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ABSTRACT

This paper is devoted to subspace DoA estimation, when
the number of available snapshotsN is of the same order of
magnitude as the number of sensorsM . In this context, tradi-
tional subspace methods fail because the empirical covariance
matrix of the observations is a poor estimate of the true covari-
ance matrix. The goal of the paper is to propose a new consis-
tent estimator of the DoAs in the case whereM,N → +∞ at
the same rate, using large random matrix theory. It is assumed
that the number of sources is constant, and recent results on
the so called spiked matrix models are used. First and second
order results are provided.

Index Terms— DoA, MUSIC, Random matrices, Spiked
model

1. INTRODUCTION

Subspace DoA (Direction Of Arrival) estimation methods us-
ing antenna arrays (such as MUSIC) have been extensively
studied in the past because they offer a good trade-off be-
tween performance and complexity. Their statistical perfor-
mance has mainly been characterized in the case where the
number of snapshotsN converges to+∞ while the number
of antennasM remains fixed. In practice, the corresponding
conclusions are valid in finite sample size ifN is much larger
thanM . However, this assumption is often not realistic if the
number of antennas is large because in practice, the number
of available snapshots is limited. In order to study the sta-
tistical performance of the subspace estimates in this context,
Mestre et al. [1] proposed to consider the asymptotic regime
in which M andN converge to+∞ at the same rate, i.e.
M,N → +∞, MN converges towards a positive constant. Us-
ing large random matrix theory (RMT) results, [1] proved that
the traditional DoAs subspace estimators are asymptotically
biased, and proposed, assuming the source signals are i.i.d,
consistent estimators which outperform the standard ones,for
realistic values ofM andN . Later, [2] proposed a similar es-
timator assuming the source signals are unknown determinis-
tic quantities. Neither one of these papers imposes restrictive

conditions on the number of signalsK, which may scale-up
withM,N . The purpose of this paper is to propose consistent
subspace estimators, in the context of deterministic signals,
when the number of sourcesK is small compared toM,N .
The present approach is again based on RMT results, but in
contrast to [2], we use here recent results [3] concerning the
singular values and the singular vectors of large random ma-
trices, perturbed by low rank deterministic matrices. Under
certain conditions, the low rank perturbation gives birth to
“spiked” eigenvalues, located outside the bulk of eigenvalues
of the non perturbed model. RMT techniques which describe
the behavior of these eigenvalues and their related eigenvec-
tors suggest many interesting applications in estimation the-
ory and in signal processing. This paper, which describes one
such application, is organized as follows. In section 3, we
review some basic results in RMT and tools needed for our
approach. In section 4, we propose the new estimator and
analyze its asymtptotic behavior. Finally, in section 5, we
present some numerical examples.

2. MODEL AND PROBLEM STATEMENT

We considerK narrow band deterministic source signals im-
pinging on an antenna array ofM elements withK < M . At
timen, the received snapshot (of sizeM ) writes

yn = Asn + xn, (1)

whereA = [a(θ1), . . . , a(θK)] is theM × K matrix con-
taining theK linearly independent steering vectors,xn is
a Gaussian vector satisfyingE[xnxHn ] = σ2IM , andsn is
a vector containing theK source signals received at time
n. Assuming we collectN independent observations of the
previous model, (1) is equivalent toΣ = B + W, with
Σ = N−1/2[y1, . . . ,yN ], B = N−1/2[As1, . . . ,AsN ], and
W built asΣ andB. In this paper, we will assume that
M < N . In order to construct subspace methods, it is al-
ways assumed that matrixS = [s1, . . . , sN ] has full rankK
which implies thatB hasK non null singular values. Write
the SVD ofB asB = UΛ1/2VH with U = [u1, . . . ,uK ]



andV = [v1, . . . ,vK ] the left and right singular vector ma-
trices, andΛ1/2 theM ×M diagonal matrix of singular val-
ues

√
λ1 > . . . >

√
λK (in decreasing order), assumed to

have multiplicity one. The MUSIC algorithm is based on the
fact that theK anglesθ1, . . . , θK are solutions to the equa-
tion a(θ)H(I − UUH)a(θ) = 0. To estimate these angles,
it is necessary to estimate the quantityη = aHUUHa for
any vectora of sizeM . For this, the traditional approach
consists in replacing the signal eigenvectorsu1, . . . ,uK of
BBH by those of the empirical covariance matrixΣΣH . We
denote bŷλ1 ≥ . . . ≥ λ̂M the eigenvalues ofΣΣH and by
Û = [û1, . . . , ûM ] andV̂ = [v̂1, . . . , v̂M ] the left and right
singular vector matrices ofΣ. The traditional estimator thus

writesηtrad = aH
[
û1 · · · ûK

] [
û1 · · · ûK

]H
a. Thanks to the

law of large number, the previous estimator is consistent in
the case whereN → ∞ whileM is kept constant. However,
whenM,N → +∞ in such a way thatM/N → c > 0, the
previous estimator does not converge anymore toη.
In this paper, we will assume thatK is independent ofN , and
thatM/N → c ∈]0, 1[, asM,N → ∞. All the convergences
in this paper will be considered under this regime and referred
directly by the statement "N → +∞". For two scalar random
variables sequences(XN ), (YN ), we will write "XN ≍ YN "
instead ofXN − YN → 0 a.s. asN → ∞.

3. LARGE RANDOM MATRICES AND SPIKED
MODELS

We begin with some well-known results, concerning the
convergence of the resolvent ofWWH , namely the matrix
Q(x) = (WWH − xI)−1.

Theorem 1 ([4]). As N → ∞, the smallest and largest
eigenvalue ofWWH converge respectively towardsσ2(1 −√
c)2 and σ2(1 +

√
c)2. Moreover, if [a, b] ⊂]σ2(1 +√

c)2,+∞[, then, for deterministic vectorsc,d such that
supN{‖c‖, ‖d‖} < +∞, we have with probability one,

sup
x∈[a,b]

∣∣cHQ(x)d−m(x)cHd
∣∣ → 0, (2)

sup
x∈[a,b]

∣∣cHQ(x)Wd
∣∣ → 0 (3)

where

m(x) =

∫R dµ(λ)

λ− x
(4)

is the Stieltjes transform of the Marcenko-Pastur distribution
µ carried bysupp(µ) = [σ2(1 −√

c)2, σ2(1 +
√
c)2]. m(x)

is given by

m(x) = −
x− σ2(1− c)−

√
(x− σ2(1− c))

2 − 4σ2cx

2σ2cx

for x > σ2(1 +
√
c)2.

Remark 1. The same results hold forQ(x)2, and they are
obtained by replacingQ(x) with Q(x)2 andm(x) with its
derivativem′(x) in (2), (3), e.g. supx∈[a,b] |cHQ(x)2d −
m′(x)cHd| → 0 and supx∈[a,b] |cHQ(x)2Wd| → 0 a.s.

Similarly, for the co-resolvent̃Q(x) = (WHW− xI)−1, we
have, e.g.,cHQ̃(x)d ≍ m̃(x)cHd, with m̃(x) = cm(x) −
1−c
x , the Stieltjes transform of the probability measureµ̃ =

cµ+ (1− c)δ0. Note that from the identitỹQWH = WHQ,
we directly obtainsupx∈[a,b] |cHWHQ̃(x)d| → 0 using eq.
(3).

Theorem 2 ([3],[5]) . AssumeλK > σ2√c. Then, asN →
∞, for k = 1, . . . ,K, we have with probability one

λ̂k → ψ(λk) =
(λk + σ2c)(λk + σ2)

λk
, (5)

and fork > K and eachǫ > 0, λ̂k ∈ [σ2(1−√
c)2−ǫ, σ2(1+√

c)2 + ǫ] almost surely for all largeN .

Remark 2. Let Γ(x) = xm(x)m̃(x). Then we have the
equalityλkΓ(ψ(λk)) = 1 for k = 1, . . . ,K.

From the previous theorem, if the eigenvaluesλ1, . . . , λK
are large enough, then for allǫ > 0, the sample eigenvalues
λ̂M−K+1, . . . , λ̂M belong to[σ2(1−√

c)2−ǫ, σ2(1+
√
c)2+

ǫ]while λ̂1, . . . , λ̂K will be bounded away ofσ2(1+
√
c)2 a.s.

for all large N. This ensures that we can estimate the number
of sourcesK (detection) by counting the sample eigenvalues
aboveσ2(1 +

√
c)2 + TH , with TH a certain threshold value.

Moreover, this theorem provides a way to consistently esti-
mate the signal eigenvaluesλ1, . . . , λK .

Theorem 3 ([3]). AssumeλK > σ2√c. Then, fork, l ≤ K,
asN → ∞, we have with probability one

|uHk ûl|2 →
{

m(ψ(λk))
λkΓ′(ψ(λk))

if k = l

0 else
, (6)

with Γ′(x) the derivative ofΓ(x), satisfyingΓ′(x) < 0 for
x > σ2(1 +

√
c)2.

Proof. The proof can be found in [3], but we give here the
main steps because our estimation approach strongly relies
on it. First, note that from [6, Th. 7.3.7], we have fork =
1, . . . ,K

[
0 Σ

ΣH 0

] [
ûk
v̂k

]
= λ̂k

[
ûk
v̂k

]
.

Thanks to theorem 2,̂λk → ψ(λk) > σ2(1 +
√
c)2, and thus

a.s.,λ̂k is not an eigenvalue ofWWH for N large enough,
because‖WWH‖ → σ2(1 +

√
c)2 a.s. from theorem 1.



Therefore, using the block matrix inversion formula,
[
ûk
v̂k

]
=

−
[

WQ̃(λ̂k)VΛ1/2
√
λ̂kQ(λ̂k)UΛ1/2

√
λ̂kQ̃(λ̂k)VΛ1/2 Q̃(λ̂k)W

HUΛ1/2

][
UH ûk
VH v̂k

]
.

(7)

Let c ∈ CM ,d ∈ CN such thatsupN{‖c‖, ‖d‖} < +∞.
Using theorem 1 eq. (3) with the co-resolventQ̃(λ̂k) (see
remark 1), it is easy to show thatcHWQ̃(λ̂k)VΛ1/2UH ûk

≍ 0 anddHQ̃(λ̂k)W
HUΛ1/2VH v̂k ≍ 0. Consequently,

the convergencêλk ≍ ψ(λk) (theorem 2) and the uniform
convergences in theorem 1 imply

cH ûk ≍ −
√
ψ(λk)m(ψ(λk))c

HUΛ1/2VH v̂k, (8)

dH v̂k ≍ −
√
ψ(λk)m̃(ψ(λk))d

HVΛ1/2UH ûk, (9)

which, by takingc = ul andd = VΛ1/2UHul, lead to

uHl ûk ≍ ψ(λk)m(ψ(λk))m̃(ψ(λk))λlu
H
l ûk.

Sincem(ψ(λi))m̃(ψ(λi))ψ(λi))λj = 1 iff i = j (see remark
2), we deduceuHl ûk ≍ 0 for k 6= l. It can be shown similarly
thatvHl v̂k ≍ 0 if k 6= l. Now, getting back to (7), we have
‖ûk‖2 = χ1 + χ2 + χ3 + χ∗

3 with

χ1 = ûHk UΛ1/2VHQ̃(λ̂k)W
HWQ̃(λ̂k)VΛ1/2UH ûk,

χ2 = λ̂kv̂
H
k VΛ1/2UHQ(λ̂k)

2UΛ1/2VH v̂k,

χ3 = ûHk UΛ1/2VHQ̃(λ̂k)W
H

√
λ̂kQ(λ̂k)UΛ1/2VH v̂k.

SinceQ̃(λ̂k)W
HQ(λ̂k) = WHQ(λ̂k)

2, theorem 1 eq. (2)
applied toQ(λ̂k)

2 (see remark 1) implyχ3 ≍ 0. Using the
identityQ̃(λ̂k)W

HW = I+ λ̂kQ̃(λ̂k) and the convergences
uHl ûk ≍ 0 andvHl v̂k ≍ 0 for k 6= l, we obtain

χ1 ≍ λk|ûHk uk|2
(
vHk Q̃(λ̂k)vk + λ̂kv

H
k Q̃(λ̂k)

2vk

)
,

χ2 ≍ λ̂kλk|v̂Hk vk|2uHk Q(λ̂k)
2uk.

Consequently, theorem 1 eq. (2) and remark 1 imply as above,

χ1 ≍ λk (m̃(ψ(λk)) + ψ(λk)m̃
′(ψ(λk))) |ûHk uk|2,

χ2 ≍ λkψ(λk)m
′(ψ(λk))|v̂Hk vk|2.

By taking d = vk in (9), we obviously have|vHk v̂k|2 ≍
ψ(λk)λkm̃(ψ(λk))

2|ûHk uk|2. Sinceûk is a unit norm vector,
χ1 + χ2 ≍ 1 and we finally get

1 ≍ |ûHk uk|2
[
λkm̃(ψ(λk)) + λkψ(λk)m̃

′(ψ(λk))

+ ψ(λk)
2λ2km

′(ψ(λk))m̃(ψ(λk))
2
]
.

Using the equalityλkψ(λk)m(ψ(λk))m̃(ψ(λk)) = 1, we ob-
tain the result of the theorem. From the integral representation
of Stieltjes transform (see theorem 1 eq. (4)) applied tom(x)
andm̃(x), it is easily seen that the functionΓ is decreasing on
the interval]σ2(1+

√
c)2,+∞[, and thusΓ′(ψ(λk)) < 0.

4. MAIN RESULTS

Theorem 4. AssumeλK > σ2
√
c. Then, asN → ∞, for all

b ∈ CM such thatsupN ‖b‖ < +∞, we have with probabil-
ity one

bHUUHb ≍
K∑

k=1

|bH ûk|2
Γ′(λ̂k)

Γ(λ̂k)m(λ̂k)
.

Proof. Using equation (8) and the convergencevHk v̂l ≍ 0 iff
k 6= l, given in the proof of theorem 3, we get

bH ûk ≍ −
√
ψ(λk)

√
λkm(ψ(λk))b

Hukv
H
k v̂k.

Takingd = vk in equation (9), we obtain

vHk v̂k ≍ −
√
ψ(λk)

√
λkm̃(ψ(λk))ukûk.

Therefore,

|bH ûk|2 ≍
ψ(λk)

2λ2k|bHuk|2m(ψ(λk))
2m̃(ψ(λk))

2|uHk ûk|2.

Using the equality1 = λkψ(λk)m(λ̂k)m̃(λ̂k) (see remark 2)
and convergence (6) of theorem 3, we finally get

|bH ûk|2 ≍ |bHuk|2
ψ(λk)m(ψ(λk))

2m̃(ψ(λk))

Γ′(ψ(λk))
.

The result of the theorem follows from̂λk ≍ ψ(λk) (th. 2).

GivenD ∈ R, we assume henceforth that the steering vec-

tors writea(θ) = M−1/2
[
exp(−iDℓ sin(θ))

]M−1

ℓ=0
. Writing

ηspike(θ) =
∑K
k=1 |a(θ)H ûk|2 Γ′(λ̂k)

Γ(λ̂k)m(λ̂k)
, this theorem can

be used to show that for anyk = 1, . . . , r, there exists a local
maximumθ̂k of ηspike(θ) such thatθ̂k → θk almost surely.
The next result that we provide without proof characterizes
the fluctuations of this estimator:

Theorem 5 (CLT). Assume the setting of Theorem 4. Then
the vectoreN = [θ̂k − θk]

K
k=1 satisfies

N3/2eN
L−−−−→

N→∞
N


0,



ω2
1

. . .
ω2
K







where

ω2
k =

6

c2D2 cos(θk)2

(
m′(ψ(λk))−m(ψ(λk))

2

cm(ψ(λk))2

+ λk (m(ψ(λk)) + ψkm
′(ψ(λk)))

)



5. DISCUSSIONS AND NUMERICAL RESULTS

In this section, we compare the performance of the traditional
estimatorηtrad, the spike estimatorηspike, and the recent es-
timator provided in [2] (referred as "G-MUSIC" estimator),
also based on large random matrix results.

We consider steering vectorsa(θ) with D = π. The sig-
nals are realizations of mutually independent Gaussian AR(1)
processes with correlation coefficient0.9 and the SNR is de-
fined here as10 log(σ−2).

In experiment1, we consider two sources located atθ1 =
16◦ andθ1 = 18◦. The number of antennas isM = 20 and
the number of snapshots isN = 40. The "separation condi-
tion" (λK > σ2

√
c) holds for all values of SNR between6

dB and30 dB. In figure 1, we evaluate by Monte-Carlo simu-
lations the quantity0.5(E|θ̂1 − θ1|2 + E|θ̂2 − θ2|2), which is
the mean of the MSE of the two estimated angles, versus the
SNR. The performance of the spike and G-MUSIC estima-
tors are very close. In figure 2, we compute by Monte-Carlo
simulations1

K

∑K
k=1 E|η̂(θk)−η(θk)|2, i.e the mean over the

MSE of the localization function, evaluated at the true angles.
For an SNR greater that 10 dB, the performance of the spike
estimator is close once again to G-MUSIC.
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Fig. 1. Mean of the MSE of the two estimated angles.

In experiment 2, we considerK = 5 sources located at
−20◦, −10◦, 0◦, 10◦ and20◦ andM andN are still equal to
20 and40. The separation condition is verified for all values
of SNR between10 dB and30 dB. In figure 3, we plot the
same graph as in figure 2. We notice that the spike estimator
is not close anymore to the G-MUSIC because the ratioK/N
is not small enough. However, it still outperforms the tradi-
tional MUSIC estimator.
Concerning the complexity issue, the spike MUSIC and the
G-MUSIC are comparable, the latter requiring one additional
SVD of aM ×M matrix. Yet, the spike approach is interest-
ing thanks to the simplicity of its analysis which will make it
applicable to many estimation problems.
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Fig. 2. Mean of the MSE (localization function),K = 2.
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Fig. 3. Mean of the MSE (localization function),K = 5.
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