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ABSTRACT encountered in severe fading situations, like for instahee
Nakagami-m channels particularly suited to model some ur-
ban multipath environments [7]. In particular, it is proved
that in the asymptotic regime (i.e. fd¥,n — +oo at the
same pace), the SINR fluctuates around its first order approx-

f the study of th iated Si -to-intentes imate as a centered Gaussian random variable whose variance
we focus on the study ot the associated signal-to-intantare depends on the cumulant of the entries and the deterministic

plus noise ratio (SINR) at its output in the context of Riceanline-of-sight matrix
multiple-input multiple-output (MIMO) channels. The case "\ iations: In the following, boldface lower case symbols

oLlRlcean crg)annels, chh:anuces norll-centtgreld ran.dom Varr'epresent vectors, capital boldface characters denotécest
a (ﬁ] cants encotug_e(rje '? severta prac |cab etnvlro:a{meh 1y is the sizeN identity matrix). The transpose and Her-
and has not been studied so far, as [traises SUbSIantatecn o yranspose operators are denated and(-)*, respec-

cal issues. With the help of large random matrix theory, Whic tively. The expectation and inverse operators will be detiot
has shown to be fruitful to successfully address severdl-pro yE and( )71

lems in wireless communications, we study the behaviour ol? v
the SINR, together with its fluctuations via a central lirhi¢t
orem. As realistic models also involve non-Gaussian random

variables, we relax the Gaussian assumption. This results i . . . \
an extra term involving the fourth cumulant in the expressio Consider awireless MIMO transmission model nten-

: nas at the reception side and-1 antennas at the transmission
of the variance. ) . .
side corresponding to+ 1 distant sources. Lé denote the
N x (n 4+ 1) channel matrix given by:

In the context of multidimensional signals, the linear Véien
receiver is frequently encountered in wireless commuitnat
and in array processing; it is in fact the linear receivet tha
achieves the lowest level of interference. In this contidi

2. SYSTEM MODEL AND PROBLEM SETTING

1. INTRODUCTION

1 1 K

.- ] no (ke [ R
In the mid-nineties, Telatar[1] and Foshini[2] demonsdat Vn K+1 K+1
the great potential of the multiple-input multiple-output ) ) . o
(MIMO) technology to meet the increasing demand to higheiVherek is called the Rice factoX is a random matrix with
data rates. Indeed, their analyses show that the mutual iii-d- €ntries with zero mean and unit variance (not neeégsa
formation over anV' x n MIMO channel is proportional to Gaussian), and is the deterministic matrix which stands for
min(N,n). Nevertheless, the data rates stipulated by th&€ line-of-sight component assumed known to the receiver.
mutual information are only achievable in practice throughConsider the following transmission model:
the use of high complexity algorithms. In reglity, one usual r=Hs+n
uses suboptimal decoders such as the Wiener filter, whose
performance are clearly of interest. The SINR at its outpuwvheren is the additive white Gaussian noise (AWGN) ver-
has been extensively studied in the literature, for theezorr ifying En = 0 andEnn* = ply, ands = [sq,--- ,5,] IS
lated and non correlated cases, [3, 4, 5]. The non-centerdble unknown random vector of transmitted symbols with size
Gaussian case has been considered in [6], where only the firgt+ 1. Partition the channel matrix

order result has been provided. 7 7
YR YTy K+1A1

In this paper, we extend previous works to the case when H=

the channel, not necessarily Gaussian, admits a determinis

tic line-of-sight component, Allowing the random compo- , then the estimate of, at the LMMSE receiveg, reads:
nent to be non-Gaussian improves the fit of the presented re-

sults to the true SINR in many practical scenarios, esggcial So=F " +b) (Y +B) (Y +B") +ply) 'r,




whereb = 1/K—Ha andB = K+1A The SINRS, is  Hence, substituting by K+la we get:
thus given by:

b*Qb — Ka*Ta —— 0 almost surely.

n—roo

Besides, by the strong law of large numbers for weighted

whereQ is the matrix given by: independent random variables, the crossed terms converge t
. § . zero almost surely [10]. Finally, using standard resultthef
Q=((Y+B)(Y" +B") +pln) . characterization of the convergence of quadratic forme (se

Lemma 2.7 in [11]) , one can easily establish that:
For fixed dimensiongV, n, the study of3,, is rather difficult. n[11) Y !

In what follows, we will consider the asymptotic regime de-
fined asV, n — oo such that:

trEQ 0 almost surely.

N 1
Y Qy o n(K—|— 1) n—o00

Finally, the theorem follows from the fact that:

1 1
. , . o — (EQ)——trT—>0
which we will denoten — +oo for notational simplicity. In n(K +1) n—o0

this regime, the first and second order statisticgspfwill 0
depend on the following deterministic quantities which we
recall hereafter:

N N
0 < liminf — < limsup — < +o0,
n n

4. SECOND ORDER RESULT
Theorem 1 ([8]). For anyp > 0, the deterministic system: -
Beyond the convergengg, — 5,, — 0, a natural question

1 arises regarding the accuracy®f for finite values ofV, n.
5(p) = —~TrT,, 1 ) A e
(n) YT () @ This can provide insights about the outage probability Whic
7, I~ is defined as the probability that the SINR falls below a derta
o(p) = —-TrT, 2 . .
(0) n v (o) @ threshold. To answer to this question, one needs to study the

fluctuations which will be described in the following theore

Theorem 3. Lety = 1Ti(T?), 3 = 1Ty(T?), S =
KAA” )_1 (3 diag(T), and S = diag(T). Let« be the fourth cumu-
(1+4(p)) lant of the entries oX given byx = E|X; ;|* — 2. Define

" -1 A,, ap andg, as:
KA A ny n n
) 4)

whereT,, and Tn are the matrices

Tolp) = (ol + D1+ 5o +

Tn(p) = (p(K+1)(1+5(p))In +—= )
(4 o) A, = 1—LT AA*T?)) — pA(K +1)*7
o= (17 g AR ) - R 1,

1
v(1 4 6)%

admits a unique solutiofy, 5) in (0,00)2. i
oy = {’y ( tr T2AA* + Kza*TAA*Ta)
n
3. FIRST ORDER RESULT x 9
. 14+6)? — —trT?AA* Ka*T?
Theorem 2. Assume thagup,, |A| < oo, where||.|| is the * (( +9) no ) (v+ Ka'T ) ¢,
spectral norm. In the asymptotic regime, the following kold

N
1
true: €0 = (K + 1)°K?= Z [Taa*T|2
Bn — B, — 0 almost surely 0
n—+oo N
K* 1 1
were 3 1 + gy D [u Tagag Tuf? — tr S + — tr §%.
B, =—trT, + Ka*T,a, (1+9) Pt n n
n
whereT,, is given in theorem 1. Then, the following holds true:

Proof. To prove Theorem 2, we shall decompagsgas fol- 1. The sequence of real numbers:

lows . . . . , a, K? (a*T2a)2
5n:b Qb+bQY+y Qber Qy- Qn,:Ai*T‘i’ﬂfn

It suffices then to determine the asymptotic limit of each of

the fourth terms. From theorem 1.1 in [9], we know that: satisfies:

0 < liminf 2 < limsup Q2
b*Qb — (K + 1)b*Th —— 0 almost surely. < mumbel, < imsupll, < 400
n— oo



2. The SINR3,, satisfies: wherew is set tol in order to ge1IE|X171|2 = 1. The cumu-
lant of X; ; is thus given by:x = 1 4 & — 2. It should be
n (Bn — EBy) » N'(0,1), in distribution. also noted that the Rayleigh distribution correspondintpéo
Q2 n—o0 T Rayleigh channel (Gaussian non-line of sight componenmt) ca
be retrieved by setting to 1.

_ Fig. 1 displays the empirical estimation B&f3,, as well
The technical proofs of our results rely on the REFORMaSB with respect ta: = ¥ whenn = 32, N ranging from

(REsolvent, FORmula and Martingale) [12] method whichy 539 and the rice factor ang set oK = 1,p = 0.5,
has been successfully used to establish the CLT for the hutug, ot experiment, we consider the case of Géussian random
information and the SINR for centered channels. It merely ; iaples (=1) s:ince the asymptotic approximatel®f,,
consists in decomposing, — Ef, into a sum of difference 4465 not depend on the cumulant. As expected, the SINR in-

of martingales by choosing the appropriate filtration. D®ta ¢re4ses when the number of receiving antennas grows thereby
are omitted because of lack of space, but the mteresteerreaqncreasing the channel diversity.

can refer to the works in [5] and [13].

Remark 1. The expressions of the asymptotic theoretical +;
variance might seem involved. Their numerical computation

is quite easy since it merely depends on the system solutions
§ and & which can be computed using standard iterative 08
algorithms. 0.7

0.6 -
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Remark 2. Theorem 3 describes the asymptotic behavior of
the SINR around its expected moment. Determining the fluc-
tuations of the SINR around the deterministic approximate
B,, is not immediate since according to the results in [9], 0.3 -
vn (EB, — B,) = O(1). We prove hereafter a stronger re- 02
sult which states thay/nE (5, — 3,,) tends in reality to zero. o1l
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Theorem 4. Under mild technical assumptions, the SINR
satsfies:

c

EBn — 6n >0 Fig. 1. Empirical and asymptotic means with respect todhe

n—roo

As a corollary, we get thus: In a second experiment, we study the effect of the rice fac-

Corollary 1. In the asymptotic regime, and under mild tech-toron the variance of the SINR. Fig. 2 displays the vgriance
nical assumptions, the SINR satisfies: of the SINR forn = 32, N = 8, p = 0.5 andu = 0.6, while
the rice factorK ranges fron0.1 to 5. Note that whenk
grows, the variance decreases, thus reducing the fluchgatio

n - . . . .
oz (Bn — Bp) — N(0,1), in distribution. of the SINR.
—<— nE(Bn — B,)?
5. SSIMULATIONS —o—0?
0.35

In this section, we check by simulations the accuracy of
our results. We assume a non-centered channel with a line 031 )
of sight matrixA = [a(ay), - ,a(any1)] Wherea(a) = 0.25 |- i
[1,em) . ,eJ(N—l)a]T is a directional vector, the; being .

some given phase variables. The entries of the non-line of
sight matrixX are assumed to satisfy; ; = r; ; exp (96 ;).

Variance

0.15

wheref; ; are i.i.d. uniform phase variables ovér 27| and o1

r;,; are i.i.d. positive random variables. Depending on the

distribution ofr; ;, many types of channels can be modelled. 51072

We consider here the Nakagami-m channel, for which the ol L1
distribution ofr; ; is given by: oot e ZK‘) Sose A s

2pu—1,— .
fu,w(x) = F(,u)w“x Flemw®, Fig. 2. Empirical and asymptotic variances with respect toffie
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Finally, we representin fig. 3 the histogram ?fﬂ% (ﬂn

whenK = 5,p = 1, N = 32 andn = 64. We notice that
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behaviour of the SINR around its asymptotic equivalen[1

imilar to that of a Gaussian random variable.
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