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ABSTRACT restrictive conditions on the number of signalswhich may
..é_cale-up withA, N. In [2], the consistency of the localiza-
dion function estimator was proved, but the consistencyref t
DoA estimator was not adressed. Therefore, the purpose of

than the number of sensaké. In this context, the traditional NS Paper is to continue the study of this DoA estimator, and

subspace methods tend to fail because the empirical covaRICVe its consistency, stillin the regime whevg N — +oo
ance matrix of the observations is a poor estimate of the tru@dt the sa_me_rate. in t_h's cor_1text, the k_ey ppmt IS to p_rov‘e tha
covariance matrix. G-MUSIC is based on a new consister{'€ l0calization function estimator derived in [2] is urifaly

estimator of the localization function in the regime whéve consistent. ) ) . .
andN tend to+oo at the same rate. However, the consistency 1 N€ Paper is organized as follows. In section 2, we in-
of the DoA estimator was not adressed. The purpose of thit,‘goduce the model and notations used in the paper. In section

paper is to prove the consistency of the angles estimatbein t 3@ W€ review some basic results concering the G-MUSIC
previous asymptotic regime. method introduced in [2]. In section 4, we prove the consis-

tency of the DoA estimator.

Recently, a new subspace DoA estimation method (called
MUSIC") has been proposed, in the context where the numb
of available snapshot®¥ is of the same order of magnitude

Index Terms— Random matrices, MUSIC, DoA estima-

tion.
2. MODEL AND PROBLEM STATEMENT

1. INTRODUCTION We considetk narrow band deterministic source signals im-

o ) o pinging on an antennas array df elements withX' < M.
Subspace DoA (Directions of Arrival) estimation methods Us a¢ time . the received snapshot (of sizé) writes

ing antenna arrays (such as MUSIC) has been extensively

studied in the past because they offer a good trade-off legtwe Vo = As, + vy, (1)
performance and complexity. Their statistical perfornganc
has mainly been characterized when the number of snapshatéiereA = [a(6,),...,a(0k)] is theM x K matrix contain-

N converges te-oo while the number of antenndgd remains  ing the K linearly independent steering vectovs, is a Gaus-
fixed. In practice, the corresponding conclusions are valid sian vector satisfying [v,,vZ] = 021, ands,, is a vector
finite sample size ifV is much larger thad/. However, this  containing theX source signals received at timeAssuming
assumption is often not realistic if the number of antennasve collectV snapshots, (1) is equivalent to

is large because the number of available snapshots may be

limited. In order to study the statistical performance o th Yy =By + Wy,

subspace DoA estimates in this context, Mestre et al. [1] pro

posed to consider the asymptotic regime in whidhand N with 3y = \%ﬁ[yh .., ¥YN], By = ﬁ[ASh ., Asn],
converge tot+oo at the same rate, i.84, N — +o0, % con- andWy built asXy andB . In this paper, we will assume
verges towards a positive constant. Using large random mahatM < N and that matriXSy = [s1, ..., sy] has full rank
trix theory (RMT) results, [1] proved that the traditionab® K. ThereforeByB% has rankK, and we assume that its
subspace estimators are asymptotically biased, and grdpos positive eigenvalues have multiplicity one and are denbted
assuming the source signals are i.i.d, a consistent estimat) = \y v = ... = Ay—x, N < Av—k+1,8 < ... < AuN-
of the localization function which outperforms the stamtlar We also denote by v, ..., up, n the corresponding unit
ones for realistic values af/ and N. Later, [2] proposed norm eigenvectors.

a similar estimator assuming the source signals are unknown The MUSIC algorithm is based on the fact that tkiean-
deterministic quantities. Neither one of these papers gapo glesf, ..., 0 are solutions to the equatiogp, (¢) = 0, with



nx (0) the localization function defined by

M—-K

Z a(O)Huk)NugNa(Q),
k=1

nn(0)

where >-37 % u, yufl  is the projection matrix onto the
"noise subspace", defined as the orthogonal complement
the column space of matriAA”. To estimate these an-
gles, we need to estimate the quantjty(6), and the tradi-
tional approach consists in replacing the "noise" eigetorec
ui N, - unx.v of By B by those o y 3%, the empir-
ical covariance matrix of the observations.

We denote by\, y < ... < Ay the eigenvalues of
sy and byt ar, - .., G, v the corresponding unit norm
eigenvectors. The traditional estimator for the localorat
function thus writes

M—-K

> a(0)a vy va(o).
k=1

(@)

ﬁtrad,N(e)

The previous theorem implies that; — un — 0 weakly,
w.p.1. asN — oo. Thusuy represents a deterministic
approximation of measurgy. From [2], we also have the
almost-sure convergenegd)” (Qn(z) — Tn(2))a(d) —

0 andw/y (z) — wiy(2) = 0 asN — oo, wherew)y (z) is the
derivative ofiwy (z) given by

f 2
° Wy (z) =z (1+ o%cymn(z))

—o*(1—cn) (1+oenmn(z)) .

©)

The support ofuy provides some insights on the localiza-
tion of the eigenvalue$5\k,N ck=1,...,M}. Itis proved

in [2] that this support is the union of a finite number (say
Q) of disjoint compact intervals, denotéﬁ;N,x;N]. Be-
fore giving results concerning the G-MUSIC method, two as-
sumptions are required, basically expressing the factttieat
"signal subspace" must be well separated from the "noise sub
space". Firstly, itis assumed that; , ¢, ¢, ,t3 € R}, inde-
pendent ofV, such that for all largéV,

_ _ _ — + + oy ~ +
Thanks to law of large number, the previous estimator is contt < Z1,v <%y <lp <ty <Tyy <...<Tgy <l3.

sistent in the case wher€ — oo while M is kept constant,
i.ecy = M/N — 0. However, when/, N — +occ in such

a way thatey — ¢ > 0, the previous estimator does not

converge anymore tgy.

For the remainder of the paper, all convergences will be

considered under the regimg — ¢ €0, 1[, asM, N — oo,
and will be directly referred byN — +o0".

3. REVIEW OF THE G-MUSIC METHOD

Secondly, no eigenvalue &y B, except), must belong to
the intervallwy (t] ), wy (t])[. These assumptions, known
as "eigenvalue separation condition”, imply that a.s., for
all e > 0, 5\17]\[7...,5\]”,[{’]\] S [t; — E,tl+ + 6] and
)\M,KJFLN,...,S\]VLN € [ﬁ; — E,If;r + 6], for all large

N. Choose: > 0 such that; — 6e > 0 andt]” + 6e < t,,
and defineR, (y > 0) the rectangle

Ry ={u+iv:u€[t] —3et] +3e,v € [~y,y]}.

We begin by stating some classical results in RMT. DeDenotedR, its boundary, clockwise oriented. From [2], un-

1
fine Qun(z) = (ENE]}VI — zIM) the resolvent of matrix
s yE4, and its normalized trace bty (z) = HTrQn(2).
Define the probability measugey = 7 S5, 05, . with
4, the Dirac measure at poiat [y is usually called the "em-
o " H - ;
pirical spectral measure” of matrk y X . Thenmy(z) is

the Stieltjes transform qiy, i.e iy (2) = [, dian(A)

A—z
Theorem 1([3]). Letz € C\R™. Then asV — oo,
my(z) —mn(z) >0 a.s,

where my(z) is the Stieltjes transform of a deterministic
probability measurguy, i.e my(2) = [; d‘%(j) and satis-
fies the equation

1
= MTr Ty(z)

=1+ aQCNmN(z))%Tr (BNBY — wN(z))71 ,

mpy(z)

with wy (z) defined by

wi(2) = 2(1 4+ o?exnmpy(2))? — o2en(1 — o?enmu(2)).

der these assumptions, for all larye we can expressy as

1

wiy(2)

a(a)HTN(z)a<9>m

nn(0) dz.

In this context, the G-MUSIC method, proposed in [2], is
based on the following estimator of the localization fuooti

() = - ﬁw a(0)" Qu(2)a(6)

~7
_0nE) g,
1+ c2enmn(z)

(4)

In practice, the contowR,, is not known, but if the number
of sourcesK is available, the integral in (4) can be solved
using residue theorem, to obtain an explicit formula depend
ing only on the observations matr&® . For this, we have
to study the location of the poles of the integrand in (4), i.e
{XkyN :k =1,...,M} and the zeros of + o2cnmn(2).
Following the idea of [3], we define the mati§Xy = Ay +
Cen 11T, with 1 = [1,...,1]7 anddy v < ... < dun

its eigenvaluesf&N is the matrix of eigenvalues cENEJI{,.

It can be shown that the zeros bft+- o?cyrmn(z) (the de-
nominator in (4)) are eigenvalues ©fy. It is proved in [2]

27l



that the "eigenvalue separation condition" implies that,a. whereP, P, are two polynomials with positive coefficients
foralle > 0, &1 n,...,0Mm—Kk,N € [t] — e,tl+ + ¢ and independent olV, 6.

OM-K+1.Ny--,OMN € [ty — € tg + ¢, for all large N.
Thus, the pole§\, v, &rny : k= 1,...,M — K} are en-
closed byoR,, w.p.1. for all largeN, which ensures that the

Proof. The proof is omitted here due to lack of space. It
widely relies on the Gaussian tools used in [2], and on thie fac
) that the regularization does not introduce any change in the
integral (4) can be solved. ,
4 . : ) rythm of convergence of the momentsiff; (z) — w/y (z) and

For a fixed angl®, the estimator (4) is consistent when (0) (Qu (=) — Tr(2)) a(6) (SiNCEP(A®) = O(-L ) -
M,N — oo while cy — ¢ €]0,1[. Note that at this stegy’ NiZ Nizj)a AN
may be constant or scale-up with, but in this paper, we will - As a consequence, we can upper-bound the moments of
assumek’ constant, to lighten the proof in section 4. This the localization function estimator regularized by therjitg
assumption can be weakened and we can also prove the cop;,. More precisely, using Jensen’s inequality and Fubini's

sistency ifK increases withV, at an appropriate rate. theorem, for eache N, we obtain
4. CONSISTENCY OF THE DOA Elin (0)Xn — nv (0)]*

. . . . . 1 H Wy (2) o
In this section, we derive the consistency of the DoA estima- < ——; j{ Ela(f) QN(Z)#XN
tor, in the case where the steering vectors follow the model (27) Ry L+ o%enmn (z)
a(Q) = ﬁ[l,ew,...,ei(M—U‘g], which corresponds to a wiy (2) 2z .
uniform linear array of antennas, whose elements are ldcate ~ TN T 2eemeta |20 1d2]
at half the wavelength . The proof of the consistency splits +otenmn(z)
in two steps. We first derive a uniform consistency for the lo- o <1)
calization function estimator, and we transfer the coesisy NU)T

to the angle estimator by a standard argument. The uniform ) ]
consistency requires the use of a regularization trick tofo  With these results, we can now prove the uniform consistency
the poles of the integrand in (4) to be confined in a certain sePf the estimator of the localization function.

Define the sef. = [t; — 1] + €| U[t; —et5 +¢ and  pronasition 2. With probability one,

the eventd = {A1 n, ..., Adrn, O1N, - O € To) It
turns out thatP(A°) = O (x) for all I € N (the proof is sup |An(0) —nn(0)] — 0. (5)
omitted due to lack of space). This result allows to contnel t O€[—m,m] Nvoe
moments of the integrand in (4). Indeed, ¢e€ C>°(R, R™) . .
i . . T Proof. Consider a saty of N? points denote®, ..., O yz,
(the space of non-negative test functiondR)nsuch that evenly spaced in the intervik, 7. Fix 8 € [—. ], and let
1 for teT. (6n) a sequence such thiay € ¥y and|d —Oy| = O (z)-
t) = . i iti
(1) 0 for teR\{Ta) We consider the decomposition,

Define? { = det ¢(Sx S )det (Qx). Notethatpy =1 V(O =1 (0) =in () =i () +ii (O) = 1y ()

on the eventd. Whenz approaches the real axis on the con- + 15 (0n) — 1w (0). (6)
tour 9R, the integrand in (4) can be unbounded on the eve
Ac¢, due to the poles gt\y v, Wk v : k= 1,..., M}. How- _ )
ever, when it is multiplied ("regularized”) byy, the inte-  COMPUte. Sinceupye_r - [a(f) —a(n)| = O (ﬁ)
grand is bounded ofiR,,, and thus its moments are all finite. we getsupge_, . Inv (Ox) — v (0)] = O (L) _For the

n{‘he third term of the RHS of (6) is deterministic and easy to

VN
Proposition 1. Forall [ € N, second term, we write
H M ¢ P ( sup |y (V) — v)| > e)
Ela(f) (QN(Z)1+a2cNmN(z)XN VE@I?V\UN( ) —nn()| =
L) i S
_ wy (% < ) _P(in(Or) —nn(Ok)| =€)
T (z) 14+ o2eymp(2) ) a(6) k=1
1 1 1
< - I Choosd > 4. ThenP(A°) = O (7) and we get
< 57 0P (G )

N2

LIn fact, the precise model for the componenta(f) is etk sin(9), ) . 1

2By applying the functions to a Hermitian matrix, we implicitly repre- Z P ({|77N(@k') - 77N(®k)| 2 5} nA ) =0 Ni=2 )"
sent the action of on the corresponding eigenvalues. k=1



Using the fact thafjy = 7y xn ON A,

P ({15 (k) — nn(Ok)] > €} N A)
<P (Iin(Or)XN — 18 (Ok)] > €)

< E liw (@)t — nv(O0)™.
This last term i<0 (7 ) from the above bounds, and thus,
“( )=o)
Therefore, sincé > 4, we deduce with Borel-Cantelli lemma

thatsup, ¢y, [n(v) —nn(v)] — 0a.s., asV — oc. For the
first term in (6), using as previously the eveft

P sup
oel—m,m]

o

1 . . N
< SE L sup  [in(0) — v (On)] W
S

B [~,7]

1

sup [fin(v) —nn (V)| > € N2

vEYN

11N (0) — in (On)] > 6)

sup

- ]IﬁN(H) —in(On) XN > e) +P(A°),
el—m,m

+o(]\1ﬂ>.

By Jensen’s inequality,
i () — i (O3] X

< Cény la(9) — a(@n)[" [Qn ()]

"y 1
e lal

1+ JQCNmN(Z)
<
= Ni? ?{m Pz P (dist(

~0(513)-

Ni/2
with C' > 0 a constant ané?;, P, two polynomials with pos-
itive coefficients, all non-random and independentN\aff.
This eventually shows, using again Borel-Cantelli lemma
thatsupge | 1 [n (0) — v (On)] — O W.p.1. O

1 1

Z,supp

@)l

Theorem 2. For k = 1, ..., K, with probability one,

N(ék,N — Gk) — 0.
N—o0

Proof. Since A(A# A)~'A* is the projection matrix onto
the "signal subspace”, the true localization function can b
written asyn (0) = 1—a(0)? A(AHA)~1 A a(f). We con-
sider the estimation of angl.. By definition, |7y (01| <
[7n(0x)]. From (5) and the equalityy (0;) = 0, we have
lin (Or.n)| = 0w.p.1., asN — co. Consequently,

I (O, n)| < v (Or,n) — v (O, 3)| + [ (B )|

< , ?HP ]|77N(‘9) — 1w (0)] + [N (Or,w)]|
el—m,m

a.s.
—— 0.
N—o0

)
Moreover, remark that from lemma 1, tHe€ x K matrix
(A A)~! converges tdx asN — oo. Since (0 y) is
bounded, we can extract a converging subsequ@é@gg(m).
Letay = 0y ,(n) — 0. Fromlemma 1, ibvy — o # 0 or
ay — 0andN|ay| — co asN — oo, then

a.s.
—0,
N—oc0

a0y o(v) TAATA) AT a () L n)

and thus)y (05, »(vy) — 1, a contradiction with (7). There-
fore we can find a further subsequence, still denoted with in-
dex QD(N), such thatékW(N) — 0, — 0 and N|9Ak,¢(N) —

0x] < C < oo, with C' a positive constant. Since the subse-
quence(N|ékW(N) —0|) is bounded, we can extract a further
subsequence, again denoted with ingéxV), converging to

B € [—m,«|. From lemma 1, if3 # 0, we get

2

Doy Or.p()) —— 1 — sinc(B8)? > 0,

N—o00

which is again in contradiction with (7). Therefore= 0 and
all converging subsequences extracted f(mﬁw(m —0k|)
converge to0, which of course implies that the whole se-
quence(N|9Ak,¢(N) —0%|) converges t0. Applying iteratively
the same argument to all the previous subsequences, we fi-
nally end up withV (6, x — ;) — Ow.p.1.,asN — co. [

5. REFERENCES

We now adress the consistency of the DoA estimate. For

this, we follow the approach of [4].

Lemma 1. Let («y) a real-valued sequence of a compact
subset of —0.5, 0.5], and converging tex as M — oco. De-
fine gar(an) = 1 Sope, e 2mev If o £ 0orifa = 0
and M|ay| — oo, thengy(apy) — 0. If @« = 0 and
Mooy SR B € R, thengas(aar) — ePsine(B).

ChooseK gisjoint intervalsZ,, ..., Zx, such thatd, €
Z;,. Denote by;, v the G-MUSIC estimate of;,, defined as

O n = in [An (0
kN arggrenzr}clmv( )l
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