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ABSTRACT (LRMT) [3] states that the eigenvalue distribution of the Gram ma-
trix HH* whereH™ is the Hermitian adjoint oH converges to a

The use of Multiple Input Multiple Output (MIMO) systems has deterministic probability distribution as goes to infinity andV/n
been widely recognized as an efficient solution to increase the datnverges to a positive constant. Recalling that Shannon’s mutual
rate of wireless communications. In this regard, several contribumformation per receiver antenna 8~ 'Elog det(I + p~ 'HH*)
tions investigate the performance improvement of MIMO systemsyherep > 0 is the additive noise variance, one consequence of [3]
in terms of Shannon’s mutual information. In most of these conys that this mutual information converges to a constant. This fact al-
tributions, elements of the MIMO channel matrix are assumed tQeady observed in [1] sustains the assertion of a linear increase of
belong to a multivariate Gaussian distribution. The non Gaussiamutual information with the number of antennas. In addition, this
case, which is realistic in many practical environments, has beegonvergence proves to be sufficiently fast. As a matter of fact, the
much less studied. This contribution is devoted to the study of thgsymptotm results predicted by LRMT remain relevant for systems
mutual information of MIMO channels when the channel matrix ele-with a moderate number of antennas.

ments are Ricean with the non-Ricean component being iid butnon- e next step was to apply this theory for channel models that
Gaussian. In this context, the mutual information behavior is StUdie?hclude correlations between the elementskbf In this context
in the large d|men§|qngl regime where both chapnel matrix dimenzentered matrix channels have been first studied. The first order be-
sions converge to infinity at the same pace. In this regime, a Centralyyioyr (LRMT asymptotic approximation of the mutual informa-
Limit Theorem on the mutual information is provided. In particu- jon) as well as the second order (Central Limit Theorem) have been
lar, the mutual information variance is determined in terms of thexgiaplished for channels with Gaussian elements whose variances are
pgrameters of the channel statistical _model. Since non Gaussian jsscribed by the so called Kronecker model [4,5]. Recently, the gen-
tries are allowed, a new term proportional to the fourth cumulant o4 variance profile has been considered and the Gaussian assump-
their dl_s_trlbutlon_ arises in the expression of the asymptotic variancjon has been raised [6]. It should be noted that these results deal
In addition, a bias term proportional to this fourth order cumulantyit, the case where the channel has no line of sight nor a reflected
appears. component, implying that the channel elements are centered random
variables. The non centered case has been consideeeg. i, 8].
1. INTRODUCTION In these contributions, the non centered Gaussian distribution with a
Kronecker variance profile has been treated, and the first order ap-
roximation as well as the variance of theg det functional have
en derived. The approach of [7, 8] is based on the replica method,

It is widely known that high spectral efficiencies are attained Whe\l:g
ich can be used as long as Gaussian distributions are considered.

multiple antennas are used at both the transmitter and the recei
of a wireless communication system. Consider the classical trans- . - . -
mission modely — Hs + v, wherey is the received signak is he results obtayned by this method are relevant, but its assumptions
the vector of transmitted symbols, is a complex white Gaussian 2" NOt always rigorous. .
noise, and is the N' x n Multiple Input Multiple Output (MIMO) In this paper, we consider non centered channels which are not
channel matrix withV antennas at the receiver's site andinten- ~ necessarily Gaussian. Our study, based on the martingale method,
nas at the transmitter's. Due to the mobility and to the presence dgads to an improved fit of the LRMT deterministic approximation
a large number of reflected and scattered signal paths, the elemeM(§h the true mutual information in many practical situations, es-
of the channel matriH are often modeled as random variables. As-Pecially met in severe fading cases. Among the most commonly
suming a random model for this matrix, Telatar [1] and Foschini [2]uS€d non Gaussian distributions, we mentionithélakagami, the
realized in the mid-nineties that Shannon's mutual information of?veibull and the Lognormal distributions. Several works support the
such channels increases at the rateaf(N, ). The authors of [1] ~ Pertinence of these distributions to model real propagation chan-
and [2] assumed that the elements of the channel mikraxe cen-  Nels. In particular, the Nakagami distribution is particularly suited
tered, independent and identically distributed (i.i.d.) elements. 10 Some urban multipath environments [9]. The Weibull distribution
this context, a well-known result in Large Random Matrix TheoryWas shown to exhibit a good fit for both indoor and outdoor envi-
ronments, [10, 11], whereas the Lognormal distribution is known to
This work was partially supported by the French program ANR- ~approximate shadowing effects.
MDCO-012-01 "SESAME”" Despite their importance for modelling line-of-sight radio chan-




nels, these distributions have not been considered so far in the analy- 3. FIRST AND SECOND ORDER RESULTS

sis of the mutual information. This motivates our work. In particular, ~

we prove that in the LRMT asymptotic regime, thegzdet func-  Having introduced matrice®, (p) and T, (p), we are now in posi-
tional fluctuates around its deterministic approximation as a Gausion to provide the first and second order results of the mutual infor-
sian random variable. Since we allow for non Gaussian channels,raation. The first order result is a by-product of theorem 4.1 in [12]
new term proportional to the fourth cumulaniof the channel ma- and can be given as:

trix elements arises in the expression of the asymptotic variance of

the log det. Interestingly, this new correction of the variance not Theorem 2. Assumesup,, || \fAH < oo wherel|.|| is the spectral
only depends on the singular value distribution of the MIMO chan-norm. In the asymptotic regime, the following holds true:

nel mean matrix but also on its singular vectors. We also identify the

singular vector matrices that maximize and minimize the asymptotic Z..(p) = Valp) = 0 almost surely

variance, and show in particular that the sign of the fourth cumulant

plays a key role in this respect. In addition, a bias term also propormwhere

tional tox appears, and this term also depends on the singular values .
and the singular vectors of the channel mean matrix. Finally we test y; () = S log det(p(K + 1)(1 + 6)Iy + KAA )
our findings onn Nakagami, Weibull and Lognormal distributions. N n(l+9)

np(K + 1)

= log(1+9) — 66 — log(p(K + 1)).

2. SYSTEM MODEL AND PROBLEM SETTING N
Remark 1. It can be seen from Theorems 1 and 2 that the first order
approximationV, (p) of Z,, (p) depends on the channel mean matrix
A through its singular values only. This approximation would be the
same ifH were Gaussian.

We consider a MIMO system witl receiving antennas andtrans-
mitting antennas. We denote By the N x n channel matrix which
is assumed to be given by:

L (\/ 1 X + \/ K A) In addition to the first order result, another question regarding

n K+1 K+1 the fluctuations of théog det aroundV,, (p) is worth studying. De-
termining the nature of these fluctuations gives us insights about the
variance of thdog det and the outage probability, which is the per-
tinent information theoretic performance measure when the channel
is a slow fading channel. Under some mild technical assumptions,
we can prove the following Central Limit Theorem:

where the constank is sometimes called the Rice factd, is a
random matrix with i.i.d entries with zero mean and unit variance
and A is a deterministic matrix accounting for the line of sight or
reflected components. Denoting bythe additive Gaussian noise
variance, the mutual information normalized by the number of re-

ceiver antennas IBZ, (p) where Theorem 3. Lety = LTr(T?),5 = l,I\r(,’fg) S — diag(T), and
! 1 . S = diag(T). Letx be the fourth cumulant of the entriesXfgiven
I,(p) = ~ log det (IN + ;HH ) . by s = E|X1.1[* — 2. DefineA, as
For fixed size dimensions, the study of the mutual information is K o) .
rather difficult. Instead, we will consider the asymptotic regime de- An = (1 - mTf(AA T )) —p (K + 1)y

fined asNV,n — oo in such a way that

Then, the following holds true :

0 < limi fﬁ <l E <
Homt o S Hmsup o < 00, 1. The sequence of real numbers

which we refer to as — oo for notation simplicity. However, even 5 ) 1 1 )
after relaxing the assumption of finite size dimensions, the mutual 0, = —log A, + kp" (K +1) ETYS ET&"S
information still does not generally have a closed-form expression.

Instead, the asymptotic approximation of the mutual information can satisfied) < liminf ©2 < limsup O3 < co.

be defined as the solution of a system of equations: n n

N 2. Th | inf i isfies:
Theorem 1 ([12]). Foranyp > 0, the deterministic system: € mutual information satisfies

N

1 — (Z.(p) —EZ, —— N(0,1) indistribution
506) = L1, M 6 (Zn(p) ~EZa(p) > N(O.1)
5(p) = %Tr'i‘n(p) (2)  Remark 2. It should be noted that the varian€. is the sum of two

terms. The first term\,, would be the same H were Gaussian, and
it depends orA through its singular values only. The second term
accounts for the impact of the fourth cumulant and depends also on
KAA* -1 the left and right singular vectors cA. Also, settings = 0, we
)))

whereT,, and 'T‘n are the matrices

Tn(p) = <P(K +1)(1+5(p)In + (3)  get back the expression of the variance established in [7] for the

n(1+d(p . Gaussian case.
~ KA*A ] o ) )
Tn(p) = | P(K+ 1)1 +6(p)In + ——=—— (4) In case the cumulant is nonzero, it might be of interest determine
n(1+4(p)) the singular vector matrices & which provide the extremal values

] ) L ) of ©2. Sincex can be positive or negative, the extrema might refer
admits a unique solutiofy, §) in (0, o0)*. to the minimum or the maximum depending on sigh



Proposition 1. Let A = UAV™ be a spectral decomposition of Remark 3. Note that we can obtain the same result by using a

A whereU = [u;] and'V = [v;;] are the matrices of singular Schur convexity arguméntActually, if x > 0, one can easily see

vectors. that all real positive vectors whose entries have sﬁ;fﬁrT weakly
Lo

1\ T .
N ,,Tr) . Consider the

Schur Convex functioff : RY — R, u — Zf;l |ui|?, then f

. When|uik|2 =1/N and|vjl\2 = 1/n, @% attains its min- majorize the vectom,,;; = (
imum with respect t¢U, V) if x > 0 and its maximum if

K < 0. N o ; :
Such a situation arises.g. whenU and 'V are Fourier ma- "’}“a'”g Its minimum whem = Wuniy. In particular, we obtain:
trices. =TrS* = f(u) > f(Uunir), where, .
= 1 N . 12 1 N . 12 :
e WhenU = Iy andV = I,, ©2 attains its minimum with % = (E imwilwwl®, o 5 200 wilunil ) - The same kind
respect toq(U, V) if & < 0 and its maximum i > 0. of argument can be used to prove thaflrS® is minimized if the

entries of matrixV’ verify: |v;;|2 = 1/n.
Proof. We fix A and look for matricegU, V) which minimize or
maximize©Z. One can notice that the terfs, in the expression of
©2 does not depend dfU, V). Hence we only need to consider the Theorem 4. With the notations of Theorem 3, let
cumulant term and minimize or maximize Aw)

N n P =rEy
2 2
K Z Liyi Z t5,j with
i=1 j=1

The bias term is characterized by the following theorem:

B(w)

~ AW) = WA TeS ()2 2§ (w)?
Using (3) and (4), the spectral decompositionSandT are given n n

by: T = UQU* andT = VQV* whereQ andQ2 depend only —W*(1+ S(w))1Tr§(w)2lTlmS‘(w)T(cu)2
onA. LettingQ = diag(wi,--- ,wn), we will show that for any 711 T o
matrix U, we have: — (1 4 6(w)) =TrS(w)> = TrS(w)T(w)?,
n n
N 2 N N B(w) =14 w(l + 6(w))F(w) + w(l + 6(w))y(w).
1 W, oL, 7 gl

sup/oo |Bn(w)]dw < oo

and that inequality (a) becomes an equality when the elemeftfs of n Jp(K+1)
satisfy|u; x|> = 1/N, whereas inequalityb) is an equality when  and furthermore
U = Iy. SinceT = UQU" whereQ? = diag (w1, ,wn), We

get: N (EZ,.(p) — Vn(p)) — / Bw)dw —— 0.
N N /N 2 p(K+1) nTreo
e -3 ( |ui,k|2wk> ©
i=1 i=1 \k=1 4. SIMULATIONS
. _ 2 N
Denote byP the doubly stochastic matriR = [Juix|*],,_, and |, this section, we verify by simulations the accuracy of our results.
by w the vectorw = [wi, - - - ,wn]". Therefore: We assume a non centered channel with= [a(a1), -, a(an)]
T
N wherea(a) = [1,e“, ., e?N=De| g g directional vector, the
Ztii = w' P Pw a; being some given phase variables. The entries of the non line
i=1 of sight matrixX are assumed to verifjyX], . = ri; exp (56:,;),

) ] ) ) ) where0; ; are i.i.d uniform phase variables ovfy, 27] andr; ;
Itis clear that sinc@ is a doubly stochastic matrix, the vectgk-1  gre i.i.d real positive random variables. According to the distri-
is the eigenvector dP™P corresponding to the eigenvalue equal to bution of r; ;, we distinguish three type of channels, whose main
one wherel is the vector of all ones. Thus, for any vectorwe get  properties are summarized in Table 1. Each distribution in Table
1 has originally two degrees of freedom, but adding the constraint
. 1., - 1 (& ? E|X1.1|? = 1, the number of degrees of freedom is reduced to one,
w (P P- Nll ) w=wPPw-— ~ Zwi >0 and this is captured by the equations in the third row of Table 1. The

i=1 parametric Nakagami-m and Weibull density functions cover a wide
) 5 ) . range of distributions. For instance, the Rayleigh distribution (cor-
'fl weTchooseU in such a way to haveu; ;| = 5 thenP'P = oq50nding to a Gaussian channel) can be obtained by setting the pa-
w117, and as such (a) becomes an equality. Inequality (b) can bgymetery to 1 and to 2 for respectively, the Nakagami-m and the
deduced from (5) and from the convexity of the functitf@) = 2. Weibull density functions. Moreover, other less common distribu-
In the same way, we can easily see that: tions can be also generated, like the truncated Gaussian distribution
) on the real positive axis, fqr = % and the exponential distribution
1 Z": 5 (2 2 (i) ~ =2 whenk =1 The coeff_icient of va_riati_on shown in Table 1 quantifies
n \ & i = s Jd = e i the severity of the fading [13]. It is given by:
var(r; ;) 1
where inequalities (c) (resp. (d)) become equalities whign|* = Cv= Er:, = (Eri)? -1

1/n (respV =1,,).
The proposition follows from these results. O 1The authors thank the reviewer who suggested this argument.




Nakagami-m Weibull Log-Normal
(1.0) (k) (o)
— z \k _(nz—p)
distribution | fu o (z) = Ff:)‘;ﬂ x2u716*5z2’ e>0 | fapla)=*% (f)k L (%) , x>0 | fuo(z)= ﬁe Lazop) 250
_ _ 1 _ 2
Z Pl
mulan :(1 l)_z _ _Ma+e) 5 —h? g
cumulant K + 4 (F(1+%))2 k=e
2
Coefficient vV = [ AEw® v = \/ BENC L S CV = fexp(o?) — 1
of Variation (Pt3)) (ra+4)

Table 1. Main characteristics of some non Gaussian distributions

Q-Q plot for N=16, n=32

The Nakagami-m and Weibull distributions exhibit severe fadings
when their respective parametersand k& are very small, whereas

the lognormal distribution exhibit severe fadings for large values of
o2. In this section, we will first verify the accuracy of our derived st
results for the case of Gaussian entries. The effect of the coefficient ol
of variation and the eigenvectors Af will be discussed afterwards.

Q-Q plot for N=8, n=16

4.1. Gaussian entries

Normal quantiles
o

Normal quantiles
°

In this section, we consider GaussiHhand assess the accuracy of Ll
the results of Theorems 2 and 3 for finkéandn. We also investi-
gate the effect of the Rice facté¢ on the variance.

Fig. 1 displays the empirical estimation BIZ,, as well asV;, % I S S N ‘
with respect ta: = ¥ whenn = 16, N ranging from2 to 15, and ®  Emprcalquanties  — Empirical quanties
p = 0.2. We also set the Rice factdf¢ to 1. We notice a very good
fit on the whole range of.

Fig. 2. Q — @ plot for &= (In.(p) — EL.(p)).

18 B

over the non-line of sight one, to the point that the channel is almost
constant. Thus, its fluctuations around its mean become small.

171 : : : 4

4.2. Non Gaussian entries

»—\

o

K
T
I

In this experiment, we investigate the effect of the coefficient of vari-
ation on the variance of the mutual information. For each distribu-
tion (Nakagami-m, Weibull or Lognormal), we make the coefficient
of variation CV vary from0 to 1. Fig. 4 displays the empirical
and theoretical variances with respect to CV, whén= 32,n =

64,p = 0.2 and K = 1. We note that when the channel exhibit
severe fadings (high CV), the Lognormal channel is the one that un-
c dergoes the highest variance.

Expected mean
Il
>
T
I

1551 ~

Fig. 1. Theoretical and Empirical expected mean with respect to We now investigate by simulations the asymptotic behaviour of
the bias. We consider the m-Nakagami distribution witk= 0.05.
We also sep = 0.2, K = 1 and show on the same figure the em-

Fig. 2 presents the Quantile-Quantile (Q-Q) plot for the distri-Pirical bias| (EZx(p) — Va(p)) | comfuted oveb000 channel real-
o (w)dwl, for different

bution of the Shannon capacity when= 0.2 and K = 1. This izations and the theoretical bids; [ 7, )
figure shows that the normal approximation is suitable in the ranggalues of N. The ratioc = N/n is set t00.5. Fig. 5 illustrates the

of a few standard deviations and could be used to approximate thebtained results. As expected, the empirical and theoretical biases
outage probability under these conditions. coincide and are of orde?(+).

Fig. 3 shows the empirical and the LRMT theoretical variance  Finally, we apply Proposition 1 to the Nakagami-m, Weibull and
with respect to the Rice factor when= 32, N = 16, andp = 0.2. Lognormal distributions. A close look at these distributions shows
We note that wheli increases, the line of sight component prevailsthat their fourth cumulant is positive if and only if their coefficient
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Fig. 3. Theoretical and Empirical variance with respecffo
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Fig. 5. Theoretical and empirical biases with respecio

A-D | A=F,NDF,
CV > CV(Rayleigh | ©2 is max. ©2 is min.
(severe fading)
CV < CV(Rayleigh | ©2 is min. ©2 is max.
(non severe fading)

Table 2. Effect of the singular vectors & on ©2
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