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Abstract—In this paper, we address the problem of fast point-
to-point channel capacity estimation in the case where the
receiver undergoes unknown interference from multiple sources,
whereas the channel with the transmitter is perfectly known.
For this particular context, we propose a fast estimator for the
capacity estimation, and compare its performance with that of the
traditional methods. More precisely, we analyse the fluctuations
of the traditional and proposed techniques and prove that their
behaviors can be approximated by Gaussian random variables
for which we derive the variances.

I. INTRODUCTION

As opposed to wired transmissions, communication over the
wireless medium is more sensitive to the channel and inter-
ference. This is principally attributed to the intrinsic nature of
the air medium, which is richly scattered and obviously shared
by multiple users. Since the environment is changing fast, it
is fundamental for users to rapidly estimate the maximum rate
which can be achieved in the communication to other users.
This is essential for guaranteeing a reliable data transmission
at all time instant. Classical estimation techniques, based on
the assumption of a large number of observations, are however
usually inappropriate. In order to design improved estimates,
the use of the theory of large random matrices, particularly
suitable in case the space and time dimensions are of the
same magnitude, has been recently pushed forward. As far
as the capacity estimation is concerned, several studies have
focused on the capacity estimation of MIMO systems, in case
of imperfect channel knowledge, but without interference. This
scenario has been considered in [1] and [2], where methods
based respectively on free probability theory and deterministic
equivalents have been proposed.

In this paper, we will consider a different situation where the
receiver knows perfectly the channel with the transmitter but
does not know anything about the experienced interference.
Such a situation can be encountered in multi-cell scenarios,
where interference stemming from neighboring cell users
changes fast, which is a natural assumption in packet switch
transmissions. The estimated capacity can serve first as an
upper-bound for the maximum rate that could be achieved.
Indeed, this rate cannot be achieved if the channel interference
is not exactly estimated and therefore the estimator may
serve only as an approximate achievable performance. Another
usage is found in the context of cognitive radios where
multiple frequency bands are sensed for future transmissions.
In this setting, the proposed estimator provides the expected
rate performance achievable in each frequency band.

In this paper, we derive the expression of a consistent
estimator of the capacity and prove using simulations that
it outperforms by far traditional estimators. In addition to
consistency, second order statistics of the estimator are an
important performance index that measure its reliability. We
study thus the fluctuations of the traditional and improved
estimators.

The remainder of this paper is divided as follows: In section
II, we present the system model and derive the expression of
the consistent estimator. In the next two sections, we establish
our results regarding the central limit theorem (CLT) for both
estimators. Finally, we provide in section V some numerical
simulations that support the accuracy of the derived results.

Notations: In the following, boldface lower case symbols
represent vectors, capital boldface characters denote matrices
(IN is the size-N identity matrix). The transpose and Hermi-
tian transpose operators are denoted (·)T and (·)H, respectively.
The symbol ‘ a.s.−→’ denotes almost sure convergence.

II. SYSTEM MODEL AND PROBLEM SETTING

We consider a communication link between two users
equipped respectively with N and n0 antennas and referred
to as the receiver and the transmitter. We assume also the
presence of K interferers with nk antennas each. In practice,
this situation is encountered e.g. in the cognitive radio context,
where the receiver and transmitter represent two secondary
users, whereas the interferers stand for primary users. Note
that the secondary users are supposed to adjust their power
in order to not incur any interference to the primary network.
Figure 1 describes this scenario. Denote by H and Gk the
N × n0 and N × nk channel matrices between the receiver
and, respectively, the transmitter and the k-th interferer. We
assume that H and Gk remain static during at least M data
transmission symbols.

Let ȳm denote the N -dimensional vector received at time
m by the receiver then ȳm writes:

ȳm = Hx
(m)
0 +

K∑
k=1

Gkx
(m)
k + σw(m),

where x
(m)
0 is the signal transmitted at time m by the trans-

mitter, x(m)
k ∼ CN (0, Ink

) is the signal transmitted at time
m by the k-th interferer, and w(m) is the additive Gaussian
noise experienced at time m (w(m) ∼ CN (0, IN )). Assuming
a perfect decoding of x

(m)
0 initially transmitted at low rate,

and a perfect knowledge of the channel matrix H, the residual
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Fig. 1. System model.

interference to which the receiver has access is given by:

ym = ȳm −Hx
(m)
0 =

K∑
k=1

Gkx
(m)
k + σw(m).

This coincides also with the signal received at time m in case
of no secondary transmission.

The per-antenna maximum data rate that can be reliably
decoded by the receiver is given by:

C(σ2) =
1

N
log det

IN +

[
K∑
k=1

GkG
H
k + σ2IN

]−1
HHH


=

1

N
log det

(
σ2IN +

K∑
k=1

GkG
H
k + HHH

)

− 1

N
log det

(
σ2IN +

K∑
k=1

GkG
H
k

)
. (1)

Based on restricted number M of successive observations
y1, . . . ,yM and perfect knowledge of H, the receiver needs
to infer C(σ2) in an efficient way. By efficient, we mean that
the estimation should be accurate and fast, in the sense that
it should only require a number of slots of the same order of
magnitude as N . Obviously, under this assumption substituting
σ2IN +

∑K
k=1 GkG

H
k by 1

M

∑M
m=1 ymyH

m is not efficient. It
can be viewed as a good alternative if the number of slots M is
too large with respect to the number of receiving antennas N .
In the sequel, we refer to the estimator that assumes M � N
as the large-M estimator. It is given by:

CL(σ2) =
1

N
log det

(
1

M

M∑
m=1

ymyH
m + HHH

)

− 1

N
log det(

1

M

M∑
m=1

ymyH
m), (2)

(the subscript L refers here to large-M), Let n =
∑K
k=1 nk

and consider the following asymptotic regime: n ∝ M , and
N ∝M as n,M,N →∞. Formally, this means:

N,n,M →∞ with 1 < lim inf M/N ≤ lim supM/N <∞
0 < lim inf N/n ≤ lim supN/n <∞.

In the following, we derive the expression of a consistent
estimator of C(σ2), which we refer to as the G-estimator. In
particular, we have the following result whose proof can be
found in [3]:

Theorem 1: Consider the quantity:

Ĉ(σ2) =
1

N
log det

(
IN + yNHHH

(
1

M
YYH

)−1)

+
(M −N)

N

[
log

(
M

M −N
yN

)
+ 1

]
− M

N
yN ,

where Y = [y1, · · · ,yM ], and yN the solution of :

y =
1

M
tr yHHH

(
yHHH +

1

M
YYH

)−1
+
M −N
M

,

then,
Ĉ(σ2)− C(σ2)

a.s.−→ 0.

Let G = [G1, · · · ,GK ]. We have:

yN − y∗N
a.s.−→ 0,

where
y∗N = 1− 1

M
tr
(
Z
(
HHH + Z

)−1)
, (3)

and Z = GGH + σ2IN

III. BIAS AND PERFORMANCE OF THE LARGE-M
ESTIMATOR

Obviously, in the asymptotic regime, the large-M estimator
is asymptotically biased. Based on previous results [4], [5]
about respectively the convergence of the capacity and the
logdet function of a covariance matrix, we can prove that the
large-M estimator converges almost surely to a deterministic
quantity, which is different in general from the capacity C(σ2).
Apart from the bias, another question regarding the behaviour
of the large-M estimator around its asymptotic equivalent is of
fundamental importance. This can provide for instance insights
about the convergence speed or also about the variance or
equivalently the spread of the estimator around its asymptotic
equivalent. The objective of this section is to derive the
expression of the bias and establish the CLT. Prior to that
we need to recall some deterministic quantities, on which our
results will depend:

Lemma 1 ([3]): Let y > 0. The following assertions hold
true:

1) The following functional equation:

κ(y) =
1

M
tr

(
Z

(
Z

1 + κ(y)
+ yHHH

)−1)
admits a unique positive solution κ(y).

2) Denote by T(y) =
(
yHHH + GGH+σ2IN

1+κ(y)

)−1
and

Q(y) =
(
yHHH + 1

MYYH
)−1

. Then, for any de-
terministic matrix S ∈ CN with uniformly bounded
spectral norm, we have:

1

M
tr (SQ(y))− 1

M
tr(ST(y))

a.s.−→ 0.
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Although T(y) approximates Q(y) in a certain sense,
− 1
N log det(Q(1)) which stands for the first term in (2) is

not asymptotically equivalent to − 1
N log det(T(1)), and in

general a scalar functional f of Q(1) does not necessarily
converge to f(T(1)). To find a deterministic equivalent for
− log det(Q(1)), we will refer to [4]:

Lemma 2: Let

V (y) = − log det(T(y)) +M log(1 + κ(y))−M κ(y)

1 + κ(y)
.

Then in the asymptotic regime, we have:

− 1

N
log det(Q(y))− 1

N
V (y)

a.s.−→ 0. (4)

It remains now to deal with the second term in (2). For this,
we recall [5, (1.1)]

Lemma 3: In the asymptotic regime we have:

− 1

N
log det(YYH) + log det(GGH + σ2IN )

+
N −M
N

log

(
M −N
M

)
− 1

a.s.−→ 0. (5)

Combining (4) and (5), we finally have:
Lemma 4: Denote by V(y) the deterministic quantity given

by:

V(y) = − 1

N
log det(T(y)) +

M

N
log(1 + κ(y))− M

N

κ(y)

1 + κ(y)

− 1

N
log det(GGH + σ2IN ) +

(M −N)

N
log

(
M −N
M

)
+ 1.

Then, the large-M estimator CL(σ2)−V(1) converges almost
surely to zero as N,M,n→∞.
Theorem 4 provides an asymptotic equivalent of the large-M
estimator. Hereafter, we state our main result in this paper, in
which a CLT of

CL(y) =
1

N
log det(yHHH + YYH)− 1

N
log det(YYH)

is derived. As we will see later, this result will also serve to
establish the CLT of the G-estimator.

Theorem 2: Let CL(y) = 1
N log det(yHHH + YYH) −

1
N log det(YYH). Denote ZN (y) = N (CL(y)− V(1)).
Then, in the asymptotic regime, we have:

1

αN (y)
ZN (y)

D−→ N (0, 1),

where αN (y) is given by (6). In particular, we have:

1

αN (1)
(NCL(σ2)−NV(1))

D−→ N (0, 1).

Proof: See appendix B.

IV. PERFORMANCE OF THE G-ESTIMATOR

As opposed to the large-M estimation method, the improved
G-estimator has no closed-form expression, in the sense that
key parameter yN is the solution of an implicit equation that
is solved easily through numerical iterations. Establishing the
CLT might seem to be more tricky since the randomness comes
from both the received matrix Y and yN . As a first step,

one can look for the asymptotic behavior of yN . This is the
objective of the following lemma:

Lemma 5: The parameter yN satisfies in the asymptotic
regime the following assertions:

1) var(yN ) = O(M−2),
2) EyN = y∗N +O(M−2).

Proof: See appendix A
We are now in position to state the CLT for the G-estimator.

Theorem 3: In the asymptotic regime, the G-estimator sat-
isfies:

N

θN
(Ĉ(σ2)− C(σ2))

L−−−−→
N→∞

N (0, 1),

where θN is given by (7) with y∗N defined in (3).
Proof: Let C(y) the function defined for y > 0 as:

C(y) =
1

N
log det

(
yHHH +

YYH

M

)
+
M −N
N

[
log

(
M

M −N
y

)
+ 1

]
− M

N
y

− log det(
YYH

M
).

Since ∂C
∂y |y=yN = 0, a Taylor expansion of C(y∗N ) around yN

yields:

NC(y∗N ) = NC(yN )+
N∂2C
∂y2

(y∗N−yN )2+O(N(y∗N−yN )3).

Given that E(y∗N − yN )2 = O(M−2), NC(y∗N ) − NC(yN )
converges in probability to zero. By Slutsky theorem, it
suffices to establish the CLT theorem for NC(y∗N ) instead
of NC(yN ) = NĈ(yN ). This is extremely helpful since
unlike yN , y∗N is deterministic. The result is thus obtained
by applying theorem 2 and noticing that κ(y∗N ) + 1 = 1

y∗N
.

V. SIMULATION RESULTS

We consider in the simulations the case where a mobile
terminal with N = 4 antennas received during M = 15
slots, data stemming from n0 = 4 antenna secondary users.
We assume that the communication link is interfered by
K = 8 mono-antenna users. Matrices H, G1, · · ·GK are
arbitrarily chosen and remain constant during the Monte Carlo
averaging, while data and noise matrices are randomly chosen
standard Gaussian matrices. Fig. 2 represents the theoretical
and empirical normalized variance for the G-estimator with
respect to SNR = 1

σ2 . We also display in the same graph
the empirical variance of the large-M estimator. We note that
the G-estimator exhibits a better performance for all SNR. To
assess the Gaussian behavior of both estimators, we represent
in fig. 3 and fig. 4, the histogram in case the SNR is set to
10dB. We note a good fit between theoretical and empirical
results, although the system dimensions are small.

VI. CONCLUSION

In this paper, we have addressed the question of fast
estimation of the capacity in presence of interference. More
precisely, we have established the Gaussian behaviour of a
recently proposed method using G-estimation theory and of
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αN (y) = 2 log(M)− log

(
(M −N)

(
M(κ+ 1)2 − tr

((
IN
κ+ 1

+ yHHH
(
GGH + σ2IN

)−1)−2)))
(6)

θN = 2 log(My∗N )− log
(

(M −N)
(
M − tr

((
IN + HHH(GGH + σ2IN )−1

)−2)))
(7)
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Fig. 2. Empirical and theoretical variances with respect to the SNR
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a large-M estimator. We have provided numerical simulations
which strongly support the accuracy of our derived results even
for usual system dimensions.

APPENDIX A
PROOF OF LEMMA 5

1) Denote by R(y) and f(y) the functionals given by:

f(y) =
1

M
tr(yHHHQ(y)) +

M −N
M

− y

R(y) = − log det(Q(y)) + (M −N) log(y)−My.
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Fig. 4. Histogram of N(Ĉ − C).

According to the Nash-Poincaré inequality [4], we have:

var(yN ) ≤ K
N∑
i=1

M∑
j=1

E

∣∣∣∣∣ ∂yN∂Y ∗i,j

∣∣∣∣∣
2

+ E

∣∣∣∣ ∂yN∂Yi,j

∣∣∣∣2 . (8)

We will only consider the first sum in the previous inequality.
The second sum can be dealt with in the same way. Using
the implicit function theorem, we know that if ∂f

∂y 6= 0, ∂yN
∂Y ∗

i,j

writes:

∂yN
∂Y ∗i,j

=

∂f
∂Y ∗

i,j
|y=yN

∂f
∂y |y=yN

. (9)

As will be shown later, to conclude that var(yN ) = O(M−2),
we need that

∣∣∣∂f∂y |y=yN ∣∣∣ be lower bounded away from zero,

which is a much stronger requirement than ∂f
∂y 6= 0. This can

be proved by noticing that ∂R
∂y = Mf

y . Hence

∂2R

∂y2
|y=yN =

M ∂f
∂y |y=yN
yN

. (10)

On the other hand, straightforward calculations lead to∣∣∣∂2R
∂y2 |y=yN

∣∣∣ ≥ M−N
y2N

which, plugged into (10), yields:

∣∣∣∣∂f∂y
∣∣∣∣ ≥ M −N

MyN
≥ lim inf

N

M −N
M

. (11)
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Therefore,

N∑
i=1

M∑
j=1

E

∣∣∣∣∣ ∂yN∂Y ∗i,j

∣∣∣∣∣
2

≤ K

M4

N∑
i=1

M∑
j=1

|
[
yNQHHHQY

]
i,j
|2

≤ K

M3
tr

(
QHHHQ

YY∗

M
QHHHQ

)
≤ K

M2
.

To prove 2), we will resort to the resolvent identity which
states:

Q(a)−Q(b) = (b− a)Q(a)HHHQ(b). (12)

Using (12), we obtain:

yN =
1

M
(yN − EyN ) trHHHQ(yN )

+
1

M
tr E(yN )HHHQ(yN ) +

M −N
M

=
1

M
(yN − EyN )HHHQ(EyN )

− 1

M
tr(yN − EyN )2HHHQ(yN )HHHQ(EyN )

+
1

M
tr E(yN )HHHQ(EyN )

− 1

M
tr E(yN )(yN − E(yN ))HHHQ(yN )HHHQ(E(yN ))

+
M −N
M

(a)
=

1

M
(yN − EyN ) trHHHT(E(yN ))

+
1

M
E(yN )HHHT(E(yN ))

− E(yN )(yN − EyN )E

[
1

M
trHHHQ(yN )HHHQ(E(yN ))

]
+
M −N
M

+ ε.

where ε verifies E(ε) = O(M−2). Note that equality
(a) follows from the fact that var(yN )2 = O(M−2) and
var( 1

M trHHHQ(yN )HHHQ(E(yN ))) = O(M−2). There-
fore:

E(yN ) =
1

M
E(yN ) trHHHT(E(yN )) +

M −N
M

+O(M−2)

= 1− 1

M(1 + κ(E(yN ))
tr((GGH + σ2IN )T(E(yN )))

+O(M−2)

= 1− κ(E(yN ))

1 + κ(E(yN ))
+O(M−2)

=
1

1 + κ(E(yN ))
+O(M−2).

Since y∗N is the unique solution satisfying:

y∗N =
1

1 + κ(y∗N )
,

we obtain:
E(yN ) = y∗N +O(M−2).

APPENDIX B
PROOF OF THEOREM 2

The proof of theorem 2 relies on the tools used in [6],
suitable for dealing with Gaussian random variables. Using
an appropriate changing variable, one can prove :

CL(y) = log det(Ir +
D

1
2
r WWHD

1
2
r

M
)− log det(

WWH

M
)

− log det(Dr).

where r is the rank of H, W is a r ×M − N + r standard
Gaussian matrix and Dr is a diagonal matrix depending on
Gk, H and y.We retrieve thus the same model as in [6], with
the slight difference that CL(y) has an extra random term
equal to log det(WWH

M ). This has no effect on the applicability
of the method, and one can get the desired result by following
the same lines of [6].
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