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ABSTRACT conditions on the number of signals, which may scale-up

This paper is devoted to subspace DoA estimation, wheWith M, N. The purpose of this paper is to propose consistent
the number of available snapsha¥sis of the same order of Subspace estimators, in the context of deterministic f8gna
magnitude as the number of sensdfs In this context, tradi- - When the number of sourcds is small compared ta/, N .
tional subspace methods fail because the empirical covagia The present approach is again based on RMT results, but in
matrix of the observations is a poor estimate of the trueigova contrast to [2], we use here recent results [3] concernieg th
ance matrix. The goal of the paper is to propose a new consi§ingular values and the singular vectors of large random ma-
tent estimator of the DoAs in the case whéfe N — +oo at trices, perturbed by low rank deterministic matrices. Unde
the same rate, using large random matrix theory. Itis asguméertain conditions, the low rank perturbation gives bixth t
that the number of sources is constant, and recent results o#Piked” eigenvalues, located outside the bulk of eigemesl

the so called spiked matrix models are used. First and secoi the non perturbed model. RMT techniques which describe
order results are provided. the behavior of these eigenvalues and their related eigenve

tors suggest many interesting applications in estimatien t
ory and in signal processing. This paper, which describes on
such application, is organized as follows. In section 3, we
review some basic results in RMT and tools needed for our
1. INTRODUCTION approach. In section 4, we propose the new estimator and

o ) o analyze its asymtptotic behavior. Finally, in section 5, we
Subspace DoA (Direction Of Arrival) estimation methods us-present some numerical examples.

ing antenna arrays (such as MUSIC) have been extensively
studied in the past because the){ offer a gooq trade-off be- 5 MODEL AND PROBLEM STATEMENT
tween performance and complexity. Their statistical perfo

man(t:)e ha}s mamlﬁl tgen characterized mht_lhe r(]:ase Wf;)ere tv\?e considerk’ narrow band deterministic source signals im-
number of snapshoty’ converges tor-oo while the number i iing o an antenna array df elements with < M. At

of anten_nasM rema_in_s fi)_(e_d. In practi(?e, the correspondingtimen, the received snapshot (of si2é) writes

conclusions are valid in finite sample size\ifis much larger

than M. However, this assumption is often not realistic if the Vn = AS,, + Xy, (1)
number of antennas is large because in practice, the number

of available snapshots is limited. In order to study the stawhere A = [a(;),...,a(fk)] is the M x K matrix con-
tistical performance of the subspace estimates in thisegbnt taining the K linearly independent steering vectoss, is
Mestre et al. [1] proposed to consider the asymptotic regima Gaussian vector satisfyirigx,x”] = o¢2I,;, ands,, is

in which M and N converge to+oo at the same rate, i.e. a vector containing the< source signals received at time
M, N — +o0, % converges towards a positive constant. Us-n. Assuming we collecfV independent observations of the
ing large random matrix theory (RMT) results, [1] provedttha previous model, (1) is equivalent @ = B + W, with
the traditional DoAs subspace estimators are asymptiytical X = N~/2[y,,...,yn], B = N"'/?[As;,..., Asy], and
biased, and proposed, assuming the source signals are i.iW built as 3 and B. In this paper, we will assume that
consistent estimators which outperform the standard does, M < N. In order to construct subspace methods, it is al-
realistic values of\/ andN. Later, [2] proposed a similar es- ways assumed that matr& = [sy, ..., sy] has full rankK
timator assuming the source signals are unknown determinisvhich implies thaB has K non null singular values. Write
tic quantities. Neither one of these papers imposes régtric the SVD of B asB = UAY2VH with U = [ug,...,ux]

Index Terms— DoA, MUSIC, Random matrices, Spiked
model



andV = [vq,...,vg]| the left and right singular vector ma- Remark 1. The same results hold fa@(z)?, and they are
trices, andA /2 the M x M diagonal matrix of singular val- obtained by replacingQ(z) with Q(z)? andm(z) with its
uesyA; > ... > /Ax (in decreasing order), assumed to derivativem’(z) in (2), (3), €.9. sup,c(, 4 [c” Q(z)*d —
have multiplicity one. The MUSIC algorithm is based on them/(x)c*d| — 0 and SUP,c[a,] lcQ(z)?°Wd| — 0 ass.
fact that theK anglesf, ..., 0k are solutions to the equa- Similarly, for the co-resolver&)(z) = (WHW — 1)1, we
tion a(9)” (I — UU)a(f) = 0. To estimate these angles, paye. e.0.c7Q(z)d = m(x)cfd, with m(z) = cm(z) —

it is necessary to estimate the quantity= a”? UUa for

any vectora of size M. For this, the traditional approach cp+

consists in replacing the signal eigenvectass. .., uyx of
BB* by those of the empirical covariance mati” . We
denote by5\1 > .. > 5\M the eigenvalues oex? and by
U = [Qy,...,0p] andV = [¥4,..., V] the left and right
singular vector matrices d&£. The traditional estimator thus

writeSnyag = aff [y -+ Gk [0y - ﬁK]H a. Thanks to the

law of large number, the previous estimator is consistent in

the case wherd&” — oo while M is kept constant. However,
whenM, N — +oc in such a way thal//N — ¢ > 0, the
previous estimator does not converge anymorg to

In this paper, we will assume that is independent oV, and
thatM /N — ¢ €]0, 1], asM, N — oc. All the convergences

in this paper will be considered under this regime and reterr ramark 2. Let I(z) =
directly by the statementV — +oco". For two scalar random equality\,T(2(\y,)) = 1

variables sequencéX v ), (Yn ), we will write "Xy =< Yy"
instead ofXy — Yy — 0 a.s. agV — cc.

3. LARGE RANDOM MATRICES AND SPIKED
MODELS

% the Stieltjes transform of the probability measyire=
(1 —¢)do. Note that from the identitQ W = W Q,
we directly obtainsup,,c(, ; [¢” W Q(z)d| — 0 using eq.

@3

Theorem 2 ([3],[5]). Assume\x > o2y/c. Then, asN —
oo, fork =1,..., K, we have with probability one

Mk + a2c) (A + 02)
Dy ’

A= () = (5)
andfork > K and each > 0, A, € [02(1—/c)2—¢, 02(1+
V/¢)? + ¢] almost surely for all largeV.

am(z)m(z). Then we have the
fork=1,..., K.

From the previous theorem, if the eigenvalues. . ., A
are large enough, then for all> 0, the sample eigenvalues
5\1L17K+17 ceey 5\1»[ belong tO[O’Q(lf\/EV*E, 0'2(1+\/E)2+
el while M1, ..., Ax will be bounded away of2(1++/c)? a.s.
for all large N. This ensures that we can estimate the number

We begin with some well-known results, concerning theof sourcesk (detection) by counting the sample eigenvalues

convergence of the resolvent 8§ W, namely the matrix
Q(z) = (WWH —gT)~1,

Theorem 1 ([4]). As N — oo, the smallest and largest
eigenvalue oW W converge respectively toward$ (1 —
V©)? and o2(1 + /). Moreover, if[a,b] Clo?(1 +
V/¢)?,+o0[, then, for deterministic vectors,d such that
supy{llell, |d||} < +o0, we have with probability one,

sup | Q(z)d — m(z)c"d| — 0, (2)
z€[a,b]
sup ‘CHQ(.I')WCI‘ —0 3)
z€[a,b]
where
du(A
miw) = [ S @

is the Stieltjes transform of the Marcenko-Pastur disttii

w carried bysupp(p) = [02(1 — \/¢)?,02(1 + /¢)?]. m(x)
is given by

r—o0%(l—c)— \/(1’ —02(1—¢))* — 402cx

202cx

m(z) = —

forz > o%(1 + /c)?.

aboves?(1 + /c)? + Ty, with Ty a certain threshold value.
Moreover, this theorem provides a way to consistently esti-
mate the signal eigenvalugs, .. ., \k.

Theorem 3([3]). Assume\x > o2./c. Then, fork,l < K,
asN — oo, we have with probability one

m(YP(Ag))

uf > - {Skrlw(w el

(6)
else

with T(z) the derivative of'(x), satisfyingl”(z) < 0 for
x> o%(1+/c)2

Proof. The proof can be found in [3], but we give here the
main steps because our estimation approach strongly relies
on it. First, note that from [6, Th. 7.3.7], we have flor=

1 K
0 X |[ap| 5
7 0 Vi | k

Thanks to theorem 2, — 1(\;,) > 02(1 4 /)2, and thus
a.s.,\ is not an eigenvalue SW W for N large enough,
becausd WW#| — o%(1 + ,/c)? a.s. from theorem 1.

goeeey



Therefore, using the block matrix inversion formula, Using the equalith\x ) (Ag)m (¥ (Ag))m(¢¥(Ak)) = 1, we ob-
tain the result of the theorem. From the integral represiemta

[uk} _ of Stieltjes transform (see theorem 1 eq. (4)) appliech{a)

Vk andm(x), itis easily seen that the functidhis decreasing on
WQ( VA2 /3 Q(0)UAY2] [UH 4, the intervalo?(1++/c)?, +oc[, and thud” (v () < 0. O
VIQA) VA2 Q) WHUAY? [VHVk] '

4. MAIN RESULTS

(7)
Letc € CM,d € C¥ such thatsupy{|c],||d||} < +oo.
Using theorem 1 eq. (3) with the co-resolvedt);) (see
remark 1), it is easy to show thaf WQ(\,)VA/2UH q, . )
=0 anddHQ()\k)WHUAl/QVHv;C = 0. Conseque_ntly, bEUUH D = Z b1y 2 Al—‘/()\k)A _
the convergencd,, = v(\;) (theorem 2) and the uniform Pt T'(Ag)m(Ax)

convergences in theorem 1 imply ) ) . _
Proof. Using equation (8) and the convergengév, = 0 iff
My = — /) mb\))TUAY2 Vg, (8)  F#L given in the proof of theorem 3, we get
A5y, = — /OO (W) dY VA2 U G, (9) —VU(Ae)VAem (P (M) b up v V.
Takmgd = v}, in equation (9), we obtain
. . Vil = =)V A (W (Ak) g ..
Wty =< P (A)m((Ae))m((Ak))Aay” Ay Therefore,
Sincem(y(X\;))m (¥ (X)) (Xi))A; = Liff ¢ = j (see remark IbH 2 =

2), we deduce/ i, = 0 for k # [. It can be shown similarly 0o 5 o Ha
thatv/¥v, < 0if k # [. Now, getting back to (7), we have Y2 AZ b g P (M) (1 (M) [y e .

[ae]? = x1 + x2 + x5 + x5 with Using the equalityt = A\xtp(Ar)m(Ak)i(\x) (See remark 2)
and convergence (6) of theorem 3, we finally get

Theorem 4. Assume\i > o2/c. Then, asV — oo, for all
b € CM such thasupy ||b|| < +oco, we have with probabil-
ity one

which, by takingc = u; andd = VA'/2UHy,, lead to

x1 = Al UAY2VEQM)WHWQ(A\,) VA2 U 4y,

R N R e )m (N )) 2 (i (\
_ )\k\AkaVAl/QUHQ(}\k)2UA1/2VH\Afk, |bHUk|2 - |bHu1€|21/]( k) (l/j( k)) (1/]( k))
I ((Ak))
X3 = @ UAY2VEQ(A)WH\/ M QM) UAY?VS. The result of the theorem follows fromy, = Y(\) (th. 2).

(I
SinceQ(A\)WHQ(A) = WHQ(A\;)2, theorem 1 eq. (2)
applied toQ(\;)? (see remark 1) implys =< 0. Using the ) - . i M1 .
identity Q(A\x )W W = I+ A,Q(}\) and the convergences [0S Writea(d) = M 12 [exp(—1D¢sin(6))],_, - Writing

GivenD € R, we assume henceforth that the steering vec-

ut, < 0andv v, < 0 for k # [, we obtain nspike(0) = 1 |a(@)"a |2% this theorem can
o . L be used to show that for aty= 1, ..., r, there exists a local
X1 = A uy|? (VkHQ()\k)Vk + )\kVI?Q()\k)2Vk) , maximum@y, of nspike(f) such thatHk — 6, almost surely.

. . “ The next result that we provide without proof characterizes
- H 2. H 2
X2 = AV Vi Ty Q(Ak) . the fluctuations of this estimator:
Consequently, theorem 1 eq. (2) and remark 1 imply as abov&heorem 5 (CLT). Assume the setting of Theorem 4. Then
the vectorey = [Gk - Qk]k | satisfies

X1 = A (M(P(A)) + (A (Y (M) [0y g, 5

. w1
Xz = MO () [ v TSI
N—o0 ’
By takingd = vy in (9), we obviously havéviv,|> < wk
(M) Aem(p(Ag))?[af ug|?. Sincety, is a unit normvector, \yhere
X1 + x2 =< 1 and we finally get 6  (0w)) — ()2
w% _ ( k)) — k
1= [af il A0 () + Aeto ()i (9 () D2 cos(0r)? em( (M)

PO (O ()?]. 20 (mOW) + ' (6Ow) )



5. DISCUSSIONS AND NUMERICAL RESULTS

In this section, we compare the performance of the tradition
estimatoryaq, the spike estimatonspike, and the recent es-
timator provided in [2] (referred as "G-MUSIC" estimator),
also based on large random matrix results.

We consider steering vectoagf) with D = 7. The sig-
nals are realizations of mutually independent GaussiarLlAR(
processes with correlation coefficigh9 and the SNR is de-
fined here ag0log(c—2).

In experiment, we consider two sources locatedat=
16° and#; = 18°. The number of antennasid = 20 and
the number of snapshots i = 40. The "separation condi-
tion" (\x > o2/c) holds for all values of SNR betweeh
dB and30 dB. In figure 1, we evaluate by Monte-Carlo simu-
lations the quantity).5(E|6; — 61| + E|@; — 62]?), which is
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Fig. 2. Mean of the MSE (localization functionl” = 2.

the mean of the MSE of the two estimated angles, versus the

SNR. The performance of the spike and G-MUSIC estima-
tors are very close. In figure 2, we compute by Monte-Carlo

simulations- Zle E|7(0x) —n(01)|?, i.e the mean over the
MSE of the localization function, evaluated at the true angl|

For an SNR greater that 10 dB, the performance of the spike

estimator is close once again to G-MUSIC.

10*

10°

MSE

10"

107

< Trad-MUSIC
—&— G-MUSIC
—o— Spike-MUSIC
CRB

T

5

Fig. 1. Mean of the MSE of the two estimated angles.

In experiment 2, we considél = 5 sources located at
—20°, —10°, 0°, 10° and20° andM and N are still equal to
20 and40. The separation condition is verified for all values
of SNR betweeri0 dB and30 dB. In figure 3, we plot the
same graph as in figure 2. We notice that the spike estimat
is not close anymore to the G-MUSIC because the &V
is not small enough. However, it still outperforms the tradi
tional MUSIC estimator.

Concerning the complexity issue, the spike MUSIC and the
G-MUSIC are comparable, the latter requiring one additiona

SVD of aM x M matrix. Yet, the spike approach is interest-
ing thanks to the simplicity of its analysis which will make i
applicable to many estimation problems.

10'

10°
10
2

10

10°

MSE

10"

10°

10°

— Trad-MUSIC
—8— G-MusIC
—6— Spike-MUSIC

107 I I I I
0 5 10 15 20

SNR

30
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