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ABSTRACT

Consider the linear Wiener receiver for multidimensional signals.
Such a receiver is frequently encountered in wireless communica-
tions and in array processing, and the Signal to noise ratio (SNR) at
its output is a popular performance index. The SNR can be modeled
as a random quadratic form and in order to study this quadratic form,
one can rely on well-know results in Random Matrix Theory, if one
assumes that the dimension of the received and transmitted signals
go to infinity, their ratio remaining constant. In this paper, we study
the asymptotic behavior of the SNR for a large class of multidimen-
sional signals (MIMO, CDMA, MC-CDMA transmissions). More
precisely, we provide a deterministic approximation of the SNR, that
depends on the system parameters; furthermore, the fluctuations of
the SNR around this deterministic approximation are shown to be
Gaussian, with variance decreasing as 1/K, where K is the dimen-
sion of the transmitted signal.

Index Terms— Antenna Arrays, CDMA, Central Limit Theo-
rem, MC-CDMA, Random Matrix Theory, Wiener Filtering.

1. INTRODUCTION

The model. Consider the N dimensional received signal

r = Σs + n

where s = [s0, s1, . . . , sK ]T is the transmitted complex vector sig-
nal with size K + 1 satisfying Ess∗ = IK+1, matrix Σ represents
the channel in the wide sense and n is the independent additive white
Gaussian noise (AWGN) with covariance matrix Enn∗ = ρIN > 0.
In this article, we are interested in the performance of the linear
Wiener estimate (also called LMMSE for Linear Minimum Mean
Squared Error estimate) of signal s0. Among the various perfor-
mance indexes, we shall focus on the Signal to Noise Ratio (SNR)
which can be expressed as follows: Partition the channel matrix
as Σ = [y Y], then the Wiener estimate ŝ0 of s0 writes ŝ0 =
y∗ (ΣΣ∗ + ρIN )−1 r and the associated SNR βK is given by:

βK = y∗ (YY∗ + ρIN )
−1

y .

This expression rarely provides a clear insight on the impact of the
channel model parameters (such as the load factor K/N , the power
distribution of the transmission data streams, the correlation struc-
ture of the channel paths in the context of multiantenna transmis-
sions, etc.) on the performances of the LMMSE estimator and ma-
trix Σ is often modeled as a random matrix. This assumption is jus-
tified by the fluctuating nature of the channel paths in the context of
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MIMO communications, the pseudo-random nature of the spreading
sequences in spread spectrum applications, etc.

In the sequel, we shall assume that Σ is random. In this case, the
SNR βK is random and it is of interest to get a deterministic approx-
imation of it based on the system parameters, and to study its fluc-
tuations around this approximation. The theory of Large Random
Matrices is a popular tool to address this problem, widely used in
multidimensional signal processing and in communication engineer-
ing, since the seminal papers of Telatar [1] and Tse et al. [2, 3]. Let
N →∞ with K/N → α > 0 (denoted in the sequel by “K →∞”
for short). As amply shown in the literature, there are many statis-
tical models related to Σ for which there exists a deterministic se-
quence β̄K such that βK− β̄K → 0 almost surely (a.s.). Beyond the
convergence of the SNR, a natural practical and theoretical problem
concerns the study of its fluctuations (to evaluate for example the
outage probability, etc.). Despite its interest, there are very few re-
lated articles in the literature [3, 4]. In this paper, we provide a Cen-
tral Limit Theorem (CLT) for βK as K → ∞ for a general model
of matrix Σ described as follows. Assume that the N × (K + 1)
matrix Σ = (Σnk) (1 ≤ n ≤ N , 0 ≤ k ≤ K) is given by:

Σnk =
σnk√

K
Wnk (1)

where (σ2
nk) is a sequence of real numbers called a variance profile

and where the complex random variables Wnk are independent and
identically distributed (i.i.d.) such that EWnk = 0, EW 2

nk = 0, and
E|Wnk|2 = 1. In this case, the quadratic form βK is given by:

βK =
1

K
w∗0D

1/2
0 (YY∗ + ρIN )

−1
D

1/2
0 w0 (2)

where w0 = [W10, W20, . . . , WN0]
T and D0 is the N×N diagonal

nonnegative matrix D0 = diag(σ2
n0; 1 ≤ n ≤ N). An important

special case that we shall describe carefully in the sequel is when the
variance profile is separable, i.e σ2

nk = dnd̃k.

Application to large dimensional signals. There are many appli-
cations of the general model (1) to the study of large dimensional
signals. We mention a few below.

Multiple antenna transmissions with K + 1 antennas at the
transmission side and N antennas at the reception side. Consider
the transmission model r = Ξs+n where Ξ = 1√

K
HP1/2, matrix

H is a N×(K+1) random matrix with complex Gaussian elements
representing the radio channel and P = diag(pk; 0 ≤ k ≤ K) is
the (deterministic) matrix of the powers given to the different users.
Write H = [h0 · · · hK ], and assume the columns hk are inde-
pendent, which is realistic when the transmitters are distant one
from another. Let Ck be the covariance matrix Ck = Ehkh

∗
k and



let Ck = UkΛkUk be a spectral decomposition of Ck where
Λk = diag(λnk; 1 ≤ n ≤ N) is the matrix of eigenvalues. If
the eigenvector matrices Uk (0 ≤ k ≤ K) are all equal (note that
sometimes they are all identified with the Fourier N×N matrix [5]),
then one can show (see for instance [6]) that matrix Ξ introduced
above can be replaced with matrix Σ of Model (1) where the Wnk

are standard Gaussian i.i.d. and σ2
nk = λnkpk.

In the so-called Kronecker model with correlations at reception,
it is furthermore assumed that Λk = diag(λn; 1 ≤ n ≤ N) for
0 ≤ k ≤ K. This model is accounted for by the separable variance
profile case σ2

nk = λnpk.

CDMA transmissions on flat fading channels. Here N is the
spreading factor, K + 1 is the number of users, and

Σ = WP1/2 (3)

where W is the N× (K +1) signature matrix assumed here to have
random i.i.d. elements with mean zero, variance 1/N and where
P = diag(pk; 0 ≤ k ≤ K) is the users powers matrix. In this
case, the variance profile σ2

nk = dnd̃k is separable with dn = 1 and
d̃k = K

N
pk.

MC-CDMA transmissions on frequency selective channels. In
the uplink, the matrix Σ writes Σ = [H0w0 · · · HKwK ] where
Hk = diag(hk [exp(2ıπ(n− 1)/N)] ; 1 ≤ n ≤ N) is the ra-
dio channel matrix of user k in the discrete Fourier domain and
W = [w0, · · · ,wK ] is the N × (K + 1) signature matrix with
i.i.d. elements as in the CDMA case above. Modeling the channels
transfer functions as deterministic functions yields a non-separable
variance profile: σ2

nk = K
N
|hk(exp(2ıπ(n− 1)/N))|2.

In the downlink, we have Σ = HWP1/2 where H =
diag(h[exp(2ıπ(n − 1)/N)]; 1 ≤ n ≤ N) is the radio channel
matrix in the discrete Fourier domain, the N × (K + 1) signa-
ture matrix W is as above, and P = diag(pk; 0 ≤ k ≤ K)
is the matrix of the powers given to the different users. This
model yields a separable variance profile σ2

nk = dnd̃k with
dn = K

N
|h(exp(2ıπ(n− 1)/N))|2 and dk = pk.

About the Literature. In the communication engineering litera-
ture, the CLT for the quadratic forms has probably been considered
for the first time in [3], where the authors consider a matrix Σ with
i.i.d. entries. Recently, [4] considered the more general CDMA
Model (3). The model considered in this paper includes the models
of [3] and [4] as special cases. The approach used here to establish
the CLT is powerful yet simple. It is based on the representation of
βK as the sum of a martingale difference sequence and the use of the
CLT for martingales [7].

Outline of the paper. This paper is organized as follows. In Sec-
tion 2, we introduce various deterministic quantities needed to ex-
press the limiting behaviour of βK and the variance in the CLT; we
then apply general first order results and describe the limiting be-
haviour of βK . The CLT for βK is stated in Section 3. A sketch
of proof for the CLT is presented in Section 4. Finally, we provide
simulations in Section 5.

2. DETERMINISTIC APPROXIMATION OF THE SNR

Recall that βK = y∗ (YY∗ + ρIN )−1 y where Σ = [y Y]. The
SNR βK is a random number which becomes closer and closer to
its expectation as K → ∞. However, the expectation (whose com-
putation would rely on massive monte-carlo simulations) does not

say much about the dependence of the SNR to the channel model
parameters. In order to circumvent this issue, we introduce a deter-
ministic equivalent β̄K to the SNR which depends explicitly on the
channel parametres and whose computation can be performed with
many straightforward numerical routines.

The deterministic approximation β̄K plays a central role in the
expression of the CLT. Indeed, we shall study the fluctuations of
βK − β̄K in the next section.

Denote by C+ = {z ∈ C : im(z) > 0}. We say that a complex
function t(z) belongs to class S (Stieltjes) if

• t(z) is analytical in C− [0,∞),

• t(z) ∈ C+ for all z ∈ C+,

• im(z)|t(z)| is bounded over C+, that is:

sup
z∈C+

im(z)|t(z)| < K < ∞.

We introduce the diagonal matrices

Dk = diag(σ2
nk; 1 ≤ n ≤ N) for 1 ≤ k ≤ K ,eDn = diag(σ2
nk; 1 ≤ k ≤ K) for 1 ≤ n ≤ N .

Proposition 1 ([8, 9]) The system of N + K functional equations8>>><>>>:
tn(z) =

−1

z
“
1 + 1

K
tr(eDn

eT(z))
” , 1 ≤ n ≤ N

t̃k(z) =
−1

z
`
1 + 1

K
tr(DkT(z))

´ , 1 ≤ k ≤ K

where

T(z) = diag(t1(z), . . . , tN (z))eT(z) = diag(t̃1(z), . . . , t̃K(z))

has a unique solution (T, eT) among the diagonal matrices for which
the tn and the t̃k belong to class S.

The asymptotic behaviour of βN is characterized by the follow-
ing theorem:

Theorem 1 ([8, 10, 9]) Let β̄K =
1

K
trD0T(−ρ) where T is given

by Proposition 1. Then

βK − β̄K −−−−→
K→∞

0 almost surely.

Remark 1 In matrix model (1), one sometimes assumes that the
variance profile σ2

nk is obtained from the samples of a contin-
uous nonnegative function π(x, y) defined on [0, 1]2 at points“

n
N

, k
K+1

”
, i.e. σ2

nk = π
“

n
N

, k
K+1

”
. In this case, the sequence

β̄K and δK defined in Theorem 1 above converge to limits that are
solutions of integral equations (see for instance [10, 11]). The same
holds true for δK defined in Corollary 1 below.

Of particular importance is the separable case where σ2
nk =

dnd̃k. In this case, Dk writes: Dk = d̃kD and eDn = dn
eD where

D = diag(dn; 1 ≤ n ≤ N) and eD = diag(d̃k; 1 ≤ k ≤ K), and
the system of N +K functional equations reduces to two equations:



Proposition 2 The system of two functional equations8>><>>:
δ(z) = 1

K
tr

„
D
“
−z(IN + δ̃(z)D)

”−1
«

δ̃(z) = 1
K

tr

„eD“−z(IK + δ(z)eD)
”−1

« (4)

admits a unique solution (δ, δ̃) ∈ S2. Moreover, letting z = −ρ ∈
(−∞, 0), we have δ(−ρ) > 0, δ̃(−ρ) > 0.

In this particular case, D0 = d̃0D, the matrix functions T and eT
defined by Proposition 1 are given by T = − 1

z
(I + δ̃D)−1 andeT = − 1

z
(I + δ eD)−1; hence we have:

Corollary 1 ([10, 11]) Assume the separable case σ2
nk = dnd̃k.

Then
βK

d̃0

− δK −−−−→
K→∞

0 a.s.

where δK = δ with (δ, δ̃) being the solution of System (4) at z = −ρ.

Remark 2 In the separable case, βK/d̃0 often represents the SNR
of user 0 normalized to this user’s power. Therefore, we can nat-
urally interpret the approximation δK as an asymptotic normalized
SNR. This approximation, as well as the asymptotic variance of the
normalized SNR βK/d̃0 defined in Corollary 2 is the same for all
users.

3. FLUCTUATIONS FOR THE SNR: THE CLT

In the sequel, we shall use Landau notation:

UK = O(VK) ⇔ |UK | ≤ C|VK |, K ∈ N,

for some constant C.
In order to express the CLT, and especially the variance that ap-

pears in the CLT, we build upon what has been introduced in the
previous section (matrices T and T̃) and introduce the following
quantities: Let A and ∆ be the K ×K matrices

A =

"
1

K

1
K

trD`DmT(−ρ)2`
1 + 1

K
trD`T(−ρ)

´2
#K

`,m=1

and

∆ = diag

 „
1 +

1

K
trD`T(−ρ)

«2

; 1 ≤ ` ≤ K

!
where T is defined by Proposition 1. Let g be the K × 1 vector

g =

»
1

K
trD0D1T(−ρ)2, · · · ,

1

K
trD0DKT(−ρ)2

–T
.

We are now in position to express the CLT (which holds under slight
technical assumptions):

Theorem 2 With the notations introduces above, the following hold
true:

1) The sequence of real numbers

Θ2
K = (E|W10|4 − 1)

1

K
trD2

0T
2

+
1

K
gT(IK −A)−1∆−1g (5)

is well defined and furthermore

0 < lim inf
K

Θ2
K ≤ lim sup

K
Θ2

K < ∞ .

2) The sequence βK satisfies

√
K

„
βK − β̄K

ΘK

«
−−−−→
K→∞

N (0, 1)

in distribution where β̄K is defined in Theorem 1.

Remark 3 In the context of MIMO channels, the mutual informa-
tion per transmit antenna

IK =
1

K
log det (ρI + ΣΣ∗)

is another popular performance index whose fluctuations have been
studied in details [12, 13] and whose speed of convergence is

√
K-

faster than the fluctuations of the SINR. Indeed, if IK stands for
the deterministic equivalent of the mutual information IK , the CLT
expresses as:

K

„
IK − IK

ΘMI
K

«
−−−−→
n→∞

N (0, 1)

in distribution, where ΘMI
K = O(1) approximates the standard de-

viation of the mutual information KIK . As a practical consequence,
IK remains a good approximation of IK even for small values of K,
while this is not the case for β̄K .

Corollary 2 In the separable case σ2
nk = dnd̃k, denote by:

γ =
1

K
trD2T2 , γ̃ =

1

K
treD2 eT2,

Ω2
K = γ

„`
E|W10|4 − 1

´
+

ρ2γγ̃

1− ρ2γγ̃

«
.

Then, Ω2
K =

Θ2
K

d̃2
0

, where Θ2
K is defined in Theorem 2. In particular,

1) The sequence (Ω2
K) satisfies:

0 < lim inf
K

Ω2
K ≤ lim sup

K
Ω2

K < ∞.

(2) The following convergence holds true:

√
K

„
βK/d̃0 − δK

ΩK

«
−−−−→
K→∞

N (0, 1)

in distribution.

Remark 4 These results show in particular that the asymptotic
variance Θ2

K is minimum with respect to the distribution of the Wnk

when |Wnk| = 1 with probability one. In the context of CDMA
and MC-CDMA, this is the case when the signature matrix elements
have their values in a PSK constellation.

4. SKETCH OF PROOF

Let Q be the N × N matrix Q = (YY∗ + ρIN )−1. Recall that
the deterministic approximation of βK is β̄K = 1

K
trD0T. Getting

back to Equation (2), we can write

√
K(βK − β̄K) =

1√
K

“
w∗0D

1/2
0 QD

1/2
0 w0 − trD0Q

”
+

1√
K

trD0 (Q−T)

def
= ξK + χK



It can be shown [13] that Eχ2
K = O(K−1). On the other hand, by

using the independence of w0 and Q, the fact that the spectral norm
of Q is uniformly bounded and the fact that the elements of w0 are
i.i.d., one can easily show that Eξ2

K = O(1) as K → ∞ by using
the well-known identity

E (x∗Mx− trM)
2

= trM2 + κ

KX
i=1

m2
ii ,

where M is a deterministic matrix and x = (x1, · · · , xK) is a K×1
vector with unit variance centered i.i.d. complex random variables
and κ = E|x1|4 − 2.

As a consequence, the asymptotic behaviour of
√

K(βK − β̄K)
is given by ξK ’s behaviour. Denote by En the conditional expecta-
tion

En[ · ] = E[ · ‖Wn,0, Wn+1,0, . . . , WN,0,Y].

Put EN+1[ · ] = E[ · ‖Y] and note that EN+1w
∗
0D

1/2
0 QD

1/2
0 w0 =

trD0Q. With these notations at hand, we have

ξK =

NX
n=1

(En − En+1)
w∗0D

1/2
0 QD

1/2
0 w0√

K

def
=

NX
n=1

Zn .

The sequence Zn is readily a martingale difference sequence with
respect to the increasing sequence of σ−fields σ(Y), σ(WN,0,Y)),
. . . , σ(W1,0, . . . , WN,0,Y).

Now, the asymptotic behaviour of ξK (convergence in distribu-
tion toward a Gaussian r.v. and derivation of the variance Θ2

K ) can
be characterized with the help of the CLT for martingales [7, Ch.
35]: In order to establish the CLT, it is sufficient to prove that

1

Θ2
K

NX
n=1

En+1Z
2
n −−−−→

K→∞
1

in probability.

5. SIMULATIONS

In this section, the accuracy of the Gaussian approximation is veri-
fied by simulation. We consider an MC-CDMA transmission in the
uplink direction. The base station detects the symbols of a given
user in the presence of K interfering users. We assume that the dis-
crete channel impulse response of each user consists in L = 5 i.i.d.
Gaussian coefficients with variance L−1. Formally, the results are
conditioned to the channel; in praticular, the variance profile is con-
sidered as deterministic. All impulse responses are known to the
base station.
In this case, Σ is given by:

Σ = [
√

p0H0w0 · · ·
√

pK+1HK+1wK+1]

where

• Hk = diag(hk(exp(2ıπ(n−1)/, N))n=1,...,N ) is the chan-
nel matrix of user k in the frequency domain,

• pk is the amount of power allocated to user k,

• wk are assumed to belong to QPSK constellation with mean
zero and variance 1/N .

In this case, σ2
n,k is given by:

σ2
n,k =

Kpk

N
|hk (exp (2iπ(n− 1)/N)) |2

We denote by P the power given to the user of interest. The
other users are arranged into 5 classes according to their powers.
The power of each class as well as the proportion of users within
this class are given in table 1. Figure 1 shows the histogram of

Table 1. Power and proportion of each user class
class 1 2 3 4 5

Power P 2P 4P 8P 16P
Proportion 1/8 1/4 1/4 1/8 1/4

√
K(βK − β̄K) for N = 16 and N = 64. We note that as it was

predicted by our derived results, the histogram of
√

K(βK − β̄K)
is similar to that of a Gaussian random variable. In Figure 2 the
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Fig. 1. Histogram of
√

K
ΘK

(βK − β̄K) for N = 16 and N = 64; in red
doted line, the Gaussian density

measured second moment of βK − β̄K is compared with Θ2
K/K.

We note that convergence is reached even for K = 8.

6. CONCLUSION

The Gaussian nature of the SNR at the output of the Wiener re-
ceiver for a class of large dimensional signals described by a random
transmission model has been established theoretically and verified
by simulation.
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