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Abstract—Analytical methods for finding moments of random
Vandermonde matrices with entries on the unit circle are
developed. Vandermonde Matrices play an important role in
signal processing and wireless applications such as direction of
arrival estimation, precoding or sparse sampling theory just
to name a few. Within this framework, we extend classical
freeness results on random matrices with i.i.d entries and show
that Vandermonde structured matrices can be treated in the
same vein with different tools. We focus on various types of
Vandermonde matrices, namely Vandermonde matrices with or
without uniformly distributed phase distributions, as well as gen-
eralized Vandermonde matrices (with non-uniform distribution
of powers). In each case, we provide explicit expressions of
the moments of the associated Gram matrix, as well as more
advanced models involving the Vandermonde matrix. Compar-
isons with classical i.i.d. random matrix theory are provided and
free deconvolution results are also discussed. We review some
applications of the results to the fields of signal processing and
wireless communications.

Index Terms—Vandermonde matrices, Random Matrices, de-
convolution, limiting eigenvalue distribution, MIMO.

I. I NTRODUCTION

Vandermonde matrices have had for a long time a central
position in signal processing due to their connections with
other important matrices in the field such as the FFT [1] or
Hadamard [2] transforms to name a few. The matrices have
various applications in different fields [3], [4], [5], [6].The
applied research has been somewhat tempered by the fact that
very few theoretical results were available.

A Vandermonde matrix with entries on the unit circle has
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the following form

V =
1√
N











1 · · · 1
e−jω1 · · · e−jωL

...
. . .

...
e−j(N−1)ω1 · · · e−j(N−1)ωL











(1)

We will consider the case whereω1,...,ωL are independent
and identically random variables taking values on[0, 2π).
Throughout the paper, theωi will be calledphase distributions.
Also, V will be used only to denote Vandermonde matrices
with a given phase distribution, and the dimensions of the
Vandermonde matrices will always beN × L. Such matrices
occur frequently in many applications, such as finance [3],
signal array processing [7], [8], [9], [10], [11], ARMA
processes [12], cognitive radio [4], security [6], wireless
communications [13], and biology [5], and have been much
studied. The main results are related to the distribution ofthe
determinant of (1) [14]. The large majority of known resultson
the eigenvalues of the associated Gram matrix concern Gaus-
sian matrices [15] or matrices with independent entries. Very
few results are available in the literature on matrices whose
structure is strongly related to the Vandermonde case [16],
[17]. For the Vandermonde case, the results depend heavily
on the distribution of the entries, and do not give any hint
on the asymptotic behaviour as the matrices become large. In
the realm of wireless channel modelling, [18] has provided
some insight on the behaviour of the eigenvalues of random
Vandermonde matrices for a specific case, without any formal
proof. We prove here that the case is in fact more involved
than what was claimed.

In many applications,N andL are quite large, and we may
be interested in studying the case where both go to∞ at a
given ratio, with L

N → c. Results in the literature say very
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little on the asymptotic behaviour of (1) under this growth
condition. The results, however, are well known for other
models. The factor 1√

N
, as well as the assumption that the

Vandermonde entriese−jωi lie on the unit circle, are included
in (1) to ensure that the analysis will give limiting asymptotic
behaviour. Without this assumption, the problem at hand is
more involved, since the rows of the Vandermonde matrix
with the highest powers would dominate in the calculations
of the moments for large matrices, and also grow faster to
infinity than the 1√

N
factor in (1), making asymptotic analysis

difficult. In general, often the moments, not the moments of
the determinants, are the quantities we seek. Results in the
literature say also very little on the moments of Vandermonde
matrices, and also on the mixed moments of Vandermonde
matrices and matrices independent from them. This is in
contrast to Gaussian matrices, where exact expressions [19]
and their asymptotic behaviour [20] are known using the
concept of freeness [20] which is central for describing the
mixed moments.

Remarkably, the results in this paper show that, asymp-
totically, the moments of the Vandermonde matrices de-
pend only on the ratioc and the phase distributions, and
have explicit expressions. The derivation of the moments
is a useful basis for performing deconvolution. Deconvolu-
tion for our purposes will mean retrieving the ”moments”
trL((D1(N))i), ..., trL((Dn(N))i), from the ”mixed mo-
ments”

E[trL( D1(N)VH
VD2(N)VH

V

· · · × Dn(N)VH
V)].

(2)

In Section V we will see that this can be very useful in
many applications, since the retrieved moments can give useful
information about the system under study. Deconvolution has
been handled in cases where the matrixV in (2) is replaced
with a Gaussian matrix [21], [22], [19], [23]. Similarly fla-
vored results will here be proved for Vandermonde matrices.
Concerning the moments, it will be the asymptotic moments
of random matrices of the formVH

V which will be studied,
where(.)H denotes hermitian transpose. We will also consider
mixed moments of the formDV

H
V, whereD is a square

diagonal matrix independent fromV. As will be seen, the
way the phase distribution influences these moments can be
split into several cases. Uniform phase distribution playsa
central role in that it minimizes the moments. When the phase
distribution has a bounded density, a nice connection with the
moments for uniform phase distribution can be given. When
the density of the phase distribution has singularities, such as
point masses, it turns out that the asymptotics of the moments
change drastically.

We will also extend our results to generalized Vandermonde
matrices, i.e. matrices where the columns do not consist of
uniformly distributed powers. They are of the form

V =
1√
N











e−j⌊Nf(0)⌋ω1 · · · e−j⌊Nf(0)⌋ωL

e−j⌊Nf( 1
N

)⌋ω1 · · · e−j⌊Nf( 1
N

)⌋ωL

...
. . .

...
e−j⌊Nf( N−1

N
)⌋ω1 · · · e−j⌊Nf( N−1

N
)⌋ωL











,

(3)

wheref is called the power distribution, and is a function from
[0, 1) to [0, 1). More general cases can also be considered, for
instance by replacingf with a random variableλ, i.e.

V =
1√
N











e−jNλ1ω1 · · · e−jNλ1ωL

e−jNλ2ω1 · · · e−jNλ2ωL

...
. . .

...
e−jNλN ω1 · · · e−jNλN ωL











, (4)

with the λi mutually independent and distributed asλ, taking
values in[0, 1), and also independent from theωj. General-
ized Vandermonde matrices are important for applications to
finance [3]. The tools used for standard Vandermonde matrices
in this paper will allow us to find the asymptotic behaviour of
many generalized Vandermonde matrices.

While we provide the full computation of lower order
moments, we also describe how the higher order moments
can be computed. Tedious evaluation of many integrals is
needed for this, but numerical methods can also be applied.
Surprisingly, it turns out that the first three limit momentscan
be expressed in terms of the Marc̆henko Pastur law [20], [24].
For higher order moments this is not the case, although we
state an interesting inequality involving the Vandermondelimit
moments and the moments of the classical Poisson distribution
and the Marc̆henko Pastur law, also known as the free Poisson
distribution [20]. Note that the framework as well as the
presented results are reminiscent of similar results concerning
i.i.d. random matrices [25] which have shed light in the design
of many important wireless communication problems such as
CDMA [26], MIMO [27] or OFDM [28]. This contribution
aims to to the same.

The paper is organized as follows: Section III states the
main results of the paper. It starts with a general result for
the mixed moments of Vandermonde matrices and matrices
independent from them. We will differ between the case where
the phase distributionω in (1) are uniformly distributed on
[0, 2π), and the more general cases. Results for the uniform
phase distributions are stated next, and it turns out that one
has nice expressions, for both the asymptotic moments, as
well as for the lower order moments. Next we consider the
more general case whenω has a continuous density, and show
how the asymptotics can be described in terms of the case
when ω is uniform. The case where the density ofω has
singularities displays different asymptotic behaviour, and is
handled separately. The section ends with results on gener-
alized Vandermonde matrices, and mixed moments of (more
than one) independent Vandermonde matrices. Section IV
discusses our results and puts them in a general deconvolution
perspective, comparing with other deconvolution results,such
as those for Gaussian deconvolution. Section V presents some
simulations and useful applications showing the implications
of the presented results in various applied fields, and discusses
the validity of the asymptotic claims in the finite regime. First
we apply the presented Vandermonde deconvolution frame-
work for wireless systems, where we estimate the number
of paths, the transmissions powers of the users, the number
of sources, and the wavelength. Next we apply the results
on Vandermonde matrices to the very active field of sparse



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 1, NO. 1, JANUARY 2008 3

signal reconstruction. Interestingly, one can provide a gen-
eral framework where only the sampling distribution matters
asymptotically, and the sampling distribution can be estimated
with the help of the presented results.

II. RANDOM MATRIX BACKGROUND ESSENTIALS

In the following, upper (lower boldface) symbols will be
used for matrices (column vectors) whereas lower symbols will
represent scalar values,(.)T will denote transpose operator,
(.)⋆ conjugation and(.)H =

(

(.)T
)⋆

hermitian transpose.In

will represent then × n identity matrix. We letTr be the
(non-normalized) trace for square matrices, defined by,

Tr(A) =

n
∑

i=1

aii,

whereaii are the diagonal elements of then × n matrix A.
We also lettrn be the normalized trace, defined bytrn(A) =
1
nTr(A).

Results in random matrix theory often refer to the empirical
eigenvalue distribution of certain random matrices:

Definition 1: With the empirical eigenvalue distribution of
anN ×N hermitian random matrixT we mean the (random)
function

FN
T (λ) =

#{i|λi ≤ λ}
N

, (5)

whereλi are the (random) eigenvalues ofT.
In the following,Dr(N), 1 ≤ r ≤ n will denote determin-

istic diagonalL×L matrices, where we implicitly assume that
L
N → c. We will assume that theDr(N) have a joint limit
distribution asN → ∞ in the following sense:

Definition 2: We will say that the{Dr(N)}1≤r≤n have a
joint limit distribution asN → ∞ if the limit

Di1,...,is
= lim

N→∞
trL (Di1(N) · · ·Dis

(N)) (6)

exists for all choices ofi1, ..., is ∈ {1, .., n}. For ρ =
{W1, ..., Wk}, with Wi = {wi1, ..., wi|ρi|}, we also define

DWi
= Diwi1

,...,iwi|ρi|

Dρ =

k
∏

i=1

DWi
.

Although the matricesDi(N) are assumed to be deter-
ministic matrices throughout the paper, all presented formulas
extend naturally to the case whenDi(N) are random matrices
independent from the Vandermonde matrices. The difference
when theDi(N) are random is that covariances of traces come
into play.D{{1},{2,3}} would for instance be

lim
N→∞

E
[

trL (D(N)) trL

(

(D(N))2
)]

,

which is the covariance of two traces whenD(N) is centered
(E[trLD(N)] = 0) and random.

Most theorems in this paper will present expressions for
various mixed moments, defined in the following way:

Definition 3: By a mixed moment we mean the limit

Mn = limN→∞ E[trL( D1(N)VH
VD2(N)VH

V

· · · × Dn(N)VH
V)],

(7)

whenever this exists.
A joint limit distribution of {Dr(N)}1≤r≤n is always

assumed in the presented results on mixed moments. A second
type of mixed moments will also be considered, where several
independent Vandermonde matrices are used instead of the
diagonal matricesDr(N). Note that whenD1(N) = · · · =
Dn(N) = IL, theMn compute to the asymptotic moments of
the Vandermonde matrices themselves, defined by

Vn = lim
N→∞

E
[

trL

(

(

V
H
V
)n
)]

.

Vn corresponds also to the limit moments of the empirical
eigenvalue distributionFN

VHV
defined by (5), i.e.

Vn = lim
N→∞

E

[∫

λndFN
VHV

(λ)

]

.

Similarly, whenD1(N) = · · · = Dn(N) = D(N), we will
also write

Dn = lim
N→∞

trL(D(N)n).

Note that this is in conflict with the notationDi1,...,is
, but the

name of the index will resolve such conflicts.
To better understand the presented expressions for mixed

moments, the notions of classical and free cumulants will be
helpful. These are defined in terms of concepts from partition
theory. We denote byP(n) the set of all partitions of{1, ..., n},
and useρ as notation for a partition inP(n). The set of
partitions will be equipped with the refinement order≤, i.e.
ρ1 ≤ ρ2 if and only if any block ofρ1 is contained within
a block ofρ2. Also, we will write ρ = {W1, ..., Wk}, where
Wj will be used repeatedly to denote the blocks ofρ, and let
|ρ| = k denote the number of blocks inρ. We denote by0n

the partition withn blocks, and by1n the partition with1
block.

Free cumulants are defined in terms of noncrossing parti-
tions.

Definition 4: A partition ρ is called noncrossing if when-
ever we havei < j < k < l with i ∼ k, j ∼ l (∼ meaning
belonging to the same block), we also havei ∼ j ∼ k ∼ l
(i.e. i, j, k, l are all in the same block). The set of noncrossing
partitions of{1, , , ., n} is denotedNC(n).
The noncrossing partitions have already shown their usefulness
in expressing what is called the freeness relation [29] in a
particularly nice way.

Definition 5: Assume thatA1, ...,An are L × L-random
matrices. By the free cumulants ofA1, ...,An we mean the
unique set of multilinear functionalsκr (r ≥ 1) which satisfy

E [trLA1 · · ·An] =
∑

ρ∈NC(n)

κρ[A1, ...,An], (8)

where

κρ[A1, ...,An] = κW1 [A1, ...,An] · · ·κWk
[A1, ...,An]

κWi
[A1, ...,An] = κ|Wi|[Awi1 , ...,Awi|ρi|

],

whereρ = {W1, ..., Wk}, with Wi = {wi1, ..., wi|ρi|}.
By the classical cumulants ofA1, ...,An we mean the

unique set of multilinear functionals which satisfy (8) with
NC(n) replaced by the noncrossing partitionsP(n).
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We have restricted our definition of cumulants to those of
random matrices, although their definition as they appear in
Lecture 11 of [29] is in terms of more general probability
spaces. (8) is also called the (free or classical) moment-
cumulant formula. The importance of the free moment-
cumulant formula comes from the fact that, had we replaced
Vandermonde matrices with Gaussian matrices, it could help
us compute the quantitiesDi1,...,is

[23]. For this, the cumu-
lants of the Gaussian matrices are needed, which asymptoti-
cally have a very nice form. For Vandermonde matrices, it is
not known what a useful definition of cumulants would be.
However, from the calculations in Appendix A, it will turn
out that the following quantities are useful in describing limit
distributions of Vandermonde matrices.

Definition 6: Define

Kρ,ω,N = 1
Nn+1−|ρ|×
∫

(0,2π)|ρ|

∏n
k=1

1−e
jN(ωb(k−1)−ωb(k))

1−e
j(ωb(k−1)−ωb(k))

dω1 · · · dω|ρ|,

(9)

whereωW1, ..., ωW|ρ|
are i.i.d. (indexed by the blocks ofρ),

all with the same distribution asω, and whereb(k) is the
block of ρ which containsk (where notation is cyclic, i.e.
b(−1) = b(n)). If the limit

Kρ,ω = lim
N→∞

Kρ,ω,N

exists, then it is called aVandermonde mixed moment expan-
sion coefficient.

These quantities do not behave exactly as cumulants, but
rather as weights which tell us how a partition in the moment
formula we present should be weighted. In this respect our
formulas for the moments are diferent from classical or free
moment-cumulant formulas, since these do not perform this
weighting. The limitsKρ,ω may not always exist, and neces-
sary and sufficient conditions for their existence seem to be
hard to find. However, it is easy to prove from their definition
that they do not exist if the density ofω has singularities (for
instance when the density is a sum of point masses). On the
other side, Theorem 3 will show that they exist when the same
density is continuous.

In the following sections, we will also encounter the com-
plementation map of Kreweras (p. 147 of [29]), which is an
order-reversing isomorphism ofNC(n) onto itself. To define
this we need the circular representation of a partition: We
markn equidistant points1, ..., n (numbered clockwise) on the
circle, and form the convex hull of points lying in the same
block of the partition. This gives us a number of convex sets
Hi, equally many as there are blocks in the partition, which
do not intersect if and only if the partition is noncrossing.Put
names̄1, ..., n̄ on the midpoints of the1, ..., n (so that̄i is the
midpoint of the segment fromi to i + 1). The complement of
the set∪iHi is again a union of disjoint convex sets̃Hi.

Definition 7: The Kreweras complement ofρ, denoted
K(ρ), is defined as the partition on{1̄, ..., n̄} determined by

i ∼ j in K(ρ) ⇐⇒ ī, j̄ belong to the same convex set̃Hk.

An important property for the Kreweras complement we
will use is that (p. 148 of [29])

|ρ| + |K(ρ)| = n + 1.

III. STATEMENT OF MAIN THEOREMS

We first state the main result of the paper, which applies to
Vandermonde matrices with any phase distribution. It restricts
to the case when the expansion coefficientsKρ,ω exist. Differ-
ent versions of it adapted to different Vandermonde matrices
will be stated in the succeeding sections.

Theorem 1:Assume that the{Dr(N)}1≤r≤n have a joint
limit distribution asN → ∞. Assume also that all Vander-
monde mixed moment expansion coefficientsKρ,ω exist. Then
the limit

Mn = limN→∞ E[trL( D1(N)VH
VD2(N)VH

V

· · · × Dn(N)VH
V)]

(10)
also exists whenL

N → c, and equals
∑

ρ∈P(n)

Kρ,ωc|ρ|−1Dρ. (11)

The proof of Theorem 1 can be found in Appendix A. In
the following, we will often make the substitutions

mn = (cM)n = c lim
N→∞

E
[

trL

(

(

D(N)VH
V
)n
)]

(12)

dn = (cD)n = c lim
N→∞

trL (Dn(N)) , (13)

Several of the following theorems will be stated in terms of
the scaled momentsmn, dn rather thanMn, Dn. The reason
for this is that the dependency on the matrix aspect ratioc
often can be absorbed inmn, dn, so that the result itself can
be expressed independently ofc and refer only tomn, dn.
The same usage of scaled moments has been applied for large
Wishart matrices [23].

Typically, the first5 moments can be expressed as:

m1 = K1d1 (14)

m2 = K2d2 + K1,1d
2
1 (15)

m3 = K3d3 + K2,1d2d
2
1 + K1,1,1d

3
1 (16)

m4 = K4d4 + K3,1d3d1 + K2,2d
2
2 + K2,1,1d2d

2
1 +

K1,1,1,1d
4
1 (17)

m5 = K5d5 + K4,1d4d1 + +K3,2d3d2 +

K3,1,1d3d
2
1 + K2,2,1d

2
2d1 + K2,1,1,1d2d

3
1 +

K1,1,1,1,1d
5
1. (18)

Theorem 1 explains how convolution with Vandermonde
matrices can be performed, and also provides us with an
extension of the concept of free convolution to Vandermonde
matrices. It also gives us means for performing deconvolution.
Indeed, supposeD1(N) = · · · = Dn(N) = D(N), and that
one knows all the momentsMn. One can then infer on the
momentsDn by inspecting (11) for increasing values ofn.
For instance, the first two equations can also be written

D11 =
M1

K11,ω

D12 =
M2 − cK02,ωD02

K12,ω
,
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which gives us the first momentsD1 andD2, sinceD11 = D1,
D02 = D2

1, andD12 = D2.

A. Uniformly distributedω

Next we derive and analyze the Vandermonde mixed mo-
ment expansion coefficients for the case of uniform phase
distribution. It turns out that the noncrossing partitionsplay
a central role for such matrices, but that the role is somewhat
different than the relation for freeness. We will letu denote
the uniform distribution on[0, 2π).

Proposition 1: Assume that the{Dr(N)}1≤r≤n have a
joint limit distribution asN → ∞, Then the Vandermonde
mixed moment expansion coefficient

Kρ,u = lim
N→∞

Kρ,u,N

exists for allρ. Moreover,0 < Kρ,u ≤ 1, theKρ,u are rational
numbers for allρ, andKρ,u = 1 if and only if ρ is noncrossing.

The proof of Proposition 1 can be found in Appendix B.
we remark that the proof is similar to that given in the appen-
dices of [16], where the mixed moment expansion coefficient
are given an equivalent description. Due to Proposition 1,
Theorem 1 guarantees that the asymptotic mixed moments
(10) exist whenL

N → c for uniform phase distribution, and
are given by (11).Kρ,u are in general hard to compute for
higher orderρ with crossings. It turns out that the following
computations suffice to obtain the7 first moments.

Proposition 2: The following holds:

K{{1,3},{2,4}},u =
2

3

K{{1,4},{2,5},{3,6}},u =
1

2

K{{1,4},{2,6},{3,5}},u =
1

2

K{{1,3,5},{2,4,6}},u =
11

20

K{{1,5},{3,7},{2,4,6}},u =
9

20

K{{1,6},{2,4},{3,5,7}},u =
9

20
.

The proof of Proposition 2 is given in Appendix C. Com-
bining Proposition 1 and Proposition 2 into this form, we will
prove the following:

Proposition 3: Assume thatD1(N) = · · · = Dn(N).

Whenω = u, we have that

m1 = d1

m2 = d2 + d2
1

m3 = d3 + 3d2d1 + d3
1

m4 = d4 + 4d3d1 +
8

3
d2
2 + 6d2d

2
1 + d4

1

m5 = d5 + 5d4d1 +
25

3
d3d2 + 10d3d

2
1 +

40

3
d2
2d1 + 10d2d

3
1 + d5

1

m6 = d6 + 6d5d1 + 12d4d2 + 15d4d
2
1 +

151

20
d2
3 + 50d3d2d1 + 20d3d

3
1 +

11d3
2 + 40d2

2d
2
1 + 15d2d

4
1 + d6

1

m7 = d7 + 7d6d1 +
49

3
d5d2 + 21d5d

2
1 +

497

20
d4d3 + 84d4d2d1 + 35d4d

3
1 +

1057

20
d2
3d1 +

693

10
d3d

2
2 + 175d3d2d

2
1 +

35d3d
4
1 + 77d3

2d1 +
280

3
d2
2d

3
1 +

21d2d
5
1 + d7

1.

Proposition 1 and Proposition 2 reduce the proof of Proposi-
tion 3 to a simple count of partitions. Proposition 3 is proved
in Appendix D. To compute higher moments,Kρ,u must be
computed for partitions of higher order also. The computations
performed in Appendix C and D should convince the reader
that this can be done, but that it is very tedious.

Following the proof of Proposition 1, we can also obtain for-
mulas for the covariance of mixed moments of Vandermonde
matrices. We state two examples of this. First we have that

limN→∞ E
[

trL

((

D(N)VH
V
)n) (

trL

(

D(N)VH
V
))m]

= limN→∞ E
[

trL

((

D(N)VH
V
)n)]

Dm
1 ,

(19)
which follows immediately by noting that
trL

(

D(N)VH
V
)

= trLD(N) → D1, since V
H
V

has1 in all diagonal entries. Secondly, we have that

c limN→∞ E
[

Tr
(

(

D(N)VH
V
)2
)

trL

(

(

D(N)VH
V
)2
)]

= 4
3d2

2 + 4d2d
2
1 + 4d3d1 + d4.

(20)
The proof for (20) is a bit more involved, and is therefore
omitted. The proof relies on the same type of calculations as
those in Appendix C. Following the proof of Proposition 1
again, we can also obtain exact expressions for moments
of lower order random Vandermonde matrices with uniform
phase distribution, not only the limit. We state these only for
the first four moments.

Theorem 2:AssumeD1(N) = D2(N) = · · · = Dn(N),
setc = L

N , and define

m(N,L)
n = cE

[

trL

(

(

D(N)VH
V
)n
)]

(21)

d(N,L)
n = ctrL (Dn(N)) . (22)
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Whenω = u we have that

m
(N,L)
1 = d

(N,L)
1

m
(N,L)
2 =

(

1 − N−1
)

d
(N,L)
2 + (d

(N,L)
1 )2

m
(N,L)
3 =

(

1 − 3N−1 + 2N−2
)

d
(N,L)
3

+3
(

1 − N−1
)

d
(N,L)
1 d

(N,L)
2 + (d

(N,L)
1 )3

m
(N,L)
4 =

(

1 − 20

3
N−1 + 11N−2 − 37

6
N−3

)

d
(N,L)
4

+
(

4 − 12N−1 + 8N−2
)

d
(N,L)
3 d

(N,L)
1

+

(

8

3
− 5N−1 +

19

6
N−2

)

(d
(N,L)
2 )2

+6
(

1 − N−1
)

d
(N,L)
2 (d

(N,L)
1 )2 + (d

(N,L)
1 )4.

Theorem 2 is proved in Appendix E. Exact formulas for the
higher order moments also exist, but they become increasingly
complex, as entries for higher order termsL−k also enter the
picture. These formulas are also harder to prove for higher
order moments. In many cases, exact expressions are not
what we need: first order approximations (i.e. expressions
where only theL−1-terms are included) can suffice for many
purposes. In Appendix E, we explain how the simpler case
of these first order approximations can be computed. It seems
much harder to prove a similar result when the phase distri-
bution is not uniform.

The final result we address for the uniform phase distribu-
tion is the following:

Proposition 4: The asymptotic mean eigenvalue distribu-
tion of a Vandermonde matrix with uniform phase distribution
has unbounded support.
Proposition 4 is proved in Appendix F.

B. ω with continuous density

The following result tells us that the limitKρ,ω exists for
manyω, and also gives a useful expression for them in terms
of the density ofω, andKρ,u.

Theorem 3:The Vandermonde mixed moment expansion
coefficients Kρ,ω = limN→∞ Kρ,ω,N exist whenever the
densitypω of ω is continuous on[0, 2π). If this is fulfilled,
then

Kρ,ω = Kρ,u(2π)|ρ|−1

(
∫ 2π

0

pω(x)|ρ|dx

)

. (23)

The proof is given in Appendix G. In Section V, several
examples are provided where the integrals (23) are computed.
An important consequence of Theorem 3 is the following,
which gives the uniform phase distribution an important role.

Proposition 5: Let Vω denote a Vandermonde matrix with
phase distributionω, and set

Vω,n = lim
N→∞

E
[

trL

(

(

V
H
ω Vω

)n
)]

.

Then we have that
Vu,n ≤ Vω,n.

The proof is given in Appendix H. An immediate conse-
quence of this and Proposition 4 is that all phase distributions,

not only uniform phase distribution, give Vandermonde matri-
ces with unbounded mean eigenvalue ditrsibutions in the limit.
Besides providing us with a deconvolution method for finding
the mixed moments of the{Dr(N)}1≤r≤n, Theorem 3 also
provides us with a way of inspecting the phase distributionω,
by first finding the moments of the density, i.e.

∫ 2π

0 pω(x)kdx.
However, note that we can not expect to find the density ofω
itself, only the density of the density ofω. To see this, define

Qω(x) = µ ({x|pω ≤ x})

for 0 ≤ x ≤ ∞, whereµ is uniform measure on the unit
circle. Write alsoqω(x) as the corresponding density, so that
qω(x) is the density of the density ofω. Then it is clear that

∫ 2π

0

pω(x)|ρ|dx =

∫ ∞

0

xnqω(x)dx. (24)

These quantities correspond to the moments of the measure
with densityqω , which can help us obtain the densityqω itself.
However, the densitypω can not be obtained, since we see
that any reorganization of its values which do not change the
densityqω will provide the same values in (24).

C. ω with density singularities

The asymptotics of Vandermonde matrices are different
when the density ofω has singularities, and depends on
the density growth rates near the singular points. It will be
clear from these results that one can not perform deconvo-
lution for suchω to obtain the higher order moments of the
{Dr(N)}1≤r≤n, as only their first moment can be obtained.
The asymptotics are first described forω with atomic density
singularities, as this is the simplest case to prove. After this,
densities with polynomial growth rates near the singularities
are addressed.

Theorem 4:Assume thatpω =
∑r

i=1 piδαi
is atomic

(whereδαi
(x) is dirac measure (point mass) atαi), and denote

by p(n) =
∑r

i=1 pn
i the. Then

lim
N→∞

E[Tr( D1(N)
1

N
V

H
VD2(N)

1

N
V

H
V

· · · × Dn(N)
1

N
V

H
V)]

= cn−1p(n) lim
N→∞

n
∏

i=1

trL (Di(N)) .

Note here that the non-normalized trace is used.
The proof can be found in Appendix I. In particular,

Theorem 4 states that the asymptotic moments of1
N V

H
V

coincide with the moments ofpω, up to the scaling factor
cn−1. The theorem is of great importance for the estimation
of the anglesαi and the point massespi in our Vandermonde
deconvolution framework. In blind seismic and telecommu-
nication applications, one would like to detect the angles
αi through deconvolution. Unfortunately, Theorem 4 tells us
that this is impossible, since thep(n) (which are moments
which we can find through deconvolution), do not depend on
them (this parallels Theorem 3, since also there we could not
recover the densitypω itself). Having found thep(n) through
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deconvolution, one can, however, find the point massespi, by
solving for p1, p2, ... in the Vandermonde equation







p1 p2 · · · pr

p2
1 p2

2 · · · p2
r

...
...

...
...













1
1
...






=







p(1)

p(2)

...






,

even if the number of atoms may be unknown.
The case when the density has non-atomic singularities is

more complicated. We provide only the following result, which
addresses the case when the density has polynomic growth rate
near the singularities.

Theorem 5:Assume that

lim
x→αi

|x − αi|spω(x) = pi for some0 < s < 1

for a set of pointsα1, ..., αr, with pω continuous forω 6=
α1, ..., αr. Then

lim
N→∞

E[Tr( D1(N)
1

Ns
V

H
VD2(N)

1

Ns
V

H
V

· · · × Dn(N)
1

Ns
V

H
V)]

= cn−1q(n) lim
N→∞

n
∏

i=1

trL (Di(N))

where

q(n) =
(

2Γ(1 − s) cos
(

(1−s)π
2

))n

p(n)×
∫

[0,1]n

∏n
k=1

1
|xk−1−xk|1−s dx1 · · · dxn,

(25)

andp(n) =
∑

i pn
i . Note here that the non-normalized trace is

used.
The proof can be found in Appendix J. Also in this case

it is only the point massespi which can be found through
deconvolution, not the singularity locationsαi. Note that the
integral in (25) can also be written as anm-fold convolution.
Similarly, the definition ofKρ,ω,N given by (9) can also be
viewed as a2-fold convolution whenρ has two blocks, and
as a3-fold convolution whenρ has three blocks (but not for
ρ with more than3 blocks).

A very useful application of Theorem 5 is the case when
ω = sin(x), with x uniformly distributed. The density will
then be of the formd arcsin(ω)

dω = 1√
1−ω2

, which goes to
infinity near ω = ±1 (which correspond tox = ±π/2) at
rate x−1/2. Theorem 5 thus applies withs = 1/2. For this
case, however, the ”edges” at±π/2 are never reached in
practice. Indeed, in array processing [30], the antenna array
is a sector antenna which scans an angle interval which never
includes the edges. We can therefore restrictω in our analysis
to clusters of intervalsUi[αi, βi] not containing±1, for which
the results of Section III-B suffice. In this way, we also avoid
the computation of the cumbersome integral (25).

D. Generalized Vandermonde matrices

We will define mixed moment expansion coefficients for
generalized Vandermonde matrices also. The difference is that,
while we in Definition 6 simplified using the geometric sum
formula, we can not do this now since we do not assume
uniform power distribution anymore.

To define expansion coefficients for generalized Vander-
monde matrices of the form (3), define first functionsfN from
[0, N − 1] to [0, N − 1] by fN (r) = ⌊f

(

r
N

)

⌋. Let pfN
be the

corresponding density forfN . The procedure is similar for
matrices of the form (4). The following definition captures
both cases:

Definition 8: For (3) and (4), define

Kρ,ω,f,N = 1
N1−|ρ|×
∫

(0,2π)|ρ|

∏n
k=1

(

∑N−1
r=0 pfN

(r)ejr(ωb(k−1)−ωb(k))
)

dω1 · · · dω|ρ|
Kρ,ω,λ,N = 1

N1−|ρ|×
∫

(0,2π)|ρ|

∏n
k=1

(

∫ 1

0 ejNλ(ωb(k−1)−ωb(k))dλ
)

dω1 · · · dω|ρ|,
(26)

whereωW1, ..., ωW|ρ|
are as in definition 6.

If the limits

Kρ,ω,f = lim
N→∞

Kρ,ω,f,N

Kρ,ω,λ = lim
N→∞

Kρ,ω,λ,N ,

exist, then they are calledVandermonde mixed moment expan-
sion coefficients.

Note that (1) corresponds to (3) withf(x) = x. The
following result holds:

Theorem 6:Theorem 1 holds also with Vandermonde ma-
trices (1) replaced with generalized Vandermonde matriceson
either form (3) or (4), and withKρ,ω replaced with either
Kρ,ω,f or Kρ,ω,λ.

The proof follows the same lines as those in the proof of
Theorem 1 in Appendix A, and is therefore only explained
briefly at the end of that appendix.

As for matrices of the form (1), it is the case of uniform
phase distribution which is most easily described how to
compute for generalized Vandermonde matrices also. Ap-
pendix B shows how the computation ofK(ρ, u) boils down
to computing certain integrals. The same comments are valid
for matrices of the form (3) or (4) in order to computeKρ,ω,f

andKρ,ω,λ. This is commented at the end of that appendix.
We will not consider generalized Vandermonde matrices

with density singularities.

E. The joint distribution of independent Vandermonde matri-
ces

In the case when many independent random Vandermonde
matrices are involved, the following holds:

Theorem 7:Assume that the{Dr(N)}1≤r≤n have a joint
limit distribution asN → ∞. Assume also thatV1,V2, ...
are independent Vandermonde matrices with the same phase
distributionω, and that the density ofω is continuous. Then
the limit

limN→∞ E[trL( D1(N)VH
i1

Vi2D2(N)VH
i2

Vi3

· · · × Dn(N)VH
in

Vi1)]

also exists whenL
N → c, and equals
∑

ρ≤σ∈P(n)

Kρ,ωc|ρ|−1Dρ, (27)
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whereσ is the partition wherek andj are in the same block
if and only if ik = ij .

The proof of Theorem 7 can be found in Appendix K. That
appendix also contains some remarks on the case when the
matricesDi(N) are placed in different positions relative to
the Vandermonde matrices. From Theorem 7, the following
corolllary is immediate:

Corollary 1: The first three mixed moments

V (2)
n = lim

N→∞
E
[

trL

(

(

V
H
1 V2V

H
2 V1

)n
)]

of independent Vandermonde matricesV1,V2 are given by

V
(2)
1 = I2

V
(2)
2 =

2

3
I2 + 2I3 + I4

V
(2)
3 =

11

20
I2 + 4I3 + 9I4 + 6I5 + I6,

where

Ik = (2π)|ρ|−1

(∫ 2π

0

pω(x)|ρ|dx

)

.

In particular, when the phase distributions are uniform, the
first three mixed moments are given by

V
(2)
1 = 1

V
(2)
2 =

11

3

V
(2)
3 =

411

20

The results here can also be extended to the case with
independent Vandermonde matrices with different phase dis-
tributions:

Theorem 8:Assume that{Vi}1≤i≤s are independent Van-
dermonde matrices, whereVi has continuous phase distribu-
tion ωi. Denote bypωi

the density ofωi. Then equation (27)
still holds, with Kρ,ω replaced by

Kρ,u(2π)|ρ|−1

∫ 2π

0

s
∏

i=1

pωi
(x)|ρi|dx,

whereρi is the partition ofσi consisting of the blocks ofρ
contained inσi.

The proof is omitted, as it is a straightforward extension of
the proofs of Theorem 3 and Theorem 7.

IV. D ISCUSSION

We have already explained that one can perform deconvolu-
tion with Vandermonde matrices in a similar way to how one
can perform deconvolution for Gaussian matrices. We have,
however, also seen that there are many differences.

A. Convergence rates

In [19], almost sure convergence of Gaussian matrices was
shown by proving exact formulas for the distribution of lower
order Gaussian matrices. These deviated from their limits by
terms of the form1/L2. In Theorem 2, we see that terms of
the form 1/L are involved. This slower rate of convergence
may not be enough to make a statement on whether we have

almost sure convergence of random Vandermonde matrices.
However, [31] shows some almost sure convergence properties
for certain Hankel and Toeplitz matrices. These matrices are
seen in that paper to have similar combinatorial descriptions
for the moments, when compared to Vandermonde matrices in
this paper. Therefore, it may be the case that the techniques
in [31] can be generalized to address almost sure convergence
of Vandermonde matrices also. Figures 1, 2 show the speed of
convergence of the moments of Vandermonde matrices (with
uniform phase distributions) towards the asymptotic moments
as the matrix dimensions grow, and as the number of samples
grow. The differences between the asymptotic moments and
the exact moments are also shown. To be more precise, the
MSE of figures 1 and 2 is computed as follows:

1) K samplesVi are independently generated using (1).
2) The 4 first sample momentŝvji = 1

L trn

(

(

V
H
i Vi

)j
)

(1 ≤ j ≤ 4) are computed from the samples.
3) The 4 first estimated momentŝVj are computed as the

mean of the sample moments, i.e.V̂j = 1
K

∑K
i=1 m̂ji.

4) The 4 first exact momentsEj are computed using
Theorem 2.

5) The4 first asymptotic momentsAj are computed using
Proposition 3.

6) The mean squared error (MSE) of the first4 esti-
mated moments from the exact moments is computed

as
∑4

j=1

(

V̂j − Ej

)2

.
7) The MSE of the first4 exact moments from the asymp-

totic moments is computed as
∑4

j=1 (Ej − Aj)
2.

Figures 1 and 2 are in sharp contrast with Gaussian matrices,
as shown in Figure 3. First of all, it is seen that the asymptotic
moments can be used just as well instead of the exact moments
(for which expressions can be found in [32]), due to the
O(1/N2) convergence of the moments. Secondly, it is seen
that only5 samples were needed to get a reliable estimate for
the moments.

B. Inequalities between moments of Vandermonde matrices
and moments of known distributions

We will state an inequality involving the moments of Van-
dermonde matrices, and the moments of known distributions
from probability theory. The classical Poisson distribution with
rateλ and jump sizeα is defined as the limit of

((

1 − λ

n

)

δ0 +
λ

n
δα

)∗n

as n → ∞ [29], where∗ denotes classical (additive) convo-
lution, and∗n denotesn-fold convolution with itself. For our
analysis, we will only need the classical Poisson distribution
with rate c and jump size1. We will denote this quantity by
νc. The free Poisson distribution with rateλ and jump sizeα
is defined similarly as the limit of

((

1 − λ

n

)

δ0 +
λ

n
δα

)⊞n

as n → ∞, where⊞ is the free probability counterpart of
classical additive convolution [29], [20], and where where⊞n
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MSE between estimated and exact moments

Fig. 1. MSE of the first4 estimated moments from the exact moments
for 80 samples for varying matrix sizes, withN = L. Matrices are on the
form VHV with V a Vandermonde matrix with uniform phase distributions.
The MSE of the first4 exact moments from the asymptotic moments is also
shown.
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Fig. 2. MSE of the first4 moments from the actual moments for320 samples
for varying matrix sizes, withN = L. Matrices are on the formVH

V with
V a Vandermonde matrix with uniform phase distributions. TheMSE of the
moments and the asymptotic moments is also shown.

denotesn-fold free convolution with itself. For our analysis,
we will only need the free Poisson distribution with rate1

c
and jump sizec. We will denote this quantity byµc. µc is the
same as the better known Marc̆henko Pastur law, i.e. it has the
density [20]

fµc(x) = (1 − 1

c
)+δ0(x) +

√

(x − a)+(b − x)+

2πcx
, (28)

where(z)+ = max(0, z), a = (1−√
c)2, b = (1+

√
c)2. Since

the classical (free) cumulants of the classical (free) Poisson
distribution areλαn [29], we see that the (classical) cumulants
of νc are c, c, c, c, ..., and that the (free) cumulants ofµc are
1, c, c2, c3, .... In other words, ifa1 has the distributionµc,
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Fig. 3. MSE of the first4 moments from the actual moments for5 samples
for varying matrix sizes, withN = L. Matrices are on the form1

N
XX

H

with X a complex standard Gaussian matrix. The MSE of the moments and
the asymptotic moments is also shown.

then

φ(an
1 ) =

∑

ρ∈NC(n) cn−|ρ| =
∑

ρ∈NC(n) c|K(ρ)|−1

=
∑

ρ∈NC(n) c|ρ|−1.
(29)

Here we have used the Kreweras complementation map (here
φ is the expectation in a non-commutative probability space).
Also, if a2 has the distributionνc, then

E(an
2 ) =

∑

ρ∈P(n)

c|ρ|. (30)

We immediately recognize thec|ρ|−1-entry of Theorem 1 in
(29) and (30) (except for an additional power ofc in (30)).
Combining Proposition 1 withD1(N) = · · · = Dn(N) =
IN , (29), and (30), we thus get the following corollary to
Proposition 1:

Corollary 2: Assume thatV has uniform phase distribu-
tions. Then the limit moment

Vn = lim
N→∞

E
[

trL

(

(

V
H

V
)n
)]

satsifies the inequality

φ(an
1 ) ≤ Vn ≤ 1

c
E(an

2 ),

wherea1 has the distributionµc of the Marc̆henko Pastur law,
anda2 has the Poisson distributionνc. In particular, equality
occurs form = 1, 2, 3 and c = 1 (since all partitions are
noncrossing form = 1, 2, 3).

Corollary 2 thus states that the moments of Vandermonde
matrices with uniform phase distributions are bounded above
and below by the moments of the classical and free Poisson
distributions, respectively. The left part of the inequality in
Corollary 2 was also observed in [16] Section VI. The dif-
ferent Poisson distributions enter here because their (free and
classical) cumulants resemble thec|ρ|−1-entry in Theorem 1,
where we also can use thatKρ,u = 1 if and only if ρ is
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noncrossing to get a connection with the Marc̆henko Pastur
law. To see how close the asymptotic Vandermonde moments
are to these upper and lower bounds, the following corollary
to Proposition 3 contains the first moments:

Corollary 3: Whenc = 1, the limit moments

Vn = lim
N→∞

E
[

trL

(

(

V
H

V
)n
)]

,

the momentsfpn of the Marc̆henko Pastur lawµ1, and the
momentspn of the Poisson distributionν1 satisfy

fp4 = 14 ≤ V4 = 44
3 ≈ 14.67 ≤ p4 = 15

fp5 = 42 ≤ V5 = 146
3 ≈ 48.67 ≤ p5 = 52

fp6 = 132 ≤ V6 = 3571
20 ≈ 178.55 ≤ p6 = 203

fp7 = 429 ≤ V7 = 2141
3 ≈ 713.67 ≤ p7 = 877.

The first three moments coincide for the three distributions,
and are1, 2, and5, respectively.

The numbersfpn and pn are simply the number of
partitions in NC(n) and P(n), respectively. The number
of partitions in NC(n) equals the Catalan numberCn =

1
n+1

(

2n
n

)

[29], so they are easily computed. The number of
partitions ofP(n) are also known as the Bell numbersBn [29].
They can easily be computed from the recurrence relation

Bn+1 =

n
∑

k=0

Bk

(

n

k

)

.

In Figure 4, the mean eigenvalue distribution of640 samples
of a 1600 × 1200 (i.e. c = 0.75) Vandermonde matrix
with uniform phase distribution is shown. While the Poisson
distributionν1 is purely atomic and has masses at0, 1, 2, and
3 which aree−1, e−1, e−1/2, ande−1/6 (the atoms consist
of all integer multiples), the Vandermonde histogram showsa
more continuous eigenvalue ditribution, with the peaks which
the Poisson distribution has at integer multiples clearly visible
here as well. The peaks are not as sharp though. We remark
that the support ofVH

V for a fixedN goes all the way up
to N , but lies within[0, N ]. It is unknown whether the peaks
at integer multiples in the Vandermonde histogram grow to
infinity as we letN → ∞. From the histogram, only the peak
at 0 seems to be of atomic nature. The effect of decreasing
c amounts to stretching the eigenvalue density vertically, and
compressing it horizontally, just as the case for the different
Marc̆henko Pastur laws. An eigenvalue histogram for Gaussian
matrices which in the limit give the corresponding (in the sense
of Corollary 2) Marc̆henko Pastur law for Figure 4 (i.e.µ0.75)
is shown in Figure 6. We have also shown another eigenvalue
histogram to demonstrate the case of a non-uniform phase
distribution. In Figure 5, the mean eigenvalue distribution of
640 samples of a1600×1200 Vandermonde matrix with phase
distribution with density

pω(x) =
1

2α
√

0.04π2 − x2
(31)

on [−π sin α
5 , π sin α

5 ] is shown, with α = π
4 . One can see

that the effect of high values for this density near the origin
is that the Vandermonde matrix has a high concentration of
the eigenvalues near the origin, and also a higher proportion
of larger eigenvalues, when compared to the uniform phase
distribution. The corresponding density is shown in Figure7.
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Fig. 4. Histogram of the mean eigenvalue distribution of640 samples of
VHV, with V a 1600 × 1200 Vandermonde matrix with uniform phase
distributions.
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Fig. 5. Histogram of the mean eigenvalue distribution of640 samples of
V

H
V, with V a 1600 × 1200 Vandermonde matrix with phase distribution

pω defined in (31).

It is unknown whether the inequalities for the moments can
be extended to inequalities for the associated capacity IfX is
anN×N standard, complex, Gaussian matrix, then an explicit
expression for the asymptotic capacity exists [24]:

limN→∞
1
N log2 det

(

IN + ρ
(

1
N XX

H
))

=

2 log2

(

1 + ρ − 1
4

(√
4ρ + 1 − 1

)2
)

− log2 e
4ρ

(√
4ρ + 1 − 1

)2
.

(32)

In Figure 8(a), several realizations of the capacity are com-
puted for Gaussian matrix samples of size36 × 36. The
asymptotic capacity (32) is also shown. In Figure 8(b), several
realizations of the capacity are computed for Vandermonde
matrix samples of the same size, for the case of uniform phase
distribution. It is seen that the variance of the Vandermonde
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Fig. 6. Histogram of the mean eigenvalue distribution of20 samples of
1

N
XXH , with X an L × N = 1200 × 1600 complex, standard, Gaussian

matrix.
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Fig. 7. The densitypω(x) used in this paper.α = π

4
andλ = 10d.

capacities is higher than for the Gaussian counterparts. This
should come as no surprise, due to the slower convergence
to the asymptotic limits for Vandermonde matrices. Although
the capacities of Vandermonde matrices with uniform phase
distribution and Gaussian matrices seem to be close, we have
no proof that the capacities of Vandermonde matrices are even
finite due to the unboundedness of its support.

C. Deconvolution

Deconvolution with Vandermonde matrices (as stated in
(11) in Theorem 1) differs from the Gaussian deconvolution
counterpart [29] in the sense that there is no multiplicative [29]
structure involved, sinceKρ,ω is not multiplicative inρ. The
Gaussian equivalent of Proposition 3 (i.e.V

H
V replaced with

1
N XX

H , with X an L × N complex, standard, Gaussian
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Fig. 8. Realizations of the capacity for Gaussian and Vandermonde matrices
of size36 × 36.

matrix) is

m1 = d1 (33)

m2 = d2 + d2
1 (34)

m3 = d3 + 3d2d1 + d3
1 (35)

m4 = d4 + 4d3d1 + 2d2
2 + 6d2d

2
1 + d4

1 (36)

m5 = d5 + 5d4d1 + 5d3d2 + 10d3d
2
1 +

10d2
2d1 + 10d2d

3
1 + d5

1 (37)

m6 = d6 + 6d5d1 + 6d4d2 + 15d4d
2
1 +

3d2
3 + 30d3d2d1 + 20d3d

3
1 +

5d3
2 + 10d2

2d
2
1 + 15d2d

4
1 + d6

1 (38)

m7 = d7 + 7d6d1 + 7d5d2 + 21d5d
2
1 +

7d4d3 + 42d4d2d1 + 35d4d
3
1 +

21d2
3d1 + 21d3d

2
2 + 105d3d2d

2
1 +

35d3d
4
1 + 35d3

2d1 + 70d2
2d

3
1 +

21d2d
5
1 + d7

1, (39)
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(where themi and thedi are computed as in (12)-(13) by
scaling the respective moments byc). This follows immedi-
ately from asymptotic freeness, and from the fact that1

N XX
H

converges to the Marc̆henko Pastur lawµc. In particular, when
all Di(N) = IL and c = 1, we obtain the limit moments:
1,2,5,14,42,132,429, which also were listed in Corollary 3.
One can also write down a Gaussian equivalent to the co-
variance of traces of Vandermonde matrices (19) and (20)
(covariance of traces of Gaussian matrices are handled more
thoroughly in [33]). These are

E

[

(

trn

(

D(N)
1

N
XX

H

))2
]

= (trn(D(N))2 +
1

nN
trn(D(N)2) (40)

E

[(

trn

(

D(N)
1

N
XX

H

))n]

= (trn(D(N))n + O(N−2) (41)

E

[

trn

(

D(N)
1

N
XX

H

)

trn

(

(

D(N)
1

N
XX

H

)2
)]

= trn(D(N))trn(D(N)2) + O(N−2). (42)

These equations can be proved using the same combinatorical
methods as in [32], and it is not needed that the matrices
D(N) be diagonal. Only the first equation is here stated
as an exact expression. The second and third equations also
have exact counterparts, but their computations are more
involved. Similarly, one can write down a Gaussian equivalent
to Theorem 2 for the exact moments. For the first three
moments (the fourth moment is dropped, since this is more
involved), these are

m1 = d1

m2 = d2 + d2
1

m3 =
(

1 + N−2
)

d3 + 3d1d2 + d3
1.

This follows from a careful count of all possibilities afterthe
matrices have been multiplied together (see also [32], where
one can see that the restriction that the matricesDi(N) are
diagonal can be dropped in the Gaussian case). It is seen,
contrary to Theorem 2 for Vandermonde matrices, that the
second exact moment equals the second asymptotic moment
(34), and also that the convergence is faster (i.e.O(n−2))
for the third moment (this will also be the case for higher
moments).

The two types of (de)convolution also differ in how they
can be computed in practice. In [23], an algorithm for free
convolution with the Marc̆henko Pastur law was sketched. A
similar algorithm may not exist for Vandermonde convolu-
tion. However, Vandermonde convolution can be subject to
numerical approximation: To see this, note first that Theorem 3
splits the numerics into two parts: The approximation of the
integrals

∫

pω(x)|ρ|dx, and the approximation of theKρ,u. A
strategy for obtaining the latter quantities could be to randomly
generate many numbers between0 and 1 and estimate the
volume as the ratio of the solutions which satisfy (76) in
Appendix B. Implementations of the various Vandermonde
convolution variants given in this paper can be found in [34].

In practice, one often has a random matrix model where
independent Gaussian and Vandermonde matrices are both
present. In such cases, it should be possible to combine the
individual results for both of them. In Section V, examples on
how this can be done are presented.

V. SIMULATIONS

The simulations presented here all use the deconvolution
framework for Vandermonde matrices. Since additive, white,
Gaussian noise also is taken into account, Vandermonde de-
convolution is also combined with Gaussian deconvolution.In
the eigenvalue histograms for Vandermonde matrices shown
in figures 4 and 5, as large matrices as needed were used in
order for the eigenvalue distribution to stabilize on something
close to the asymptotic eigenvalue distribution. In practical
scenarios,N andL are much smaller than what was used in
these figures, which partially explains the uncertainty in some
of the simulations we will present next (all simulations operate
on other values forN and L). In particular, the uncertainty
for the pω in (31) is high, since exact expressions for the
lower order moments are not known, contrary to the case
of uniform phase distribution. In all the following,d is the
distance between the antennas whereasλ is the wavelength.
The ratio d

λ is a figure of the resolution with which the system
will be able to separate (and therefore estimate the position)
of users in space.

A. Detection of the number of sources

Let us consider a basestation equipped withN receiving
antennas, and withL mobiles (each with a single antenna) in
the cell. The received signal at the base station is given by

ri = VP
1
2 si + ni. (43)

Here ri is the theN × 1 received vectorsi is the L × 1
transmit vector by theL users which is assumed to satisfy
E
[

sis
H
i

]

= IL, ni is N × 1 additive, white, Gaussian noise
of variance σ√

N
(alle components insi and ni are assumed

independent). In the case of a line of sight between the users
and the base station, and considering a Uniform Linear Array
(ULA), the matrixV has the following form:

V =
1√
N











1 · · · 1

e−j2π d
λ

sin(θ1) · · · e−j2π d
λ

sin(θL)

...
. . .

...
e−j2π(N−1) d

λ
sin(θ1) · · · e−j2π d

λ
sin(θL)











(44)
Here,θi is the angle of the user in the cell and is supposed to
be uniformly distributed over[−α, α]. P

1
2 is anL× 1 power

matrix due to the different distances from which the users
emit. In other words, we assume that the phase distribution
has the form2π d

λ sin(θ) with θ uniformly distributed on
[−α, α]. The fact that the phase has the form2π d

λ sin(θ)
is a well known result in array processing [30]. The users’
distribution can be known (in the case of these simulations,
the uniform distribution has been accounted for without loss
of generality) through measurements in wireless systems upto
some parameters (here,α typically). This is usually done to
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have a better understanding of the user’s behavior. It is easily
seen, by taking inverse functions, that the density is, when
2d sin α

λ < 1,

pω(x) =
1

2α
√

4π2d2

λ2 − x2
(45)

on [− 2πd sin α
λ , 2πd sin α

λ ], and 0 elsewhere. A special case of
this was considered in Figure 7, where we setλ = 10d, α = π

4 .
Throughout the paper we will assume, as in Figure 5, that

α = π
4 , d = 1, and 5λ = d when model (44) is used. With

this assumption,2d sin α
λ < 1 is always fulfilled.

The goal is to detect the number of sourcesL and their
respective power based on the sample covariance matrix
supposing that we haveK observations, of the same order
asN . When the number of observation is quite higher thanN
(and the noise variance is known), classical subspace methods
[35] provide tools to detect the number of sources. Indeed, let
R be the true covariance matrix given by

VPV
H + σ2

IN ,

where σ2 is the noise variance. This matrix hasN − L
eigenvalues equal toσ2 and L eigenvalues strictly superior
to σ2. One can therefore determine the number of source
by counting the number of eigenvalues different fromσ2.
However, in practice, one has only access to the sample
covariance matrix given by

W =
1

K
YY

H ,

with

Y = [r1, ...rK ] = VP
1
2 [s1, ..., sK ] + [n1, ...,nK ] (46)

If one simply has the sample covariance matrixW, (43) has
three independent parts which must be dealt with in order to
get an estimate ofP: the Gaussian matricesS = [s1, ..., sK ]
and N = [n1, ...,nK ], and the Vandermonde matrixV.
It should thus be possible to combine Gaussian deconvolu-
tion [32] and Vandermonde deconvolution by performing the
following steps:

1) Estimate the moments of1K VP
1
2 SS

H
P

1
2 V

H using
multiplicative free convolution as described in [23]. This
is the denoising part.

2) Estimate the moments ofPV
H
V, again using multi-

plicative free deconvolution.
3) Estimate the moments ofP using Vandermonde decon-

volution as described in this paper.

Putting these steps together, we will prove the following:
Proposition 6: Define

In = (2π)n−1

∫ 2π

0

pω(x)ndx, (47)

and denote the moments ofP and the sample covariance
matrix, respectively, by

Pi = trL(Pi)

Wi = trN (Wi).

Then the equations

W1 = c2P1 + σ2

W2 = c2P2 + (c2
2I2 + c2c3)(P1)

2

+2σ2(c2 + c3)P1 + σ4(1 + c1)

W3 = c2P3 + (3c2
2I2 + 3c2c3)P1P2

+
(

c3
2I3 + 3c2

2c3I2 + c2c
2
3

)

(P1)
3

+3σ2(1 + c1)c2P2

+3σ2((1 + c1)c
2
2I2 + c3(c3 + 2c2))(P1)

2

+3σ4(c2
1 + 3c1 + 1)c2P1

+σ6(c2
1 + 3c1 + 1)

provide an asymptotically unbiased estimator for the mo-
ments Pi from the moments of Wi (or vice versa)
when limN→∞

N
K = c1, limN→∞

L
N = c2, and where

limN→∞
L
K = c3.

The proof of this can be found in Appendix L. Note that
c3 = c1c2, so that the definition ofc3 is really not necessary.
We still include it however, sincec1, c2 and c3 are matrix
aspect ratios which are used in different deconvolution stages,
so that they all are used when these stages are implemented
and combined serially. Note also that the statement appliesto
anyω with continuous density due to Theorem 3, not only the
densities we restrict to here. In the simulations, Proposition 6
is put to the test whenP has three sets of powers, 0.5, 1, and
1.5 (with equal probability), with phase distribution given by
(44). Both the number of sources and the powers are estimated.
For the phase distribution (44), the integralsI2 and I3 can
be computed exactly (for general phase distributions they are
computed numerically), and are [36]

I2 =
λ

4dα2
ln

(

1 + sin α

1 − sin α

)

I3 =
λ2 tan α

4d2α3
.

Under the assumptionsα = π
4 andλ = 10d used throughout

this paper, the integrals above take the values

I2 =
40

π2
ln

(

2 +
√

2

2 −
√

2

)

I3 =
1600

π3
.

For estimation of the powers, knowing that we have only
three sets of powers with equal probability, it suffices to
estimate the three lowest moments in order to get an estimate
of the powers (which are the three distinct eigenvalues ofP).
Therefore, in the following simulations, Proposition 6 is first
used to get an estimate of the moments ofP. Then these are
used to obtain an estimate of the three distinct eigenvaluesof
P using the Newton-Girard formulas [37]. These should then
lie close to the three powers ofP.

For the model (44), it turns out that power estimation
does not work particularly well. The result is shown in the
first plot of Figure 11. In the plot,K = L = N = 576,
and σ =

√
0.1. Even though the matrices are quite large,

the estimated powers are quite far from the actual powers.
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Actually, the estimation process is so far off that it computes
eigenvalues which are complex conjugate pairs instead of the
true, real ones (0.5, 1, 1.5) (this is an explanation for that
the two lowest eigenvalues in the plot seem to coincide,
since it is only the absolute values of the eigenvalues which
are plotted). Increasing the matrix sizes further results in
estimates which are closer to the true powers, but one would
need matrices of size larger than2000 × 2000 to get much
closer to the true powers. As will be seen, power estimation
works much better for the phase distribution model in the
next section. A tentative explanation for this is the difference
between the corresponding eigenvalue histograms of those two
Vandermonde matrices, which are shown in Figure 5 for model
(44), and in Figure 4 for the model of the next section.

For estimation of the number of usersL, we assume that
the power distribution ofP is known, but notL itself. Since
L is unknown, in the simulations we enter different candidate
values of it into the following procedure:

1) Computing the momentsPi = trL(Pi) of P.
2) The momentstrL(Pi) are fed into the formulas of

Proposition 6, and we thus obtain candidate moments
Wi of the sample covariance matrixW.

3) Compute the sum of the square errors between these can-
didate moments, and the momentŝWi of the observed
sample covariance matrix̂W, i.e. compute

∑3
i=1 |Wi −

Ŵi|2.

The estimateL for the number of users is chosen as the one
which gives the minimum value for the sum of square errors
after these steps.

In Figure 9, we have setσ =
√

0.1, N = 100, and
L = 36. P has three sets of powers, 0.5, 1, and 1.5 (with
equal probability). We tried the procedure described abovefor
1 all the way up to100 observations. It is seen that only a
small number of observations are needed in order to get an
accurarate estimate ofL. WhenK = 1, it is seen that more
observations are needed to get an accurate estimate ofL, when
compared toK = 10.

B. Estimation of the number of paths

In many channel modeling applications, one needs to deter-
mine the number of paths in the channel [38]. For this purpose,
consider a multi-path channel of the form:

h(τ) =

L
∑

i=1

siδ(τ − τi)

Here,si are i.d. Gaussian random variables with powerPi and
τi are uniformly distributed delays over[0, T ]. Thesi represent
the attenuation factors due to the different reflections.L is the
total number of paths. In the frequency domain, the channel
is given by:

H(f) =

L
∑

i=1

siG(f)e−j2πfτi

We consider which samples the channel in frequency. Sam-
pling the continuous frequency signal atfi = iW

N whereW
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Fig. 9. Estimate for the number of users. Actual value ofL is 36. Also,
σ =

√
0.1, N = 100.

is the bandwidth, the model becomes (for a given channel
realization):

H = VP
1
2 s

where:

V =
1√
N













1 · · · 1

e−j2π
Wτ1

N · · · e−j2π
WτL

N

...
. . .

...

e−j2π(N−1)
Wτ1

N · · · e−j2π(N−1)
WτL

N













,

(48)
We will here setW = T = 1, which means that theωi

of (1) are uniformly distributed over[0, 2π]. When additive
noise (ni) again is taken into consideration, our model again
becomes that of (43), the only difference being that the phase
distribution of the Vandermonde matrix now is uniform.L now
is the number of paths,N the number of frequency samples,
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andP is the unknownL×L diagonal power matrix. TakingK
observations we arrive at the same form as in (46). In this case
with uniform phase distribution, we can do even better than
Proposition 6, in that one can write down estimators for the
moments which are unbiased for any number of observations
and frequency samples:

Proposition 7: Assume thatV has uniform phase distribu-
tion, and letPi be the moments ofP, andWi = trN (Wi)
the moments of the sample covariance matrix. Define also
c1 = N

K , c2 = L
N , andc3 = L

K . Then

E [W1] = c2P1 + σ2

E [W2] = c2

(

1 − 1

N

)

P2 + c2(c2 + c3)(P1)
2

+2σ2(c2 + c3)P1 + σ4(1 + c1)

E [W3] = c2

(

1 +
1

K2

)(

1 − 3

N
+

2

N2

)

P3

+

(

1 − 1

N

)(

3c2
2

(

1 +
1

K2

)

+ 3c2c3

)

P1P2

+

(

c3
2

(

1 +
1

K2

)

+ 3c2
2c3 + c2c

2
3

)

(P1)
3

+3σ2

(

(1 + c1)c2 +
c1c

2
2

KL

)(

1 − 1

N

)

P2

+3σ2

(

c1c
3
2

KL
+ c2

2 + c2
3 + 3c2c3

)

(P1)
2

+3σ4

(

c2
1 + 3c1 + 1 +

1

K2

)

c2P1

+σ6

(

c2
1 + 3c1 + 1 +

1

K2

)

Just as Proposition 6, this is proved in Appendix L. In the
following, this result is used in order to determine the number
of paths as well as the power of each path. The different
convergence rates of the approximations are clearly seen in
the plots.

In Figure 10, the number of paths is estimated based on the
procedure sketched above. We have setσ =

√
0.1, N = 100,

and L = 36. The procedure is tried for1 all the way up to
100 observations. The plot is very similar to Figure 9, in that
only a small number of observations are needed in order to
get an accurate estimate ofL. WhenK = 1, it is seen that
more observations are needed to get an accurate estimate of
L, when compared toK = 10.

For the estimation of powers simulation, we have setK =
N = L = 144, andσ =

√
0.1, following the procedure also

described above, up to1000 observations. The second plot
in Figure 11 shows the results which confirms the usefulness
of the approach. We see that even for smaller matrix sizes
than the model of the previous section, the estimates are much
closer to the true powers.

C. Estimation of wavelength

In the field of MIMO cognitive sensing [39], [40], terminals
must decide on the band on which to transmit and in particular
sense which band is occupied. One way of doing is to find
the wavelengthλ in (44), based on some realizations of the
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Fig. 10. Estimate for the number of paths. Actual value ofL is 36. Also,
σ =

√
0.1, N = 100.

sample covariance matrix. In our simulation, we have set
d = 5 and λ = 10, K = 10, L = 36, N = 100, and
σ =

√
0.1. We have tried the values1, 2, ..., 100 as candidate

wavelengths, and chosen the one which gives the smallest
deviation (in the same sense as above, i.e. the sum of the
squared errors of the first three moments are taken) from a
different number of realizations of sample covariance matrices.
The resulting plot is shown in Figure 12, and shows that
the Vandermonde deconvolution method can also be used for
wavelength estimation. It is seen that the estimation gets better
when the number of observations is increased.

D. Signal reconstruction and estimation of the sampling dis-
tribution

Several works have investigated how irregular sampling
affects the performance of signal reconstruction in the presence
of noise in different fields namely sensor networks [41], [42],
image processing [43], [44], geophysics [45], compressive
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(a) Estimation of powers for various number of observationsfor the model
(44) of Section V-B.K = N = L = 576, andσ =
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(b) Estimation of powers for various number of observationsfor the model
(48) of Section V-A.K = N = L = 144, andσ =
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Fig. 11. Estimation of powers for the two models (44) and (48)of this
section, for various number of observations.

sampling [46]. The usual Nyquist Theorem states that for a
signal with maximum frequencyfmax, one needs to sample the
signal at a rate which is at least twice this number. However,
in many cases, this can not be performed or one has an
observation of a signal at only a subset of the frequencies.
Moreover, one feels that if the signal has a sparse spectrum,
one can take fewer samples and still have the same information
on the original signal. One of the central motivations of sparse
sampling is exactly to understand under which condition one
can still have less samples and recover the original signal up
to an error ofǫ [47]. Let us consider the signal of interest as
a superposition of its frequency components (this is also the
case for a unidimensional bandlimited physical signal) i.e

r(t) =
1√
N

N−1
∑

k=0

ske
−j2πkt

N
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Fig. 12. Estimation of wavelength. Deconvolution was performed for varying
number of observations, assuming different wavelengths, In the true model
(44), d = 1, λ = 10, K = 10, L = 36, N = 100, andσ =

√
0.1.

and suppose that the signal is sampled at various instants
[t1, ..., tL] with ti ∈ [0, 1]. This can be identically written as

r(ω) =
1√
N

N−1
∑

k=0

ske−jkω ,

or r = V
T
a. In the presence of noise, one can write

r = V
T
s + n, (49)

wherer = [r(ω1), ...r(ωL)]T , s andn are as in (43), and with
V on the form (1). Contrary to (43), (49) does not include the
diagonal matrixP. A similar analysis for such cases can be
found in [16], [48].

In the following, we suppose that one hasK observations
of the received sampled vectorr:

Y = [r1, ...rK ] = V
T [s1, ..., sK ] + [n1, ...,nK ] (50)

The vectorr is the discrete output of the sampled continuous
signal r(w) for which the distribution is unknown (however,
c is known). This case happens when one has an observation
without the knowledge of the sampling rate for example. The
difference in (50) from the model (46) lies in that the adjoint
of a Vandermonde matrix is used, and in that there is no
additional diagonal matrixP included. The following result
can now be stated and proved similarly to Proposition 6 and 7:

Proposition 8:

E [trn (W)] = 1 + σ2 (51)

E
[

trn

(

W
2
)]

= c2I2 + (1 + c3)(1 + σ2)2 (52)

E
[

trn

(

W
3
)]

= 1 + 3c2(1 + c3)I2

3c3 + c2
3 + c2

2I3

3σ2(1 + 3c3 + c2
3 + c2(1 + c3)I2)

3σ4c2(c
2
3 + 3c3 + 1)

σ6(c2
3 + 3c3 + 1), (53)
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Fig. 13. Estimated values ofα using (51)-(53), for various number of
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wherelimN→∞
N
K = c1, limN→∞

L
N = c2, limN→∞

L
K = c3,

In is defined as in Proposition 6, andW = 1
K YY

H .
The proof of Proposition 8 is commented in Appendix L.

We have tested (51)-(53) as follows: we have taken a phase
distribution ω which is uniform on[0, α], and 0 elsewhere.
The density is thus2π

α on [0, α], and 0 elsewehere. In this
case we can compute that

I2 =
2π

α

I3 =

(

2π

α

)2

.

The first of these equations, combined with (51)-(53), enables
us to estimateα. This is tested in Figure 13 for various
number of observations. In Figure 14 we have also tested
estimation of I2, I3 from the observations using the same
equations. When one has a distribution which is not uniform,
the integralsI3, I4, ... would also be needed in finding the
characteristics of the underlying phase distribution. Figure 14
shows that the estimation ofI2 requires far fewer observa-
tion than the estimation ofI3. In both figures, the values
K = 10, L = 36, N = 100, and σ =

√
0.1 were used and

α was π
4 . It is seen that the estimation ofI3 is a bit off even

for higher number of observations. This is to be expected,
since an asymptotoic result is applied.

VI. RELATED WORK

In the recent work [16], the Vandermonde model (1) is
encountered in the context of reconstruction of multidimen-
sional signals in wireless sensor networks. The authors also
recognize a similar expression for the Vandermonde mixed
moment expansion coefficient as in Definition 6. They also
state that, for the case of uniform phase distribution, closed
form expressions for the moments can be found, building
on an analysis of partitions and calculation of volumes of
convex polytopes described by certain constraints. This isvery
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Fig. 14. Estimated values ofI2 andI3 using (51)-(53), for various number
of observations, and forK = 10, L = 36, N = 100, σ =

√
0.1. The actual

value ofα was π

4
.

similar to what is done in this paper. However [16] does not
perform concrete calculations up to the first seven moments.
Also, the connection between the uniform case and the general
case, as in Theorem 3, was not made. Mixed moments with
independent matrices were also not computed, as the case of
several independent Vandermonde matrices.

Interestingly, [17] shows that, in cases where the matrices
have entries of the formAi,j = F (ωi − ωj), analytical
expressions for the moments can be found. This may be
interesting for the Vandermonde matrices we consider, since

(

1

N
V

H
V

)

i,j

=
sin
(

N
2 (ωi − ωj)

)

N sin
(

1
2 (ωi − ωj)

) .

Unfortunately, the functionFN (x) =
sin( N

2 x)
N sin( 1

2x)
depends on

the matrix dimensionN , so that we can not find a functionF
which fits the result from [17].

VII. C ONCLUSION AND FURTHER DIRECTIONS

We have shown how asymptotic moments of random Van-
dermonde matrices can be computed analytically, and treated
many different cases. Vandermonde matrices with uniform
phase distributions proved to be the easiest case and was given
separate treatment, and it was shown how the case with more
general phases could be expressed in terms of the case of
uniform phase distributions. The case where the phase distri-
bution has singularities was also given separate treatment, as
this case displayed different asymptotic behaviour. Also mixed
moments of independent Vandermonde matrices were com-
puted, as well as the moments of generalized Vandermonde
matrices. In addition to the general asymptotic expressions
stated, exact expressions for the first moments of Vandermonde
matrices with uniform phase distributions were also stated.
We have also provided some useful applications of random
Vandermonde matrices. The applications concentrated on de-
convolution and signal sampling analysis. As shown, many
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useful system models use independent Vandermonde matrices
and Gaussian matrices combined in some way. The presented
examples show how random Vandermonde matrices applied
for such systems can be handled in practice to obtain estimates
on quantities such as the number of paths in channel modeling,
the transmission powers of the users in wireless transmission
or the sampling distribution for signal recovery. The paper
has only touched upon a limited number of applications but
the results already provide benchmark figures in the non-
asymptotic regime.

From a theoretical perspective, it would also be interesting
to find methods for obtainingKρ,ω,λ from Kρ,u,u, similar to
what has been done withKρ,ω from Kρ,u. This could also shed
some light on whether uniform phase and power distribution
also minimizes moments of generalized Vandermonde matri-
ces, similary to how we showed that uniform phase distribution
minimizes moments Vandermonde matrices of the form (1).

Throughout the paper, we assumed that only diagonal
matrices were involved in mixed moments of Vandermonde
matrices. The case of non-diagonal matrices is harder to
address, and should be addressed in future research. The
analysis of the maximum and minimum eigenvalue is also of
importance. The methods presented in this paper can not be
used directly to obtain explicit expressions for the asymptotic
mean eigenvalue distribution, so this is also a case for future
research. A way of attacking this problem could be to develop
for Vandermonde matrices analytic counterparts to what one
has in free probability (such as theR- and S-transform and
their connection with the Stieltjes transform).

Finally, another case for future research is the asymptotic
behaviour of Vandermonde matrices when the matrix entries
lie outside the unit circle. The asymptotics are very different
in this case. The choice of Vandermonde matrix entries on
the unit circle was applied for this paper since the asymptotic
behaviour is more easily addressed in this case.

APPENDIX A
THE PROOF OFTHEOREM 1

We can write

E
[

trL

(

D1(N)VH
VD2(N)VH

V · · ·Dn(N)VH
V
)]

(54)

as

L−1
∑

i1,...,in

j1,...,jn

E( D1(N)(j1, j1)V
H(j1, i2)V(i2, j2)

D2(N)(j2, j2)V
H(j2, i3)V(i3, j3)

...
Dn(N)(jn, jn)VH(jn, i1)V(i1, j1))

(55)
The (j1, ..., jn) give rise to a partitionρ of {1, ..., n}, where
each blockWj consists of equal values, i.e.

Wj = {k|jk = j}.
Write

Wj = {wj1, wj2, ..., wj|Wj |}.
When (j1, ..., jn) give rise toρ, we see that since

jwj1 = jwj2 = · · · = jwj|Wj |
,

we also have that

ωjwj1
= ωjwj2

= · · · = ωjwj|Wj |
,

and we will denote their common value byωWj
as in Defini-

tion 6. With this in mind, it is straightforward to verify that
(55) can be written as

∑

ρ∈P(n)

∑

(i1,...,in)

∑

(j1,...,jn)

giving rise toρ

N−nL−1

×
|ρ|
∏

k=1

E

(

e
j
(

∑

k∈Wj
ik−1−

∑

k∈Wj
ik

)

ωWk

)

×D1(N)(j1, j1) × · · · × Dn(N)(jn, jn).,(56)

wherei1, ..., in takes values between0 andN − 1. We will in
the following switch between the form (56) and the form

∑

ρ∈P(n)

∑

(j1,...,jn)

giving rise toρ

∑

(i1,...,in)

N |ρ|−n−1c|ρ|−1L−|ρ|

×E

(

n
∏

k=1

(

ej(ωb(k−1)−ωb(k))ik

)

)

×D1(N)(j1, j1) × · · · × Dn(N)(jn, jn),(57)

where we also have reorganized the powers ofN and L in
(56), and changed the order of summation (i.e. summed over
the differenti1, ..., in first). Noting that

∑

(i1,...,in)

N |ρ|−n−1E

(

n
∏

k=1

ej(ωb(k−1)−ωb(k))ik

)

(58)

= N |ρ|−n−1E





∑

(i1,...,in)

n
∏

k=1

ej(ωb(k−1)−ωb(k))ik



(59)

= N |ρ|−n−1E

(

n
∏

k=1

(

N−1
∑

ik=0

ej(ωb(k−1)−ωb(k))ik

))

(60)

= N |ρ|−n−1E

(

n
∏

k=1

1 − ejN(ωb(k−1)−ωb(k))

1 − ej(ωb(k−1)−ωb(k))

)

(61)

= N |ρ|−n−1 ×
∫

(0,2π)|ρ|

n
∏

k=1

1 − ejN(ωb(k−1)−ωb(k))

1 − ej(ωb(k−1)−ωb(k))

dω1 · · ·dω|ρ| (62)

= Kρ,ω,N , (63)

Definition 6 of the Vandermonde mixed moment expansion
coefficients come into play, so that (57) can also be written

∑

ρ∈P(n)

∑

(j1,...,jn)

giving rise toρ

c|ρ|−1L−|ρ|Kρ,ω,N

×D1(N)(j1, j1) · · · × ×Dn(N)(jn, jn). (64)
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The notation for a joint limit distribution simplifies (57).
Indeed, add to (57) for eachρ the terms

∑

ρ′∈P(n),ρ′>ρ

∑

(j1,...,jn)

giving rise toρ′

c|ρ|−1L−|ρ|Kρ,ω,N

×D1(N)(j1, j1) · · · × Dn(N)(jn, jn). (65)

These go to0 asN → ∞, since they are bounded by

c|ρ|−1L−|ρ|Kρ,ω,NL|ρ′| = Kρ,ω,Nc|ρ|−1L|ρ′|−|ρ| = O(L−1).

After this addition, the limit of (64) can be written

∑

ρ∈P(n)

c|ρ|−1Kρ,ωDρ, (66)

which is what we had to show.
We also need to comment on the statement of Theo-

rem 6, where generalized Vandermonde matrices are con-
sidered. In this case, the derivations after (57) are different
since the power distribution is not uniform. For the case of
(3), we can in (60) replace

∑n
ik=1 ej(ωb(k−1)−ωb(k))ik with

∑N−1
r=0 NpfN

(r)ejr(ωb(k−1)−ωb(k)), since the number of oc-
curences of the powerejr(ωb(k−1)−ωb(k)) is NpfN

(r). The rest
of the proof of Theorem 6 follows by cancellingn powers of
N after this replacement. The details are similar for the case
(4), where the law of large numbers is applied to arrive at the
second formula in (26).

(11) will also be useful on the scaled form

cMn =
∑

ρ∈P(n)

Kρ,ω(cD)ρ. (67)

When D1(N) = D2(N) = · · · = Dn(N), we denote
their common valueD(N), and define the sequenceD =
(D1, D2, ...) with Dn = limN→∞ trL ((D(N))n). In this
caseDρ does only depend on the block cardinalities|Wj |,
so that we can group together theKρ,ω for ρ with equal
block cardinalities. If we group the blocks ofρ so that their
cardinalities are in descending order, and set

P(n)r1,r2,...,rk
= {ρ = {W1, ..., Wk} ∈ P(n)||Wi| = ri∀i},

wherer1 ≥ r2 ≥ · · · ≥ rk, and also write

Kr1,r2,...,rk
=

∑

ρ∈P(n)r1,r2,...,rk

Kρ,ω, (68)

After the substitutions (12-(13), (67) can be written

mn =
∑

r1,...,rk
r1+···+rk=n

Kr1,r2,...,rk

k
∏

j=1

drj
. (69)

For the first5 moments this becomes

m1 = K1d1 (70)

m2 = K2d2 + K1,1d
2
1 (71)

m3 = K3d3 + K2,1d2d
2
1 + K1,1,1d

3
1 (72)

m4 = K4d4 + K3,1d3d1 + K2,2d
2
2 + K2,1,1d2d

2
1 +

K1,1,1,1d
4
1 (73)

m5 = K5d5 + K4,1d4d1 + +K3,2d3d2 +

K3,1,1d3d
2
1 + K2,2,1d

2
2d1 + K2,1,1,1d2d

3
1 +

K1,1,1,1,1d
5
1. (74)

This reorganization of the terms will be used in the following.

APPENDIX B
THE PROOF OFPROPOSITION1

Note that for each blockWj ,

E

(

e
j
(

∑

k∈Wj
ik−1−

∑

k∈Wj
ik

)

ωWj

)

= 0

when
∑

k∈Wj

ik−1 6=
∑

k∈Wj

ik,

and1 if
∑

k∈Wj

ik−1 =
∑

k∈Wj

ik. (75)

We thus defineSρ,N to be the set of alln-tuples(i1, ..., in)
where1 ≤ ik ≤ N (1 ≤ k ≤ n), and where

∑

k∈Wj

ik−1 =
∑

k∈Wj

ik

for all j ∈ {1, ..., |ρ|}. We also define|Sρ,N | to be the
cardinality ofSρ,N . With this definition in place, it is obvious
that

Kρ,u = lim
N→∞

Kρ,u,N = lim
N→∞

1

Nn+1−|ρ| |S(ρ, N)|.

Finding the limit distribution thus boils down to finding|Sρ,N |,
which is equivalent to finding the number of solutions to
equations of the form (75), where the variables are integers
constrained to lie between0 and N − 1. For Proposition 2
we will compute|Sρ,N | for certainρ of lower order. To prove
Proposition 1, we need not compute specific|Sρ,N |.

First we explain whyKρ,u ≤ 1. It is clear from (75) that
|Sρ,N | is the number of integer solutionsi = [i1 · · · in]T (with
ij between0 and N − 1) to a system of the formAi = 0,
where

1) A is |ρ| × n,
2) all entries inA are either−1, 0, or 1,
3) each column ofA contains either exactly one−1 and

one1, or just zeroes.

Such a matrixA has rank|ρ| − 1, as can be found through
elementary row reduction. Hence, there are|ρ| − 1 pivot
columns inA, andn+1−|ρ| free variables among(i1, ..., in)
in the solution set ofAi = 0. Therefore,|Sρ,N | ≤ Nn+1−|ρ|,
which proves thatKρ,u ≤ 1.
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By dividing the equations (75) byN , and lettingN go to
infinity, Kρ,u can alternatively be expressed as the volume in
R

n+1−|ρ| of the solution set of
∑

k∈Wj

xk−1 =
∑

k∈Wj

xk, (76)

with 0 ≤ xk ≤ 1 (the volume is computed after expressing the
remaining|ρ|−1 variables in then+1−|ρ| free variables). It is
clear that the integral for this volume computes to a rational
number greater than0 but less than1, due to the integral
bounds given by (76), and since the volume is contained
within a (higher-dimensional) unit cube. It is also clear that
the integral computes to1 if and only if the reduced row
echelon form ofA only contains rows with zeros, and rows
with 2 nonzero entries (these entries will then be1 and−1,
respectively). This corresponds to a solution set where each
pivot variable equals one of the free variables. For the restof
the proof, it therefore suffices to show that such a solution set
occurs if and only if the partitionρ is noncrossing.

If ρ is noncrossing, there exists a blockW1 (after renumber-
ing the blocks if necessary) which consists of a single interval
of numbers, say{r, r +1, ..., r+ |W1|}. This block’s equation
in (75) is easily seen to imply that

ir−1 = ir+|W1|,

and thatir, ..., ir+|W1|−1 can be chosen arbitrarily. Therefore,
this block gives rise to|W1| − 1 free variables.

Let W2 be the block which containsr + |W1| + 1 (after
renumbering the blocks if necessary). We add together the
two equations represented byW1 andW2 in (76), and replace
these two equations with this sum. The new set of equations
gives rise to a new matrixA, where columnsr, ..., r + |W1|
are easily seen to contain only0’s. These columns represent
|W1|−1 free variables, and can be chosen independently from
the rest of the variables. We therefore remove these columns
from A. The new equation system corresponds to the equation
system for a noncrossing partition of{1, ..., n − |W1|} with
|ρ| − 1 blocks, created by merging the blocksW1 and W2.
The step where we find a block which is an interval can now
be repeated to merge two more blocks, and this process can
be repeated until we remain with1 block with |W|ρ|| elements
after |ρ| − 1 block merges. It is clear that this last block gives
rise to |W|ρ|| free variables. If we sum up the total number of
free variables we get

|W|ρ|| +
|ρ|−1
∑

i=1

(|Wi| − 1) = n − (|ρ| − 1) = n + 1 − |ρ|.

All in all we see that the solution set is as described above (i.e.
each constrained variable is equal to one of the free variables),
so thatNn+1−|ρ| choices ofi1, ..., in satisfy (75), which shows
that Kρ,u = 1 when ρ is noncrossing. It is easy to see that,
whenρ has crossings, the procedure followed above will fail,
so that at least one of the constrained variables is not equalto
a free variable. But thenKρ,u < 1 for suchρ, which proves
the theorem.

We remark that it is the form (76) which will be used
in the other appendices to computeKρ,u for certain lower

orderρ. From the proof, we see that whenρ is noncrossing,
there exists a partition of{1, ..., n} into n + 1 − |ρ| blocks,
where two elements are defined to be in the same block if and
only if their corresponding variables are equal. It is obvious
from the construction above that this partition is the Kreweras
complementK(ρ) of ρ. This fact is used elsewhere in this
paper.

We will also briefly explain why the computations in
this appendix are also useful for generalized Vandermonde
matrices with uniform phase distribution. For (3), the number
of solutionsi1, ..., ik to (75) needs to be multiplied by

NpfN
(i1) · · ·NpfN

(ik),

since eachij now may occurNpfN
(ij) times. This means that

Kρ,ω,f can be computed as the ingegrals in this appendix, but
that we also need to multiply with the densitypf for each
variable. The computations of these new integrals become
rather involved whenf is not uniform, and are therefore
dropped.

APPENDIX C
THE PROOF FORPROPOSITION2

We will in the following compute the volume of the solution
set of (76), as a volume in[0, 1]n+1−|ρ| ⊂ R

n+1−|ρ|, as
explained in the proof of Proposition 1. These integrals are
very tedious to compute, and many of the details are skipped.
The formula

r!s!

(r + s + 1)!
=

∫ 1

0

xr(1 − x)sdx

can be used to simplify some of the calculations for higher
values ofn.

A. Computation ofK{{1,3},{2,4}},u

This is equivalent to finding the volume of the solution set
of

x1 + x3 = x2 + x4

in R
3. Since this means that

x4 = x1 + x3 − x2 lies between0 and1,

we can set up the following integral bounds: Whenx1 +x3 ≤
1, we must have that0 ≤ x2 ≤ x1 + x3, so that we get the
contribution

∫ 1

0

∫ 1−x1

0

∫ x1+x3

0

dx2dx3dx1,

which computes to13 . When1 ≤ x1 + x3, we must have that
x1 + x3 − 1 ≤ x2 ≤ 1, so that we get the contribution

∫ 1

0

∫ 1

1−x1

∫ 1

x1+x3−1

dx2dx3dx1,

which also computes to13 . Adding the contributions together
we get 2

3 , which is the stated value forK{{1,3},{2,4}},u.
It turns out that when the blocks ofρ are cyclic shifts of each

other, the computation ofKρ,u can be simplified. Examples
of suchρ are {{1, 3}, {2, 4}} (for which we just computed
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Kρ,u), {{1, 3, 5}, {2, 4, 6}}, and {{1, 4}, {2, 5}, {3, 6}}. We
will in the following describe this simplified computation.Let
a
(m)
l (x) be the polynomial which gives the volume inRm−1

of the solutions set tox1 + · · · + xm = x (constrained to
0 ≤ xi ≤ 1) for l ≤ x ≤ l +1. It is clear that these satisfy the
integral equations

a
(m+1)
l (x) =

∫ l

x−1

a
(m)
l−1(t)dt +

∫ x

l

a
(m)
l (t)dt, (77)

which can be used to compute theam
l (x) recursively. Note

first thata(1)
0 (x) = 1. For m = 2 we have

a
(2)
0 (x) =

∫ x

0

a
(1)
0 (t)dt = x

a
(2)
1 (x) =

∫ 1

x−1

a
(1)
0 (t)dt = 2 − x.

For m = 3 we have

a
(3)
0 (x) =

∫ x

0

a
(2)
0 (t)dt =

1

2
x2

a
(3)
1 (x) =

∫ 1

x−1

a
(2)
0 (t)dt +

∫ x

1

a
(2)
1 (t)dt

= 1 − 1

2
(x − 1)2 − 1

2
(2 − x)2

a
(3)
2 (x) =

∫ 2

x−1

a
(2)
1 (t)dt =

1

2
(3 − x)2.

By integrating thea(2)
0 (x), we can double-check our compu-

tation of K{{1,3},{2,4}},u above:

∫ 1

0

(a
(2)
0 )2(t)dt +

∫ 2

1

(a
(2)
1 )2(t)dt =

2

3
.

B. Computation ofK{{1,3,5},{2,4,6}},u

For m = 3, integration gives

∫ 1

0

(a
(3)
0 )2(t)dt +

∫ 2

1

(a
(3)
1 )2(t)dt +

∫ 3

2

(a
(3)
2 )2(t)dt,

which computes to11
20 . This is the stated expression for

K{{1,3,5},{2,4,6}},u.

C. Computation ofK{{1,4},{2,5},{3,6}},u

This is equivalent to finding the volume of the solution set
of

x1 + x4 = x2 + x5 = x3 + x6

in R
4, which is computed as

∫ 1

0

(a
(2)
0 )3(t)dt +

∫ 2

1

(a
(2)
1 )3(t)dt,

which computes to1
2 . This is the stated expression for

K{{1,4},{2,5},{3,6}},u.

D. Computation ofK{{1,4},{2,6},{3,5}},u

This is equivalent to finding the volume of the solution set
of

x1 + x4 = x2 + x5

x2 + x6 = x3 + x1

in R
4. Since this means that

x5 = x1 − x2 + x4 lies between0 and1,

x6 = x1 − x2 + x3 lies between0 and1,

we can set up the following integral bounds:
For x2 ≥ x1 we must havex2 − x1 ≤ x3, x4 ≤ 1, so that

we get the contribution
∫ 1

0

∫ 1

x1

∫ 1

x2−x1

∫ 1

x2−x1

dx4dx3dx2dx1,

which computes to1
4 . It is clear that forx1 ≥ x2 we get

the same result by symmetry, so that the total contribution is
1
4 + 1

4 = 1
2 , which proves the claim.

E. Computation ofK{{1,5},{3,7},{2,4,6}},u

This is equivalent to finding the volume of the solution set
of

x1 + x5 = x2 + x6

x3 + x7 = x4 + x1

in R
5, or

x6 = x5 + x1 − x2 lies between0 and1,
x7 = x4 + x1 − x3 lies between0 and1 .

(78)

This can be split into the following volumes:
1) x1 ≤ x2 ≤ x3,
2) x1 ≤ x3 ≤ x2,
3) x3 ≤ x2 ≤ x1,
4) x2 ≤ x3 ≤ x1,
5) x2 ≤ x1 ≤ x3,
6) x3 ≤ x1 ≤ x2.

Each of these volumes can be computed by setting up an
integral with corresponding bounds. Computing these integras,
we get the values115 , 1

15 , 1
15 , 1

15 , 11
120 , 11

120 , respectively. Adding
these contributions together, we get

4

15
+

11

60
=

27

60
=

9

20
,

which proves the claim.

F. The computation ofK{{1,6},{2,4},{3,5,7}},u

This is equivalent to finding the volume of the solution set
of

x1 + x6 = x2 + x7

x2 + x4 = x3 + x5

in R
5, or

x6 = x7 + x2 − x1 lies between0 and1,

x5 = x4 + x2 − x3 lies between0 and1, .

This can be obtained from (78) by a permutation of the
variables, so the contribution fromK{{1,6},{2,4},{3,5,7}},u must
also be 9

20 , which proves the claim.
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APPENDIX D
THE PROOF FORPROPOSITION3

We will have use for the following result, taken from [29]:
Lemma 1:The number of noncrossing partitions inNC(n)

with r1 blocks of length1, r2 blocks of length2 and so on
(so thatr1 + 2r2 + 3r3 + · · ·nrn = n) is

n!

r1!r2! · · · rn!(n + 1 − r1 − r2 · · · rn)!
.

Using this and a similar formula for the number of par-
titions with prescribed block sizes, we obtain cardinalities
for noncrossing partitions and the set of all partitions with
a given block structure. These numbers are the used in the
following calculations. For the proof of Proposition 3, we need
to compute (68) for all possible block cardinalities(r1, ..., rk),
and insert these in (70)-(74). The formulas for the three first
moments are obvious, since all partitions of length≤ 3 are
noncrossing. For the remaining computations, the following
two observations save a lot of work:

• If ρ1 ∈ P(n1), ρ2 ∈ P(n2) with n1 < n2, andρ1 can
be otained fromρ2 by omitting elementsk in {1, ..., n2}
such thatk and k + 1 are in the same block, then we
must have thatKρ1,u = Kρ2,u. This is straightforward
to prove since it follows from the proof of Proposition 1
that ik+1 can be chosen arbitrarily between0 andN − 1
in such a case.

• Kρ1,u = Kρ2,u if the set of equations (76) forρ1 can be
obtained by a permutation of the variables in the set of
equations forρ2. Since the rank of the matrix for (76)
equals the number of equations−1, we actually need
only have that|ρ1| − 1 of the |ρ1| equations can be
obtained from permutation of|ρ2| − | equations of the
|ρ2| equations in the equation system forρ2

A. The moment of fourth order

The result is here obvious except for the case for the three
partitions with block cardinalities(2, 2) (for all other block
cardinalities, all partitions are noncrossing, so thatKr1,r2,...,rk

is simply the number of noncrossing partitions with block
cardinalities(r1, ..., rk). this number can be computed from
Lemma 1). Two of the partitions with blocks of cardinality
(2, 2) are noncrossing, the third one is not. We see from
Proposition 2 that the total contribution is

K2,2 = 2 + K{{1,3},{2,4}},u

= 2 + 2
3 = 8

3 .

The formula for the fourth moment follows.

B. The moment of fifth order

Here two cases require extra attention:
1) ρ = {W1, W2} with |W1| = 3, |W2| = 2: There are10

such partitions, and5 of them have crossings and constribute
with K{{1,3},{2,4}},u. The total contribution is therefore

5 + 5 × K{{1,3},{2,4}},u

= 5 + 5 × 2
3 = 25

3 .

2) ρ = {W1, W2, W3} with |W1| = |W2| = 2, |W3| = 1:
There are15 such partitions, of which5 have crossings. The
total contribution is therefore

10 + 5 × K{{1,3},{2,4}},u

= 10 + 5 × 2
3 = 40

3 .

The computations for the sixth and seventh order moments
are similar, but the details are skipped. These are more tedious
in the sense that one has to count the number of partitions with
a given block structure, and identify each partition with one
of the coefficients listed in Proposition 2.

APPENDIX E
THE PROOF OFTHEOREM 2

In order to get the exact expressions in Theorem 2, we now
need to keep track of theKρ,u,N defined by (9), not only the
limits Kρ,u (if we had not assumedω = u, the calculations
for Kρ,ω,N would be much more cumbersome). Whenρ is
a partition of{1, ..., n} and n ≤ 4, we have thatKρ,u,N =
Kρ,u = 1 whenρ 6= {{1, 3}, {2, 4}}. We also have that

K{{1,3},{2,4}},u,N =
2

3
+

1

N
+

1

6N2
, (79)

where we have used that
∑N

i=1 i2 = N
3 (N + 1)(N + 1

2 ) [36].
We also need the exact expression for the quantity

Tρ =
∑

(j1,...,jn)

giving rise toρ

L−|ρ|
D1(N)(j1, j1)×· · ·×Dn(N)(jn, jn)

from (64) (i.e. we can not add (65) to obtain the approximation
(66) here). SettingD(N,L)

n = trL (Dn(N)), and D
(N,L)
ρ =

∏k
i=1 D

(N,L)
Wi

, we see that

Tρ = D(N,L)
ρ −

∑

ρ′>ρ

L|ρ′|−|ρ|Tρ′ , (80)
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which can be used recursively to express theTρ in terms of
the D

(N,L)
ρ . We obtain the following formulas forn = 4:

T{{1,2,3,4}} = D
(N,L)
4 (81)

T{{1,2,3},{4}} = D
(N,L)
3 D

(N,L)
1 − L−1D

(N,L)
4 (82)

T{{1,2},{3,4}} = (D
(N,L)
2 )2 − L−1D

(N,L)
4 (83)

T{{1,2},{3},{4}} = D
(N,L)
2 (D

(N,L)
1 )2

−2L−1(D
(N,L)
3 D

(N,L)
1

−L−1D
(N,L)
4 )

−L−1
(

(D
(N,L)
2 )2 − L−1D

(N,L)
4

)

−L−2D
(N,L)
4

= D
(N,L)
2 (D

(N,L)
1 )2

−L−1(D
(N,L)
2 )2

−2L−1D
(N,L)
3 D

(N,L)
1

+2L−2D
(N,L)
4 (84)

T{{1},{2},{3},{4}} = (D
(N,L)
1 )4

−6L−1(D
(N,L)
2 (D

(N,L)
1 )2

−L−1(D
(N,L)
2 )2

−2L−1D
(N,L)
3 D

(N,L)
1

+2L−2D
(N,L)
4 )

−3L−2(D
(N,L)
2 )2

+3L−3D
(N,L)
4

−4L−2D
(N,L)
3 D

(N,L)
1

+4L−3D
(N,L)
4

−L−3D
(N,L)
4

= −6L−3D
(N,L)
4

+L−2(8D
(N,L)
3 D

(N,L)
1

+3(D
(N,L)
2 )2)

−6L−1D
(N,L)
2 (D

(N,L)
1 )2 +

(D
(N,L)
1 )4. (85)

For n = 3 andn = 2 the formulas are

T{{1,2,3}} = D
(N,L)
3 (86)

T{{1,2},{3}} = D
(N,L)
1 D

(N,L)
2 − L−1D

(N,L)
3 (87)

T{{1},{2},{3}} = (D
(N,L)
1 )3 − 3L−1D

(N,L)
1 D

(N,L)
2

+2L−2D
(N,L)
3 (88)

T{{1,2}} = D
(N,L)
2 (89)

T{{1},{2}} = (D
(N,L)
1 )2 − L−1D

(N,L)
2 . (90)

It is clear that (81)-(85) and (86)-(90) cover all possibilities
when it comes to partition block sizes. Using (12)-(13), and
putting (79), (81)-(85), and (86)-(90) into (64) we get the
expressions in Theorem 2 after some calculations.

A. First order approximations to Theorem 2

If we are only interested in first order approximations rather
than exact expressions, (80) gives us

Tρ ≈ Dρ −
∑

ρ′>ρ

|ρ|−|ρ′|=1

L−1Dρ′ ,

which is easier to compute. Also, we need only first order
approximations toKρ,u,N , which is much easier to compute
than the exact expression. For (79), this is

K{{1,3},{2,4}},u,N ≈ 2

3
+

1

N
,

Inserting these two approximations in (64) gives a first order
approximation of the moments.

APPENDIX F
THE PROOF OFPROPOSITION4

We only state the proof for the casec = 1. In [31] it is stated
that the asymptotic moment2n (m2n) of certain Hankel and
Toeplitz matrices can be expressed in terms of the quantities

m2n =
∑

ρ ∈ P(2n)
ρ has two elements in each block

Kρ,u (91)

In the language of [31], the formula is not stated exactly
like this, but rather in terms of volumes of solution sets of
equations of the form (76). This translates to (91), since wein
Appendix B interpretedKρ,u as such volumes. In Proposition
A.1 in [31], unbounded support was proved by showing that
(m2n)1/n → ∞. Again denoting the asymptotic moments of
Vandermonde matrices with uniform phase distribution byVn,
we have thatm2n ≤ V2n, since we sum over a greater class
of partitions than in (91) when computing the Vandermonde
moments. This means that(V2n)1/n → ∞ also, so that the
asymptotic mean eigenvalue distribution of the Vandermonde
matrices have unbounded support also.

APPENDIX G
THE PROOF OFTHEOREM 3

We will use the fact that

Kρ,u,N = 1
(2π)|ρ|Nn+1−|ρ|×
∫

(0,2π)|ρ|

∏n
k=1

1−e
jN(xb(k−1)−xb(k))

1−e
j(xb(k−1)−xb(k))

dx1 · · · dx|ρ|,

(92)

where integration is w.r.t. Lebesgue measure.
For ρ = 1n Theorem 3 is trivial. We will thus assume that

ρ 6= 1n in the following. We first prove thatlimN→∞ Kρ,ω,N

exists wheneverpω is continuous. To simplify notation, define

F (ω) =

n
∏

k=1

1 − ejN(ωb(k−1)−ωb(k))

1 − ej(ωb(k−1)−ωb(k))

=

n
∏

k=1

sin
(

N(ωb(k−1) − ωb(k))/2
)

sin
(

(ωb(k−1) − ωb(k))/2
) ,
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and setω = (ω1, ..., ω|ρ|) anddω = dω1 · · ·dω|ρ|. Sinceω is
continuous, there exists apmax such thatpω(ωi) ≤ pmax for
all ωi. Then we have that

|Kρ,ω,N | ≤ p|ρ|
max

Nm+1−|ρ|

×
∫

[0,2π)|ρ|

∏n
k=1

∣

∣

∣

∣

sin(N(xb(k−1)−xb(k))/2)
sin((xb(k)−xb(k+1))/2)

∣

∣

∣

∣

dx,

where we have converted to Lebesgue measure, and where we
have also writtendx = dx1 · · · dx|ρ|. Consider first the set

U = {ω||xb(k−1) − xb(k)| ≤ π∀k}.
When 2π

N ≤ |ωb(k−1) − ωb(k)| ≤ π, it is clear that
∣

∣

∣

∣

∣

sin
(

N(xb(k−1) − xb(k))/2
)

sin
(

(xb(k−1) − xb(k))/2
)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

4

xb(k−1) − xb(k)

∣

∣

∣

∣

, (93)

since
∣

∣sin
(

N(xb(k−1) − xb(k))/2
)∣

∣ ≤ 1, and since| sin(x)| ≥
|x2 | when|x| ≤ π

2 . When|xb(k−1) −xb(k)| ≤ 2π
N we have that

∣

∣

∣

∣

∣

sin
(

N(xb(k−1) − xb(k))/2
)

sin
(

(xb(k−1) − xb(k))/2
)

∣

∣

∣

∣

∣

≤ N. (94)

Let k1, ..., k|ρ| ∈ Z, and assume thatk|ρ| = 0. By using the
triangle inequality, it is clear that on the set

Dk1,...,k|ρ|−1
= {ω|

∣

∣

∣

∣

xi −
2kiπ

N

∣

∣

∣

∣

≤ π

N
∀1 ≤ i ≤ |ρ|},

when |kr − ks| ≥ 2 for all r, s, the i’th factor in F (x) is
bounded by 4N

(|kb(r−1)−kb(r)|−1)π
due to (93). Also, when|kr−

ks| < 2 for somer, s, the corresponding factors inF (x) are
bounded byN on Dk1,...,k|ρ|

due to (94). Note also that the
volume of Dk1,...,k|ρ|−1

is (2π)|ρ|−1N1−|ρ|. By adding some
more terms (to compensate for the different behaviour for|kr−
ks| ≥ 2 and|kr−ks| < 2), we have that we can find a constant
D that

1
Nn+1−|ρ|

∫

U |F (x)|dx
≤ 1

Nn+1−|ρ| N
n

×∑0≤k1,...,k|ρ|−1<N

all ki different

(

∏n
r=1

D
|kb(r−1)−kb(r)|

)

2π(2π)|ρ|−1N1−|ρ|

= (2π)|ρ|Dn
∑

0≤k1,...,k|ρ|−1<N

all ki different

∏n
r=1

1
|kb(r−1)−kb(r)| ,

(95)
where we have integrated w.r.t.x|ρ| also (i.e. kρ| is kept
constant in (95)). A similar analysis as forU applies for the
complement set

V = {ω|π ≤ |xb(k−1) − xb(k)| ≤ 2π for somek},
so that we can find a constantC such that

1
Nn+1−|ρ|

∫

[0,2π)|ρ| |F (x)|dx

≤ C
∑

0≤k1,...,k|ρ|−1<N

all ki different

∏n
r=1

1
|kb(r−1)−kb(r)| ,

(96)

It is clear this sum converges: First of all, this is only needed
to prove forρ = 0n, since the summands forρ 6= 0n is only
a subset of the summands forρ = 0n.

Secondly, forρ = 0n, (96) can be bounded by considering
convolutions of the following function with itself:

f(x) =

{ 1
|x| for |x| > 1

0 for |x| ≤ 1
(97)

The assumption thatf(x) = 0 in a neighbourhood of zero is
due to the fact that theki are all different. Note that|f(x)| ≤

1
|x|1−ǫ for any 0 < ǫ < 1. Also, then − 2-fold convolution
(we wait with then − 1’th convolution till the end) of 1

|x|1−ǫ

with itself exist outside0 whenever0 < (n − 2)ǫ < 1, and is
on the formr 1

|x|1−(n−2)ǫ for some constantr [36]. Therefore,
(96) is bounded by
∫

|x|>1

r
1

|x|1−(n−2)ǫ

1

|x|dx =

∫

|x|>1

r
1

|x|2−(n−2)ǫ
dx

=
2r

(n − 2)ǫ − 1
.

This proves that the entire sum (96) is bounded, and thus
also the statement on the existence of the limitK(ρ, ω) in
Theorem 3 when the density is continuous.

For the rest of the proof of Theorem 3 , we first record the
following result:

Lemma 2:For anyǫ > 0,

lim
N→∞

1

Nn+1−|ρ|

∫

Bǫ,r

F (ω)dω = 0, (98)

where

Bǫ,r = {(ω1, ..., ω|ρ|)||ωb(r−1) − ωb(r)| > ǫ}.

Proof: The setBǫ,r corresponds to thosek1, ..., k|ρ| in (96)
for which |kb(r−1) − kb(r)| > N

2π ǫ. Thus, for largeN , we sum
overk1, ..., k|ρ| in (96) for which|kb(r−1)−kb(r)| is arbitrarily
large. By the convergence of the Fourier integral of1

|x| , it is
clear that this converges to zero.

Define

Bǫ = {(ω1, ..., ω|ρ|)||ωi − ωj| > ǫ for somei, j}.

If ω ∈ Bǫ, there must exist anr so that|ωb(r−1)−ωb(r)| > 2ǫ
n ,

so thatω ∈ Br,2ǫ/n. This means that

Bǫ ⊂ ∪rBr,2ǫ/n,

so that by Lemma 2 also

lim
N→∞

1

Nn+1−|ρ|

∫

Bǫ

F (ω)dω = 0.

This means that in the integral forKρ,ω,N , we need only
integrate over theω which are arbitrarily close to the diagonal,
(whereω1 = · · · = ω|ρ|). We thus have

Kρ,ω = limN→∞
1

Nn+1−|ρ|

∫

[0,2π)|ρ| F (x)
∏|ρ|

r=1 pω(xr)dx

= limN→∞
1

Nn+1−|ρ|

∫

[0,2π)|ρ| F (x)pω(x|ρ|)
|ρ|dx

= limN→∞
1

Nn+1−|ρ|

∫ 2π

0 pω(x|ρ|)
|ρ|

(

∫

[0,2π)|ρ|−1 F (x)dx1 · · · dx|ρ|−1

)

dx|ρ|.

We used here the fact that the density is continuous. Using
that

limN→∞
1

Nn+1−|ρ|

∫

[0,2π)|ρ|−1 F (x)dx1 · · · dx|ρ|−1

= (2π)|ρ|−1Kρ,u
(99)

whenx|ρ| is kept fixed at an arbitrary value (this is straightfor-
ward by using the methods from the proof of Proposition 1 and
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(92)), and again using the fact that the density is continuous,
we get that the above equals

Kρ,u(2π)|ρ|−1

∫ 2π

0

pω(x|ρ|)
|ρ|dx|ρ|,

which is what we had to show.

APPENDIX H
THE PROOF OFPROPOSITION5

Proposition 5 will follow directly if we can prove the
following result:

Lemma 3:Let ωk (1 ≤ k ≤ n) be the uniform distribution
on [2π(k−1)

n , 2πk
n ] and defineωλ1,...,λn

(0 ≤ λi ≤ 1, λ1 + · · ·+
λn = 1) as the phase distribution with densitypωλ1,...,λn

=
λ1pω1 + · · · + λnpωn

. Then

Kρ,ω 1
n

,..., 1
n

≤ Kρ,ωλ1,...,λn
.

Proof: This follows immediately by noting that

Kρ,ωλ1,...,λn

= Kρ,u(2π)|ρ|−1

(∫ 2π

0

pωλ1,...,λn
(x)|ρ|dx

)

= Kρ,u(2π)|ρ|−1

×
∫ 2π

0

(λ1pω1(x) + · · · + λnpωn
(x))|ρ|dx

= Kρ,u(2π)|ρ|−1 ×

((λ1)
|ρ|
∫ 2π

0

pω1(x)|ρ|dx + · · ·

+(λn)|ρ|
∫ 2π

0

pωn
(x)|ρ|dx)

= Kρ,u(2π)|ρ|−1 ×

((λ1)
|ρ|
∫ 2π

0

pω1(x)|ρ|dx + · · ·

+(λn)|ρ|
∫ 2π

0

pω1(x)|ρ|dx)

= Kρ,u(2π)|ρ|−1
(

(λ1)
|ρ| + · · · + (λn)|ρ|

)

×
∫ 2π

0

pω1(x)dx

≥ Kρ,u(2π)|ρ|−1

(

(

1

n

)|ρ|
+ · · · +

(

1

n

)|ρ|)

×
∫ 2π

0

pω1(x)|ρ|dx

= Kρ,ω 1
n

,..., 1
n

,

where we have used thatx
|ρ|
1 + · · ·x|ρ|

n constrained tox1 +
· · · + xn = 1 achieves its minimum forx1 = · · · = xn = 1

n .

APPENDIX I
THE PROOF OFTHEOREM 4

The contribution in the integralKρ,ω,N comes only from
when the ωi coincide with the atoms ofp. Actually, we

evaluate1−ejNω

1−ejω in points on the formω = αi − αj . This
evaluates toNnpn

i when allωi are chosen equal to the same
atomαj . SincelimN→∞

1−ejNω

N(1−ejω) = 0 for any fixedω 6= 0,
limN→∞ Kρ,ω,NN−n = 0 when ω is chosen from nonequal
atoms. (57) (with additional1/N -factors) thus becomes

∑

ρ∈P(n)
∑

(j1 ,...,jn)

giving rise toρ
∑

(i1,...,in)

N |ρ|−2n−1c|ρ|−1L−|ρ|

(
∑

i Nnpn
i + aρ,NNn))

D1(N)(j1, j1)D2(N)(j2, j2)
· · · × Dn(N)(jn, jn),

(100)

wherelimN→∞ aρ,N = 0. Multiplying both sides withN and
letting N go to infinity gives

lim
N→∞

∑

ρ∈P(n)

N |ρ|−nc|ρ|−1

(

∑

i

pn
i + aρ,N

)

Dρ.

It is clear that this converges to0 whenρ 6= 0n (since|ρ| < n
in this case), so that the limit is

cn−1

(

∑

i

pn
i

)

α0n
= cn−1p(n) lim

N→∞

n
∏

i=1

trL (Di(N)) ,

which proves the claim

APPENDIX J
THE PROOF OFTHEOREM 5

We need the following identity [36]:
∫ ∞

0

x−sejnxdx =
Γ(1 − s)

|n|1−s
e

jsgn(n)(1−s)π
2 ,

wheresgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0, and0
otherwise. From this it follows that

∫∞
−∞ pi|x − αi|−sejnxdx =

2pie
jnαi

Γ(1−s)
|n|1−s cos

(

(1−s)π
2

)

.
(101)

Note that the measure with densityp, has the same asymptotics
nearαi as the measure with densitypi|x − αi|−s on

(

−
(

1 − s

2pi

)
1

1−s

,

(

1 − s

2pi

)
1

1−s

)

.

As in the proof in Appendix I, the integral for the expansion
coefficients is dominated by the behaviour near the points
(αi, ..., αi). To see this, note that the behaviour near the
singular points on the diagonal isO (s(|ρ| − n) − 1) when
polynomic growth of orders of the density near the singular
points is assumed. This is very much related to (96) in
Appendix G, sinceKρ,ω here in a similar way can be bounded
by (taking into account new powers ofN )

C 1
Nn+ns+1−|ρ| N

nN−|ρ|N |ρ|s

×∑ 0≤k1,...,k|ρ|<N

all ki different

∏n
r=1

1
|kb(r−1)−kb(r)|

∏|ρ|
t=1 k−s

t . (102)

In (102), theNn-factor appears in exactly the same way as
in the proof of Theorem 3 in Appendix G,N−|ρ| appears as
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a volume inR
|ρ|, and N |ρ|s comes from evaluation of the

density in the pointsxi = 2kiπ
N , 1 ≤ i ≤ |ρ|). Since 1

|x|s has a
bounded integral around0, and since the sum still converges
(it is dominated by (96)), (102) is

O (s(|ρ| − n) − 1) .

This has it’s highest order when|ρ| = n, so that we can restrict
to looking at0n. Note also that we may just as well assume
that pω(x) is identical topi|x − ωi|−s at an interval around
ωi, sincelimx→αi

|x − αi|spω(x) = pi implies that

pω(x) = pi|x − ωi|−s + k(x)|x − ωi|−s (103)

wherelimx→ωi
k(x) = 0. It is straightforward to see that the

contribution of the second part in (103) to (102) vanishes as
N → ∞, so that we may just as well assume thatpω(x) is
identical topi|x−ωi|−s at an interval aroundωi, as claimed.
Also, since

lim
n→∞

∫

|x|>ǫ

x−sejnxdx = 0

for all ǫ > 0, and since the contributions from largen dominate
in (104) below (since

∑

n |n|−s diverges), it is clear that we
can restrict to an interval aroundωi when computing the limit
also (sincepω is continuous outside the singularity points, this
follows from Theorem 3, and due to the additional1

Ns -factor
added to (1)). After restricting to0n, multiplying both sides
with N , summing over all singularity points, and using (101),
we obtain the approximation

∑

(i1,...,in)

∑

a

N−nscn−1

×
(

2paΓ(1 − s) cos

(

(1 − s)π

2

))n

×
n
∏

k=1

ej(ik−1−ik)αa

|ik−1 − ik|1−s

×trL(D1(N)) × · · · × trL(Dn(N)) (104)

to (57). Since
∏n

k=1 ej(ik−1−ik)αa = 1, we recognize

q(n,N) =
(

2Γ(1 − s) cos
(

(1−s)π
2

))n

(
∑

a pn
a)×

∑

(i1,...,in) N−ns
∏n

k=1
1

|ik−1−ik|1−s ,

as a factor in (104) such that the limit of (104) asN → ∞
can be written

cn−1 lim
N→∞

q(n,N) lim
N→∞

n
∏

i=1

trL (Di(N)) .

It therefore suffices to prove thatlimN→∞ q(n,N) = q(n). To
see this, write

N−s

|ik−1 − ik|1−s =
1

N

1
(

1
N

)1−s |ik−1 − ik|1−s

=
1

N

1
∣

∣

∣

ik−1

N − ik

N

∣

∣

∣

1−s .

Summing over all1 ≤ i1, ..., in ≤ N , it is clear from this that
q(n,N) can be viewed as a Riemann sum which converges to
q(n) asN → ∞.

APPENDIX K
THE PROOF OFTHEOREM 7 AND COROLLARY 1

Proof of Theorem 7: we defineSj to be the blocks ofσ,
i.e.

Sj = {k|ik = j}.

Note that Theorem 3 guarantees that the limitKρ,ω =
limN→∞ Kρ,ω,N exists. The partitionρ simply is a grouping
of random variables into independent groups. It is therefore
impossible for a block inρ to contain elements from bothS1

andS2, so that any block is contained in eitherS1 or S2. As
a consequence,ρ ≤ σ.

Until now, we have not treated mixed moments of the form

D1(N)Vi2V
H
i2 D2(N)Vi3V

H
i3 · · · × Dn(N)Vi1V

H
i1 ,

which are the same as the mixed moments of Theorem 7
except for the position of theDi(N). We will not go into
depths on this, but only remark that this case can be treated
in the same vein as generalized Vandermonde matrices by
replacing the densitypf (or pλ in case of continuous gener-
alized Vandermonde matrices) with functionspDi

(x) defined
by pDi

(x) = Di(N)(⌊Lx⌋, ⌊Lx⌋) for 0 ≤ x ≤ 1. This also
covers the case of mixed moments of independent, generalized
Vandermonde matrices (and, in fact, there are no restrictions
on the horizontal and vertical phase densitiespωi

andpλj
for

each matrix. They may all be different). The proof for this is
straightforward.

Proof of Corollary 1: this follows in the same way as
Proposition 3 is proved from Proposition 2, by only consid-
ering ρ which are less thanσ, and also by using Theorem 3.
σ are for the listed moments{{1}, {2}}, {{1, 3}, {2, 4}}, and
{{1, 3, 5}, {2, 4, 6}}, respectively.

APPENDIX L
THE PROOFS OFPROPOSITION6 AND 7

The momentsE
[

trn

(

W
i
)]

will be related to the moments
Pi through three convolution stages:

1) relating the moments ofW with the moments of

Γ = VP
1
2

(

1

K
SS

H

)

P
1
2 V

H , (105)

from which we easily get the moments of

S̃ =

(

1

K
SS

H

)

P
1
2 V

H
VP

1
2 , (106)

2) relating the moments ofS with the moments of

T = PV
H

V, (107)

3) relating the moments ofT with the moments ofP.
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For the first stage, the moments of̂W andΓ relate through
the formulas

E [trn (W)] = E [trN (Γ)] + σ2 (108)

E
[

trn

(

W
2
)]

= E
[

trN

(

Γ
2
)]

+2σ2(1 + c1)E [trN (Γ)]

+σ4(1 + c1) (109)

E
[

trn

(

W
3
)]

= E
[

trN

(

Γ
3
)]

+3σ2(1 + c1)E
[

trN

(

Γ
2
)]

+3σ2c1E
[

(trN (Γ))2
]

+3σ4

(

c2
1 + 3c1 + 1 +

1

K2

)

E [trN (Γ)]

+σ6

(

c2
1 + 3c1 + 1 +

1

K2

)

, , (110)

which are obtained by replacingR in [32] by VP
1
2 S, with

c = c1 = N
K . For the second part of the first stage, note that

E
[

trN

(

Γ
k
)]

= c2E
[

trL

(

S̃
k
)]

(111)

E
[

(trN (Γ))
k
]

= ck
2E

[

(

trL

(

S̃

))k
]

, (112)

wherec2 = L
N . We can now apply Theorem 2 to obtain

c3E
[

trL

(

S̃

)]

= c3E [trL (T)] (113)

c3E
[

trL

(

S̃
2
)]

= c3E
[

trL

(

T
2
)]

+c2
3E
[

(trL (T))2
]

(114)

c3E
[

trL

(

S̃
3
)]

=
(

1 + K−2
)

c3E
[

trL

(

T
3
)]

+3c2
3E
[

(trLT) trL

(

T
2
)]

+c3
3E
[

(trL (T))
3
]

(115)

E

[

(

trL

(

S̃

))2
]

= E
[

(trL (T))
2
]

+
1

KL
E
[

trL

(

T
2
)]

, (116)

wherec3 = L
K , andT = PV

H
V. (108)-(110), (111)-(112),

and (113)-(116) can be combined to

E [trn (W)] = c2E [trL (T)] + σ2 (117)

E
[

trn

(

W
2
)]

= c2E
[

trL

(

T
2
)]

+ c2c3E
[

(trL (T))2
]

+2σ2(c2 + c3)E [trL (T)] + σ4(1 + c1)(118)

E
[

trn

(

W
3
)]

= c2

(

1 +
1

K2

)

E
[

trL

(

T
3
)]

+3c2c3E
[

(trL (T))
(

trL

(

T
2
))]

+c2c
2
3E
[

(trL (T))
3
]

+3σ2

(

(1 + c1)c2 +
c1c

2
2

KL

)

E
[

trL

(

T
2
)]

+3σ2c3(c3 + 2c2)E
[

(trL (T))
2
]

+3σ4

(

c2
1 + 3c1 + 1 +

1

K2

)

c2E [trL (T)]

+σ6

(

c2
1 + 3c1 + 1 +

1

K2

)

. (119)

Up to now, all formulas have provided exact expressions for
the expectations. For the next step, exact expressions for the
expectations are only known when the phase distributions are
uniform, in which case the formulas are given by Theorem 2:

c2E [trL (T)] = c2trL(P) (120)

c2E
[

trL

(

T
2
)]

=
(

1 − N−1
)

c2trL(P2)

+c2
2(trL(P))2 (121)

c2E
[

trL

(

T
3
)]

=
(

1 − 3N−1 + 2N−2
)

c2trL(P3)

+3
(

1 − N−1
)

c2
2trL(P)trL(P2)

+c3
2(trL(P))3 (122)

E
[

(trL (T))
2
]

= trL(P)2 (123)

E
[

(trL (T))
3
]

= trL(P)3 (124)

E
[

(trL (T))
(

trL

(

T
2
))]

=
(

1 − N−1
)

trL(P )trL(P2) + c2(trL(P))3.
(125)

If the phase distributionω is not uniform, Theorem 1 and
Theorem 3 gives the following approximation:

c2E [trL (T)] = c2trL(P) (126)

c2E
[

trL

(

T
2
)]

≈ c2trL(P2) + c2
2I2(trL(P))2 (127)

c2E
[

trL

(

T
3
)]

≈ c2trL(P3) + 3c2
2I2trL(P)trL(P2)

+c3
2I3(trL(P))3 (128)

E
[

(trL (T))
2
]

= (trLP)2 (129)

E
[

(trL (T))
3
]

= (trLP)3 (130)

E
[

(trL (T))
(

trL

(

T
2
))]

≈ trL(P)trL(P2) + c2I2(trL(P))3,
(131)

where the approximation isO(N−1), and whereIk is defined
by (47).

Proposition 7 is proved by combining (117)-(119) with
(120)-(125), while Proposition 6 is proved by combining
(117)-(119) with (126)-(131). Proposition 8 is proved by first
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observing that the roles ofL and N are interchanged, since
the Vandermonde matrix is replaced by its transpose. This
means that we obtain the formulas (117)-(119), withc1 and
c3 interchanged, andc2 replaced with 1

c2
. The matrixT is

now insteadVV
H , and these can be scaled to obtain the

moments ofVH
V. Finally the integralsIn or the angleα

can be estimated from these moments, using (126)-(131) with
the moments ofP replaced with1 (since no additional power
matrix is included in the model).

Matlab code for implementing the different steps here
(like (108)-(110), (113)-(116), and (120)-(125)) can be found
in [34].
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