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ABSTRACT
The theory of large random matrices has proved to be an effi-
cient tool to address many problems in wireless communica-
tion and statistical signal processing these last two decades.

We provide hereafter a central limit theorem (CLT) for
linear spectral statistics of large random covariance matrices,
improving Bai and Silverstein’s celebrated 2004 result. This
fluctuation result should be of interest to study the fluctuations
of important estimators in statistical signal processing.

Index Terms— Large random matrices fluctuations.

1. INTRODUCTION

The theory of large random matrices has proved to be an ef-
ficient tool to address many problems in wireless communi-
cation and statistical signal processing; one may refer to [1]
for an updated overview. Among the many results of regular
use, the Central limit theorem developed by Bai and Silver-
stein [2] is a generic tool to study the performances of im-
portant estimators in statistical signal processing; see for in-
stance [3] where the fluctuations of the estimators developed
by Mestre [4, 5] in the context of population eigenvalue esti-
mation are studied with the help of this CLT.

The purpose of this communication is to present an ex-
tended version of this CLT where two important and limitat-
ing assumptions in [2] are removed; as an important conse-
quence, changes occur in the limiting variance and bias for-
mulas. All the mathematical details can be found in the ex-
tended version of this paper [6].

Consider a N × n random matrix Σn = (ξnij) given by:

Σn =
1√
n
R1/2

n Xn , (1.1)

where N = N(n) and Rn is a N × N nonnegative definite
deterministic hermitian matrix. The entries (Xn

ij ; i ≤ N, j ≤
n, n ≥ 1) of matrices (Xn) are real or complex, independent
and identically distributed (i.i.d.) with mean 0 and variance
1. Matrix ΣnΣ∗n models a sample covariance matrix, formed
from n samples of the random vector R1/2

n Xn
·1, with the pop-

ulation covariance matrix Rn.
Since the seminal work of Marčenko and Pastur [7], the

study of the spectrum of large covariance matrices of the type

XnX
∗
n under the asymptotic regime where N,n→∞ and:

0 < `−
4
= lim inf

N

n
≤ `+

4
= lim sup

N

n
< ∞ , (1.2)

(a condition that will be simply referred as N,n → ∞ in the
sequel) has drawn a considerable interest.

This asymptotic regime models the case where the dimen-
sion of the data (N ) is of the same order as the size of the
sample (n), a context of particular interest in modern statisti-
cal signal processing.

In this article, we study the fluctuations of linear spectral
statistics of the form:

tr f(ΣnΣ∗n) =

N∑
i=1

f(λi) , as N,n→∞ (1.3)

where tr (A) refers to the trace ofA and the λi’s are the eigen-
values of ΣnΣ∗n. In their ’04 article [2], Bai and Silverstein
established a CLT for the linear spectral statistics (1.3) under
two important assumptions: (1) The entries (Xn

ij) are cen-
tered with unit variance and a finite fourth moment equal to
the fourth moment of a (real or complex) gaussian standard
variable. (2) Function f in (1.3) is analytic in a neighbour-
hood of the asymptotic spectrum of ΣnΣ∗n. Such a result
proved to be highly useful in probability theory, statistics,
wireless communication, statistical signal processing and var-
ious other fields.

The purpose of this article is to present a CLT for linear
spectral statistics (1.3) for general entries Xn

ij and for non-
analytic functions f with sufficient derivatives, hence to relax
both Assumptions (1) and (2) in [2].

Non-Gaussian entries. The presence of matrix Rn yields
interesting phenomena when considering non-gaussian en-
tries: terms proportionnals to the fourth cumulant and to
|E(Xn

11)2|2 appear in the variance but their convergence is not
granted under usual assumptions (roughly, under the conver-
gence of Rn’s spectrum), mainly because these extra-terms
also depend on Rn’s eigenvectors. A careful description of
the asymptotic variance is provided in Section 2.3.

Denote by Ln(f) the (approximately) centered version of
the linear statistics (1.3), to be properly defined below. In-
stead of expressing the CLT in the usual way, i.e. ( D−→ stands
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for the convergence in distribution):

Ln(f)
D−−−−−→

N,n→∞
N (B∞,Θ∞) , (1.4)

for some well-defined parameters B∞,Θ∞, we establish
that there exists a family of Gaussian random variables
N (Bfn,Θf

n), such that

dLP
(
Ln(f),N (Bfn,Θf

n)
)
−−−−−→
N,n→∞

0 , (1.5)

where dLP denotes the Lévy-Prohorov distance (and in par-
ticular metrizes the convergence of laws).

This framework may also prove to be useful for other
interesting models such as large dimensional information-
plus-noise type matrices [8] and more generally mixed mod-
els combining large dimensional deterministic and random
matrices.

Non-analytic functions. In Section 3, we first present the
CLT for the trace of the resolvent tr (ΣnΣ∗n − zIN )

−1. In
order to transfer the CLT from the resolvent to the linear
statistics of the eigenvalues tr f(ΣnΣ∗n), we use Helffer-
Sjöstrand’s representation formula for a function f of class
Ck+1 [9]. Denote by Φ(f) : C+ → C the function:

Φ(f)(x+ iy) =

k∑
`=0

(iy)`

`!
f (`)(x)χ(y) , (1.6)

where χ : R → R+ is smooth, compactly supported, with
value 1 in a neighbourhood of 0 and let ∂ = ∂x+i∂y . Helffer-
Sjöstrand’s formula writes:

tr f(ΣnΣ∗n) =
1

π
Re

∫
C+

∂Φ(f)(z)tr (ΣnΣ∗n−zIN )−1 λ2(dz) ,

(1.7)
where λ2 stands for the Lebesgue measure over C+.

Representation formula (1.7) enables us to transfer the
CLT to linear statistics for functions of class C3, a lower
regularity requirement than in [10].

2. VARIANCE AND BIAS FORMULAS

2.1. Assumptions

Recall the asymptotic regime (1.2) and denote by cn = N
n .

Assumption A-1. The random variables (Xn
ij ; 1 ≤ i ≤

N(n), 1 ≤ j ≤ n , n ≥ 1) are independent and identi-
cally distributed. They satisfy: EXn

ij = 0, E|Xn
ij |2 = 1 and

E|Xn
ij |4 <∞.

Assumption A-2. Consider a sequence (Rn) of deterministic,
nonnegative definite hermitian N × N matrices, with N =
N(n). The sequence (Rn, n ≥ 1) is bounded for the spectral
norm as N,n→∞, in particular:

0 ≤ λ−R
4
= lim inf

N,n→∞
‖Rn‖ ≤ λ+

R

4
= lim sup

N,n→∞
‖Rn‖ < ∞ .

2.2. Resolvent, canonical equation and deterministic
equivalents

Denote by Qn(z) and Q̃n the resolvents of ΣnΣ∗n and Σ∗nΣn:

Qn(z) = (ΣnΣ∗n − zIN )
−1

, Q̃n(z) = (Σ∗nΣn − zIn)
−1

,
(2.1)

and by fn(z) and f̃n(z) their normalized traces which are the
Stieltjes transforms of the empirical distribution of ΣnΣ∗n’s
and Σ∗nΣn’s eigenvalues:

fn(z) =
1

N
trQn(z) , f̃n(z) =

1

n
tr Q̃n(z) . (2.2)

The following canonical equation admits a unique solution tn
in the class of Stieltjes transforms of probability measures:

tn(z) =
1

N
tr (−zIN + (1− cn)Rn − zcntn(z)Rn)

−1

(2.3)
for z ∈ C \ R+ where cn stands for the ratio N/n (see for
instance [2]). The function tn being introduced, we can define
the following N ×N matrix

Tn(z) = (−zIN + (1− cn)Rn − zcntn(z)Rn)
−1

. (2.4)

Matrix Tn(z) can be thought of as a deterministic equivalent
of the resolvent Qn(z) in the sense that it approximates the
resolvent in various senses. For instance,

1

N
trTn(z)− 1

N
trQn(z) −−−−−→

N,n→∞
0

(in probability or almost surely). It is also true that

u∗nQnvn − u∗nTnvn −−−−−→
N,n→∞

0 (2.5)

where (un) and (vn) are deterministicN×1 vectors with uni-
formly bounded euclidian norms in N . As a consequence of
(2.5), not only Tn conveys information on the limiting spec-
trum of the resolvent Qn but also on the eigenvectors of Qn.

If Rn = IN , then tn is simply the Stieltjes transform of
Marčenko-Pastur distribution [7] with parameter cn.

2.3. Limiting covariance for the trace of the resolvent

In [2], the CLT for the trace of the resolvent is first studied.
Let V be the second moment of the random variable Xij and
κ its fourth cumulant:

V = E(Xn
ij)

2 and κ = E
∣∣Xn

ij

∣∣4 − |V|2 − 2 .

If the entries are real or complex standard Gaussian, then
V = 1 or 0 and κ = 0. Otherwise κ 6= 0 a priori and this
induces extra-terms in the limiting variance, mainly due to
the following (V, κ)-dependent identity:

E(X∗·1AX·1 − trA)(X∗·1BX·1 − trB)

= trAB + |V|2 trABT + κ

N∑
i=1

AiiBii , (2.6)
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whereX·1 stands for the first column (of dimensionN×1) of
matrixXn and whereA,B are deterministicN×N matrices.
As a consequence, there will be three terms in the limiting
covariance of the quantity (1.3). Let:

t̃n(z) = −1− cn
z

+ cntn(z) . (2.7)

The quantity t̃n(z) is the deterministic equivalent associated
to n−1tr (Σ∗nΣn − zIn)−1. Denote by RT

n the transpose ma-
trix of Rn (notice that RT

n = R̄n) and by TT
n , the transpose

matrix of Tn (beware that TT
n is not the entry-wise conjugate

of Tn, due to the presence of z):

TT
n (z) =

(
−zIN + (1− cn)R̄n − zcntn(z)R̄n

)−1
; (2.8)

notice that the definition of tn(z) in (2.3) does not change
if Rn is replaced by R̄n since the spectrum of both matrices
Rn and R̄n is the same. We can now describe the limiting
covariance of the trace of the resolvent:

cov (trQn(z1), trQn(z2))

= Θ0,n(z1, z2) + |V|2Θ1,n(z1, z2) + κΘ2,n(z1, z2) + o(1)

4
= Θn(z1, z2) + o(1) , (2.9)

where o(1) is a term that converges to zero as N,n→∞ and

Θ0,n(z1, z2)
4
=

{
t̃′n(z1)t̃′n(z2)

(t̃n(z1)− t̃n(z2))2
− 1

(z1 − z2)2

}
(2.10)

Θ1,n(z1, z2)
4
=

∂

∂z2

{
∂An(z1, z2)

∂z1

1

1− |V|2An(z1, z2)

}
(2.11)

Θ2,n(z1, z2)
4
=

z21z
2
2 t̃
′
n(z1)t̃′n(z2)

n

×
N∑
i=1

(
R1/2

n T 2
n(z1)R1/2

n

)
ii

(
R1/2

n T 2
n(z2)R1/2

n

)
ii

(2.12)

with

An(z1, z2) =
z1z2
n

t̃n(z1)t̃n(z2)

×tr
{
R1/2

n Tn(z1)R1/2
n R̄1/2

n TT
n (z2)R̄1/2

n

}
.

(2.13)

At first sight, these formulas may seem complicated; how-
ever, much information can be inferred from them.

The term Θ0,n. This term is familiar as it already appears in
Bai and Silverstein’s CLT [2]. Notice that the quantities t̃n
and t̃′n only depend on the spectrum of matrix Rn. Hence,
under the additional assumption that:

cn −−−−−→
N,n→∞

c ∈ (0,∞) and FRn
L−−−−−→

N,n→∞
FR ,

(2.14)

where FRn denotes the empirical distribution of Rn’s eigen-
values and FR is a probability measure, it can easily be
proved that as N,n→∞, the term Θ0,n(z1, z2) converges to

Θ0(z1, z2) =

{
t̃′(z1)t̃′(z2)

(t̃(z1)− t̃(z2))2
− 1

(z1 − z2)2

}
,

where t̃, t̃′ are the limits of t̃n, t̃′n under (2.14).

The term Θ1,n. The interesting phenomenon lies in the
fact that this term involves products of matrices R1/2

n and its
conjugate R̄1/2

n . These matrices have the same spectrum but
conjugate eigenvectors. If Rn is not real, the convergence of
Θ1,n is not granted, even under (2.14).

The term Θ2,n. This term involves quantities of the type
(R

1/2
n TnR

1/2
n )ii which not only depend on the spectrum of

matrix Rn but also on its eigenvectors. As a consequence, the
convergence of such terms does not follow from an assump-
tion such as (2.14), except in some particular cases.

2.4. Representation of the linear statistics and limiting
bias

Recall that tn(z) is the Stieltjes transform of a probability
measure Fn:

tn(z) =

∫
Sn

Fn(dλ)

λ− z
(2.15)

with support Sn included in a compact set. The purpose of
this article is to describe the fluctuations of the linear statistics

Ln(f) =

N∑
i=1

f(λi)−N
∫
f(λ)Fn(dλ) (2.16)

=
1

π
Re

∫
C+

∂Φ(f)(z) {trQn(z)−Ntn(z)}λ2(dz) .

(2.17)

as N,n → ∞, and where the last equality follows form
Helffer-Sjöstrand’s formula and the fact that∫

f(λ)Fn(dλ) =
1

π
Re

∫
C+

∂Φ(f)(z)tn(z)λ2(dz)

(recall that Φ(f) is defined in (1.6)).
Based on (2.17), we shall first study the fluctuations of:

trQn(z)−Ntn(z)

= {trQn(z)− EtrQn(z)}+ {EtrQn(z)−Ntn(z)}

for z ∈ C+. The first difference in the r.h.s. will yield the
fluctuations with a covariance Θn(z1, z2) described in (2.9)
while the second difference, deterministic, will yield the bias:

EtrQn(z)−Ntn(z) = |V|2B1,n(z) + κB2,n(z) + o(1)

4
= Bn(z) + o(1) (2.18)
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B1,n(z)
4
= −z3t̃3n

1
n trR

1/2
n T 2

n(z)R
1/2
n R̄

1/2
n TT

n (z)R̄
1/2
n(

1− z2t̃2n 1
nTrR2

nT
2
n

) (
1− |V|2z2t̃2n 1

nTrR
1/2
n Tn(z)R

1/2
n R̄

1/2
n TT

n (z)R̄
1/2
n

) (2.19)

B2,n(z)
4
= −z3t̃3n

1
n

∑N
i=1

(
R

1/2
n TnR

1/2
n

)
ii

(
R

1/2
n T 2

nR
1/2
n

)
ii

1− z2t̃2n 1
n trR2

nT
2
n

(2.20)

where B1,n and B2,n are defined in (2.19) and (2.20). The dis-
cussions on the terms Θ1,n and Θ2,n also apply to the terms
B1,n and B2,n which are also likely not to converge.

2.5. Gaussian processes and the central limit theorem

Due to the a priori absence of convergence of Bn and Θn, we
shall express the Gaussian fluctuations of the linear statistics
(2.16) in the following way: consider a family (Nn(z), z ∈
C)n∈N of tight Gaussian processes with mean and covariance:

ENn(z) = Bn(z) ,

cov(Nn(z1), Nn(z2)) = Θn(z1, z2) .

We then express the fluctuations of the centralized trace as

dLP ((trQn(z)−Ntn(z)) , Nn(z)) −−−−−→
N,n→∞

0 .

with dLP the Lévy-Prohorov distance between P andQ prob-
ability measures over borel sets of R,Rd,C or Cd:

dLP (P,Q) = inf {ε > 0, P (A) ≤ Q(Aε) + ε ,

for all Borel sets A} , (2.21)

whereAε is an ε-blow up ofA (cf. [11, Section 11.3] for more
details). If X is a random variable and L(X) its distribution,

denote similarly by dLP (X,Y )
4
= dLP (L(X),L(Y )). We

will express the fluctuations of Ln(f) in the same way:

dLP (Ln(f),Nn(f)) −−−−−→
N,n→∞

0 ,

where Nn(f) is a well-identified gaussian random variable.

3. STATEMENT OF THE CLT FOR THE TRACE OF
THE RESOLVENT

3.1. Further notations

Recall the definition of Fn in (2.15) and let similarly F̃n be
the probability distribution associated to t̃n. The central ob-
ject of study is the Stieltjes transform

Mn(z) = N(fn(z)− tn(z)) = n
(
f̃n(z)− t̃n(z)

)
. (3.1)

3.2. The Central Limit Theorem for the resolvent

Recall that Sn is the support of the probability measure Fn.
Due to Assumption (A-2), it is clear that

Sn ⊂ S∞
4
=

[
0,λ+

R

(
1 +

√
`+
)2]

, (3.2)

uniformily in n. Let A be large enough, say

A > λ+
R

(
1 +

√
`+
)2

.

Denote by D+ and Dε the domains:

D+ = [0, A] + i(0, 1] , Dε = [0, A] + i[ε, 1] (ε > 0) . (3.3)

Theorem 3.1. Assume that (A-1) and (A-2) hold true , then
1. There exists a sequence (Nn(z), z ∈ D+) of two-

dimensional Gaussian processes with mean

ENn(z) = |V|2B1,n(z) + κB2,n(z) (3.4)

where B1,n(z) and B2,n(z) are defined in (2.19) and
(2.20), and covariance:

cov (Nn(z1), Nn(z2))

= E (Nn(z1)− ENn(z1)) (Nn(z2)− ENn(z2))

= Θ0,n(z1, z2) + |V|2 Θ1,n(z1, z2) + κΘ2,n(z1, z2) .

Moreover (Nn(z), z ∈ Dε) is tight.

2. For any functional F from C (Dε;C) to C,

EF (Mn)− EF (Nn) −−−−−→
N,n→∞

0

Remark 3.1. Differences between Theorem 3.1 and [2,
Lemma 1.1] appear in the bias and in the covariance where
there are respectively two terms instead of one and three
terms instead of one in [2, Lemma 1.1].

4. STATEMENT OF THE CLT FOR NON-ANALYTIC
FUNCTIONALS

In order to lift the CLT from the trace of the resolvent to a
smooth function f , the key ingredient is Helffer-Sjöstrand’s
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formula (1.7). We introduce the notations:

L1
n(f) = Tr f(ΣnΣ∗n)− ETr f(ΣnΣ∗n)

L2
n(f) = ETr f(ΣnΣ∗n)−N

∫
f(λ)Fn(dλ)

Then Ln(f) = L1
n(f) + L2

n(f). We first describe the fluc-
tuations of L1

n(f) for non-analytic functions f in Section 4.1
and study the bias L2

n(f) in Section 4.2.

4.1. Fluctuations for the linear spectral statistics

Assumption A-3. Function f : R → R is measurable and C3

in a η-neighborhood of S∞ defined in (3.2).

Theorem 4.1. Assume that (A-1) and (A-2) hold true, and let
f1, · · · , fk satisfy (A-3). Consider the centered Gaussian ran-

dom vector Z1
n(f)

4
= (Z1

n(f1), · · · , Z1
n(fk)) with covariance

cov
(
Z1
n(f), Z1

n(g)
)

=

1

2π2
Re

∫
D2

∂Φ(f)(z1)∂Φ(g)(z2)Θn(z1, z̄2)λ2(dz1)λ2(dz2)

+
1

2π2
Re

∫
D2

∂Φ(f)(z2)∂Φ(g)(z2)Θn(z1, z2)λ2(dz1)λ2(dz2) ,

(4.1)

where Φ(f) and Φ(g) are defined as in (1.6). Then, the fol-
lowing convergence holds true:

dLP
(
L1
n(f), Z1

n(f)
)
−−−−−→
N,n→∞

0 ,

or equivalently for every continuous bounded function h :
Rk → C,

Eh(L1
n(f))− Eh(Z1

n(f)) −−−−−→
N,n→∞

0 .

4.2. First-order expansions for the bias in the case of non-
analytic functionals

Assumption A-4. Function f : R→ R is measurable and C18

in a η-neighborhood of S∞ defined in (3.2).

Theorem 4.2. Assume (A-1) and (A-2) hold true and let func-
tion f satisfy (A-4). Denote by

Z2
n(f) =

1

π
Re

∫
D

∂Φ(f)(z)Bn(z)λ2( dz) ,

where Bn is defined in (2.18). Then

ETr f(ΣnΣ∗n)−N
∫
f(λ)Fn(dλ)− Z2

n(f) −−−−−→
N,n→∞

0 .
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Schrödinger operators (Sønderborg, 1988), vol. 345 of
Lecture Notes in Phys., pp. 118–197. Springer, Berlin,
1989.

[10] A. Lytova and L. Pastur, “Central limit theorem for
linear eigenvalue statistics of random matrices with in-
dependent entries,” Ann. Probab., vol. 37, no. 5, pp.
1778–1840, 2009.

[11] R. M. Dudley, Real analysis and probability, vol. 74 of
Cambridge Studies in Advanced Mathematics, Cam-
bridge University Press, Cambridge, 2002, Revised
reprint of the 1989 original.

2174Authorized licensed use limited to: UPE Marne la Vallee. Downloaded on June 08,2020 at 11:46:15 UTC from IEEE Xplore.  Restrictions apply. 


