T
x (1) · · · r̂T

x (Lh−1) 0 · · · 0 r̂x(Lh−1) · · · r̂x(1)].
5) Compute the spectrum of the thus windowed correlation

sequence




Ŝx(z0)

Ŝx(z1)
...

Ŝx(z2N−1)


 = (F2N⊗IM )




r̂x(0)
r̂x(1)

...

r̂T
x (1)


 (22)

Then reconstruct the total signal spectrum as

Ŝy(zn) =

⌊
Ŝx(zn)

|Âs(zn)|2
+ σ̂2

v IM

⌋

+

(23)

Go back to step 2 untill convergence.

After convergence, the MIMO linear predictor Ax(q) can be

determined from the source whitened correlations r̂x(n) , n =
0, 1, . . . , Lx. We recommend to use the minimal prediction

order Lx =

⌈
Lh

M−

⌉
, and to introduce a minimum of regu-

larization in the normal equations (ideally the MIMO linear

predictor should be solved by the multichannel version of

the Levinson algorithm so that the proper order (singularity

of the MIMO prediction error covariance) can be detected).

The refinements of this section are implemented for the D&P

Equalizer approaches mentioned in the simulations below.

C. Iterative LP Refinement

So far the source spectrum has been recovered from the

output spectrum by assuming that the SIMO reverberation

filter is approximately a paraunitary filter. This hypothesis can

be taken as an initialization for an iterative process. Using a

(MMSE-)ZF design, the source statistics can be reconstructed

at the output of the D&P equalizer with denoised measured

signal statistics as input. SISO LP can be performed on the

resulting source correlations, and then the MIMO LP can be

reiterated. This refinement has not been implemented yet in

the simulations below.

IV. EXPERIMENTAL RESULTS

MMSE-ZF postfiltering for robust dereverberation in noisy

environment

We illustrate the behavior of zero-forcing post-processing,

and we provide a comparison with the classic Delay-&-

Predict equalizer. We consider a rectangular room with di-

mensions Lx = 8 m, Ly = 10 m and Lz = 4 m, and

with wall reflection coefficients ρx = ρy = ρz = 0.9
(T60 = 250 ms). A speech signal with duration of 8.8s,

and sampled at 8 kHz is used as the original source signal.

The reverberant speech signal is observed on 2 distinct mi-

crophones. A computer implementation (graciously provided

by Geert Rombouts while at K.U. Leuven) of the image

method as described in [11] is used to generate synthetic

room impulse responses for the microphones. We constrain

the postfilter length (and hence the equalization delay d) to

Lw ≤ 100 (d ≤ 12.5 ms). The optimal delay (maximizing

(10)) is selected. Figure 1 plots the Signal-to-Echo+Noise Ra-
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Fig. 1. The SENR function of the input SNR.

tio (SENR =

∑
k s2

k

min
α

∑

k

(sk − α ŝk)2
) as a function of the input

Signal-to-Noise Ratio (SNR =

∑
k ‖yk − vk‖

2

∑
k ‖vk‖

2 ). Note that α

is introduced because the source can only be reconstructed

up to a scale factor. The curves show that, in all regions,

the MMSE-ZF D-&-P performs better than both the classic

D-&-P and D-&-S. Particularly in a noisy environment, the

postfiltering becomes essential in order to have acceptable

enhancement accuracy. On the other hand, one can also remark

that the post-processing still has a positive effect even in

absence of ambient noise (SNR=60 dB). The reason is that the

postfiltering also compensates for the errors in the estimation

of the source spectrum (the estimation is done by averaging

only two observation spectra (M = 2)).

V. CONCLUSIONS

In this paper, we have introduced robust Delay-&-Predict

equalization for blind SIMO dereverberation. We have opti-

mized the transformation of the multivariate prediction filter

to a longer equalizer using the MSE criterion. The optimiza-

tion is performed with or without zero-forcing constraints,

leading respectively to MMSE-ZF and MMSE designs. The

filter length increase allows for the introduction of some

equalization delay, that can also be optimized. Experimental

results illustrate that considerable gains can be achieved by

allowing for a small equalization delay. It has also been shown

that the post-processing is crucial in the low SNR region. In

this paper we have also introduced some refinements for the

multivariate linear prediction (LP) step, the crucial ingredient

in SIMO dereverberation. A first refinement corresponds to a

computationally efficient (FFT based) singular block Toeplitz

covariance matrix enhancement that enforces the SIMO fil-

tered source plus white noise structure before applying MIMO

LP. A second suggested refinement is an iterative refinement

between SISO and MIMO LP. In future work we plan to

56

Authorized licensed use limited to: Telecom ParisTech. Downloaded on September 2, 2009 at 07:27 from IEEE Xplore.  Restrictions apply. 



further emphasize the computational efficiency of the first

refinement introduced here, and to investigate more the perfor-

mance enhamcement brought about by the second refinement.
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