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Abstract—Analytical methods for finding moments of random the following form
Vandermonde matrices with entries on the unit circle are

developed. Vandermonde Matrices play an important role in 1 S |

signal processing and wireless applications such as diréoh of 1 e—Jw1 cee eTdwr

arrival estimation, precoding or sparse sampling theory jwst V=_— ) ) ) Q)
to name a few. Within this framework, we extend classical VN :

(N1

freeness results on random matrices with i.i.d entries andtow e

that Vandermonde structured matrices can be treated in the
samde vein a/vith different tooIT. We dfocus %n various typeﬁ of  \We will consider the case whete, ..., are independent
Vandermonde matrices, namely Vandermonde matrices with or - : - :

without uniformly distributed phgse distributions, as well as gen- and identically random var!ables taking valugs pi]:l27r)
eralized Vandermonde matrices (with non-uniform distribution ~ Throughoutthe paper, the; will be calledphase distributions

of powers). In each case, we provide explicit expressions of Also, V will be used only to denote Vandermonde matrices
the moments of the associated Gram matrix, as well as more with a given phase distribution, and the dimensions of the
advanced models involving the Vandermonde matrix. Compar- \mndermonde matrices will always € x L. Such matrices

isons with classical i.i.d. random matrix theory are provided and . S .
free deconvolution results are also discussed. We review rae occur frequently in many applications, such as finance [3],

applications of the results to the fields of signal processqnand Signal array processing [7], [8], [9], [10], [11], ARMA

e—J(N=1)wr

wireless communications. processes [12], cognitive radio [4], security [6], wireles
Index Terms—Vandermonde matrices, Random Matrices, de- Com.mumcatlons.[l3]’ and biology [S], and h{_:lve_ be.en much
convolution, limiting eigenvalue distribution, MIMO. studied. The main results are related to the distributiothef

determinant of (1) [14]. The large majority of known resuts

the eigenvalues of the associated Gram matrix concern Gaus-
sian matrices [15] or matrices with independent entriesy Ve
few results are available in the literature on matrices whos

Vandermonde matrices have had for a long time a cent ucture is strongly related to the Vandermonde case [16_]'
position in signal processing due to their connections wi . For the Vandermonde case, the results depend heavily

other important matrices in the field such as the FFT [1] o the distribution of the entries, and do not give any hint

Hadamard [2] transforms to name a few. The matrices hagf? the asymptotic behaviour as the matrices become large. In

various applications in different fields [3], [4], [5], [6]The the realm of wireless channel modelling, [18] has provided

applied research has been somewhat tempered by the fact V?H(IR(? |n5|gr:jt on tth_e be?awour of_ft_he e|genv_3l1ue? of rz;mdon:
very few theoretical results were available. andermonde matrices for a Specliic case, without any forma

- . L roof. We prove here that the case is in fact more involved
A Vandermonde matrix with entries on the unit circle ha%an what was claimed.

) o i , In many applications)NV and L are quite large, and we may
This project is partially sponsored by the project BIONEWRIA).

This work was supported by Alcatel-Lucent within the Alddtacent Chair b_e mtere_Sted _'n itUdymg the casg Where_ both godtat a
on flexible radio at SUPELEC as well as the ANR project SESAME. given ratio, with &+ — c. Results in the literature say very

I. INTRODUCTION
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little on the asymptotic behaviour of (1) under this growtlwheref is called the power distribution, and is a function from
condition. The results, however, are well known for oth€p, 1) to [0,1). More general cases can also be considered, for
models. The factor\/—lﬁ, as well as the assumption that thénstance by replacing with a random variable,, i.e.

Vandermonde entries 7¢: lie on the unit circle, are included

—JiNA\jw —jNXjw
in (1) to ensure that the analysis will give limiting asymtto e—j‘m:wi o e_;m;wi
behaviour. Without this assumption, the problem at hand is v, _ e e @)
more involved, since the rows of the Vandermonde matrix VN | o ’
with the highest powers would dominate in the calculations e INANwL .. emiNANwL

of the moments for large matrices, and also grow faster to . o .
infinity than the\/—lﬁ factor in (1), making asymptotic analysisW'th the_ A; mutually mdependent and distributed &staking
difficult. In general, often the moments, not the moments Yglues in[0,1), and also independent from thg. General-
the determinants, are the quantities we seek. Results in fed Vandermonde matrices are important for applications t
literature say also very little on the moments of vandermmondinance [3]. The tools used for standard Vandermonde matrice
matrices, and also on the mixed moments of Vandermonifiethis paper will allow us to find the asymptotic behaviour of
matrices and matrices independent from them. This is fany generalized Vandermonde matrices.
contrast to Gaussian matrices, where exact expressiofs [19Vhile we provide the full computation of lower order
and their asymptotic behaviour [20] are known using th@oments, we also describe how the higher order moments
concept of freeness [20] which is central for describing tHedn be computed. Tedious evaluation of many integrals is
mixed moments. needed for this, but numerical methods can also be applied.
Remarkably, the results in this paper show that, asymﬁurprisingly, it turns out that the first three limit momen&n
totically, the moments of the Vandermonde matrices dfe expressed in terms of the Marchenko Pastur law [20], [24]
pend only on the raticc and the phase distributions, andror higher order moments this is not the case, although we

have explicit expressions. The derivation of the momen$ate an interesting inequality involving the Vandermoldé
is a useful basis for performing deconvolution. Deconvolinoments and the moments of the classical Poisson distibuti

tion for our purposes will mean retrieving the "moments&nd the Marchenko Pastur law, also known as the free Poisson
trp(D1(N))D), ..., trp (Dn(N))?), from the "mixed mo- distribution [20]. Note that the framework as well as the
ments” presented results are reminiscent of similar results aoimog
Eltro( Dy(N)VAVD,(N)VAV ii.d. randpm matrice; [25] which haV(_a shed light in the gasi
e X D (N)VAVY]. (2) of many important wireless communlcauon.problems s_uch as
CDMA [26], MIMO [27] or OFDM [28]. This contribution
In Section V we will see that this can be very useful imims to to the same.
many applications, since the retrieved moments can giieluse  The paper is organized as follows: Section Il states the
information about the system under study. Deconvolutiah hgnain results of the paper. It starts with a general result for
been handled in cases where the maWixn (2) is replaced the mixed moments of Vandermonde matrices and matrices
with a Gaussian matrix [21], [22], [19], [23]. Similarly fla-independent from them. We will differ between the case where
vored results will here be proved for Vandermonde matricege phase distribution in (1) are uniformly distributed on
Concerning the moments, it will be the asymptotic moments 2r), and the more general cases. Results for the uniform
of random matrices of the fori "'V which will be studied, phase distributions are stated next, and it turns out that on
where(.)# denotes hermitian transpose. We will also consid@gas nice expressions, for both the asymptotic moments, as
mixed moments of the fornDV*V, whereD is a square well as for the lower order moments. Next we consider the
diagonal matrix independent frolW. As will be seen, the more general case whenhas a continuous density, and show
way the phase distribution influences these moments canifiv the asymptotics can be described in terms of the case
split into several cases. Uniform phase distribution playswhen w is uniform. The case where the density ©f has
central role in that it minimizes the moments. When the phasggularities displays different asymptotic behaviourd as
distribution has a bounded density, a nice connection wiéh thandled separately. The section ends with results on gener-
moments for uniform phase distribution can be given. Wheflized Vandermonde matrices, and mixed moments of (more
the density of the phase distribution has singularitieshsas than one) independent Vandermonde matrices. Section IV
point masses, it turns out that the asymptotics of the masnegiscusses our results and puts them in a general decororoluti
change drastically. perspective, comparing with other deconvolution ressiteh
We will also extend our results to generalized Vandermonge those for Gaussian deconvolution. Section V presents som
matrices, i.e. matrices where the columns do not consist §jfnulations and useful applications showing the implmagi

uniformly distributed powers. They are of the form of the presented results in various applied fields, and dissi
e—iLNf(0)Jwn o e iLNF(O)Jwr the validity of the asymptotic claims in the finite regimersfi
) o= LN F(E) Jwn e emIINFA(E) s we apply the presented Vandermonde deconvolution frame-
V- _ work for wireless systems, where we estimate the number
VN T of paths, the transmissions powers of the users, the number

e IINF(TRD)wr .. o—iLNF(RE) Jwr of sources, and the wavelength. Next we apply the results
(3) on Vandermonde matrices to the very active field of sparse
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signal reconstruction. Interestingly, one can provide a-gewhenever this exists.
eral framework where only the sampling distribution matter A joint limit distribution of {D,(N)}i<,<, is always
asymptotically, and the sampling distribution can be estéd assumed in the presented results on mixed moments. A second

with the help of the presented results. type of mixed moments will also be considered, where several
independent Vandermonde matrices are used instead of the
Il. RANDOM MATRIX BACKGROUND ESSENTIALS diagonal matriced,(N). Note that whenD;(N) = --- =

In the following, upper (lower boldface) symbols will beP»(%V) = 1r, the M,, compute to the asymptotic moments of
used for matrices (column vectors) whereas lower symbdls wi'€ Vandermonde matrices themselves, defined by
represent scalar valueg,)” will denote transpose operator, Vo = lim E [t ( VHV ")}

(.)* conjugation and.)¥ = ((.)7)" hermitian transposeL, I e el ( )]
will represent then x n identity matrix. We letT'r be the v, corresponds also to the limit moments of the empirical
(non-normalized) trace for square matrices, defined by,  eigenvalue distributiory,,,, defined by (5), i.e.

i=1 oo
wherea;; are the diagonal elements of thex n matrix A.  Similarly, whenD{(N) = --- = D, (N) = D(N), we will
We also letir,, be the normalized trace, defined by,(A) = also write
1Tr(A). D, = lim trp(D(N)").
Results in random matrix theory often refer to the empirical Nmoo
eigenvalue distribution of certain random matrices: Note that this is in conflict with the notatioR;, ... ;,, but the

Definition 1: With the empirical eigenvalue distribution ofn@me of the index will resolve such conflicts. .
an N x N hermitian random matriT’ we mean the (random) 10 better understand the presented expressions for mixed

function moments, the notions of classical and free cumulants will be
EY(\) = #ilhi < A} ) helpful. These are defined in terms of concepts from pantitio
N ’ theory. We denote b (n) the set of all partitions of1, ..., n},
where \; are the (random) eigenvalues Bt and usep as notation for a partition ifP(n). The set of

In the following, D,.(N),1 < r < n will denote determin- partitions will be equipped with the refinement ordey i.e.
istic diagonalL x L matrices, where we implicitly assume thap: < p2 if and only if any block ofp; is contained within

£ — ¢. We will assume that th®,.(N) have a joint limit a block of p,. Also, we will write p = {W7, ..., W}, where

distribution asN — oo in the following sense: W; will be used repeatedly to denote the blocksppaind let
Definition 2: We will say that the{D,.(N)},1<,<, have a |p| = k denote the number of blocks jin We denote by,
joint limit distribution asN — oo if the limit the partition withn blocks, and byl,, the partition with1
) block.
Diy, i = ngnoo try (Diy (N) -~ Dy, (N)) (6) Free cumulants are defined in terms of noncrossing parti-
tions.

exists for all choices ofiy,...,is € {1,..,n}. For p =

(Wi, .., Wi}, With Wi = {wir, ... wy 1, we also define Definition 4: A partition p is called noncrossing if when-

ever we have < j < k <l with ¢ ~ k, j ~ [ (~ meaning

Dw, = D,,,,.., g belonging to the same block), we also have j ~ k ~ [
& ’ (i.e.4, 4, k, 1 are all in the same block). The set of nhoncrossing
D, = HDWi' partitions of{1,,,.,n} is denotedVC(n).
Pl The noncrossing partitions have already shown their usefs!

Although the matricesD;(N) are assumed to be deterN €xpressing what is called the freeness relation [29] in a

S . articularly nice way.
ministic matrices throughout the paper, all presented fdas P y y

. Definition 5: Assume thatA,,..., A, are L x L-random
extend naturally to the case whEn () are random matrices :
) . . matrices. By the free cumulants &, ..., A,, we mean the
independent from the Vandermonde matrices. The dn‘ferenL(I:r(]ei ue set of multilinear functionals, (r > 1) which satisfy
when theD,(N) are random is that covariances of traces come d =

into play. D1} (2,31} Would for instance be EltrpAy--Ay] = Z KplAd, o Asl, (8)
NC(n)
lim E [tri, (D(V)) trr, (D(V)?)], re
Jim E [tr, (D(N)) try. (D(N))?)] here

which is the covariance of two traces whBX{ V') is centered
(Blm D(N)] = 0) and random. AplAs o Anl = R [Ar s Al A Al

Most theorems in this paper will present expressions fofw:[A1, ... An] = K, [Awy, s Ay, )
valrjlo?_s_r_mxeg- rélomen'_[s, geflned in the followmhg vI\{ay_: wherep = {Wi, ..., Wi}, with W; = {wi, .., wip, }-
efinition 3: By a mixed moment we mean the {imit By the classical cumulants oA,...,A,, we mean the
M, =limy_, Eltr,( D1(N)VEVDy(N)VHZV ) unique set of multilinear functionals which satisfy (8) it
- x DL (N)VEV))], NC(n) replaced by the noncrossing partitiofién).
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We have restricted our definition of cumulants to those of An important property for the Kreweras complement we
random matrices, although their definition as they appearwill use is that (p. 148 of [29])
Lecture 11 of [29] is in terms of more general probability

. . K = 1.

spaces. (8) is also called the (free or classical) moment- Pl + K (p)[ =+
cumulant formula. The importance of the free moment- I1l. STATEMENT OF MAIN THEOREMS
cumulant formula comes from the f_act that,_ had we replacedWe first state the main result of the paper, which applies to
Vandermonde matrices with Gaussian matrices, it could h%

us compute the quantities,,, .., [23]. For this, the cumu- y, e case when the expansion coefficidiits, exist. Differ-

lants of the Gau33|_an matrices are needed, which asympifl; yersions of it adapted to different Vandermonde madrice
cally have a very nice form. For Vandermonde matrices, it {Sill be stated in the succeeding sections

not known what a useful definition of cumulants would be. +haorem 1:Assume that thgD, (N)}1<,<, have a joint
However, from the calculations in Appendix A, it Will WU ;i gisribution asN — co. Assume also that all Vander-
out that the following quantities are useful in describimgit monde mixed moment expansion coefficiefts,, exist. Then
distributions of Vandermonde matrices. the limit i

Definition 6: Define M, = limy . Eltre( Di(N)VEVDy(N)VHV
<o x Dy (N)VEV))

ndermonde matrices with any phase distribution. It retstr

_ 1
Kpw,N = = ¥

n IN @p(k—1) ~“b(k)) (10)
Jo2myo Il 11_jej(wbl;:ili)—wbl;::)) (9) also exists whert — ¢, and equals
dwy -+ - dwy ), Z K,,c?=1D,. (11)
wherewyy1, ..., ww,, are ii.d. (indexed by the blocks of), PEP(n)

all with the same distribution as, and whereb(k) is the The prqof of The_orem 1 can be found ir_1 Appendix A. In
block of p which containsk (where notation is cyclic, i.e. the following, we will often make the substitutions

b(—1) = b(n)). If the limit m. = (cM), =c lim E {m ((D(N)Vﬂv)n)}lz)
K,,= J\}gnoo K,uwnN d, = (cD),= c]\}iinoo trr, (D™(N)), (13)

. . . Several of the following theorems will be stated in terms of
exists, then it is called ¥andermonde mixed moment eXPant o scaled moments.. .d.. rather thand.. D.. The reason
ny¥n n» n:

sion coefficient for this is that the dependency on the matrix aspect ratio

These quantities do not behave exactly as cumulants, Bl can be absorbed im.,, d,,, so that the result itself can
rather as weights which tell us how a partition in the momegt, expressed independently efand refer only tom,,, d
mn>s "

formula we present should be v_vmghted. In this respect %%he same usage of scaled moments has been applied for large
formulas for the moments are diferent from classical or fr‘Wishart matrices [23]

moment-cumulant formulas, since these do not perform thiSTypicaIIy

L - , the firsts moments can be expressed as:
weighting. The limitsK, ., may not always exist, and neces-

sary and sufficient conditions for their existence seem to be 1 = Kid (14)
hard to find. However, it is easy to prove from their definition my, = Kady + Ky 1d3 (15)
that they do not exist if the density af has singularities (for ms = Ksds+ Koqdod? + Ky 1 1d3 (16)

instance when the density is a sum of point masses). On the

_ 2 2
other side, Theorem 3 will show that they exist when the same "4~ Kady + K31dsdy + K3 2d3 + Ko 11dady +

density is continuous. Ki11.dy (17)
In the following sections, we will also encounter the com- ms = Ksds + Ky1dady + +K32d3ds +
plementation map of Kreweras (p. 147 of [29]), which is an Ks311d3d? + Ko d2dy + Ko 11 1dods +

order-reversing isomorphism @¥C(n) onto itself. To define K &

) . . o 1,1,1,1,107 - (18)
this we need the circular representation of a partition: We S
markn equidistant points, ..., » (numbered clockwise) onthe Theorem 1 explains how convolution with Vandermonde
circle, and form the convex hull of points lying in the saméatrices can be performed, and also provides us with an
block of the partition. This gives us a number of convex segéxtension of the concept of free convolution to Vandermonde
H;, equally many as there are blocks in the partition, whigatrices. It also gives us means for performing deconvauti
do not intersect if and only if the partition is noncrossiRgt Indeed, suppos®;(N) = --- = D,(N) = D(N), and that
namesl, ..., i on the midpoints of the, ..., n (so thati is the one knows all the moments/,,. One can then infer on the
midpoint of the segment fromto i + 1). The complement of momentsD,, by inspecting (11) for increasing values of
the setU,; H; is again a union of disjoint convex sef§;. For instance, the first two equations can also be written

Definition 7: The Kreweras complement of, denoted D M
K (p), is defined as the partition ofl, ..., 7} determined by e =

i~jin K(p) <= 1i,j belong to the same convex séf}. Dy, = T K.
2,
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which gives us the first momenits; andD,, sinceD;, = D;, Whenw = u, we have that
D02 = D%, andD12 = Ds.

m; = d1
me = ds+ d%
ms = ds+ 3dady +d>
8
_ o ms = dy+4dsds + -d3 + 6dadi + di
A. Uniformly distributedw 35
ms = ds+ 5dydy + gdgdz + 10d3d3 +
i i - 40
Next we dgnve and_a_nalyze the Vandermondg mixed mo 2 2d) +10dod? + &°
ment expansion coefficients for the case of uniform phase 3
distribution. It turns out that the noncrossing partitiquiay me = dg+ 6dsd; + 12dydy + 15dsd3 +
a central role for such matrices, but that the role is soméwha 151 , 3
different than the relation for freeness. We will letdenote 50 ¢a 1 50dsdady + 20dsdy +
the uniform distribution orj0, 27). 11d3 + 40d3d? + 15dod] + dS
Proposition 1: Assume that the{D,(N)}1<,<, have a my = dy+ Tdgdy + @d;)dQ + 21d5d? +
joint limit distribution as N — oo, Then the Vandermonde 197 3
mixed moment expansion coefficient 2—Od4d3 + 84dydad;y + 35dad; +
1057 693
dedl + dedg + 175d3d2d} +
K,,= lim K,, 2
pu = I e 35dsd} + T7d3dy + ?dgdif +

21dad; + df.
exists for allp. Moreover0 < K, ,, <1, theK,, are rational

numbers for alp, andK .., = 1 if and only if i noncrossing. Proposition 1 and Proposition 2 reduce the proof of Proposi-

tion 3 to a simple count of partitions. Proposition 3 is prive
The proof of Proposition 1 can be found in Appendix Bin Appendix D. To compute higher moment&,, , must be

we remark that the proof is similar to that given in the appe@omputed for partitions of higher order also. The compateti

dices of [16], where the mixed moment expansion coefficieperformed in Appendix C and D should convince the reader

are given an equivalent description. Due to Proposition that this can be done, but that it is very tedious.

Theorem 1 guarantees that the asymptotic mixed momentgo|iowing the proof of Proposition 1, we can also obtain for-

(10) exist wheng — ¢ for uniform phase distribution, and myas for the covariance of mixed moments of Vandermonde

are given by (11)K,, are in general hard to compute formatrices. We state two examples of this. First we have that
higher orderp with crossings. It turns out that the following

computations suffice to obtain tiefirst moments. limy oo E [tre, (D(N)VEV)™) (tr, (D(N)VEV))™]
Proposition 2: The following holds: = limy oo E [tr, (D(N)VHV)")] DT, (19)
which follows immediately by noting that
9 tr, (D(N)VHEV) = tr;D(N) — D, since VIV
Kiisy240bu = 3 has1 in all diagonal entries. Secondly, we have that
Ki(1.4).25). (36 ) = % climy_ oo E [Tr ((D(N)VHV)2) tr, ((D(N)VHv)z)}
1 = 2d3 + 4dad? + 4dsdy + dy.
Kipaeepse = 3 (20)
11 The proof for (20) is a bit more involved, and is therefore
Ki135),(246) 0 = 20 omitted. The proof relies on the same type of calculations as
% 9 those in Appendix C. Following the proof of Proposition 1
{155 {3.71{2.4.6 }bu - = 5 again, we can also obtain exact expressions for moments
K _ 9 of lower order random Vandermonde matrices with uniform
{L6h{24085,T e = 5 phase distribution, not only the limit. We state these owly f

the first four moments.
Theorem 2:AssumeD;(N) = Dy(N) = --- = D, (N),
The proof of Proposition 2 is given in Appendix C. ComSetc = % and define

bining Proposition 1 and Proposition 2 into this form, welwil N Henn
prove the following: mMP = B [“’L ((D(N)V V) )} (21)
(

Proposition 3: Assume thatD;(N) = --- = D,(N). dN-D) ctr, (D"(N)). (22)

n
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Whenw = u we have that not only uniform phase distribution, give Vandermonde imatr
(N.L)  4(N.L) ces with unbounded mean eigenvalue ditrsibutions in thie.lim
my = d Besides providing us with a deconvolution method for finding
m™ = (1= NN 4 (@) the mixed moments of théD,.(N)}1<,<,, Theorem 3 also
mgN,L) _ (1 3Nl 2N*2) déN,L) proyideg us with a way of inspecting thg phags distribution
L\ (L) AN (N.L)\3 by first finding the moments of the densny,_ i pw(x)’“q:c.
+3 (L= N"1)di" " d; +(dy ) However, note that we can not expect to find the density of
miN’L) _ (1 _ @N_l LN - XN*) dELN’L) itself, only the density of the density of. To see this, define

Qu(r) = p({zlpw < z})
+(4— 12N 4 8N2) g™ PN

] 19, (N.I)ra for 0 < z < oo, wherey is uniform measure on the unit
+ <§ — 5N~ + FN* > (dy ™) circle. Write alsog,,(x) as the corresponding density, so that

¢ (z) is the density of the density @f. Then it is clear that
+6 (1 _ N_l) déN,L)(dgN,L))Q + (dgNL)yL

27 0o

Theorem 2 is proved in Appendix E. Exact formulas for the / Po(@)ldr = / z"qu(z)dz. (24)
higher order moments also exist, but they become increlgsing 0 0
complex, as entries for higher order ters* also enter the These quantities correspond to the moments of the measure
picture. These formulas are also harder to prove for high&ith densityq,,, which can help us obtain the density itself.
order moments. In many cases, exact expressions are flewever, the density,, can not be obtained, since we see
what we need: first order approximations (i.e. expressiof¥t any reorganization of its values which do not change the
where only theL~!-terms are included) can suffice for manylensityq., will provide the same values in (24).
purposes. In Appendix E, we explain how the simpler case
of these first order approxi_m{;\tions can be computed. It Seems,, with density singularities
much harder to prove a similar result when the phase distri-

bution is not uniform. The asymptotics of Vandermonde matrices are different

The final result we address for the uniform phase distribl\ﬂv-hen th? density ofv has singular.ities, and_depends on
the density growth rates near the singular points. It will be

tion is the following:
Proposition 4: The asymptotic mean eigenvalue distripyclear from these results that one can not perform deconvo-

tion of a Vandermonde matrix with uniform phase distribntiolulgon for suchw to obltalr;]thef_hlgher order morlr;entsb OT th;z
has unbounded support. {D,(N)}1<r<n, as only their first moment can be obtained.

Proposition 4 is proved in Appendix F. T_he asy_njptotlcs are .fII‘St degcrlbed foiwith atomic den§|ty
singularities, as this is the simplest case to prove. Atiés, t
densities with polynomial growth rates near the singuksit

B. w with continuous density are addressed.

The following result tells us that the limik, ., exists for ~ Theorem 4:Assume thatp, = 37i_;pida, is atomic
manyw, and also gives a useful expression for them in ternf@hered,, (z) is dirac measure (point mass)a), and denote
of the density ofv, and K, ,,. by p(™) =37, p? the. Then

Theorem 3:The Vandermonde mixed moment expansion 1 1
coefficients K,, = limy .o K, n exist whenever the Jim - BT D1(N)NVHVD2(N)NVHV
densityp,, of w is continuous or0, 27). If this is fulfilled, 1
then e X Dn(N)NVHV)]

27 n
Kyw=K,,(2n)"~1 ( / pw(x)pda:) . (23) = ¢ 'p™ lim J]tre (Di(N)).
0 N —o0 il

The proof is given in Appendix G. In Section V, severagte here that the non-normalized trace is used.
examples are provided where the integrals (23) are computedy, proof can be found in Appendix I. In particular,
An important consequence of Theorem 3 is the followingshaorem 4 states that the asymptotic momentsLaf ¥V

which gives the uniform phase distribution an mportgnérplcoincide with the moments of,,, up to the scaling factor
Proposition 5: Let V, denote a Vandermonde matrix Wlthcn—l_ The theorem is of great importance for the estimation

phase distributionv, and set of the anglesy; and the point masses in our Vandermonde

. H n deconvolution framework. In blind seismic and telecommu-
Von= lim E |trg (Vw Vw) . oo N ;
’ N—oo nication applications, one would like to detect the angles
Then we have that a; through deconvolution. Unfortunately, Theorem 4 tells us
V.o<v that this is impossible, since the™ (which are moments
u,n = Ywmn-

which we can find through deconvolution), do not depend on
The proof is given in Appendix H. An immediate consethem (this parallels Theorem 3, since also there we could not
quence of this and Proposition 4 is that all phase distiimsti recover the density,, itself). Having found the)(™) through
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deconvolution, one can, however, find the point magseby To define expansion coefficients for generalized Vander-

solving for py, po, ... in the Vandermonde equation monde matrices of the form (3), define first functigis from
[0,N—1]to [0,N —1] by fn(r) = [ f (%)]. Letpy, be the
corresponding density fofy. The procedure is similar for

) matrices of the form (4). The following definition captures
both cases:

even if the number of atoms may be unknown. Definition 8: For (3) and (4), define
The case when the density has non-atomic singularities &, ., N = ﬁx
more complicated. We provide only the following result, ohni n ( N-1 Jr(Wok—1) fwbm))
. . )P = r= p r)e
addresses the case when the density has polynomic growth rat f(O’Q el e (20 p1 (1)
near the singularities.
Theorem 5:Assume that

pP1 P2 Dr 1 pH
pi 3 o D L[ p®

dwi - - ~dw|p|
KpwaN = = X
[ n L I NA(Wa(k—1) =wh(k)) g )\
. . o 0,201 L=t (jo €
wli{gi |z — i|*pu(x) = p; for someld < s < 1 dwr -+ - dwy

for a set of pointsaq, ..., «;., with p, continuous forw #
i, ..., . Then

(26)
wherewyw 1, ..., ww,,, are as in definition 6.

. ) If the limits
: H H
ngnoo E[Tr( Dl(N)FV VDQ(N)FV \% Kot lenoo Ko N
1 R
X Dn(N)ﬁVHV)] Kpwp = Hm Kpuin,
ne1 () - exist, then they are callédandermonde mixed moment expan-
- c q NIEHOOH”L (Di(NV)) sion coefficients
=1 Note that (1) corresponds to (3) witli(z) = z. The
where following result holds:
¢ = (gp(l — 5)cos ((1_23)ﬂ'))np(n)x ‘Theorem 6:Theorem 1 holds also with Vandermonde ma-
Y n 1 # J (25) trices (1) replaced with generalized Vandermonde matdces
Jioap Iles Ton_1—zpi o 0L G, either form (3) or (4), and withk,,, replaced with either

andp(™ = 3" p?. Note here that the non-normalized trace i&pw.r OF Kpu .

used The proof follows the same lines as those in the proof of

The proof can be found in Appendix J. Also in this Cas'e[heorem 1'in Appendix A, and.is therefore only explained
it is only the point massep; which can be found through Priefly at the end of that appendix.

deconvolution, not the singularity locations. Note that the hAS fo;_mggnc_es of r:hehf(_)rm (1), itis _;che dcase_bof durrwllform
integral in (25) can also be written as anfold convolution. phase distribution which is most easily described how to

Similarly, the definition ofK ., v given by (9) can also be compute for generalized Vandermonde matriceg also. Ap-
viewed as a&-fold convolution whenp has two blocks, and pendix B shows how the computation &f(p, u) boils down

as a3-fold convolution wherp has three blocks (but not for;0 computing ;:er:ta:cn mtegrals. The sa(;ne comments are valid
p with more than3 blocks). or matrices of the form (3) or (4) in order to compuig, ., ¢

A very useful application of Theorem 5 is the case Whe"?'1nd prw"IIA. This is c_((;mmented ?t tf:je enddof thatdappend_ix.
w = sin(z), with z uniformly distributed. The density will We will not consider generalized Vandermonde matrices

then be of the formdaresin@) _ 1 which goes to with density singularities.

dw - —w2!
infinity nearw = +1 (which corresplonwd tac = +7/2) at S ] )
rate z~'/2. Theorem 5 thus applies with = 1/2. For this E. The joint distribution of independent Vandermonde matri
case, however, the "edges” atr/2 are never reached in ©€S

practice. Indeed, in array processing [30], the antennayarr In the case when many independent random Vandermonde
is a sector antenna which scans an angle interval which newsatrices are involved, the following holds:

includes the edges. We can therefore restigt our analysis ~ Theorem 7:Assume that thgD,.(N)}1<,<, have a joint

to clusters of interval#/;[a;, 3;] not containingt1, for which  limit distribution asN — oco. Assume also thaV, Vg, ...

the results of Section 11I-B suffice. In this way, we also avoiare independent Vandermonde matrices with the same phase

the computation of the cumbersome integral (25). distributionw, and that the density ab is continuous. Then
the limit
D. Generalized Vandermonde matrices limy oo Eftrp( Di(N)VEV,Dy(N)VEV,,
We will define mixed moment expansion coefficients for - x DR(N)VIV,)]

generalized Vandermonde matrices also. The differen¢®is t ;o aists Wher)% — ¢, and equals
while we in Definition 6 simplified using the geometric sum
formula, we can not do this now since we do not assume Y K,ud"'D,, (27)
uniform power distribution anymore. p<oeP(n)
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whereo is the partition wherd: andj are in the same block almost sure convergence of random Vandermonde matrices.
if and only if 45, = ;. However, [31] shows some almost sure convergence propertie
The proof of Theorem 7 can be found in Appendix K. Thabr certain Hankel and Toeplitz matrices. These matrices ar
appendix also contains some remarks on the case when gken in that paper to have similar combinatorial descrigtio
matricesD;(N) are placed in different positions relative tofor the moments, when compared to Vandermonde matrices in
the Vandermonde matrices. From Theorem 7, the followirtgis paper. Therefore, it may be the case that the techniques

corolllary is immediate: in [31] can be generalized to address almost sure convesgenc
Corollary 1: The first three mixed moments of Vandermonde matrices also. Figures 1, 2 show the speed of
@) ) " " n convergence of the moments of Vandermonde matrices (with

Vno = J\}EnooE {”L ((Vl VaVy'Vi) )} uniform phase distributions) towards the asymptotic masien

as the matrix dimensions grow, and as the number of samples
grow. The differences between the asymptotic moments and
1/1(2> = I the exact moments are also shown. To be more precise, the

of independent Vandermonde matric€s, V, are given by

@) 2 MSE of figures 1 and 2 is computed as follows:
V2 = -Ib+2I3+14 . .
3 1) K samplesV; are independently generated using (1).
. J
‘/;)(2) _ EIQ 4 4T + 9T, + 615 + I, 2) The4 first sample moments;; = 1tr, ((V{{Vi) )
20 (1 <j < 4) are computed from the samples.
where o 3) The4 first estimated moments; are computed as the
I, = (2m)lPl=1 (/ pw(x)pda?> ) mean of_ the sample moments, i1§. = &+ Zfil i
0 4) The 4 first exact momentsE; are computed using
In particular, when the phase distributions are uniforng th Theorem 2.
first three mixed moments are given by 5) The4 first asymptotic momentd; are computed using
@) Proposition 3.
Vi =1 6) The mean squared error (MSE) of the firstesti-
V2(2) _u mated moments frgm the exact moments is computed
3 4 >
) 411 aszjzl Vi—Ej) -
V3 = 50 7) The MSE of the firstt exact moments from the asymp-

. totic moments is computed 38 . (E. — A,)%
The results here can also be extended to the case with P @3—1( J i)

independent Vandermonde matrices with different phase diggures 1 .and. 2 are in §harp contrast with Gaussian matrices,
tributions: as shown in Figure 3. First of all, it is seen that the asyniptot

Theorem 8:Assume that V;},<;<, are independent Van- moments can be used just as well instead of the exact moments
. 1f1<1<s

dermonde matrices, whelé; has continuous phase distribu-(]cor WhQiCh expressions fcarr]l be found inS [32])(,jldu_e _to the
tion w,;. Denote byp,,, the density ofw,. Then equation (27) ?](l/NI) converlgence of t edmdoments. el‘?ogl Y, 't. IS se?n
still holds, with K ,.., replaced by that only5 samples were needed to get a reliable estimate for

the moments.

2w S
Kp,u(gﬂ-)\p\fl/ pri ()7l da,
0 =1

B. Inequalities between moments of Vandermonde matrices

where p; is the partition ofs; consisting of the blocks of and moments of known distributions

contained ino;. We will state an inequality involving the moments of Van-
The proof is omitted, as it is a straightforward extension ¢fermonde matrices, and the moments of known distributions
the proofs of Theorem 3 and Theorem 7. from probability theory. The classical Poisson distribativith
rate A and jump sizex is defined as the limit of

IV. DISCUSSION A A n
We have already explained that one can perform deconvolu- (<1 B ﬁ) % + ﬁaa)

tion with Vandermonde matrices in a similar way to how ong. .
can perform deconvolution for Gaussian matrices. We ha\fﬁtion and
however, also seen that there are many differences. '

[29], wherex denotes classical (additive) convo-
xn denotesn-fold convolution with itself. For our
analysis, we will only need the classical Poisson distriyut
with rate ¢ and jump sizel. We will denote this quantity by
A. Convergence rates v.. The free Poisson distribution with rateand jump sizex

In [19], almost sure convergence of Gaussian matrices wisdefined similarly as the limit of
shown by proving exact formulas for the distribution of loawe A A Hn
order Gaussian matrices. These deviated from their limjts b <(1 - —> do + —5a)
terms of the forml/L2. In Theorem 2, we see that terms of " n
the form 1/L are involved. This slower rate of convergencasn — oo, whereH is the free probability counterpart of
may not be enough to make a statement on whether we halassical additive convolution [29], [20], and where whEte
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Fig. 1. MSE of the first4 estimated moments from the exact moment&ig. 3. MSE of the firstt moments from the actual moments foisamples

for 80 samples for varying matrix sizes, with- = L. Matrices are on the for varying matrix sizes, withV = L. Matrices are on the forrrvaXH
form VH 'V with V a Vandermonde matrix with uniform phase distributionswith X a complex standard Gaussian matrix. The MSE of the moments an
The MSE of the firstd exact moments from the asymptotic moments is alsthe asymptotic moments is also shown.

shown.
! + ‘ + MSE ‘between exa‘ct and asym;‘)touc momer‘ns then
ook O  MSE between estimated and exact moments i " n7|p| |K(p)|71
e ¢(at) 2 peNC(n) © = 2 peNc(n) €
o]
o8f ] pENC(n) €
. (29)
o7 i Here we have used the Kreweras complementation map (here
06 ] ¢ is the expectation in a non-commutative probability space)
N + Also, if as has the distribution., then
g 0.5 B
ny _ o]
Wl | E(a%) = Z el (30)
+ pEP(n)
.l Y | We immediately recognize the?!~!-entry of Theorem 1 in
02 8, 8 (29) and (30) (except for an additional power ©fn (30)).
ol © ", o 5 | Combining Proposition 1 witD;(N) = --- = D,(N) =
. o oooo ;gﬂ%@é%owﬂ o ?m“A‘OWQmoo o Iy, (29_)_, and (30), we thus get the following corollary to
o 5‘0 130 1;0 N 200 250 - ‘1":’(‘3‘(‘) 350 j100 PrOpOSItlon 1

N

Corollary 2: Assume thatV has uniform phase distribu-
tions. Then the limit moment

Fig. 2. MSE of the firstt moments from the actual moments &30 samples
for varying matrix sizes, withV = L. Matrices are on the forivV ¥V with

V a Vandermonde matrix with uniform phase distributions. M@E of the
moments and the asymptotic moments is also shown.

Vo= Jim E [tro (VV)")]

— 00

satsifies the inequality

N | Blal) < Vo < ~E(a3),
denotesn-fold free convolution with itself. For our analysis, ¢
we will only need the free Poisson distribution with rafe Wherea; has the distribution. of the Marchenko Pastur law,
and jump size=. We will denote this quantity by... x. is the andas has the Poisson distribution.. In particular, equality
same as the better known Marghenko Pastur law, i.e. it leas @iecurs form = 1,2,3 andc¢ = 1 (since all partitions are
density [20] noncrossing forn = 1,2, 3).

Corollary 2 thus states that the moments of Vandermonde
matrices with uniform phase distributions are bounded abov
and below by the moments of the classical and free Poisson
where(z)™ = max0,z),a = (1—/¢)%, b= (1++/c)?. Since distributions, respectively. The left part of the ineqtyalin
the classical (free) cumulants of the classical (free) $wis Corollary 2 was also observed in [16] Section VI. The dif-
distribution are\a™ [29], we see that the (classical) cumulantgerent Poisson distributions enter here because thee énel
of v, arec, ¢, ¢, ¢, ..., and that the (free) cumulants pf are classical) cumulants resemble tHél~'-entry in Theorem 1,
1,e,c%, %, .... In other words, ifa; has the distributior., where we also can use thaf,, = 1 if and only if p is

VE—a6-a)"

2mex

() = (1= ) 0o(a) + . @9
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1

noncrossing to get a connection with the Marthenko Past
law. To see how close the asymptotic Vandermonde momel osf 1
are to these upper and lower bounds, the following corollal
to Proposition 3 contains the first moments:

Corollary 3: Whenc = 1, the limit moments 07 1

o= g o ((770))]

0.5

08} b

Density

the momentsfp,, of the Marcthenko Pastur lay;, and the
momentsp,, of the Poisson distribution; satisfy

0.4

fpa=14 < Vi=% ~1467 < pa=15 o |
fps =42 < Vi=12 4867 < p5=52 '

fpe =132 < Vﬁzﬁzws.% < pe =203 02 ]
fpr =429 < V7=@z713.67 < pr=8TT.

0.1 T

The first three moments coincide for the three distribution
and arel, 2, and5, respectively. 0 1 2 3 4
The numbersfp, and p, are simply the number of

partitions in NC(n) and P(n), respectively. The number _ , _ N
Fig. 4. Histogram of the mean eigenvalue distribution6df) samples of

6 7 8 9 10

of pazrtitions in NC(n) equalslthe Catalan number, = VHV, with V a 1600 x 1200 Vandermonde matrix with uniform phase
—= (™) [29], so they are easily computed. The number aistributions.

partitions ofP(n) are also known as the Bell numbéss [29].
They can easily be computed from the recurrence relation

o n
By = ZBk (k)
k=0

In Figure 4, the mean eigenvalue distribution6af) samples o7 .
of a 1600 x 1200 (i.e. ¢ = 0.75) Vandermonde matrix
with uniform phase distribution is shown. While the Poisso
distribution is purely atomic and has massedat, 2, and

3 which aree™!, e71, e71/2, ande~!/6 (the atoms consist
of all integer multiples), the Vandermonde histogram shaws
more continuous eigenvalue ditribution, with the peaksalvhi o3 8
the Poisson distribution has at integer multiples cleaitjble
here as well. The peaks are not as sharp though. We rem
that the support oVZV for a fixed N goes all the way up oz 8
to N, but lies within [0, V]. It is unknown whether the peaks | =~ i s s smememeene
at integer multiples in the Vandermonde histogram grow t  ° ! 2 3 4 N 6 7 8 ° 1o
infinity as we letV — oo. From the histogram, only the peak

at 0 seems to be Of.atomlc n.ature' The eﬁe.Ct of d_ecreaS| % 5. Histogram of the mean eigenvalue distribution6df) samples of

¢ amounts to stretching the eigenvalue density verticail /%, with v a 1600 x 1200 Vandermonde matrix with phase distribution
compressing it horizontally, just as the case for the diffiér p. defined in (31).

Maréhenko Pastur laws. An eigenvalue histogram for Ganssi

matrices which in the limit give the corresponding (in thase

of Corollary 2) Marthenko Pastur law for Figure 4 (ii.75) It is unknown whether the inequalities for the moments can
is shown in Figure 6. We have also shown another eigenval@ extended to inequalities for the associated capaci¥ i
histogram to demonstrate the case of a non-uniform pha@/V x IV standard, complex, Gaussian matrix, then an explicit
distribution. In Figure 5, the mean eigenvalue distributaf €xpression for the asymptotic capacity exists [24]:

640 samples of 4600 x 1200 Vandermonde matrix with phase limy % log, det (IN 4 (%XXH)) _

1

0.9 4

0.8 b

Density
o
o1
I

0.2 b

distribution with density 1 2
1 2log, (1+p- 2 (VIFT-1)°) (32
w R — 31 log, e 2
Ple) = o D) —22= (Vip+I-1)".

on [—”Si%,”i%] is shown, witha = 7. One can see In Figure 8(a), several realizations of the capacity are-com
that the effect of high values for this density near the arigiputed for Gaussian matrix samples of si2é x 36. The

is that the Vandermonde matrix has a high concentration afymptotic capacity (32) is also shown. In Figure 8(b), sglve
the eigenvalues near the origin, and also a higher proportiealizations of the capacity are computed for Vandermonde
of larger eigenvalues, when compared to the uniform phasetrix samples of the same size, for the case of uniform phase

distribution. The corresponding density is shown in Figdre distribution. It is seen that the variance of the Vandernsond
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0.9

Density

10

Fig. 6. Histogram of the mean eigenvalue distribution26f samples of
%XXH, with X an L x N = 1200 x 1600 complex, standard, Gaussian
matrix.
1.5
1L |
3

0.5

o

Fig. 7. The densityp., () used in this paper = 7 and A = 10d.

capacities is higher than for the Gaussian counterpartis. Th
should come as no surprise, due to the slower convergence
to the asymptotic limits for Vandermonde matrices. Althlbug
the capacities of Vandermonde matrices with uniform phase

distribution and Gaussian matrices seem to be close, we h

no proof that the capacities of Vandermonde matrices ane eve

finite due to the unboundedness of its support.

C. Deconvolution
Deconvolution with Vandermonde matrices (as stated

(11) in Theorem 1) differs from the Gaussian deconvolution

counterpart [29] in the sense that there is no multiplieafR0]
structure involved, sincél, ., is not multiplicative inp. The
Gaussian equivalent of Proposition 3 (& V replaced with

%XXH, with X an L x N complex, standard, Gaussian

11

Asymptotic capacity
«  sample capacity
TTir
. eerl [
i

25

Capacity
-
v

0.5

0 I I I I I I I I I
0 9

10

(a) Realizations of4 log, det (Iy + p%XXH) when X is standard,
complex, Gaussian. The asymptotic capacity (32) is alsavsho

3

25

Capacity

0.5

0 I I I I I I I I I
5 9

p

10

(b) Realizations of- log, det (Iy + pVVH) whenw has uniform phase
distribution.

Fig. 8. Realizations of the capacity for Gaussian and Vandade matrices
of size 36 x 36.

matrix) is
m; = d (33)
my = dy+d? (34)
ms = dz+ 3dady + d3 (35)
ave  my = dy+4dsdy + 2d3 + 6dad? + d? (36)
ms = ds+ 5dydy + 5dzdy + 10d3dT +
10d2d; + 10dad; + d3 (37)
me = dg+ 6dsdy + 6dady + 15d4d] +
3d3 + 30d3dad; + 20dsd3 +
in 5d3 + 10d3d} + 15dad] + dS (38)
my = dr + Tdedy + Tdsdy + 21dsd; +
Tdyds + 42dydady + 35d4d3 +
21d5dy + 21dsd3 + 105d3dad; +
35dsd} + 35d3d; + 70d3d3 +
21dyd; + d7, (39)
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(where them,; and thed; are computed as in (12)-(13) by In practice, one often has a random matrix model where
scaling the respective moments by This follows immedi- independent Gaussian and Vandermonde matrices are both
ately from asymptotic freeness, and from the fact t}ba(XH present. In such cases, it should be possible to combine the
converges to the Marthenko Pastur law In particular, when individual results for both of them. In Section V, examples o

all D,(N) = I, andc = 1, we obtain the limit moments: how this can be done are presented.

1,2,5,14,42,132,429, which also were listed in Corollary 3

One can also write down a Gaussian equivalent to the co- V. SIMULATIONS

variance of traces of Vandermonde matrices (19) and (20)the simulations presented here all use the deconvolution
(covariance of traces of Gaussian matrices are handled mgtg,ework for Vandermonde matrices. Since additive, white

thoroughly in [33]). These are Gaussian noise also is taken into account, Vandermonde de-
[ 1 2] convolution is also combined with Gaussian deconvolution.
E (trn (D(N)NXXH)) the eigenvalue histograms for Vandermonde matrices shown
L - in figures 4 and 5, as large matrices as needed were used in
= (tr,(D(N))? + Ltrn(D(N)Q) (40) order for the eigenvalue distribution to stabilize on sdrreg
_ niN - close to the asymptotic eigenvalue distribution. In prati
E|(tr, (D(N)iXXH)) scenarios/N and L are much smaller than what was used in
L N _ these figures, which partially explains the uncertaintydme
= (tro(D(N))" +O(N~?) (41) of the simulations we will present next (all simulations gie

1 1 2 on other values forfV and L). In particular, the uncertainty
E |tr, (D(N)NXXH) trn ((D(N)NXXH) )1 for the p,, in (31) is high, since exact expressions for the
L lower order moments are not known, contrary to the case
= tr,(D(N))tr,(D(N)?) +O(N™2). (42) of uniform phase distribution. In all the following] is the

These equations can be proved using the same Combinatoﬁéﬁﬁanc_e Ee_twee_zn the antennas W_herlee'!s the_wavelength.
methods as in [32], and it is not needed that the matric Qe ratios is a figure of the resolution with WhICh the syst_em
D(N) be diagonal. Only the first equation is here state‘ﬂ'" be able to separate (and therefore estimate the pajitio

as an exact expression. The second and third equations A&YSers in space.

have exact counterparts, but their computations are more

involved. Similarly, one can write down a Gaussian equivaleA. Detection of the number of sources

to Theorem 2 for the exact moments. For the first three et us consider a basestation equipped wihreceiving
moments (the fourth moment is dropped, since this is mog@tennas, and witth, mobiles (each with a single antenna) in

involved), these are the cell. The received signal at the base station is given by
m; = dy r; = VP%Si + n;. (43)
me = ds+ d%

Ly 5 Here r; is the the N x 1 received vectors; is the L x 1

msz = (14 N7%)ds+3dida + dy. transmit vector by thel users which is assumed to satisfy
This follows from a careful count of all possibilities aftére E [s;s] = I, n; is N x 1 additive, white, Gaussian noise
matrices have been multiplied together (see also [32], evheif variance—~ (alle components is; andn; are assumed
one can see that the restriction that the matriBgéN) are independent). In the case of a line of sight between the users
diagonal can be dropped in the Gaussian case). It is se@ngl the base station, and considering a Uniform Linear Array
contrary to Theorem 2 for Vandermonde matrices, that tgLA), the matrix V' has the following form:
second exact moment equals the second asymptotic moment 1 o1

(34), and also that the convergence is faster [@¢n~2)) ) o2 % sin(61) .. e—J2mdsin(y)
for the third moment (this will also be the case for highery — _—_
moments). N .o
The two types of (de)convolution also differ in how they e—i2n(N=1)%sin(61) ... —j2rssin(0r)
can be computed in practice. In [23], an algorithm for free (44)

convolution with the Marthenko Pastur law was sketched. Bere,d; is the angle of the user in the cell and is supposed to
similar algorithm may not exist for Vandermonde convolube uniformly distributed ovef—«;, «]. PzisanL x 1 power
tion. However, Vandermonde convolution can be subject toatrix due to the different distances from which the users
numerical approximation: To see this, note first that Theode emit. In other words, we assume that the phase distribution
splits the numerics into two parts: The approximation of theas the form27r§ sin(f) with 6 uniformly distributed on
integrals | p.,(z)!”ldz, and the approximation of th&, . A [—a,a]. The fact that the phase has the fomm< sin(9)
strategy for obtaining the latter quantities could be ta@nly is a well known result in array processing [30]. The users’
generate many numbers betwe@rand 1 and estimate the distribution can be known (in the case of these simulations,
volume as the ratio of the solutions which satisfy (76) ithe uniform distribution has been accounted for withoutlos
Appendix B. Implementations of the various Vandermond# generality) through measurements in wireless systemnis up
convolution variants given in this paper can be found in [34$0me parameters (here,typically). This is usually done to
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have a better understanding of the user’s behavior. It igyeasThen the equations
seen, by taking inverse functions, that the density is, when

2dsina - q Wi = coP+ o?

)\ )

1 W2 = CQPQ + (Cg[Q + CQC3)(P1)2
pu(@) = —F— (45) 2 1
20 /47;\22d2 — 22 +20 (CQ + Cg)Pl + 0o (1 + Cl)
) ) W3 = CQP3 + (303[2 + 30203)P1P2
on [-2rdgine, 2ndoinal, and( elsewhere. A special case of + (BIs + 3ces ]y + eac?) (1)
this was considered in Figure 7, where weset 10d, o = Z. 2
. . . 4 +30 (1 + Cl)CQPQ

Throughout the paper we will assume, as in Figure 5, that 9 ) )
a=2,d=1,and5\ = d when model (44) is used. With +307((1 + er)ea 2 + e3(es + 2¢2))(P1)
this assumptionZ4si2e < 1 is always fulfilled. +30%(c3 + 3¢y + 1) Py

The goal is to detect the number of sourdesand their +05(c2 +3c1+1)

respective power based on the sample covariance matrix

supposing that we hav& observations, of the same ordeProvide an asymptotically unbiased estimator for the mo-
asN. When the number of observation is quite higher than ments P; from the moments of W; (or vice versa)
(and the noise variance is known), classical subspace mieth¢yhen limy .o X = o, limy_o§ = ¢, and where

[35] provide tools to detect the number of sources. Indestd, Hmy—oc % = C3.
R be the true covariance matrix given by The proof of this can be found in Appendix L. Note that

c3 = cyco, SO that the definition of; is really not necessary.

VPV 4 521y, We still include it however, since;, co and c3 are matrix
aspect ratios which are used in different deconvolutiogeta
so that they all are used when these stages are implemented
0 ; and combined serially. Note also that the statement apfies
to o~ Or_1e can therefore detgrmme the n_umber of sourgﬁyw with continuous density due to Theorem 3, not only the
by countln_g the n_umber of eigenvalues different frarf. densities we restrict to here. In the simulations, Proosi
Howeyer, in prgctlge, one has only access to the sampéeput to the test whel? has three sets of powers, 0.5, 1, and
covariance matrix given by 1.5 (with equal probability), with phase distribution givey

1 (44). Both the number of sources and the powers are estimated

where ¢? is the noise variance. This matrix hds — L
eigenvalues equal te? and L eigenvalues strictly superior

W=—-YY", L )
K For the phase distribution (44), the integrdls and I3 can
with be computed exactly (for general phase distributions they a
computed numerically), and are [36]
Y =[r1,..rx] :VP%[Sl,...,sK]—l—[nl,...,nK] (46) ; A (1—|—sina)
2 = n -

If one simply has the sample covariance maM, (43) has Ada? l—sina
three independent parts which must be dealt with in order to L. — A tan o
get an estimate oP: the Gaussian matrice$ = [sy, ..., Sk]| 3 4d?2a3 -
and N = [ni,..,ng], and the Vandermonde matri¥. yUnder the assumptions = = and A = 10d used throughout

It should thus be possible to combine Gaussian deconvolHis paper, the integrals above take the values
tion [32] and Vandermonde deconvolution by performing the

following steps: [ 40 In 2+2
1) Estimate the moments of VPzSS”P:V¥ using ? us 2 -2
multiplicative free convolution as described in [23]. This 1600
is the denoising part. Iz = a3

2) Estimate the moments @V ¥V, again using multi-

plicative free deconvolution For estimation of the powers, knowing that we have only

3) Estimate the moments & using Vandermonde decon-thr?e sets of powers with equal probablhty, 5 sufﬂces_ to
) : L estimate the three lowest moments in order to get an estimate
volution as described in this paper. . . .
_ _ ) of the powers (which are the three distinct eigenvalueP of
Putting these steps together, we will prove the following:  Therefore, in the following simulations, Proposition 6 isfi

Proposition 6: Define used to get an estimate of the moment®ofThen these are
o used to obtain an estimate of the three distinct eigenvaities
I, = (2m)" ! / po(z)"dz, (47) P using the Newton-Girard formulas [37]. These should then
0 lie close to the three powers &f.
and denote the moments & and the sample covariance For the model (44), it turns out that power estimation
matrix, respectively, by does not work particularly well. The result is shown in the
_ first plot of Figure 11. In the plotX = L = N = 576,
P = trp(P*) and o = /0.1. Even though the matrices are quite large,
W; = try(W9). the estimated powers are quite far from the actual powers.
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Actually, the estimation process is so far off that it congsut [ " o Estmaw ofL
eigenvalues which are complex conjugate pairs insteadeof Actual value of L
true, real ones((5,1,1.5) (this is an explanation for that ! ,
the two lowest eigenvalues in the plot seem to coincid
since it is only the absolute values of the eigenvalues whit | il

are plotted). Increasing the matrix sizes further resufts °

estimates Wh|ch are closer to the true powers, but one wot | © O%OOO °© ©0°%% B g 9 o oo 1
need matrices of size larger th&i00 x 2000 to get much . ° 520 o0 °q ° boo o7 ob0f

closer to the true powers. As will be seen, power estimatic | % o ®° ©°°% © ° o ® °
works much better for the phase distribution model in th © ©

next section. A tentative explanation for this is the diffiece "
between the corresponding eigenvalue histograms of thase | o
Vandermonde matrices, which are shown in Figure 5 for moc
(44), and in Figure 4 for the model of the next section.
For estimation of the number of usefs we assume that

the power distribution o is known, but notL itself. Since % 1 = % ﬁémberofi(isewanfi 0 e e 10
L is unknown, in the simulations we enter different candidate

values of it into the following procedure:

1) Computing the momentB; = tr; (P*) of P. 7of O Estmate of L
2) The momentstr;, (P?) are fed into the formulas of B e L
Proposition 6, and we thus obtain candidate momer e 1
W, of the sample covariance matr\w.
3) Compute the sum of the square errors between these ¢ 5| ]
didate moments, and the momeits of the observed
sample covariance matri, i.e. computey">_, |W; — w0l ° 1
Wi|2- - 0L % @@ g o)
The estimatel for the number of users is chosen as the or ¢ .
which gives the minimum value for the sum of square erro
after these steps. 20} 1
In Figure 9, we have set = /0.1, N = 100, and
L = 36. P has three sets of powers, 0.5, 1, and 1.5 (wit 1| 1
equal probability). We tried the procedure described atfore
1 all the way up tol100 observations. It is seen that only 8 ‘ ‘ ‘ ‘ ‘
. . 0 10 20 30 40 50 60 70 80 90 100
small number of observations are needed in order to get Number of observations
accurarate estimate df. When K = 1, it is seen that more ) K = 10
observations are needed to get an accurate estimdtevdien
compared taK = 10.

10 T

@K=1

Fig. 9. Estimate for the number of users. Actual valueLofs 36. Also,
o =+/0.1, N = 100.

B. Estimation of the number of paths . . .
. L is the bandwidth, the model becomes (for a given channel
In many channel modeling applications, one needs to da%alization):

mine the number of paths in the channel [38]. For this purpose

consider a multi-path channel of the form: H— VPis
L
h(r) = Z $;0(T —71) where:
=1 1 1
Here,s; are i.d. Gaussian random variables with powgand 1 o—g2m . e—i2miELl
7; are uniformly distributed delays ov@r, T]. Thes; represent V= —| . } . ;
the attenuation factors due to the different reflectidnss the VN | _ I .
total number of paths. In the frequency domain, the channel e ImN-DTFE L emi2m(N-1) TRt

is given by: (48)
We will here setW = T = 1, which means that the;
Ciom of (1) are uniformly distributed ovej0, 27|. When additive
H(f) = ZSiG(f)e sl noise ;) again is taken into considigrati(])n, our model again
=1 becomes that of (43), the only difference being that the phas
We consider which samples the channel in frequency. Sadistribution of the Vandermonde matrix now is uniformnow
pling the continuous frequency signal Agt= z% whereW is the number of pathgy the number of frequency samples,
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andP is the unknowr x L diagonal power matrix. Taking 7of T o EstmaeolL
observations we arrive at the same form as in (46). In this ce Actual value of L
with uniform phase distribution, we can do even better the | i
Proposition 6, in that one can write down estimators for tt
moments which are unbiased for any number of observatic | il
and frequency samples:

Proposition 7: Assume thatV has uniform phase distribu- , |° _ ° 0® 4 %0 o o |
tion, and letP; be the moments oP, and W; = try(W*) . Pof P oo o0 om0
. . . &7 009 o o o
the moments of the sample covariance matrix. Define al | o |
cp =%, o =%, andcs = £. Then °
EW] = &Pi+o0° or ]
1
E[Wg] = C9 (1— N) P2+02(02+C3)(P1)2 1ok |
+20%(ca + e3) P+ 0 (L + 1) A
1 3 2 OO 10 20 30 40 50 60 70 80 90 100
E [W3] — C (1 + _) (1 _ + _) P3 Number of observations
11(2 N 1]\72 @K =1
+ (1 - N) (363 (1 + F) + 30203) P1P2 70F ‘ O Estimate of L
Actual value of L
1
+ (Cg (1 + ﬁ) + 30303 + Cgcg) (P1)3 60|~ 1
2
c1¢5 1
307 ( (1 2 (1-= )P sor 1
+30 (( +c1)es + KL) ( N) )
352 cics 2 2, 3 P2 o o o o o E
+30 ﬁ+62+03+ C2C3 (1) B o fesd) o
1 OOdD [¢] O
+30% (c% +3c;+1+ ﬁ) co Py *p ]
6 9 1 201 1
+o (Cl +3c1+1+ F)
Just as Proposition 6, this is proved in Appendix L. In th “ |
following, this result is used in order to determine the nemb ‘ ‘ ‘ ‘

0 L L L L

of paths as well as the power of each path. The differe ©° 1 2 0 40 0 60 70 8 90 10
convergence rates of the approximations are clearly seen in (b) K — 10
the plots.

In Figure 10, the number of paths is estimated based on #ig 10. Estimate for the number of paths. Actual valueLois 36. Also,
procedure sketched above. We haveset v0.1, N = 100, ©= V0.1, N =100
and L = 36. The procedure is tried for all the way up to

100 observations. The plot is very similar to Figure 9, in thaly e covariance matrix. In our simulation, we have set
only a small number of observations are needed in order fo_ = ;04\ = 10 K = 10. L = 36. N = 100. and

get an accurate estimate &f When K = 1, it is seen that o = /0.1. We have tried the valuek 2, ..., 100 as candidate
more observations are needed to get an accurate eStimatﬁ/éUelengths, and chosen the one v:/hi(’:h gives the smallest
L, when com_pared tg¢ = 10. ) i deviation (in the same sense as above, i.e. the sum of the
For the estimation of powers S'm‘,l'a“"“' we have et squared errors of the first three moments are taken) from a
N =L =144, ando = V0.1, following the procedure also yitterent number of realizations of sample covariance i
described above, up t®000 observations. The second pIotThe resulting plot is shown in Figure 12, and shows that
in Figure 11 shows the results which confirms the usefulne$s \/andermonde deconvolution method can also be used for

of the approach. We see that even for smaller matrix sizgs, ejength estimation. It is seen that the estimation getteb
than the model of the previous section, the estimates aré@ myg,an the number of observations is increased.

closer to the true powers.

D. Signal reconstruction and estimation of the sampling dis
C. Estimation of wavelength tribution

In the field of MIMO cognitive sensing [39], [40], terminals Several works have investigated how irregular sampling
must decide on the band on which to transmit and in particulaffects the performance of signal reconstruction in thegmee
sense which band is occupied. One way of doing is to firaf noise in different fields namely sensor networks [41],]]42
the wavelength\ in (44), based on some realizations of thamage processing [43], [44], geophysics [45], compressive
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; ; 100 .
+  First eigenvalue O  Estimate of A

Second eigenvalue Actual value of A
2.4+ O Third eigenvalue | 90

x

80 q
2.2F q
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50 b

Powers
A
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30 T

120 B 20l |
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o
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(a) Estimation of powers for various number of observatitarsthe model

(44) of Section V-B.K = N = L =576, ando = v0.1. Fig. 12. Estimation of wavelength. Deconvolution was perfed for varying
18 ‘ ‘ number of observations, assuming different wavelengthshé true model
+  First eigenvalue (44), d= 1, A= 10, K =10, L = 36, N = 100, ando = V0.1,
X Second eigenvalue
166 d)o O Third eigenvalue
: ]
o OO§OOQ%§9@O@O@OOO@O%C;§DOOGD oow%qpoooqp%%oo%om@ooowmwo@
A o o o | and suppose that the signal is sampled at various instants
0 [t1,....tr] with ¢; € [0,1]. This can be identically written as
1.2+ — N—1
x x 1 e
g | L . . : rw)=—= > ske I,
r x x % XX % Xxxx X X x 0K Xy % %
§ 1 “ xx& WX&X o X xxxxx T 50 T g N =0
o8f i orr = VTa. In the presence of noise, one can write
*
06, + + b r= VTS +n, (49)
+ T Ty R T e e
b R e T e ++++++ e e T P R
oaf + 1 wherer = [r(w1),...r(wz)]?, s andn are as in (43), and with
i V on the form (1). Contrary to (43), (49) does not include the
02— —— L diagonal matrixP. A similar analysis for such cases can be
Number of observations found In [16]’ [48]
(b) Estimation of powers for various number of observatiforsthe model In the following, we suppose that one h&sobservations

(48) of Section V-A.K = N = L = 144, ando = v0.1. of the received sampled vecter

Fig. 11. Estimation of powers for the two models (44) and (48)his T
section, for various number of observations. Y = [r17 ---I'K] =V [51, ooy SK] + [nla ooy nK] (50)

The vectorr is the discrete output of the sampled continuous

) ) signal »(w) for which the distribution is unknown (however,
sampling [46]. The usual Nyquist Theorem states that forcais known). This case happens when one has an observation

s!gnal with maximum fr.equencj/max, one n_eeds to sample theWithout the knowledge of the sampling rate for example. The
;lgnal at a rate wh|ph is at least twice this number. Howevefitca rence in (50) from the model (46) lies in that the adfoin
in many cases, this can not be performed or one has @, \iandermonde matrix is used, and in that there is no
observation of a signal at only a subset of the frequenciegy itional diagonal matri® included. The following result

Moreover, one feels that if the S|g_nal has a sparse Sped“ﬁﬁn now be stated and proved similarly to Proposition 6 and 7:
one can take fewer samples and still have the same informatio Proposition 8:

on the original signal. One of the central motivations ofrspa

sampling is exactly to understand under which condition one g [tr, (W) = 1402 (51)
can still have less samples and_recover t_he orlgmal sigpal u E [trn (WQ)} = ol + (14 c3)(1 +02)? (52)
to an error ofe [47]. Let us consider the signal of interest as 3

a superposition of its frequency components (this is algo th E [“’n (W )} = 1+43c(l+e3)lz

case for a unidimensional bandlimited physical signal) i.e 33+ 3+ c3l3
30%(1 4+ 3c3 + 5 4 ca(1 + ¢3)I2)
N—-1
1 —j2nkt 4 2
T(t) — Z Ske# 30 02(03 + 3C3 + 1)
N = o%(c5 +3cs + 1), (53)

B



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 1, NO. 1, JANARY 2008 17

120

+  Estimated o +  Estimated I,
Actual a e} Actual |2
1.2+ 4 o Estimated I,
100 — — —Actual |
3
1 i
S 80| © 4
b+ o +
+ +
+ + 4+t B+ F + 4 + +..* =+ + [}
i + - + +|
ot T i e e R T e AT o
0.8+ S + + + + 4 +4 i o o
B Tt + L o~y — =02 s — ~ = Q—@O—Qeqb@—@—effffofff
o0 o %o 0.060° e} )
5 —= 60t %0y 9 & R 05069 00 apafd © Lo o F 4
n & & oo ¥ 0° o © o° ° OCQDO o0& &O
0.6 E o 5
40 4
0.4 E
20+ 4
0.2 E
+\4» fy ot s bt b n Lt et
R R e e e = e
0 . . . , \ 0 ! L . ! !
0 100 200 300 400 500 600 0 100 200 300 400 500 600

Number of observations Number of observations

Fig. 13. Estimated values of using (51)-(53), for various number of Fig. 14. Estimated values df and I3 using (51)-(53), for various number
observations, and foK = 10, L = 36, N = 100, = /0.1. The actual ©f observations, and foK' = 10, L = 36, N = 100, = +/0.1. The actual
value ofa was 7. value ofar was 7.

wherelimy_, oo % = ¢y, limy_ oo % = o, My 00 % = ¢5, Similar to what is done in this paper. However [16] does not
I,, is defined as in Proposition 6, al¥ = %YYH. perform concrete calculations up to the first seven moments.

The proof of Proposition 8 is commented in Appendix LAIso, the connection between the uniform case and the genera
We have tested (51)-(53) as follows: we have taken a pha&&se, as in Theorem 3, was not made. Mixed moments with
distribution w which is uniform on[0, ], and 0 elsewhere. independent matrices were also not computed, as the case of
The density is thus$Z on [0,a], and 0 elsewehere. In this several independent Vandermonde matrices.

case we can compute that Interestingly, [17] shows that, in cases where the matrices
9 have entries of the form4;; = F(w;, — wj), analytical
I, = o expressions for the moments can be found. This may be

interesting for the Vandermonde matrices we considergsinc

I 21\ ?
3 = (E) . <iVHV) _ sin (& (w; — w;))
The first of these equations, combined with (51)-(53), essbl N iy Nsin(z(wi —w)))
us to estimaten. This is tested in Figure 13 for various . _ sin(%a)
number of observations. In Figure 14 we have also teststffortunately, the functionfly (x) = -7 depends on
estimation of I, I; from the observations using the saméhe matrix dimensionV, so that we can not find a functiahi
equations. When one has a distribution which is not unifortwhich fits the result from [17].

the integralsls, I, ... would also be needed in finding the

characteristics of the underlying phase distributionufégl4 VII. CONCLUSION AND FURTHER DIRECTIONS

shows that the estimation o, requires far fewer observa- \y\e have shown how asymptotic moments of random Van-
tion than the estimation ofs. In both figures, the values germonde matrices can be computed analytically, and tieate
K =10,L =36, N = 100, ando = v0.1 were used and many different cases. Vandermonde matrices with uniform
a was 7. Itis seen that the estimation éf is a bit off even phase distributions proved to be the easiest case and vers giv
for higher number of observations. This is to be expectegbparate treatment, and it was shown how the case with more

since an asymptotoic result is applied. general phases could be expressed in terms of the case of
uniform phase distributions. The case where the phasa-distr
VI. RELATED WORK bution has singularities was also given separate treatrasnt

In the recent work [16], the Vandermonde model (1) ithis case displayed different asymptotic behaviour. Alsxeah
encountered in the context of reconstruction of multidimemoments of independent Vandermonde matrices were com-
sional signals in wireless sensor networks. The authors afsuted, as well as the moments of generalized Vandermonde
recognize a similar expression for the Vandermonde mixedhatrices. In addition to the general asymptotic expression
moment expansion coefficient as in Definition 6. They alsstated, exact expressions for the first moments of Vandedmon
state that, for the case of uniform phase distribution, edosmatrices with uniform phase distributions were also stated
form expressions for the moments can be found, buildinge have also provided some useful applications of random
on an analysis of partitions and calculation of volumes &fandermonde matrices. The applications concentrated en de
convex polytopes described by certain constraints. Thistig convolution and signal sampling analysis. As shown, many
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useful system models use independent Vandermonde matrizesalso have that
and Gaussian matrices combined in some way. The presented
examples show how random Vandermonde matrices applied Wiwjr = Wige = 77T Wi 0

for such systems can be handled in practice to obtain e®fnatq we will denote their common value byy, as in Defini-

on quantities such as the number of paths in channel modelifgy, 6. Wwith this in mind, it is straightforward to verify tha
the transmission powers of the users in wireless transmissk55) can be written as

or the sampling distribution for signal recovery. The paper

has only touched upon a limited number of applications but Z Z Z
the results already provide benchmark figures in the non- PEP(n) (i1,-.-s0n) (G1veeerin)
asymptotic regime. giving rise to,

From a theoretical perspective, it would also be intergstin N-n-1
to find methods for obtainind<, ., » from K, , ., similar to o
what has been done witfi, ., from K, ,,. This could also shed H j(zkew. 1= kew, ik)wwk

- o ' SR X Efle i i

some light on whether uniform phase and power distribution P
also minimizes moments of generalized Vandermonde matri- xD1(N)(j1,51) % - X Di(N) (s ju)-+(56)

ces, similary to how we showed that uniform phase distrdwuti

minimizes moments Vandermonde matrices of the form (1)whereiy, ..., i,, takes values betwednand N — 1. We will in
Throughout the paper, we assumed that only diagorthe following switch between the form (56) and the form

matrices were involved in mixed moments of Vandermonde

matrices. The case of non-diagonal matrices is harder to Z Z Z

address, and should be addressed in future research. The P (g, (oein)
analysis of the maximum and minimum eigenvalue is also of giving rise to,

importance. The methods presented in this paper can not be Nlel=n=1_lp|=1 ~Ip|

used directly to obtain explicit expressions for the asyotipt n

mean eigenvalue distribution, so this is also a case fordutu xE (H (ej(“b<k1>“b<k>>ik)>
research. A way of attacking this problem could be to develop k=1

for Vandermonde matrices analytic counterparts to what one XD1(N)(j1,41) X =+ X Dp(N)(jn, jn),(57)
has in free probability (such as the- and S-transform and where we also have reorganized the powers\oaind L in

their connection with the Stieltjes transform). ; ;
: ; 56), and changed the order of summation (i.e. summed over
Finally, another case for future research is the asymptopc . , e ;
. : . .the differentiq, ..., i, first). Noting that
behaviour of Vandermonde matrices when the matrix entries

lie outside the unit circle. The asymptotics are very ddfer ol—n—1 i i )i
in this case. The choice of Vandermonde matrix entries on Z N E H el W= @Mtk | (58)
the unit circle was applied for this paper since the asyniptot (15:050n) k=1

behaviour is more easily addressed in this case. " Z ﬁ ’ y

— Nl —n—lE eI (Wo(k—1) =Wo(k) )k (59)
APPENDIXA (i1,0eyin) k=1

THE PROOF OFTHEOREM 1

n N—-1
o —n—1 j(Wh(k—1)—w %
We can write = NV E <H (Z el nikon mnc) k)) (60)

k=1 \ir=0
E [trL (Dl(N)VHVDQ(N)VHV o Dn(N)VHV)} (54) "] — eI N(Whk—1) —Wh(k))
— Nlel-n—1p H . (61)
as P 1 — ed(Wok—1) —ws(k))
Lilzi.l """ in E( Dl(N)(jlajl)VH(jlai2)V(i27j2) — Nlel=n=1
J1se5dn - .
D (N)(j2, j2)VH (2, i3) V (i3, j3) / 1 — eI N(wse—1) ~wo(r))
: (02m)lel = 1— eI (Wh(k—1) ~Wb())
Dn(N)(jna]n)VH (]na Z’1)‘/(2.17]'1)) dwl N -dw‘p‘ (62)
(55) = K,un, (63)
The (j1, ..., j») Qive rise to a partitiorp of {1,...,n}, where o . _
each blockiV; consists of equal values, i.e. Definition 6 of the Vandermonde mixed moment expansion

. _ coefficients come into play, so that (57) can also be written
Wj = {kljr = j}.

Write peP(n) _
Wy = {wjns Wiz, oo wjpwy 3 giving rise to,
ClplflL*IPIKpMN

jwjl :jwj2 =" :jwj\wj\’ XDI(N)(jlajl)' X XDn(N)(]najn) (64)

When (51, ..., jn) give rise top, we see that since
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The notation for a joint limit distribution simplifies (57).For the first5 moments this becomes

Indeed, add to (57) for eaghthe terms

D 2.

p'EP(n),p'>p G1reeerjn)
giving rise to,’
CIPI_lL_IpIKp,w,N

These go td) as N — oo, since they are bounded by
del=tplel g, NI = K, PP LIl = oL,

After this addition, the limit of (64) can be written

> K, .D,, (66)
pEP(n)
which is what we had to show. ]

my = Kydy (70)
my = Kodo+ Ki1d3 (71)
ms = Kzds+ Ko1dodi + Ky 1:1d3 (72)
my = Kady+ Kz 1dsdy + Koods + Ko 1d2d] +
Ki1,d] (73)
ms = Ksds+ Ky1dady + +K32d3ds +
Ks11d3d} + Koo 1dsdy + Ko 1,1d2d; +
Ki11,1,1d5. (74)

This reorganization of the terms will be used in the follogin

APPENDIXB
THE PROOF OFPROPOSITION1

Note that for each blockV;,

E <ej(2kewj w1 Lkew, ik)wwj) =0

We also need to comment on the statement of Thewhen

rem 6, where generalized Vandermonde matrices are con-
sidered. In this case, the derivations after (57) are differ

Z i1 7# Z ik,

since the power distribution is not uniform. For the case Qf,47 i

(3), we can in (60) replacé_; _ eI (@Wo(k—1) =wWo) )ik \with

SN Ny (r)edm@rs-n —nw) | since the number of oc-

curences of the powes” («“ets—» ~wsx)) is Np;, (r). The rest
of the proof of Theorem 6 follows by cancellingpowers of

k}EWj kZEWj
S ii= Y i (75)
keW; keW;

We thus defineS, n to be the set of alh-tuples (i1, ..., %)

N after this replacement. The details are similar for the ca¥derel <ix <N (I <k < n), and where

(4), where the law of large numbers is applied to arrive at the

second formula in (26).
(12) will also be useful on the scaled form

cMy= Y K,u(cD),.
pEP(n)

(67)

When D;(N) = Dy(N) = --- = D,(N), we denote
their common valueD(N), and define the sequende =

(D1, Do, ...) with D,, = limy_,otry (D(N))™). In this
caseD, does only depend on the block cardinaliti@¥;|,

so that we can group together th€,, for p with equal
block cardinalities. If we group the blocks pfso that their
cardinalities are in descending order, and set

fp(n)hﬂ“z,m,m = {p = {Wla eey Wk} € T(n)”WZl = TiVi}a

wherer; > ry > --- > 1, and also write

Km.,rz ,,,,, T — Z Kp,UJv (68)
PEP(N)ry rg, .. ry,
After the substitutions (12-(13), (67) can be written
k
mn= > Kypowo [[ - (69)
T1aeens TR j=1
ritt+re=n

D k=)

k}EWj kZEWj

for all j € {1,...,|p|}. We also define|S, x| to be the
cardinality of S, ». With this definition in place, it is obvious
that

Kp’uzzx}iinooKp’“’N: lim ||S(p,N)|.

N—oo Nntl=lp
Finding the limit distribution thus boils down to finding, |,
which is equivalent to finding the number of solutions to
equations of the form (75), where the variables are integers
constrained to lie betweet and N — 1. For Proposition 2
we will compute|S, n| for certainp of lower order. To prove
Proposition 1, we need not compute specjfig v |.

First we explain whykK,, < 1. It is clear from (75) that
IS, | is the number of integer solutiods= [i; - - - i,,]” (with
i; between0 and N — 1) to a system of the formAi = 0,
where

1) Ais|p| x n,

2) all entries inA are either—1, 0, or 1,

3) each column ofd contains either exactly onel and

onel, or just zeroes.

Such a matrixA has rank|p| — 1, as can be found through
elementary row reduction. Hence, there ap¢ — 1 pivot
columns inA, andn+ 1 — |p| free variables amon@, ..., i)

in the solution set oAi = 0. ThereforeS, y| < N*F1-7l,
which proves that<, ,, < 1.
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By dividing the equations (75) by, and letting/N go to orderp. From the proof, we see that whenis noncrossing,
infinity, K, ,, can alternatively be expressed as the volume there exists a partition of1,...,n} into n + 1 — |p| blocks,

R +1-Irl of the solution set of where two elements are defined to be in the same block if and
B 6 only if their corresponding variables are equal. It is ologo
Z Th—1= Z Tks (76) from the construction above that this partition is the Kreage

keW; keW; complementK (p) of p. This fact is used elsewhere in this

with 0 < z; < 1 (the volume is computed after expressing thpaper.

remaining|p|—1 variables in thex+1—|p| free variables). Itis ~ We will also briefly explain why the computations in
clear that the integral for this volume computes to a rafionthis appendix are also useful for generalized Vandermonde
number greater thaf but less thanl, due to the integral matrices with uniform phase distribution. For (3), the nemb
bounds given by (76), and since the volume is contain@d solutionsiy, ..., to (75) needs to be multiplied by

within a (higher-dimensional) unit cube. It is also cleaatth , .

the integral computes ta if and only if the reduced row Np gy (@) - Npgy (i),
echelon form ofA only contains rows with zeros, and rowssince eacti; now may occutNp;, (i,) times. This means that
with 2 nonzero entries (these entries will then band —1, K, .. ; can be computed as the ingegrals in this appendix, but
respectively). This corresponds to a solution set wheré eapat we also need to multiply with the density for each
pivot variable equals one of the free variables. For the séstvariable. The computations of these new integrals become
the proof, it therefore suffices to show that such a solut&n sather involved whenf is not uniform, and are therefore

occurs if and only if the partitiop is noncrossing. dropped.
If p is noncrossing, there exists a bloldk (after renumber-
ing the blocks if necessary) which consists of a single vater APPENDIXC
of numbers, sayr,r+1,...,r+ |Wi|}. This block’s equation THE PROOF FORPROPOSITION2

in (75) is easily seen to imply that - . .
(75) y i We will in the following compute the volume of the solution

b1 = Gy Wi s set of (76), as a volume Mo, 1]**'-lel c RrH1-IPl) as
explained in the proof of Proposition 1. These integrals are
very tedious to compute, and many of the details are skipped.
The formula

and thati,, ..., i, w,|—1 can be chosen arbitrarily. Therefore
this block gives rise tgi¥;| — 1 free variables.

Let W5 be the block which contains + |[W;| + 1 (after L
renumbering the blocks if necessary). We add together the e :/ 2" (1 — z)da
two equations represented by, andWs in (76), and replace (r+s+1)! 0
these two equations with this sum. The new set of equatioggn be used to simplify some of the calculations for higher
gives rise to a new matriA, where columns:, ..., + |W1| values ofn.
are easily seen to contain onlys. These columns represent
|W1| —1 free variables, and can be chosen independently fro&w
the rest of the variables. We therefore remove these columns
from A. The new equation system corresponds to the equationThiS is equivalent to finding the volume of the solution set
system for a noncrossing partition 1, ...,n — [W;|} with  Of
|p] — 1 blocks, created by merging the blocki, and 5. T1+ T3 = T2 + Ty
The step where we find a block which is an interval can NOW 3.
be repeated to merge two more blocks, and this process can
be repeated until we remain withblock with [V, | elements x4 = 1 + x3 — x2 lies betweerD and1,
after|p| — 1 block merges. It is clear that this last block gives
rise to|WW),| free variables. If we sum up the total number o
free variables we get

rls!

Computation ofK'(¢1 3} (2,41} ,u

Since this means that

e can set up the following integral bounds: Whant+ z3 <
, we must have thal < x5 < x; + 3, So that we get the

contribution
|pl—1 1 pl—zy pxitxs
Wil + 3 (Wil = 1) =n—(lp| = 1) =n+1— o] L[ dvadsn,
i=1
Allin all we see that the solution set is as described aboee (iWhich computes td,. When1 < z; + 3, we must have that
each constrained variable is equal to one of the free vasypl 1 + 23 — 1 < z2 < 1, so that we get the contribution
so thatN" 1~ 7| choices ofi1, ..., i,, satisfy (75), which shows 1 1 1
that K, , = 1 when p is noncrossing. It is easy to see that, / / / dradzzdry,
whenp has crossings, the procedure followed above will fail, 0 Jl=z Joatws—l
so that at least one of the constrained variables is not équalvhich also computes té. Adding the contributions together
a free variable. But therk, , < 1 for suchp, which proves we get2, which is the stated value o 41,31.12,431 0
the theorem. It turns out that when the blocks pfare cyclic shifts of each
We remark that it is the form (76) which will be usedother, the computation ok, ., can be simplified. Examples
in the other appendices to compukg, , for certain lower of suchp are {{1,3},{2,4}} (for which we just computed
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K,.), {{1,3,5},{2,4,6}}, and {{1,4},{2,5},{3,6}}. We D. Computation ofi (1 43 (2.6},{3,5}},u

will in the following describe this simplified computatiobet  Thjs is equivalent to finding the volume of the solution set
al(m) (x) be the polynomial which gives the volume RI"~1  of

of the solutions set ta; + --- + z,, = z (constrained to

0<a; <1)forl <a <Il+1.Itis clear that these satisfy the TytTy = T2t Ts
integral equations T2 +Te = X3+ T
; . in R%. Since this means that
a" () = / X al™) (t)dt +/l a™ (t)dt, (77) s = 1 — a9 + x4 lies betweerd and1,
o r¢ = x1 — T2+ x3 lies betweer) and1,

which can be used to compute thag'(x) recursively. Note

first thata(()l)(x) — 1. Eorm — 2 we have we can set up the following integral bounds:

For zo > x1 we must havers — z1 < 23,24 < 1, so that

@ T 0 we get the contribution
ao )((E) = / 0’0 (t)dt =T 1 1 1 1
01 / / / / dl‘4dl‘3dl‘2d$1,
al? (z) = / a(l)(t)dt =2—z. 0 ey Jwamin Sz
! -1 which computes to}I. It is clear that forz; > x> we get

the same result by symmetry, so that the total contributon i

Form =3 we have 1+ 1 =1, which proves the claim.

r 1
3 2 .
ay) () /O af?) (t)dt = 3 E. Computation o (; 5y 13.7).{2.4.6}}.u
1 z This is equivalent to finding the volume of the solution set
P (@) = / 1 al? (t)dt + /1 a\? (t)at of
B 1 9 1 2 Ty +x5 = T2+ Tg
= 1 2(95 1) 2(2 x) Cs bz = Tt
2
1 .
of? () / of? (1)t = £ (3~ )" in &9, or |
z—1 re = x5+ a1 — 72 lies betweerD) and1, (78)
x7 = x4+ a1 — 23 lies betweerd and1 .

By integrating theaé2)(:c), we can double-check our compu-_ . )
tation of K (1 5y (2.4} above: This can be split into the following volumes:

1) 1 <zp < 3,

! 2 2 2) x1 <x3 < 29,

| @@ rwar+ [ @20 -, Ay

4) xo <23 < 139,

5) xp <1 < a3,

B. Computation o<1 3 5} (2.4,6}},u 6) x3 <x1 < @9,
Each of these volumes can be computed by setting up an

For m = 3, integration gives : . . . ;
" g g integral with corresponding bounds. Computing these nateg

1 2 3 we getthe values:, +, £, &, &, &L, respectively. Adding
3 3 3 157 157 15 120 120°
/0 (a$)? (t)dt +/1 (a2 (t)dt +/2 (S (t)dt, these contributions together, we get
4 11 271 9
which computes toif. This is the stated expression for 15 T 60— 60 20’
K{{1,3,5),{2.4,6}},u" which proves the claim.

F. The computation of((1 6} 12,4},{3,5,7}},u

C. Computation off((1 4} (2,5},(3,6}}.u This is equivalent to finding the volume of the solution set
This is equivalent to finding the volume of the solution sétf

of T1+Ts = T2+ 27

T1+ x4 =22+ x5 =23+ g T2+ 2y = T3+ 25
in R4, which is computed as in R?, or

. ) re = X7+ 19— 71 lies betweer) andl,

/ (@P)3(t)at +/ ()3 (t)dt, rs = x4+ o — 23 lies betweerd andl, .
0 1

This can be obtained from (78) by a permutation of the
which computes toi. This is the stated expression fowariables, so the contribution frofi (1 6}, (2,4},(3,5,7}},. MUSt
K{41,4y,{2,5},{3,6} },u- also besr, which proves the claim.
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APPENDIXD 2) p = {Wh,Wo, W3} with || = |Ws| = 2, |[Ws| = 1:
THE PROOF FORPROPOSITION3 There arel5 such partitions, of whicth have crossings. The

We will have use for the following result, taken from [29]:ft@! contribution is therefore

Lemma 1: The number of noncrossing partitions\C'(n)
with r; blocks of lengthl, ro blocks of length2 and so on

(so thatry + 2ro + 3r3 + -+ - nry, =n) is 1045 x K{{1 30} A2.4}}u
nl = 1045 x
rilrlcompln+1 —rp —rg ooyl

Using this and a similar formula for the number of par-
titions with prescribed block sizes, we obtain cardinedti
for noncrossing partitions and the set of all partitionshwit
a given block structure. These numbers are the used in fh

following calculations. For the proof of Proposition 3, weenl a given block structure, and identify each partition witheon

to compute (68) for all possible block cardinalitigs, ..., r), of the coefficients listed in Proposition 2.
and insert these in (70)-(74). The formulas for the three firs “ ! ! post

moments are obvious, since all partitions of length3 are
noncrossing. For the remaining computations, the follgwin
two observations save a lot of work:

o If p1 € P(n1), p2 € P(n2) with ny < ng, and p; can
be otained fronp, by omitting elements; in {1,...,no}
such thatk and k£ + 1 are in the same block, then we
must have that<,, ., = K,, .. This is straightforward
to prove since it follows from the proof of Proposition 1
thatiy; can be chosen arbitrarily betwe@rand NV — 1
in such a case.

e K, .=K,,, if the set of equations (76) fgr; can be  In order to get the exact expressions in Theorem 2, we now
obtained by a permutation of the variables in the set ofed to keep track of th&, , v defined by (9), not only the
equations forp,. Since the rank of the matrix for (76)limits K, ., (if we had not assumed = u, the calculations
equals the number of equationsl, we actually need for K, . ny would be much more cumbersome). Wheris
only have that|p;| — 1 of the |p;| equations can be a partition of {1,...,n} andn < 4, we have thatk, , v =
obtained from permutation ofp»| — | equations of the K,. =1 whenp # {{1,3},{2,4}}. We also have that
|p2| equations in the equation system for

The computations for the sixth and seventh order moments
e similar, but the details are skipped. These are moreusdi
fR%he sense that one has to count the number of partitiotns wit

APPENDIXE
THE PROOF OFTHEOREM 2

A. The moment of fourth order i 2 n 1 n 1 (79)
The result is here obvious except for the case for the three HLsh2aheN =3 TN T 6N
partitions with block cardinalitie$2,2) (for all other block
cardinalities, all partitions are noncrossing, so thaf ., .. .
is simply the number of noncrossing partitions with block Kihere we have used ch 2 = N(N+1)(N + 1) [36]
cardinalities(r, ..., 7). this number can be computed frorrwe also need the exact eX_plressmn ot quantiQty .
Lemma 1). Two of the partitions with blocks of cardinality
(2,2) are noncrossing, the third one is not. We see from
Proposition 2 that the total contribution is
Koo = 2+K{{1 3} (2,4} },u T, = Z L_‘p‘Dl(N)(jlajl)X"'XDn(N)(jnajn)

2+ £ =2 L U1ssdn)
giving rise top
The formula for the fourth moment follows.

B. The moment of fifth order from (64) (i.e. we can not add (65) to obtaln the apgaroxmatlo

Here two cases require extra attention: (66) here). SettlngD WD rr (D™(N)), and D, N.L)
1) p = {W;, Wa} with |W;| = 3, |Ws| = 2: There arel0 ]'[ D(N L) we see that

such partitions, and@ of them have crossings and constribute

with K1 3} 42,43},- The total contribution is therefore

9+ 9 x K{{l 3(} {2,4}},u NL) 1o’ —1pl
= 5+5x2=2. P ,Z:p
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which can be used recursively to express fhein terms of A. First order approximations to Theorem 2

the DgN’L). We obtain the following formulas fon = 4:

Trosay = DIV (81)
Tasyay = DSOPDIY — LDV (82)
Tioysay = (DY) = L7'D{MY (83)
Ty iy = DSVP (D)2

—2L_1(D§N7L)D§N,L)
_L_lDiN’L))
-L™ ((D§N7L>)2 _ L_1D§N7L))
—L_QDELN’L)
= DME) (DN
—L_l(DéN’L))Q
—2L’1D§N7L)D§N,L)
+2r- 2DV D) 4
T{{l},{z},{3}7{4}} — (DgN,L))4
_6L—1(D§N,L)(D§N,L))2
—L_l(DéN’L))Q
—2L_1D§N7L)D§N,L)
421, 2Dy
—3L’2(D§N7L))2
303D
—4L’2D§N7L)D§N,L)
+4L73 D§N7L>
_L_3DiN’L)
= 6L D™D
+L72(8DNH VL)
+3(D{NE2)
6L~ DNV (D)2
(D)1, 5

For n = 3 andn = 2 the formulas are

Tiosy = DY (86)
Tpapey = DIVPDIY — 171D (87)
Ty pgey = (DY) =307 DM pitb)

+21-2p§V ) (88)

Ty = DMV (89)

Tiyen = (D)2 —L71Dfo, (90)

It is clear that (81)-(85) and (86)-(90) cover all posstigb

If we are only interested in first order approximations rathe
than exact expressions, (80) gives us

T,~D,— Y L7'Dy,
p'>p
lol=1p"|=1
which is easier to compute. Also, we need only first order

approximations tak, ,, v, Which is much easier to compute
than the exact expression. For (79), this is

2 1
K -+ —
{13} {24} )N ¥ 3 + N
Inserting these two approximations in (64) gives a first orde
approximation of the moments.

APPENDIXF
THE PROOF OFPROPOSITION4

We only state the proof for the case-= 1. In [31] it is stated
that the asymptotic momegt (ms,) of certain Hankel and
Toeplitz matrices can be expressed in terms of the quasititie

man = Z Kp-,u (91)
p € P(2n)
p has two elements in each block

In the language of [31], the formula is not stated exactly
like this, but rather in terms of volumes of solution sets of
equations of the form (76). This translates to (91), sinceérwe
Appendix B interpretedy, ,, as such volumes. In Proposition
A.1l in [31], unbounded support was proved by showing that
(man)'/™ — oco. Again denoting the asymptotic moments of
Vandermonde matrices with uniform phase distributiorifyy

we have thatny,, < V,, since we sum over a greater class
of partitions than in (91) when computing the Vandermonde
moments. This means that/gn)l/" — oo also, so that the
asymptotic mean eigenvalue distribution of the Vanderneond
matrices have unbounded support also.

APPENDIXG
THE PROOF OFTHEOREM 3

We will use the fact that

_ 1
Kpu,N = Grymramsr=ror X
n 1V Eb(k—1) ~%b(k))
f(O,Zﬂ-)\P\ Hk:l 1_€j(mb(k71)7rb(k)) (92)
diCl . -dx‘p‘,

where integration is w.r.t. Lebesgue measure.

For p = 1,, Theorem 3 is trivial. We will thus assume that
p # 1, in the following. We first prove thalimy .. K, ..~
exists whenevep,, is continuous. To simplify notation, define

1 — eI N(wok—1) —@Wb(k))

F(w) = klill 1 — ej(wb(;C 1) —Wh(k))

when it comes to partition block sizes. Using (12)-(13), and
putting (79), (81)-(85), and (86)-(90) into (64) we get the
expressions in Theorem 2 after some calculations.

ﬁ in (N (wWpr—1) — we(r))/2)
pale (wor—1) — Wp))/2)
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and setw = (w1, ...,w|,|) anddw = dw - - - dwy,|. Sincew is  The assumption thaf(z) = 0 in a neighbourhood of zero is
continuous, there exists j@,.. such thatp,, (w;) < pma. for due to the fact that the; are all different. Note thaltf (x)| <

all w;. Then we have that Irl% for any 0 < ¢ < 1. Also, then — 2-fold convolution
Ky o] < <2 (we wait with then — 1'th convolution till the end) ofﬁ
“ = Nl sin(N —n)/2) with itself exist outside) whenever) < (n —2)e < 1, and is
% Jio.2myiel Tz sin((mb:;cilw)b(k:i?;ﬂ) de, on the formrﬁ for some constant [36]. Therefore,
(96) is bouncjed by

where we have converted to Lebesgue measure, and where we 1 1 1
have also writtenlz = dx, - - - dx),. Consider first the set / S - / S —,
|z]>1 |

Tl T g TP
U = {wllzpm—1) — zow)| < 7V} 2
When 27 < |wys_1) — wyry| < 0, itis clear that (n—2)e—1
sin (N(:c . )/2) This proves that the entire sum (96) is bounded, and thus
: bk—1) — Tb(k) (93) also the statement on the existence of the liditp,w) in
Sl ((xb(k—l) - xb(k))/z) Theorem 3 when the density is continuous.
since]sin (N(Ib(k—l) _ Ib(k))/2)’ < 1, and sincd sin(z)| > For the rest of the proof of Theorem 3, we first record the

2| when|z| < Z. When|z_1) — 50| < 2% we have that following result:
H ol <3 o) = 2o | < F Lemma 2:For anye > 0,
sin (N(xb(kq) - ivb(k))/Q)

sin ((Zp(k—1) — To(k))/2)
L_et k1, .._.,k|p| e_Z, _and assume thdf, = 0. By using the \yhere
triangle inequality, it is clear that on the set
ok Ber = {(wi, - wipl|wpr—1) — Wiy | > €}

N Proof: The setB. ;. corresponds to those, ..., k), in (96)

H N

when |k, — ks| > 2 for all r, s, the i'th factor in F(x) is for which [k, 1) — ku(r)| > g€ Thus, for largelV, we sum

4
<
Th(k—1) — To(k)

3

< N. (94) : 1 _

< %w <i<|ol},

bounded by 4N due to (93). Also, wheifk, — overks, ..., k|, in (96) for which k1) fkbgr)| is arbitrgri_ly
(Ikb(r—1) —Kp(ry | = 1) . , large. By the convergence of the Fourier mtegraléerf, it is
ks| < 2 for somer, s, the corresponding factors if(z) are  .jear that this converges to zero. -

sk due to (94). Note als_o that the  pafine
K, IS (2m)lPIm1N1=IPl By adding some

.....

more terms (to compensate for the different behaviouifor Be = {(w1, s w)p) ) ||wi — wj| > € for somei, j}.
%hr?a? and|k, —k,| < 2), we have that we can find a constanf B., there must exist an so thatws(, 1) — wy(ry| > 2,
so thatw € B, »./,,. This means that
m fU |F'(x)|dx
< mNﬂ B. C UTBT,Qe/nv

X D 0<ky,. klpl-1<N (Hle WD*’%()\) 2m(2m)lPI=IN1=1Pl 50 that by Lemma 2 also
all x,; different

= (277)\p\DnZ ol NH?: S E— . 1 _
all i, different - "eh TRl (95) NI, e f,, F@)de =0

where we have integrated w.ri;,| also (i.e.k, is kept This means that in the integral fak, ., ~, we need only
constant in (95)). A similar analysis as f6f applies for the integrate over thes which are arbitrarily close to the diagonal,

complement set (wherew; = - -+ = wj,|). We thus have
V = {wl|r < |@p—1) — Ty | < 27 for somek}, K, =limy_ 7Nn+11*\ﬂ\ f[o,%)\p\ F(x) lelil po (- )dx
. . 1
so that we can find a constafit such that = limy— oo Frr=rr f[g,Qﬂ')\P\ F(2)pu(x)p)) 7 de
. 1 T
N—nfmm f[O.,Qﬂ')\p\ |F(x)|dx =My oo FrrTm fo pw(zlpl)‘p‘
< CZOSM ----- klp|—-1<N Z:l Wl_kb(r)" (96) (ﬁO,QW)‘P‘*l F(‘T)d‘rl e d‘r|l’|*1)
all «; different dz,.

It is clear this sum converges: First of all, this is only negd
to prove forp = 0,,, since the summands for+# 0,, is only
a subset of the summands fpr=0,,.

Secondly, forp = 0,,, (96) can be bounded by considering MmN —.oc xFr=rr Jig 2my1e1-1 F(@)d1 -+ dzjp) 1 (99)
convolutions of the following function with itself: = (2m)lPI1K,,

f(x):{ |g16—| for |z| > 1

0 for |z| <1

We used here the fact that the density is continuous. Using
that

whenz|, is kept fixed at an arbitrary value (this is straightfor-

(97) ward by using the methods from the proof of Proposition 1 and
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(92)), and again using the fact that the density is contlsuouevaluate

we get that the above equals

27
KP,U(27T)IPI_1 / p
0

which is what we had to show.

w (@)1 da

APPENDIXH
THE PROOF OFPROPOSITIONS

Proposition 5 will follow directly if we can prove the

following result:

Lemma 3:Let wi (1 < k < n) be the uniform distribution

on [22=D) 21k and defineoy, . x, (0 < A < 1A +---+

An = 1) as the phase distribution with density,, | =
AMPw, + -+ Anpw, - Then

ey

KP,UJAI ..... An
27
= KPu(27T)Ip| ! (/ p Alyees An (1‘)pd$>
0
— Kp,u(27r)|”|*1
27
<[ a0+ A, ()
0
— pu(zﬂ)lpl—l
27
() |p|/ P (2)Pdz + -
0
27
\p\/ (2)°da)
0
= K,.(2n) Ipl 1
27
() |p|/ P (2)Pdz + -
0
27
\p\/ P ()17 dz)
0
= K, (2m)et ( )P (An)\p\)
27
></ P, (x)dz
0
ol—1 1 ol 1 [o|
> K,.(2m)r- l R
R (DR
27
></ Do, (2)1Pldz
0
= Kpws 1>
where we have used thai p' ‘,{" constrained tar; +
-+ + z, = 1 achieves its mimmum for) = - =2, = %
|
APPENDIXI

THE PROOF OFTHEOREM4

Nw in points on the formv = «; — a;. This
evaluates taV" py when allw; are chosen equal to the same
atome;. Sincelimy .o A}(%J:J:) = 0 for any fixedw # 0,
limy o0 K0, nN™" = 0 whenw is chosen from nonequal
atoms. (57) (with additional /N-factors) thus becomes

Zpe?(n)

U1seesin)

(100)

in)
N\p\ 2n—1.lpl=17 —|pl
(ZiNn pi +apNnN™))
D1 (N)(j1, j1)D2(N) (2, j2)
- X Dn(N)(]na]n)a

wherelimy . a, v = 0. Multiplying both sides withV and
letting NV go to infinity gives

Z Nlel=nlpl-1 (ZP?"‘%,N) D,.

peP(n) i

lim
N —o0

It is clear that this converges tbwhenp # 0,, (since|p| < n
in this case), so that the limit is

-1 n _ n—1 (n) 1; .
(ZZ: ;i ) ag, = c"p™ lim £[1 trr (Di(N))
which proves the claim

APPENDIXJ
THE PROOF OFTHEOREMb5

We need the following identity [36]:
/ eseina gy — L= 8) pmanjizor
0

|n|175 ’

wheresgn(z) = 1 if x > 0, sgn(z) = -1 if z < 0, and0
otherwise. From this it follows that

% pile — | ~eineda =

2piejno¢¢ I‘;(J;SS) cos ((1725)71') )
Note that the measure with densityhas the same asymptotics

nearq; as the measure with density|z — a;|~% on

(‘ <12;is)ﬁ ’ (12;)_> '

As in the proof in Appendix I, the integral for the expansion
coefficients is dominated by the behaviour near the points
(i, ...,c;). To see this, note that the behaviour near the
singular points on the diagonal i (s(|p| —n) — 1) when
polynomic growth of ordes of the density near the singular
points is assumed. This is very much related to (96) in
Appendix G, sincek, ., here in a similar way can be bounded
by (taking into account new powers of)

n
Cinm+1 —N"N~ lol \lels

ol s (102)
Xzaolrilvdﬁpe‘;elvntnr HlRoer—n = kb(”|H a

(101)

The contribution in the integrak(, ., y comes only from In (102), the N"-factor appears in exactly the same way as

when thew; coincide with the atoms op. Actually, we

in the proof of Theorem 3 in Appendix Gy ~!?! appears as
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a volume inR/”l, and N!?l* comes from evaluation of the APPENDIX K
density in the points:; = Q’j\;”, 1 <4< |p)). Since# has a THE PROOF OFTHEOREM 7 AND COROLLARY 1
bounded integral aroun@, and since the sum still converges
(it is dominated by (96)), (102) is Proof of Theorem 7: we defineS; to be the blocks o,
ie.
O (s(lpl =n) —1).
This has it's highest order whép| = n, so that we can restrict S = {klir = j}-

to looking at0,,. Note also that we may just as well assume _
that p,,(z) is identical top;|z — w;|~* at an interval around Noté that Theorem 3 guarantees that the limi},., =
wi, sincelimy_.a, |7 — as|*po(x) = p; implies that limy_ oo Kpw.nN exists. Th.e partitiorp simply is a grouping
of random variables into independent groups. It is theeefor
Po(®) = pile — wi| 7° + k(z)|r —wi| 7° (103)  impossible for a block irp to contain elements from bots

wherelim, ., k(z) = 0. It is straightforward to see that the@ndS2, SO that any block is contained in eithgr or 5. As
contribution of the second part in (103) to (102) vanishes &stonsequence, < o. [ |
N — oo, so that we may just as well assume tha(z) is Until now, we have not treated mixed moments of the form
identical top;|z — w;|~*® at an interval around;, as claimed.
Also, since D (N)V,VIDy(N)V;,, VI ... x D,(N)V;, V],
lim %/ dr =0
=00 Jiz|>e which are the same as the mixed moments of Theorem 7
for all e > 0, and since the contributions from largelominate except for the position of th®; (V). We will not go into
in (104) below (since”,, [n|~* diverges), it is clear that we depths on this, but only remark that this case can be treated
can restrict to an interval aroung when computing the limit in the same vein as generalized Vandermonde matrices by
also (sincep,, is continuous outside the singularity points, thieplacing the density; (or p, in case of continuous gener-
follows from Theorem 3, and due to the addition@-factor alized Vandermonde matrices) with functiops, (x) defined
added to (1)). After restricting t6,,, multiplying both sides by pp,(z) = Di(N)(|Lz],[Lx|) for 0 < x < 1. This also
with NV, summing over all singularity points, and using (101);0vers the case of mixed moments of independent, genetalize

we obtain the approximation Vandermonde matrices (and, in fact, there are no restnistio
on the horizontal and vertical phase densitigs andp,; for
Z Z each matrix. They may all be different). The proof for this is
(i1,:in) @ straightforward.
N7t N Proof of Corollary 1: this follows in the same way as
% <2paF(1 — 8)cos ((1 - 5)77>) Proposition 3 is proved from Proposition 2, by only consid-
2 ering p which are less tham, and also by using Theorem 3.
n i(in—1—iy)aa o are for the listed moments{1}, {2}}, {{1,3},{2,4}}, and
ol § P — {{1,3,5},{2,4,6}}, respectively. m
o ik—1 — i

strp(Dy(N)) x -+ x tro, (Do (N)) (104)

to (57). Since[[}_, e/(k-1~)% =1, we recognize APPENDIX L
N (-5 )" THE PROOFS OFPROPOSITIONG AND 7
(M = (200 - s)eos (9525)) (5, ) #
D inniny N oy m, The moments [tr,, (W*)] will be related to the moments
as a factor in (104) such that the limit of (104) s — oo P through three convolution stages:
can be written 1) relating the moments oW with the moments of
n—1 1: (n,N) 1: . 1
¢ Jm g Nlinoo,l:[lt” (Di(N)) T = VP: <ESSH> P>V, (105)
It therefore suffices to prove théitny_.. ¢ = ¢(™. To _ _
see this, write from which we easily get the moments of
N L 1 = (1 , ,
iy —inl T N (R T i i S = <§SSH) P:VIVPs, (106)
1 1
AT | 2) relating the moments @& with the moments of
N =N
Summing over alll < i1, ...,i, < N, it is clear from this that T =PV*V, (107)

¢™N) can be viewed as a Riemann sum which converges to
¢ asN — oo. 3) relating the moments df' with the moments oP.
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For the first stage, the moments W andT relate through wherecs = % andT = PVHV. (108)-(110), (111)-(112),

the formulas and (113)-(116) can be combined to
Eltr,(W)] = eEltr; <T>] +o? (117)
E[tr, (W?)] = FE[tr; (T?)] + coesE { try, (T }
. +2t (¢ c3>E [tre (T)] + 0% (1 + c(118)
Eltr,(W)] = Eftrn(D)]+0o (108) B [trn (W9)] ( > g (T9)]
Etr, (W3] = E[tr (T)] (W = &
+20%(1 4 ¢1)E [try (T)] +3cacsE [(trL (T)) (trr (T?))]
+ot(1+4¢)) (109) Vo 2E [(tTL (T))ﬂ
E[tr, (W*)] = Eltry (I?)] ) )
+30%(14c1)E [trN (1"2)] +30 ((1 +c1)es + —) E trL T
+30%c,E [(t?“]v (1‘))2} +302%¢s(c3 + 260)E [(m (T)) }
4 2 1
+30 <01 +3c1+ 1+ ﬁ> Etry (T)] +30% < +3c1+ 1+ ﬁ) e E[try, (T))
) 1
+o° (Cl 3+ 1+ ﬁ) o (110) +o0 <c1 +3c+1+ ];2> (119)

Up to now, all formulas have provided exact expressions for
the expectations. For the next step, exact expression$idor t
expectations are only known when the phase distributioas ar

. . - 1 ) uniform, in which case the formulas are given by Theorem 2:
which are obtained by replacinB. in [32] by VP:= S, with

¢ =c; = £. For the second part of the first stage, note that ~ coE [trr, (T)] = cotrp(P) (120)
coFE [trL (Tz)} = (1 — N_l) CQtTL(P2)
+c3(trp(P))? (121)
FE [trp (T?)] = (1-3N"'"4+2N7?) catrp(P?)
n - +3 (1 — N7 c3trp (P)tr, (P?)
Eftry (9] = B [pre (8*)] k (111) +3(tr(P))? (122)
E [(trN (r))’“] = E {(m (s)) ] . (112) [ try (T 2} = trp(P)? (123)
[ try (T 3} = trp(P)? (124)
E|(tr, (T )) (tr (T2
E : )trf((P)m)az](P% be(rp@)p. (129
wherec, = . We can now apply Theorem 2 to obtain |t e phase distributionv is not uniform, Theorem 1 and
Theorem 3 gives the following approximation:
coEftrr, (T)] = cotrp(P) (126)
_ oF [trp (T?)] =~ cotrp(P?) +L(tro(P))*  (127)
csE [trL (g) = c3Etry (T)] (113) e B [trr, (Tg)} ~  cotry(P?) + 363 Lotr (P)tr, (P?)
c o (§2 1 - ¢ - 2 +02 s(tro(P )) (128)
3B {t L (S ) = cE[try (T?)] 2 E [(trL (T))Q} —  (trpP)? (129)
C2 T
. tesk [(t £ (T) } (114) E {(tm (T))ﬂ = (tr P)? (130)
CgE [t?‘L (Sg) = (1 + K72) C3E [t?‘L (TS)} )
] , , E [(try (T)) (trr (T?))] (131)
+33E [(trpT) try, (T%)] ~ tr, (P)trr (P?) + cala (trr (P))?,
+e3 B [(t” (T))S} (115)  \yhere the approximation i©(N '), and wherel}, is defined
N\ 2 by (47).
E [(”L (S)) ] =k [(”L (T)ﬂ Proposition 7 is proved by combining (117)-(119) with

) (120)-(125), while Proposition 6 is proved by combining
+EE [t (T?)],  (116) (117)-(119) with (126)-(131). Proposition 8 is proved bysfir
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observing that the roles of and N are interchanged, since[22]
the Vandermonde matrix is replaced by its transpose. This
means that we obtain the formulas (117)-(119), withand 23]
c3 interchanged, and, replaced with%. The matrixT is

now insteadVV¥H, and these can be scaled to obtain th[g n
moments of VZV. Finally the integralsl,, or the anglea

can be estimated from these moments, using (126)-(131) wizhl
the moments oP replaced withl (since no additional power
matrix is included in the model)

Matlab code for implementing the different steps here

(like (108)-(110), (113)-(116), and (120)-(125)) can barfd [?7]
in [34]. (28]

[26]
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