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Introduction

— Ricean Multiple-Input Multiple-Output (MIMO) channels

We are interested by non-Gaussian channels which admiteamristic line-of-
sight (LOS) component.

— LWR (Linear Wiener Receiver) : In the context of multidimensional

signals, the LWR is the linear receiver that achieves thesitevel of interference.

— SINR (Signal-to-Interference plus Noise Ratio): To evaluate the

performance of the Wiener filter, we focuse on the study obgsociated SINR at

Its output.
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Problem statement

e Hypotheses and notations

T = Hs & n-eee n: AWNG, E(nn* = pIy)

r: (N x1) received vecjtor S ((P+ 1) x 1) transmitted symbols

H(N x (P + 1)) channel matri%

Channel Matrix Model:

1 1 K -\ A
\/P(\/lJrK +\/K+1 ) v +8l,

where,

— K Is the Rice factor,
— X random matrix with i.i.d. entries with zero mean and uniiaace,and
— A is the deterministic matrix which stands for the line-ofrgigomponent.

e LWR estimator and the SINR
The estimate 0§, at the LWR:

S=(y+b) (Y +B)(Y+B) +pI,) 'r
Then, the SINR is given by:

Br=(y+b)"Q(y+b),
where,Q = (Y + B) (Y + B)" + pIy) .

— Goal : Understanding the asymptotic behavior (first and secoddrdiof the

SINR, under the asymptotic regime (when the dimensionsethannel matrix
tend to infinity with the same rate).
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Theoretical Results

Important results: Deterministic system For anyp > 0, the determinis-

tic system:

~

Op(p) =5 TiTy(p),
whereT, andT, are the matrices

{ o(p) = FTrT,(p)

T,(p) = (p(K+ 1)(1 + 0(p))In pffﬁsﬁ*p»)_l
Ty(p) = (p(K +1)(1+3,(p
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admits a unique solutiofdp, 6p) in (0, 00)?.
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First order asymptotic behavior under the asymptotic regime, we have:

519(/0) — Bp(/@) —— 0,

U d®®)

where,, = 5TtT, + Ka*T,a.

The Blaswe have:

Efp — fp ——- 0

Second order resultLety = 51(T?), 5 = 5TvT, S = diag(T) andS = diag(T). Letx

be the fourth cumulant of the entriesXfgiven byx = E| X1 1|* — 2. DefineA,, o, andé, as:

K
Ay = (1-
P ( P(1+ )2

1 K 9 9
= —TrT°AA" + K°a*"TAA*T
EARRTIEE MP s TR a>

K 2
+ ((1 +6)° — FTrTQAA*> (7 + Ka*Tza)] ,

2
TAATY)) K + 1P

N
1
& = pAK + 1)2KQFTrSZZ Taa™TJ; ;
1=1
N ) |
2 2
TrS z; |a*Ta;a; Ta| —|-FTI’S .
1=

K* 1
(1+0)4P

_|_

Then, the SINR satisfies:

— D Qo 2a* 8.2
\/QZ%(@? — B,) —— N(0,1), where, ()} = A K<WT> - K&

P—o0
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Numerical Results

The context
oA =[a(ay),...,a(a,)], wherea(q;) = [1,e/7, ..., eﬂN—l)O‘}T is a directional
vector,

e X, =r;exp(b;;), whered, ; are i.i.d. uniform phase variables oyer2r|, and
r; ; are 1.1.d. real positive random variables having Nakagamalistribution.
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