
ON THE FLUCTUATIONS OF THE MUTUAL INFORMATION FOR NON CENTERED MIMO
CHANNELS: THE NON GAUSSIAN CASE

Abla Kammoun(1), Malika Kharouf(1,2), Walid Hachem(3), Jamal Najim(3) and Ahmed El Kharroubi(2)

(1)TELECOM ParisTech (Paris, France),
(2)Hassan II University (Casablanca, Morocco),

(3)CNRS LTCI ; TELECOM ParisTech,
kammoun,kharouf,hachem,najim@telecom-paristech.fr

elkharroubi@facsc-achok.ac.ma

ABSTRACT

The use of Multiple Input Multiple Output (MIMO) systems has
been widely recognized as an efficient solution to increase the data
rate of wireless communications. In this regard, several contribu-
tions investigate the performance improvement of MIMO systems
in terms of Shannon’s mutual information. In most of these con-
tributions, elements of the MIMO channel matrix are assumed to
belong to a multivariate Gaussian distribution. The non Gaussian
case, which is realistic in many practical environments, has been
much less studied. This contribution is devoted to the study of the
mutual information of MIMO channels when the channel matrix ele-
ments are Ricean with the non-Ricean component being iid but non-
Gaussian. In this context, the mutual information behavior is studied
in the large dimensional regime where both channel matrix dimen-
sions converge to infinity at the same pace. In this regime, a Central
Limit Theorem on the mutual information is provided. In particu-
lar, the mutual information variance is determined in terms of the
parameters of the channel statistical model. Since non Gaussian en-
tries are allowed, a new term proportional to the fourth cumulant of
their distribution arises in the expression of the asymptotic variance.
In addition, a bias term proportional to this fourth order cumulant
appears.

1. INTRODUCTION

It is widely known that high spectral efficiencies are attained when
multiple antennas are used at both the transmitter and the receiver
of a wireless communication system. Consider the classical trans-
mission modely = Hs + v, wherey is the received signal,s is
the vector of transmitted symbols,v is a complex white Gaussian
noise, andH is theN × n Multiple Input Multiple Output (MIMO)
channel matrix withN antennas at the receiver’s site andn anten-
nas at the transmitter’s. Due to the mobility and to the presence of
a large number of reflected and scattered signal paths, the elements
of the channel matrixH are often modeled as random variables. As-
suming a random model for this matrix, Telatar [1] and Foschini [2]
realized in the mid-nineties that Shannon’s mutual information of
such channels increases at the rate ofmin(N,n). The authors of [1]
and [2] assumed that the elements of the channel matrixH are cen-
tered, independent and identically distributed (i.i.d.) elements. In
this context, a well-known result in Large Random Matrix Theory
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(LRMT) [3] states that the eigenvalue distribution of the Gram ma-
trix HH∗ whereH∗ is the Hermitian adjoint ofH converges to a
deterministic probability distribution asn goes to infinity andN/n
converges to a positive constant. Recalling that Shannon’s mutual
information per receiver antenna isN−1

E log det(I + ρ−1HH∗)
whereρ > 0 is the additive noise variance, one consequence of [3]
is that this mutual information converges to a constant. This fact al-
ready observed in [1] sustains the assertion of a linear increase of
mutual information with the number of antennas. In addition, this
convergence proves to be sufficiently fast. As a matter of fact, the
asymptotic results predicted by LRMT remain relevant for systems
with a moderate number of antennas.

The next step was to apply this theory for channel models that
include correlations between the elements ofH. In this context,
centered matrix channels have been first studied. The first order be-
haviour (LRMT asymptotic approximation of the mutual informa-
tion) as well as the second order (Central Limit Theorem) have been
established for channels with Gaussian elements whose variances are
described by the so called Kronecker model [4,5]. Recently, the gen-
eral variance profile has been considered and the Gaussian assump-
tion has been raised [6]. It should be noted that these results deal
with the case where the channel has no line of sight nor a reflected
component, implying that the channel elements are centered random
variables. The non centered case has been considered ine.g.[7, 8].
In these contributions, the non centered Gaussian distribution with a
Kronecker variance profile has been treated, and the first order ap-
proximation as well as the variance of thelog det functional have
been derived. The approach of [7,8] is based on the replica method,
which can be used as long as Gaussian distributions are considered.
The results obtained by this method are relevant, but its assumptions
are not always rigorous.

In this paper, we consider non centered channels which are not
necessarily Gaussian. Our study, based on the martingale method,
leads to an improved fit of the LRMT deterministic approximation
with the true mutual information in many practical situations, es-
pecially met in severe fading cases. Among the most commonly
used non Gaussian distributions, we mention them-Nakagami, the
Weibull and the Lognormal distributions. Several works support the
pertinence of these distributions to model real propagation chan-
nels. In particular, the Nakagami distribution is particularly suited
to some urban multipath environments [9]. The Weibull distribution
was shown to exhibit a good fit for both indoor and outdoor envi-
ronments, [10, 11], whereas the Lognormal distribution is known to
approximate shadowing effects.

Despite their importance for modelling line-of-sight radio chan-



nels, these distributions have not been considered so far in the analy-
sis of the mutual information. This motivates our work. In particular,
we prove that in the LRMT asymptotic regime, thelog det func-
tional fluctuates around its deterministic approximation as a Gaus-
sian random variable. Since we allow for non Gaussian channels, a
new term proportional to the fourth cumulantκ of the channel ma-
trix elements arises in the expression of the asymptotic variance of
the log det. Interestingly, this new correction of the variance not
only depends on the singular value distribution of the MIMO chan-
nel mean matrix but also on its singular vectors. We also identify the
singular vector matrices that maximize and minimize the asymptotic
variance, and show in particular that the sign of the fourth cumulant
plays a key role in this respect. In addition, a bias term also propor-
tional toκ appears, and this term also depends on the singular values
and the singular vectors of the channel mean matrix. Finally we test
our findings onm Nakagami, Weibull and Lognormal distributions.

2. SYSTEM MODEL AND PROBLEM SETTING

We consider a MIMO system withN receiving antennas andn trans-
mitting antennas. We denote byH theN × n channel matrix which
is assumed to be given by:

H =
1√
n

(√
1

K + 1
X+

√
K

K + 1
A

)

where the constantK is sometimes called the Rice factor,X is a
random matrix with i.i.d entries with zero mean and unit variance,
andA is a deterministic matrix accounting for the line of sight or
reflected components. Denoting byρ the additive Gaussian noise
variance, the mutual information normalized by the number of re-
ceiver antennas isEIn(ρ) where

In(ρ) =
1

N
log det

(
IN +

1

ρ
HH

∗

)
.

For fixed size dimensions, the study of the mutual information is
rather difficult. Instead, we will consider the asymptotic regime de-
fined asN,n → ∞ in such a way that

0 < lim inf
N

n
≤ lim sup

N

n
< ∞,

which we refer to asn → ∞ for notation simplicity. However, even
after relaxing the assumption of finite size dimensions, the mutual
information still does not generally have a closed-form expression.
Instead, the asymptotic approximation of the mutual information can
be defined as the solution of a system of equations:

Theorem 1 ( [12]). For anyρ > 0, the deterministic system:




δ(ρ) =
1

n
TrTn(ρ)

δ̃(ρ) =
1

n
TrT̃n(ρ)

(1)

(2)

whereTn andT̃n are the matrices




Tn(ρ) =

(
ρ(K + 1)(1 + δ̃(ρ))IN +

KAA∗

n(1 + δ(ρ))

)−1

T̃n(ρ) =

(
ρ(K + 1)(1 + δ(ρ))In +

KA∗A

n(1 + δ̃(ρ))

)−1

(3)

(4)

admits a unique solution(δ, δ̃) in (0,∞)2.

3. FIRST AND SECOND ORDER RESULTS

Having introduced matricesTn(ρ) andT̃n(ρ), we are now in posi-
tion to provide the first and second order results of the mutual infor-
mation. The first order result is a by-product of theorem 4.1 in [12]
and can be given as:

Theorem 2. Assumesupn ‖ 1√
n
A‖ < ∞ where‖.‖ is the spectral

norm. In the asymptotic regime, the following holds true:

In (ρ)− Vn(ρ) −−−−→
n→∞

0 almost surely

where

Vn(ρ) =
1

N
log det(ρ(K + 1)(1 + δ̃)IN +

KAA∗

n(1 + δ)
)

+
n

N
log(1 + δ)− nρ(K + 1)

N
δδ̃ − log(ρ(K + 1)).

Remark 1. It can be seen from Theorems 1 and 2 that the first order
approximationVn(ρ) ofIn (ρ) depends on the channel mean matrix
A through its singular values only. This approximation would be the
same ifH were Gaussian.

In addition to the first order result, another question regarding
the fluctuations of thelog det aroundVn(ρ) is worth studying. De-
termining the nature of these fluctuations gives us insights about the
variance of thelog det and the outage probability, which is the per-
tinent information theoretic performance measure when the channel
is a slow fading channel. Under some mild technical assumptions,
we can prove the following Central Limit Theorem:

Theorem 3. Letγ = 1
n
Tr(T2), γ̃ = 1

n
Tr(T̃2), S = diag(T), and

S̃ = diag(T̃). Letκ be the fourth cumulant of the entries ofX given
byκ = E|X1,1|4 − 2. Define∆n as

∆n =

(
1− K

n2(1 + δ)2
Tr(AA

∗
T

2)

)2

− ρ2(K + 1)2γγ̃

Then, the following holds true :

1. The sequence of real numbers

Θ2
n = − log∆n + κρ2(K + 1)2

1

n
TrS2 1

n
TrS̃2

satisfies0 < lim inf
n

Θ2
n ≤ lim sup

n

Θ2
n < ∞.

2. The mutual information satisfies:

N

Θn

(In(ρ)− EIn(ρ)) −−−−→
n→∞

N (0, 1) in distribution.

Remark 2. It should be noted that the varianceΘ2
n is the sum of two

terms. The first term∆n would be the same ifH were Gaussian, and
it depends onA through its singular values only. The second term
accounts for the impact of the fourth cumulant and depends also on
the left and right singular vectors ofA. Also, settingκ = 0, we
get back the expression of the variance established in [7] for the
Gaussian case.

In case the cumulant is nonzero, it might be of interest determine
the singular vector matrices ofA which provide the extremal values
of Θ2

n. Sinceκ can be positive or negative, the extrema might refer
to the minimum or the maximum depending on sign(κ):



Proposition 1. Let A = UΛV∗ be a spectral decomposition of
A whereU = [uik] andV = [vjl] are the matrices of singular
vectors.

• When|uik|2 = 1/N and |vjl|2 = 1/n, Θ2
n attains its min-

imum with respect to(U,V) if κ > 0 and its maximum if
κ < 0.
Such a situation arisese.g. whenU andV are Fourier ma-
trices.

• WhenU = IN andV = In, Θ2
n attains its minimum with

respect to(U,V) if κ < 0 and its maximum ifκ > 0.

Proof. We fix Λ and look for matrices(U,V) which minimize or
maximizeΘ2

n. One can notice that the term∆n in the expression of
Θ2

n does not depend on(U,V). Hence we only need to consider the
cumulant term and minimize or maximize

κ
N∑

i=1

t2i,i

n∑

j=1

t̃2j,j

Using (3) and (4), the spectral decompositions ofT andT̃ are given
by: T = UΩU∗ andT̃ = VΩ̃V∗ whereΩ andΩ̃ depend only
on Λ. LettingΩ = diag(ω1, · · · , ωN ), we will show that for any
matrixU, we have:

1

N

(
N∑

i=1

ωi

)2
(a)

≤
N∑

i=1

t2i,i
(b)

≤
N∑

i=1

ω2
i

and that inequality (a) becomes an equality when the elements ofU

satisfy |ui,k|2 = 1/N , whereas inequality(b) is an equality when
U = IN . SinceT = UΩU∗ whereΩ = diag (ω1, · · · , ωN ), we
get:

N∑

i=1

t2i,i =
N∑

i=1

(
N∑

k=1

|ui,k|2ωk

)2

(5)

Denote byP the doubly stochastic matrixP =
[
|ui,k|2

]N
i,k=1

and

by ω the vectorω = [ω1, · · · , ωN ]T. Therefore:

N∑

i=1

t2i,i = ω
T
P

T
Pω

It is clear that sinceP is a doubly stochastic matrix, the vector1√
N
1

is the eigenvector ofPTP corresponding to the eigenvalue equal to
one where1 is the vector of all ones. Thus, for any vectorω, we get

ω
T

(
P

T
P− 1

N
11

T

)
ω = ω

T
P

T
Pω − 1

N

(
N∑

i=1

ωi

)2

≥ 0

If we chooseU in such a way to have|ui,j |2 = 1
N

thenPTP =
1
N
11T, and as such (a) becomes an equality. Inequality (b) can be

deduced from (5) and from the convexity of the functionf(x) = x2.
In the same way, we can easily see that:

1

n

(
n∑

j=1

ω̃j

)2
(c)

≤
n∑

j=1

t̃2j,j
(d)

≤
n∑

j=1

ω̃2
j

where inequalities (c) (resp. (d)) become equalities when|ṽi,j |2 =
1/n (respV = In).
The proposition follows from these results.

Remark 3. Note that we can obtain the same result by using a
Schur convexity argument1. Actually, ifκ > 0, one can easily see
that all real positive vectors whose entries have sum1

N
TrT weakly

majorize the vectoruunif =
( 1

n
TrT

N
, . . . ,

1
n
TrT

N

)T
. Consider the

Schur Convex functionf : R
N → R, u 7→ ∑N

i=1 |ui|2, thenf
attains its minimum whenu = uunif . In particular, we obtain:
1
n
TrS2 = f(ū) ≥ f(uunif ), where,

ū =
(

1
n

∑N

i=1 ωi|u1i|2, . . . , 1
n

∑N

i=1 ωi|uNi|2
)T

. The same kind

of argument can be used to prove that1
n
TrS̃2 is minimized if the

entries of matrixV verify: |vjl|2 = 1/n.

The bias term is characterized by the following theorem:

Theorem 4. With the notations of Theorem 3, let

βn = κ
A(ω)

B(ω)

with

A(ω) = ω
1

n
TrS(ω)2

1

n
TrS̃(ω)2

− ω2(1 + δ̃(ω))
1

n
TrS̃(ω)2

1

n
TrS(ω)T (ω)2

− ω2(1 + δ(ω))
1

n
TrS(ω)2

1

n
TrS̃(ω)T̃ (ω)2,

B(ω) = 1 + ω(1 + δ(ω))γ̃(ω) + ω(1 + δ̃(ω))γ(ω).

Then

sup
n

∫ ∞

ρ(K+1)

|βn(ω)|dω < ∞

and furthermore

N (EIn(ρ)− Vn(ρ))−
∫ ∞

ρ(K+1)

β(ω) dω −−−−→
n→∞

0 .

4. SIMULATIONS

In this section, we verify by simulations the accuracy of our results.
We assume a non centered channel withA = [a(α1), · · · ,a(αn)]

wherea(α) =
[
1, eα, · · · , e(N−1)α

]T

is a directional vector, the

αi being some given phase variables. The entries of the non line
of sight matrixX are assumed to verify[X]i,j = ri,j exp (θi,j),
whereθi,j are i.i.d uniform phase variables over[0, 2π] and ri,j
are i.i.d real positive random variables. According to the distri-
bution of ri,j , we distinguish three type of channels, whose main
properties are summarized in Table 1. Each distribution in Table
1 has originally two degrees of freedom, but adding the constraint
E|X1,1|2 = 1, the number of degrees of freedom is reduced to one,
and this is captured by the equations in the third row of Table 1. The
parametric Nakagami-m and Weibull density functions cover a wide
range of distributions. For instance, the Rayleigh distribution (cor-
responding to a Gaussian channel) can be obtained by setting the pa-
rameterµ to 1 andk to 2 for respectively, the Nakagami-m and the
Weibull density functions. Moreover, other less common distribu-
tions can be also generated, like the truncated Gaussian distribution
on the real positive axis, forµ = 1

2
, and the exponential distribution

whenk = 1. The coefficient of variation shown in Table 1 quantifies
the severity of the fading [13]. It is given by:

CV =

√
var(ri,j)

Eri,j
=

√
1

(Eri,j)
2 − 1

1The authors thank the reviewer who suggested this argument.



Nakagami-m Weibull Log-Normal
(µ,ω) (k,λ) (µ,σ)

distribution fµ,ω(x) =
2µµ

Γ(µ)ωµ x
2µ−1e−

µ
ω
x2

, x > 0 fλ,k(x) =
k
λ

(
x
λ

)k−1
e−(

x
λ )

k

, x > 0 fµ,σ(x) =
1

xσ
√
2π

e
−

(ln x−µ)2

2σ2 , x > 0

Parameter
setting

ω = 1 λ =
√

1

Γ(1+ 2
k
)

µ = −σ2

cumulant κ =
(
1 + 1

µ

)
− 2 κ =

Γ(1+ 4
k
)

(Γ(1+ 2
k
))2

− 2 κ = e4σ
2 − 2

Coefficient
of Variation

CV =

√
µ(Γ(µ))2

(Γ(µ+ 1
2
))2

− 1 CV =

√
Γ(1+ 2

k
)

(Γ(1+ 1
k
))2

− 1 CV =
√

exp(σ2)− 1

Table 1. Main characteristics of some non Gaussian distributions

The Nakagami-m and Weibull distributions exhibit severe fadings
when their respective parametersµ andk are very small, whereas
the lognormal distribution exhibit severe fadings for large values of
σ2. In this section, we will first verify the accuracy of our derived
results for the case of Gaussian entries. The effect of the coefficient
of variation and the eigenvectors ofA will be discussed afterwards.

4.1. Gaussian entries

In this section, we consider GaussianH and assess the accuracy of
the results of Theorems 2 and 3 for finiteN andn. We also investi-
gate the effect of the Rice factorK on the variance.

Fig. 1 displays the empirical estimation ofEIn as well asVn

with respect toc = N
n

whenn = 16, N ranging from2 to 15, and
ρ = 0.2. We also set the Rice factorK to 1. We notice a very good
fit on the whole range ofc.
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Fig. 1. Theoretical and Empirical expected mean with respect toc.

Fig. 2 presents the Quantile-Quantile (Q-Q) plot for the distri-
bution of the Shannon capacity whenρ = 0.2 andK = 1. This
figure shows that the normal approximation is suitable in the range
of a few standard deviations and could be used to approximate the
outage probability under these conditions.

Fig. 3 shows the empirical and the LRMT theoretical variance
with respect to the Rice factor whenn = 32, N = 16, andρ = 0.2.
We note that whenK increases, the line of sight component prevails
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Fig. 2. Q−Q plot for N
Θn

(In(ρ)− EIn(ρ)).

over the non-line of sight one, to the point that the channel is almost
constant. Thus, its fluctuations around its mean become small.

4.2. Non Gaussian entries

In this experiment, we investigate the effect of the coefficient of vari-
ation on the variance of the mutual information. For each distribu-
tion (Nakagami-m, Weibull or Lognormal), we make the coefficient
of variation CV vary from0 to 1. Fig. 4 displays the empirical
and theoretical variances with respect to CV, whenN = 32, n =
64, ρ = 0.2 andK = 1. We note that when the channel exhibit
severe fadings (high CV), the Lognormal channel is the one that un-
dergoes the highest variance.

We now investigate by simulations the asymptotic behaviour of
the bias. We consider the m-Nakagami distribution withµ = 0.05.
We also setρ = 0.2, K = 1 and show on the same figure the em-
pirical bias| (EIn(ρ)− Vn(ρ)) | computed over5000 channel real-
izations and the theoretical bias,| 1

N

∫ +∞

ρ(K+1)
β(ω)dω|, for different

values ofN . The ratioc = N/n is set to0.5. Fig. 5 illustrates the
obtained results. As expected, the empirical and theoretical biases
coincide and are of orderO( 1

N
).

Finally, we apply Proposition 1 to the Nakagami-m, Weibull and
Lognormal distributions. A close look at these distributions shows
that their fourth cumulant is positive if and only if their coefficient
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of variation is larger than the coefficient of variation of the Rayleigh
distribution. Hence, assumingD is a diagonal matrix andFℓ is the
Fourierℓ× ℓ matrix, we have the results shown in Table 2.
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