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ABSTRACT

Recently, a new subspace DoA estimation method (called "G-
MUSIC") has been proposed, in the context where the number
of available snapshotsN is of the same order of magnitude
than the number of sensorsM . In this context, the traditional
subspace methods tend to fail because the empirical covari-
ance matrix of the observations is a poor estimate of the true
covariance matrix. G-MUSIC is based on a new consistent
estimator of the localization function in the regime whereM
andN tend to+∞ at the same rate. However, the consistency
of the DoA estimator was not adressed. The purpose of this
paper is to prove the consistency of the angles estimator in the
previous asymptotic regime.

Index Terms— Random matrices, MUSIC, DoA estima-
tion.

1. INTRODUCTION

Subspace DoA (Directions of Arrival) estimation methods us-
ing antenna arrays (such as MUSIC) has been extensively
studied in the past because they offer a good trade-off between
performance and complexity. Their statistical performance
has mainly been characterized when the number of snapshots
N converges to+∞while the number of antennasM remains
fixed. In practice, the corresponding conclusions are validin
finite sample size ifN is much larger thanM . However, this
assumption is often not realistic if the number of antennas
is large because the number of available snapshots may be
limited. In order to study the statistical performance of the
subspace DoA estimates in this context, Mestre et al. [1] pro-
posed to consider the asymptotic regime in whichM andN
converge to+∞ at the same rate, i.e.M,N → +∞, M

N con-
verges towards a positive constant. Using large random ma-
trix theory (RMT) results, [1] proved that the traditional DoA
subspace estimators are asymptotically biased, and proposed,
assuming the source signals are i.i.d, a consistent estimator
of the localization function which outperforms the standard
ones for realistic values ofM andN . Later, [2] proposed
a similar estimator assuming the source signals are unknown
deterministic quantities. Neither one of these papers imposes

restrictive conditions on the number of signalsK, which may
scale-up withM,N . In [2], the consistency of the localiza-
tion function estimator was proved, but the consistency of the
DoA estimator was not adressed. Therefore, the purpose of
this paper is to continue the study of this DoA estimator, and
prove its consistency, still in the regime whereM,N → +∞
at the same rate. In this context, the key point is to prove that
the localization function estimator derived in [2] is uniformly
consistent.

The paper is organized as follows. In section 2, we in-
troduce the model and notations used in the paper. In section
3, we review some basic results concerning the G-MUSIC
method introduced in [2]. In section 4, we prove the consis-
tency of the DoA estimator.

2. MODEL AND PROBLEM STATEMENT

We considerK narrow band deterministic source signals im-
pinging on an antennas array ofM elements withK < M .
At time n, the received snapshot (of sizeM ) writes

yn = Asn + vn, (1)

whereA = [a(θ1), . . . ,a(θK)] is theM ×K matrix contain-
ing theK linearly independent steering vectors,vn is a Gaus-
sian vector satisfyingE[vnv

H
n ] = σ2IM , andsn is a vector

containing theK source signals received at timen. Assuming
we collectN snapshots, (1) is equivalent to

ΣN = BN +WN ,

with ΣN = 1√
N
[y1, . . . ,yN ], BN = 1√

N
[As1, . . . ,AsN ],

andWN built asΣN andBN . In this paper, we will assume
thatM < N and that matrixSN = [s1, . . . , sN ] has full rank
K. ThereforeBNBH

N has rankK, and we assume that its
positive eigenvalues have multiplicity one and are denotedby
0 = λ1,N = . . . = λM−K,N < λM−K+1,N < . . . < λM,N .
We also denote byu1,N , . . . ,uM,N the corresponding unit
norm eigenvectors.

The MUSIC algorithm is based on the fact that theK an-
glesθ1, . . . , θK are solutions to the equationηN (θ) = 0, with



ηN (θ) the localization function defined by

ηN (θ) =

M−K
∑

k=1

a(θ)Huk,NuH
k,Na(θ),

where
∑M−K

k=1 uk,NuH
k,N is the projection matrix onto the

"noise subspace", defined as the orthogonal complement of
the column space of matrixAAH . To estimate these an-
gles, we need to estimate the quantityηN (θ), and the tradi-
tional approach consists in replacing the "noise" eigenvectors
u1,N ,. . .,uM−K,N of BNBH

N by those ofΣNΣH
N , the empir-

ical covariance matrix of the observations.
We denote bŷλ1,N ≤ . . . ≤ λ̂M,N the eigenvalues of

ΣNΣH
N and byû1,M , . . . , ûM,N the corresponding unit norm

eigenvectors. The traditional estimator for the localization
function thus writes

η̂trad,N (θ) =
M−K
∑

k=1

a(θ)H ûk,N ûH
k,Na(θ). (2)

Thanks to law of large number, the previous estimator is con-
sistent in the case whereN → ∞ while M is kept constant,
i.e cN = M/N → 0. However, whenM,N → +∞ in such
a way thatcN → c > 0, the previous estimator does not
converge anymore toηN .

For the remainder of the paper, all convergences will be
considered under the regimecN → c ∈]0, 1[, asM,N → ∞,
and will be directly referred by "N → +∞".

3. REVIEW OF THE G-MUSIC METHOD

We begin by stating some classical results in RMT. De-

fine QN (z) =
(

ΣNΣH
N − zIM

)−1

the resolvent of matrix

ΣNΣH
N , and its normalized trace bŷmN (z) = 1

MTrQN (z).

Define the probability measurêµN = 1
M

∑M
k=1 δλ̂k,N

, with
δa the Dirac measure at pointa. µ̂N is usually called the "em-
pirical spectral measure" of matrixΣNΣH

N . Thenm̂N (z) is
the Stieltjes transform of̂µN , i.e m̂N (z) =

∫

R
dµ̂N (λ)
λ−z .

Theorem 1([3]). Letz ∈ C\R+. Then asN → ∞,

m̂N (z)−mN (z) → 0 a.s,

wheremN (z) is the Stieltjes transform of a deterministic
probability measureµN , i.emN (z) =

∫

R
dµN (λ)
λ−z , and satis-

fies the equation

mN (z) =
1

M
TrTN (z)

= (1 + σ2cNmN (z))
1

M
Tr
(

BNBH
N − wN (z)

)−1
,

with wN (z) defined by

wN (z) = z(1 + σ2cNmN (z))2 − σ2cN (1− σ2cNmN (z)).

The previous theorem implies thatµ̂N −µN → 0 weakly,
w.p.1. asN → ∞. ThusµN represents a deterministic
approximation of measurêµN . From [2], we also have the
almost-sure convergencea(θ)H (QN (z)−TN (z)) a(θ) →
0 andŵ′

N (z)− w′
N (z) → 0 asN → ∞, whereŵ′

N (z) is the
derivative ofŵN (z) given by

ŵN (z) = z
(

1 + σ2cNm̂N (z)
)2

− σ2(1− cN )
(

1 + σ2cNm̂N (z)
)

. (3)

The support ofµN provides some insights on the localiza-
tion of the eigenvalues{λ̂k,N : k = 1, . . . ,M}. It is proved
in [2] that this support is the union of a finite number (say
Q) of disjoint compact intervals, denoted[x−

q,N , x+
q,N ]. Be-

fore giving results concerning the G-MUSIC method, two as-
sumptions are required, basically expressing the fact thatthe
"signal subspace" must be well separated from the "noise sub-
space". Firstly, it is assumed that∃t−1 , t

+
1 , t

−
2 , t

+
2 ∈ R+

∗ , inde-
pendent ofN , such that for all largeN ,

t−1 < x−
1,N < x+

1,N < t+1 < t−2 < x−
2,N < . . . < x−

Q,N < t+2 .

Secondly, no eigenvalue ofBNBH
N , except0, must belong to

the interval]wN (t−1 ), wN (t+1 )[. These assumptions, known
as "eigenvalue separation condition", imply that a.s., for
all ǫ > 0, λ̂1,N , . . . , λ̂M−K,N ∈ [t−1 − ǫ, t+1 + ǫ] and
λ̂M−K+1,N , . . . , λ̂M,N ∈ [t−2 − ǫ, t+2 + ǫ], for all large
N . Chooseǫ > 0 such thatt−1 − 6ǫ > 0 andt+1 + 6ǫ < t−2 ,
and defineRy (y > 0) the rectangle

Ry = {u+ iv : u ∈ [t−1 − 3ǫ, t+1 + 3ǫ], v ∈ [−y, y]}.

Denote∂R−
y its boundary, clockwise oriented. From [2], un-

der these assumptions, for all largeN , we can expressηN as

ηN (θ) =
1

2πi

∮

∂R−

y

a(θ)HTN (z)a(θ)
w′

N (z)

1 + σ2cNmN (z)
dz.

In this context, the G-MUSIC method, proposed in [2], is
based on the following estimator of the localization function,

η̂N (θ) =
1

2πi

∮

∂R−

y

a(θ)HQN (z)a(θ)
ŵ′

N (z)

1 + σ2cNm̂N (z)
dz.

(4)

In practice, the contour∂Ry is not known, but if the number
of sourcesK is available, the integral in (4) can be solved
using residue theorem, to obtain an explicit formula depend-
ing only on the observations matrixΣN . For this, we have
to study the location of the poles of the integrand in (4), i.e
{λ̂k,N : k = 1, . . . ,M} and the zeros of1 + σ2cNm̂N (z).
Following the idea of [3], we define the matrix̂ΩN = Λ̂N +
σ2cN
M 11T , with 1 = [1, . . . , 1]T and ω̂1,N ≤ . . . ≤ ω̂M,N

its eigenvalues.̂ΛN is the matrix of eigenvalues ofΣNΣH
N .

It can be shown that the zeros of1 + σ2cNm̂N (z) (the de-
nominator in (4)) are eigenvalues ofΩ̂N . It is proved in [2]



that the "eigenvalue separation condition" implies that a.s.,
for all ǫ > 0, ω̂1,N , . . . , ω̂M−K,N ∈ [t−1 − ǫ, t+1 + ǫ] and
ω̂M−K+1,N , . . . , ω̂M,N ∈ [t−2 − ǫ, t+2 + ǫ], for all largeN .
Thus, the poles{λ̂k,N , ω̂k,N : k = 1, . . . ,M − K} are en-
closed by∂Ry, w.p.1. for all largeN , which ensures that the
integral (4) can be solved.

For a fixed angleθ, the estimator (4) is consistent when
M,N → ∞ while cN → c ∈]0, 1[. Note that at this step,K
may be constant or scale-up withN , but in this paper, we will
assumeK constant, to lighten the proof in section 4. This
assumption can be weakened and we can also prove the con-
sistency ifK increases withN , at an appropriate rate.

4. CONSISTENCY OF THE DOA

In this section, we derive the consistency of the DoA estima-
tor, in the case where the steering vectors follow the model
a(θ) = 1√

M
[1, eiθ, . . . , ei(M−1)θ], which corresponds to a

uniform linear array of antennas, whose elements are located
at half the wavelength1 . The proof of the consistency splits
in two steps. We first derive a uniform consistency for the lo-
calization function estimator, and we transfer the consistency
to the angle estimator by a standard argument. The uniform
consistency requires the use of a regularization trick to force
the poles of the integrand in (4) to be confined in a certain set.
Define the setTǫ = [t−1 − ǫ, t+1 + ǫ] ∪ [t−2 − ǫ, t+2 + ǫ] and
the eventA = {λ̂1,N , . . . , λ̂M,N , ω̂1,N , . . . , ω̂M,N ∈ Tǫ}. It
turns out thatP(Ac) = O

(

1
N l

)

for all l ∈ N (the proof is
omitted due to lack of space). This result allows to control the
moments of the integrand in (4). Indeed, letφ ∈ C∞

c (R,R+)
(the space of non-negative test functions onR), such that

φ(t) =

{

1 for t ∈ Tǫ

0 for t ∈ R\{T2ǫ}
.

Define2 χ̂N = det φ(ΣNΣ∗
N )det φ(Ω̂N ). Note thatχ̂N = 1

on the eventA. Whenz approaches the real axis on the con-
tour∂Ry, the integrand in (4) can be unbounded on the event
Ac, due to the poles at{λ̂k,N , ω̂k,N : k = 1, . . . ,M}. How-
ever, when it is multiplied ("regularized") bŷχN , the inte-
grand is bounded on∂Ry, and thus its moments are all finite.

Proposition 1. For all l ∈ N,

E

∣

∣

∣

∣

∣

a(θ)H

(

QN (z)
ŵ′

N (z)

1 + σ2cNm̂N (z)
χ̂N

−TN (z)
w′

N (z)

1 + σ2cNmN (z)

)

a(θ)

∣

∣

∣

∣

∣

2l

≤
1

N l
P1 (|z|) P2

(

1

dist(z, supp(φ))

)

.

1In fact, the precise model for the components ofa(θ) is eikπ sin(θ).
2By applying the functionφ to a Hermitian matrix, we implicitly repre-

sent the action ofφ on the corresponding eigenvalues.

whereP1,P2 are two polynomials with positive coefficients
independent ofN, θ.

Proof. The proof is omitted here due to lack of space. It
widely relies on the Gaussian tools used in [2], and on the fact
that the regularization does not introduce any change in the
rythm of convergence of the moments ofŵ′

N (z)−w′
N (z) and

a(θ) (QN (z)−TN (z)) a(θ) (sinceP(Ac) = O( 1
N l )).

As a consequence, we can upper-bound the moments of
the localization function estimator regularized by the quantity
χ̂N . More precisely, using Jensen’s inequality and Fubini’s
theorem, for eachl ∈ N, we obtain

E |η̂N (θ)χ̂N − ηN (θ)|
2l

≤
1

(2π)2l

∮

∂R−

y

E

∣

∣

∣

∣

∣

a(θ)H

(

QN (z)
ŵ′

N (z)

1 + σ2cNm̂N (z)
χ̂N

−TN (z)
w′

N (z)

1 + σ2cNmN (z)

)

a(θ)

∣

∣

∣

∣

∣

2l

|dz|
2l

= O

(

1

N l

)

.

With these results, we can now prove the uniform consistency
of the estimator of the localization function.

Proposition 2. With probability one,

sup
θ∈[−π,π]

|η̂N (θ)− ηN (θ)| −−−−→
N→∞

0. (5)

Proof. Consider a setϑN ofN2 points denotedΘ1, . . . ,ΘN2 ,
evenly spaced in the interval[−π, π]. Fix θ ∈ [−π, π], and let
(θN ) a sequence such thatθN ∈ ϑN and|θ− θN | = O

(

1
N2

)

.
We consider the decomposition,

η̂N (θ)− ηN (θ) = η̂N (θ)− η̂N (θN ) + η̂N (θN )− ηN (θN )

+ ηN (θN )− ηN (θ). (6)

The third term of the RHS of (6) is deterministic and easy to

compute. Sincesupθ∈[−π,π] ‖a(θ) − a(θN )‖ = O
(

1√
N

)

,

we getsupθ∈[−π,π] |ηN (θN )− ηN (θ)| = O
(

1√
N

)

. For the

second term, we write

P

(

sup
ν∈ϑN

|η̂N (ν)− ηN (ν)| ≥ ǫ

)

≤

N2

∑

k=1

P (|η̂N (Θk)− ηN (Θk)| ≥ ǫ) .

Choosel ≥ 4. ThenP(Ac) = O
(

1
N l

)

and we get

N2

∑

k=1

P ({|η̂N (Θk)− ηN (Θk)| ≥ ǫ} ∩ Ac) = O

(

1

N l−2

)

.



Using the fact that̂ηN = η̂N χ̂N onA,

P ({|η̂N (Θk)− ηN (Θk)| ≥ ǫ} ∩ A)

≤ P (|η̂N (Θk)χ̂N − ηN (Θk)| ≥ ǫ)

≤
1

ǫ2l
E |η̂N (Θk)χ̂N − ηN (Θk)|

2l
.

This last term isO
(

1
N l

)

from the above bounds, and thus,

P

(

sup
ν∈ϑN

|η̂N (ν)− ηN (ν)| ≥ ǫ

)

= O

(

1

N l−2

)

.

Therefore, sincel ≥ 4, we deduce with Borel-Cantelli lemma
thatsupν∈ϑN

|η̂N (ν)− ηN (ν)| → 0 a.s., asN → ∞. For the
first term in (6), using as previously the eventA,

P

(

sup
θ∈[−π,π]

|η̂N (θ)− η̂N (θN )| ≥ ǫ

)

≤ P

(

sup
θ∈[−π,π]

|η̂N (θ)− η̂N (θN )| χ̂N ≥ ǫ

)

+ P (Ac) ,

≤
1

ǫl
E

[

sup
θ∈[−π,π]

|η̂N (θ)− η̂N (θN )|
l
χ̂N

]

+O

(

1

N l

)

.

By Jensen’s inequality,

|η̂N (θ)− η̂N (θN )|
l
χ̂N

≤ C

∮

∂R−

y

‖a(θ)− a(θN )‖
l
‖QN (z)‖

l

×

∣

∣

∣

∣

ŵ′
N (z)

1 + σ2cNm̂N (z)

∣

∣

∣

∣

l

χ̂N |dz|
l
,

≤
1

N l/2

∮

∂R−

y

P1 (|z|) P2

(

1

dist(z, supp(φ))

)

|dz|
l
,

= O

(

1

N l/2

)

,

with C > 0 a constant andP1,P2 two polynomials with pos-
itive coefficients, all non-random and independent ofN, θ.
This eventually shows, using again Borel-Cantelli lemma,
thatsupθ∈[−π,π] |η̂N (θ)− η̂N (θN )| → 0 w.p.1.

We now adress the consistency of the DoA estimate. For
this, we follow the approach of [4].

Lemma 1. Let (αM ) a real-valued sequence of a compact
subset of(−0.5, 0.5], and converging toα asM → ∞. De-
fine qM (αM ) = 1

M

∑M
k=1 e

−i2πkαM . If α 6= 0 or if α = 0
and M |αM | → ∞, then qM (αM ) → 0. If α = 0 and
MαM −−−−→

M→∞
β ∈ R, thenqM (αM ) → eiβsinc(β).

ChooseK disjoint intervalsI1, . . . , IK , such thatθk ∈
Ik. Denote bŷθk,N the G-MUSIC estimate ofθk, defined as

θ̂k,N = arg min
θ∈Ik

|η̂N (θ)|.

Theorem 2. For k = 1, . . . ,K, with probability one,

N(θ̂k,N − θk) −−−−→
N→∞

0.

Proof. SinceA(AHA)−1AH is the projection matrix onto
the "signal subspace", the true localization function can be
written asηN (θ) = 1−a(θ)HA(AHA)−1AHa(θ). We con-
sider the estimation of angleθk. By definition,|η̂N (θ̂k,N )| ≤
|η̂N (θk)|. From (5) and the equalityηN (θk) = 0, we have
|η̂N (θ̂k,N )| → 0 w.p.1., asN → ∞. Consequently,

|ηN (θ̂k,N )| ≤ |ηN (θ̂k,N )− η̂N (θ̂k,N )|+ |η̂N (θ̂k,N )|

≤ sup
θ∈[−π,π]

|ηN (θ)− η̂N (θ)|+ |η̂N (θ̂k,N )|

a.s.
−−−−→
N→∞

0. (7)

Moreover, remark that from lemma 1, theK × K matrix
(AHA)−1 converges toIK asN → ∞. Since(θ̂k,N ) is
bounded, we can extract a converging subsequence(θ̂k,ϕ(N)).

Let αN = θ̂k,ϕ(N) − θk. From lemma 1, ifαN → α 6= 0 or
αN → 0 andN |αN | → ∞ asN → ∞, then

a(θ̂k,ϕ(N))
HA(AHA)−1AHa(θ̂k,ϕ(N))

a.s.
−−−−→
N→∞

0,

and thusηN (θ̂k,ϕ(N)) → 1, a contradiction with (7). There-
fore we can find a further subsequence, still denoted with in-
dex ϕ(N), such thatθ̂k,ϕ(N) − θk → 0 andN |θ̂k,ϕ(N) −
θk| ≤ C < ∞, with C a positive constant. Since the subse-
quence(N |θ̂k,ϕ(N)−θk|) is bounded, we can extract a further
subsequence, again denoted with indexϕ(N), converging to
β ∈ [−π, π]. From lemma 1, ifβ 6= 0, we get

ηϕ(N)(θ̂k,ϕ(N))
a.s.

−−−−→
N→∞

1− sinc(β)2 > 0,

which is again in contradiction with (7). Therefore,β = 0 and
all converging subsequences extracted from(N |θ̂k,ϕ(N)−θk|)
converge to0, which of course implies that the whole se-
quence(N |θ̂k,ϕ(N)−θk|) converges to0. Applying iteratively
the same argument to all the previous subsequences, we fi-
nally end up withN(θ̂k,N −θk) → 0 w.p.1., asN → ∞.
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