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ABSTRACT

Consider a large linear system with random underlying ma-
trix:

Xp =1y + an;\/ﬁ—nMnxn ,
where x,, is the unknown, 1,, is a vector of ones, M, is a ran-
dom matrix and «,,, 3, are scaling parameters to be specified.
We investigate the componentwise positivity of the solution
%, depending on the scaling factors, as the dimensions of the
system grow to infinity.

We consider 2 models of interest: The case where ma-
trix M,, has independent and identically distributed standard
Gaussian random variables, and a sparse case with a growing
number of vanishing entries.

In each case, there exists a phase transition for the scaling
parameters below which there is no positive solution to the
system with growing probability and above which there is a
positive solution with growing probability.

These questions arise from feasibility and stability issues
for large biological communities with interactions.

Index Terms— Linear equation, Large Random Matri-
ces, Extreme values, Lotka-Volterra equations, feasibility and
stability in foodwebs.

1. INTRODUCTION

Consider a large linear system with random matrix M,,:

1
Xp =1y + ——=M,x, s (D
any/fBn
where [n] = {1,--- ,n}, X, = (Tk)repn) is an x 1 unknown

vector, 1,, is a n x 1 vector of ones, M,, = A, ® X,, is a
n x n random matrix, where A,, represents a deterministic
adjacency matrix of a given graph, accounting for the sparsity
of M,, and X,, is a n X n matrix of independent and iden-
tically distributed (i.i.d.) standard Gaussian A (0, 1) random
variables. The Hadamard product M,, = A,, ® X,, accounts
for the entrywise product M;; = A;;X;;, hence A, acts as a
deterministic sparsity pattern over the random matrix X, .
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The sequences «,, and 3,, are two deterministic positive
sequences going to infinity with different roles: [,, is such
that the spectral norm of matrix (., Y 2Mn is of order 1, while
the parameter «,, represents the extra normalization needed
to obtain a positive solution x,,.

In the following, we investigate the componentwise pos-
itivity of the solution x,, for two specific models: the full
matrix model (FMM), where

An = ]-n]-z;a Mn = Xn and Bn =n. (2)

For this model, we will state a theorem established in [1].

We also consider a sparse matrix model (SMM) where A,,
is the adjacency matrix of a d-regular graph. For this model,
we present a conjecture and some simulations.

The positivity of the x’s is a key issue in the study of
Large Lotka-Volterra systems, widely used in mathematical
biology and ecology to model populations with interactions.

Consider for instance a given foodweb and denote by
Xn(t) = (21 (t))ke[n the vector of abundances of the various
species within the foodweb at time t. A standard way to
connect these abundances is via a Lotka-Volterra (LV) system
of equations that writes

dxg(t) 1
7t = l‘k(t) TR — Ql‘k(t) + m Z ngxg(t)
Le(n]
3)
for k € [n]. In this equation, rj represents the intrinsic

growth rate of species k, 6 is a coefficient reflecting intraspe-
cific competition, and Mj, is the per capita effect of species
£ on species k. In the absence of any prior information, the
interactions My, can be modelled as random.

Remark 1. Notice that without interactions (M,, = 0), equa-
tion (3) is simply a logistic differential equation.

In the following, we will focus on the idealized model
where r, = 0 = 1.

At the equilibrium dc’l‘—t" = 0, the abundance vector x,, is
solution of (1) and a key issue is the existence of a feasible
solution, that is a solution x,, with positive components xy.

A major motivation for the present study comes from the
paper [2] where it is established that for the full matrix case
and under the standard normalization «,, = « fixed and 3,, =
n, there are no feasible solutions.
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2. THE FULL MATRIX MODEL

In the FMM (2), the convergence of the spectral norm

In =1 2X, || =2 2 4)

n—oo

is well-known (see [3]) hence the normalization 3,, = n. The
following phase transition phenomenon occurs:

Theorem 1. Let o, — o0 and denote by o), =
Consider the solution

&x <z>x—Ian 711
Oén\/ﬁn n*nan\/ﬁ no

where M,, = X,,.

21og(n).

Xy =1, +

o [fthere exists € > 0 such that o, < (1 — €)a), eventu-

ally, then
]P’{min:vk>0}—>0. (&)
ke(n] n—o00
o [fthere exists € > 0 such that o, > (1 + €)a), eventu-
ally, then
]P’{minxk>0}o——+1. (6)
ke(n] n—o00

Theorem 1 has been established in [1].

Remark 2. Notice that if o, = « is fixed, the solution of the
system (1) has already been studied by Hwang and Geman [4]
for non-Gaussian i.i.d. standardized entries. A major conclu-
sion of this work is the asymptotic independence and Gaus-
sian fluctuations of any finite number of x,,’s components:

T 2 Nu (1ar,020n) , (D)

($17"'axM) oo

where M is fixed, Nas represents a M -valued Gaussian vec-
tor and o2 > 0. An easy consequence of (7) yields (5). This
result has been exploited in [2] to state the absence of feasible
solution to (3) if o, = a > 0 is fixed.

Elements of proof. The system (1) writes

(I Mn ) 1
n— = | Xpn=1n
an/n

By (4), the spectral norm of a;, 'n~'/2M,, goes to zero and
one can safely invert the previous equation, and unfold the

—1
resolvent (In - QMZ%) as a matrix infinite series:
-1
M
Xn = (In T o \7}—) 1,,
n

0o 4
1, + Mn 1, + ( )
OZTL\/> KZQ an\/>

Denote by ey, the k-th canonical vector and keep the first two
terms in the previous expansion, then x;, writes

T = egxnzl—i—eg

M’fL 1 +
anyn "
i Z?:l Xk]
an  /n
Notice that Z, = n~'/? >ioy Xy is exactly NV(0,1)-
distributed and that the Z}’s are independent. In particular,

21
min rp ~ 1+ — M
ke(n] (07 (o7

MiNge(n) Lk

by standard extreme value theory!. This immediatly yields
the conclusions of the theorem by comparing the relative po-
sitions of o = /2log(n) and a,. O

The main input of [1] is to establish that the remaining

term
o= Z (anf)

has no effect on the positivity of x,, and can be neglected.

3. THE SPARSE MATRIX MODEL

We focus on the following SMM: consider a deterministic n x
n adjacency matrix A,, of a d-regular (directed) graph, that is
a matrix whose entry A;; equals 1 if the edge (ij) belongs
to the graph of order n, and zero else, and where each vertex
1,--- ,n has exactly d neighbours. This in particular implies
that there are exactly d non-null entries in each row and each
column of A,,, and the total number of non-null entries of
matrix A,, is nd.

The spectral radius of M,,. Depending on the magnitude
of d = d,, the order of the spectral radius of M, varies.
The following two extreme cases illustrate this fact: consider
AP = diag(1) and AP = 1,17, In the first case, d = 1
and

HNQDH::HAS)C%XnH=wn?§hYnM~ 2log(n) .
€N

In the second case, d = d,, = n and

1M = AP © Xall ~ 2V

This simple example illustrates the fact that the tuning of 5,
is non-trivial in the sparse case: if d = 1 then §,, = 2log(n)
while if d = n then 3, = d,, = n. In fact, the following
phase transition, established by Bandeira and Van Handel in
[6], holds:

It is well-known that if the Zj’s are iid.  AN(0,1), then

Emaxpe(p] Zx = —Eminge[,) Zi ~ /2log(n), see for instance [5].
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o If d,, > log(n) then E|| M, || ~ V/dp,

log(n).

To be more specific, the result by Bandeira and Van Handel
[6] writes in our context:

o If d,, < log(n) then E||M,,|| ~

E[[ M| < (1 +¢) {2\/>+ a1 1 0) 10g(n)}

forany 0 < e < 1/2and

E||M,|| >k 2v/dn + v/21log(d,n),

where a,, >k b, means that there exists a constant indepen-
dent from n such that a,, > Kb,,.

Positivity of the solution x,,. Based on the previous analy-
sis of the spectral norm of || M,]|, we shall consider the fol-
lowing regime d,, > log(n) where | M,]| ~ v/d,. We fix
B, = d,. Based on simulations (see below), we state the
following conjecture:

Conjecture 1. Let o, — o0 and o) = +/2log(n). Let
M, = A,0X, with A,, the adjacency matrix of a d,,-regular
graph, with d,, > log(n). Consider the solution

M, >1 L
a, /fdn mno

M
anVdy,

X, = 1,+ X, < xn<In

then

o [fthere exists € > 0 such that o, < (1 — €)a), eventu-
ally, then P {minke[n] Ty > 0} —0.
n— oo

o [fthere exists € > 0 such that o, > (1 + €)a, eventu-
ally, then P {minke[n] T > O} — 1.
n—oo

Remark 3. The conjecture can be settled in the case where
d x n, i.e. where dn=' — ¢ > 0. It suffices to follow the
lines of the proof of Theorem 1 in this regime.

Arguments. The same argument as Theorem 1 applies when
unfolding x,,:

1 Apj X
oy = ey = 14 L 2im A

ay, Vd,

Introduce Z;, = d, 1/2 Z 1 Akj X, and notice that since
#{A; = 1,1 <j < n} = dy, Z, is N(0,1)-distributed
and the Z}’s are independent. Now

i VA 2log(n
min xp ~ 1+ [igkgn Sk ~1-— 7g( ) .
1<k<n Qn o,
The conclusion follows as previously. O

Although simulations tend to indicate that the remainder

term
= e Z( r)

has no influence on the positivity of x,,, a direct mathematical
proof is currently beyond our reach for d,, < n.

4. DISCUSSION

The results presented here lie between Random Matrix The-
ory (RMT) and perturbation theory, slightly outside the range
of RMT. In fact, consider

(.r My )11
Xn = n — n
any/Pn

In RMT, the random matrix part is supposed to have a limiting
macroscopic effect, and this is indeed the case if o, = avis a
constant and

~ O() as n— .

’ ’ ;

VBn

From a perturbation theory point of view, the random matrix
part vanishes asymptotically as it is the case if o, — 00:

1 || M,

B

As demonstrated in Table 1, the vanishing effect of the ran-
dom part a;lﬁgl/QMn is extremely slow.

— 0.

n—oo

n 102 | 10% | 10* | 10° | 106

111033 | 027 | 023 | 021 | 0.19
= \/leoﬂ vanishes extremely

slowly as n increases.

5. SIMULATIONS

In this section, we illustrate the phase transition phenomenon
toward a positive solution x depending on the scaling oy,
B being either fixed at N (FMM) or d (SMM).

In Figure 1, we consider the transition toward feasibil-
ity for the full matrix model. We consider different values
of N, respectively 400 (dashed), 1000 (solid). For each N
and each s on the x-axis, we simulate 10000 N x N matri-
ces My and compute the solution x of (6) at the scalings
an(k) = ky/log(N) and Sy = N. Each curve represents
the proportion of feasible solutions x, obtained for 10000
simulations. The red dotted vertical line corresponds to the
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Homogeneous case, Gaussian entries

1.0 — N =1000
—-- N =400

=== Threshold
0.8

0.6 4

0.4 4

0.2 4

0.0 4

Fig. 1. Transition toward feasibility for the FMM

d-regular graphs - Gaussian entries - N=1000

Fig. 2. Transition toward feasibility for the SMM

critical scaling ay, = /2log(N) for k = /2. The propor-
tion of feasible solutions ranges from 0 for x < 1 to 1 for
K> 2.

In Figure 2, we consider the transition toward feasibil-
ity for the SMM. In this case, N is fixed N = 1000 while
d,, varies from 1 to 500. The phase transition is similar to
the FMM. Notice in particular that in this case simulations
tend to validate the phase transition phenomenon even for
d < log(1000) = 6, 90.

6. ADDITIONAL RESULTS

We now illustrate two aspects of the phase transition not cov-
ered by the results presented so far.

In Figure 3, the phase transition is shown to hold for the
FMM with Bernoulli +1 entries. Although the Gaussiannity
of the entries is mathematically important for the proofs, these
simulations tend to show that this assumption is merely tech-
nical but not necessary.

In Figure 4, we illustrate the phase transition phenomenon
for the FMM for a non-homogeneous linear system:

1
n — I'n Mn n 8
X r+an\/ﬁ X (8)

Homogeneous case, Bernoulli entries

109 — N = 1000
—-= N =400

—=- Threshold
0.8

0.6
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0.0 4

Fig. 3. Non-Gaussian entries, FMM

where r,, = (1) a n x 1 deterministic vector with positive
components. In this non-homogeneous case, the phase transi-
tion is not as clean-cut as in the homogeneous case but there
is a buffer zone where the transition occurs. We formalize this
with the help of the following notations:

Tmin = MiN1<g<n Tk,
and o.(n) =
Tmax = MaX1<k<n Tk

Assume that pyin, Pmax are independent from n and

O < Pmin S T'min S Oy S T'max S Pmax < 00.

Non-Homogeneous case, Gaussian entries

107 — N = 1000
—-- N =200
—-- Thresholds

Feasibility probability

05 t 15 2 25 & 35

Fig. 4. Non-Homogeneous system, full matrix model with the
oy or(n) oy or(n)

buffer zone [t1, o] where t; = ~2- o) E—

and t5 =

Theorem 2 (Bizeul et al. [1]). Let ay, T> oo and denote
n oo
by o, = \/2logn. Let X,, = () re[n) be the solution of (8).

o [f there exists € > 0 such that eventually o, < (1 —
E)m then P {minke[n] T > O} — 0.
n—roo

Tmax ()

o [f there exists € > 0 such that eventually o, > (1 +
E)m then P {minke[n] T > O} — 1.
n—roo

Tmin (1)
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