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3. Implications

Boaz Nadler Signal Detection



Introduction
Problem Formulation

Detection of signals embedded in noise

Given a measurement system with p sensors (antennas /
microphones / hyperspectral camera / etc)

Observe multivariate samples x(tj) ∈ R
p of the form

x(t) = As(t) + σξ(t) (∗)
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Given a measurement system with p sensors (antennas /
microphones / hyperspectral camera / etc)

Observe multivariate samples x(tj) ∈ R
p of the form

x(t) = As(t) + σξ(t) (∗)

where

◮ s(t) = (s1(t), . . . , sK (t))
′ are K time-dependent signals.

◮ A is a p ×K fixed unknown mixing matrix of rank K (steering
matrix).
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Detection of signals embedded in noise

Given a measurement system with p sensors (antennas /
microphones / hyperspectral camera / etc)

Observe multivariate samples x(tj) ∈ R
p of the form

x(t) = As(t) + σξ(t) (∗)

where

◮ s(t) = (s1(t), . . . , sK (t))
′ are K time-dependent signals.

◮ A is a p ×K fixed unknown mixing matrix of rank K (steering
matrix).

◮ σ - noise level, ξ ∼ N (0, Ip).
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Problem Formulation

x(t) = As(t) + σξ(t) (∗)
Assume s(t) ∈ R

K is stationary random process with a full rank
covariance matrix, and that mixing matrix A is of rank K (e.g.,
there are indeed K identifiable sources).
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Problem Formulation

x(t) = As(t) + σξ(t) (∗)
Assume s(t) ∈ R

K is stationary random process with a full rank
covariance matrix, and that mixing matrix A is of rank K (e.g.,
there are indeed K identifiable sources).

Problem Formulation

Given n i.i.d. samples xi from the model (*), estimate the number
of sources K .
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Problem Setup

The linear mixture (factor) model

x(t) = As(t) + σξ(t) (∗)

appears in many different scientific fields.
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Problem Setup

The linear mixture (factor) model

x(t) = As(t) + σξ(t) (∗)

appears in many different scientific fields.

◮ Analytical Chemistry / Chemometrics: x is the measured
(logarithm of) spectra at p wavelengths, s - vector of
concentrations of K chemical components. Eq. (∗) follows
from Beer-Lambert’s law.

◮ Signal Processing: s is a vector of K emitting sources, x -
measurement at an array of p receivers (microphones,
antennas, etc).
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Problem Setup

The linear mixture (factor) model

x(t) = As(t) + σξ(t) (∗)

appears in many different scientific fields.

◮ Analytical Chemistry / Chemometrics: x is the measured
(logarithm of) spectra at p wavelengths, s - vector of
concentrations of K chemical components. Eq. (∗) follows
from Beer-Lambert’s law.

◮ Signal Processing: s is a vector of K emitting sources, x -
measurement at an array of p receivers (microphones,
antennas, etc).

◮ Statistical Modeling at large : linear mixture models / factor
models / error in variables / two-way table with multiplicative
interactions.
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Rank Estimation - What is it needed for ?

In signal processing -

a preliminary step before blind source separation / independent
component analysis, direction of arrival estimation, many other
parametric procedures whose number of parameters depends on K

- the number of sources.
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Rank Estimation - What is it needed for ?

In signal processing -

a preliminary step before blind source separation / independent
component analysis, direction of arrival estimation, many other
parametric procedures whose number of parameters depends on K

- the number of sources.

In chemometrics -

process control, optimal number of latent variables in
regression/calibration models, first step prior to self modeling curve
resolution and many other estimation procedures.
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Nonparametric Detection

In this talk - focus on nonparametric detection.
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Nonparametric Detection

In this talk - focus on nonparametric detection.

- No assumption on structure / smoothness / sparsity of the
mixing matrix A. (no assumptions on array manifold structure)
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Nonparametric Detection

In this talk - focus on nonparametric detection.

- No assumption on structure / smoothness / sparsity of the
mixing matrix A. (no assumptions on array manifold structure)

- No assumption on possible non-Gaussian / bi-modal / finite
alphabet distribution of the random variables s(t).
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Nonparametric Detection

In this talk - focus on nonparametric detection.

- No assumption on structure / smoothness / sparsity of the
mixing matrix A. (no assumptions on array manifold structure)

- No assumption on possible non-Gaussian / bi-modal / finite
alphabet distribution of the random variables s(t).

In this setting, assuming Gaussian signals, eigenvalues
ℓ1 ≥ ℓ2 ≥ . . . ≥ ℓp of the sample covariance matrix

Sn =
∑

i

x′ixi

are sufficient statistics for eigenvalues of the population covariance
matrix Σ [James 66’, Muirhead 78’].
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Detection of Signals as a model selection problem

Given K sources, the population covariance matrix of the
observations has diagonal form

W′ΣW = σ2Ip + diag(λ1, λ2, . . . , λK , 0, . . . , 0) (1)

Model Selection Problem: Given {ℓj}pj=1, determine which
model of the form (1) is most likely.
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Detection of Signals as a model selection problem

Given K sources, the population covariance matrix of the
observations has diagonal form

W′ΣW = σ2Ip + diag(λ1, λ2, . . . , λK , 0, . . . , 0) (1)

Model Selection Problem: Given {ℓj}pj=1, determine which
model of the form (1) is most likely.
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Eigenvalue Based Rank Estimation

Challenge: Distinguish between large yet insignificant noise
eigenvalues and small yet significant signal eigenvalues.

Problem Parameters: n - number of samples, p - dimensionality, σ
- noise level.

In classical array processing p/n ≪ 1,

In chemometrics and in some modern radar/sonar systems:
p/n = O(1) and often p/n ≫ 1.
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Previous Approaches

Can be divided into 2 main disciplines,

◮ Nested Hypothesis Tests (with various test statistics)

◮ Information Theoretic Criteria (BIC, MDL, AIC, etc)
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Previous Approaches

The ”godfathers”

- Bartlett (1940’s), Lawley (1950’s) - likelihood ratio tests, tests
for sphericity, assume Gaussian observations, asymptotic
expansions for p fixed, n → ∞.

T =
(
∏

ℓi )
1/p

1
p

∑

ℓi

This statistic does not work well when p is of the same order of n
and is undefined if p > n.
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Previous Approaches

In chemometrics (p ≫ n):

- Malinowski F-test, 1977, 1980, 1987-1990, Analytical Chemistry, J.

Chemometrics.
- Faber and Kowalski, Modification of Malinowski’s F-test, J.
Chemometrics, 1997.
- Faber, Buydens and Kateman, Aspects of pseudorank estimation
methods based on the eigenvalues of principal component analysis of
random matrices, 1994.

- at least 15 other papers describing and comparing various algorithms.
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Previous Approaches

In signal processing and statistics literature:

- Wax & Kailath, Detection of signals by information theoretic criteria,
85’
- Zhao, Krishnaiah and Bai. JMVA, 1986
- Fishler, Grosmann and Messer, IEEE Sig. Proc. 2002.
- P-J. Chung, J.F. Böhme, C.F. Mecklenbraüker and A.O. Hero, 2007.
- many other papers in signal processing and in statistics.
- Silverstein & Combettes, 1992
- Schott, A high-dimensional test for the equality of the smallest

eigenvalues of a covariance matrix, JMVA, 2006.
- Rao & Edelman, Sample eigenvalue based detection of high-dimensional

signals in white noise using relatively few samples. 2007.
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Detection of Signals by Information Theoretic Criteria

k̂MDL = argmin −(p − k)n

[

1

p − k
log

(

p
∏

k+1

ℓj

)

− log

∑p
k+1 ℓj

p − k

]

+1
2k(2p − k) log n

k̂AIC = argmin −(p − k)n

[

1

p − k
log

(

p
∏

k+1

ℓj

)

− log

∑p
k+1 ℓj

p − k

]

+k(2p − k)

MDL estimator became the standard tool in signal processing.

Wax & Kailath 1985.
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Example: MDL consistent
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Example: AIC not consistent
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Some Modern Approaches:

Rao & Edelman (2007) and Schott (2006)

T =

∑

ℓ2j

(
∑

ℓj)
2

This statistic can be used for sphericity test for all values of p/n
(Ledoit & Wolf).
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Example:
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Detection of Signals - Theoretical Questions

◮ Which Test Statistic to use ?

◮ Why does AIC overestimate number of signals ?

◮ Detection Performance ?

◮ Known vs. unknown noise level

◮ Non-parametric vs fully parametric setting.
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KEY TOOLS

◮ Behavior of noise eigenvalues.
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◮ Behavior of noise eigenvalues.

◮ Behavior of signal eigenvalues in presence of noise.
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KEY TOOLS

◮ Behavior of noise eigenvalues.

◮ Behavior of signal eigenvalues in presence of noise.

◮ Noise Estimate.
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KEY TOOLS

◮ Behavior of noise eigenvalues.

◮ Behavior of signal eigenvalues in presence of noise.

◮ Noise Estimate.

TOOLS:

- RMT

- Matrix Perturbation Theory
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Which Test Statistic ?

Consider the case of two (nearly) simple hypothesis

H0 : Σ = I vs. H1 : W
′ΣW = I+ diag(λ, 0, . . . , 0)

with λ - known. What is unknown is the basis which makes Σ
diagonal in H1.
Neyman-Pearson: optimal method is likelihood ratio test

p(ℓ1, . . . , ℓp |H1)

p(ℓ1, . . . , ℓp |H0)
≷ C (α)

Boaz Nadler Signal Detection



Introduction
Problem Formulation

Which Test Statistic ?

From multivariate analysis (Muirhead 78’)

p(ℓ1, . . . , ℓp|Σ) = Cn,p

∏

ℓ
(n−p−1)/2
i

∏

i<j

(ℓi − ℓj) 0F0(−
1

2
nL,Σ−1)

0F0 - hypergeometric function with matrix argument.
Key point: asymptotically in n, for p fixed,

log

(

p(ℓ1, . . . , ℓp|H1)

p(ℓ1, . . . , ℓp|H0)

)

≈ n(ℓ1 − h(λ)) + O(
∑

c1j/(ℓ1 − ℓj))

Asymptotically, should only look at largest eigenvalue !
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Roy’s Largest Eigenvalue Test

If ℓ1 > σ2 · th(α) accept H1 – signal is present.

th(α) - found by distribution of ℓ1 under the null of no signals.
Then, Sn = 1/n

∑

i xix
′
i is a scaled Wishart matrix.

Theorem: [Johansson 00’, Johnstone 01’,El-Karoui 07’] As
p, n → ∞

Pr{ℓ1 < σ2 (µn,p + sσn,p)} → TWβ(s)

where TWβ - Tracy-Widom distribution of order β

β = 1 - real valued noise, β = 2 - complex valued noise.

For any confidence level α can invert TW distribution to obtain
threshold s(α).
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Largest Eigenvalue Distribution
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Unknown Noise Level

Standard approach: replace σ2 by its ML estimate

σ̂2 =
1

p

p
∑

j=1

ℓj

GLRT:

U =
ℓ1

1
p

∑

j ℓj
> th(α)

This test statistic plays a role in:

◮ Signal Detection [Besson & Scharf 06’, Kritchman & N. 08,
Bianchi et al. 09’]

◮ Two-way models of interaction [Johnson & Graybill, 72’]

◮ Models for Quantum Information Channels.
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Unknown Noise Level

Standard approach: replace σ2 by its ML estimate

σ̂2 =
1

p

p
∑

j=1

ℓj

GLRT:

U =
ℓ1

1
p

∑

j ℓj
> th(α)

This test statistic plays a role in:

◮ Signal Detection [Besson & Scharf 06’, Kritchman & N. 08,
Bianchi et al. 09’]

◮ Two-way models of interaction [Johnson & Graybill, 72’]

◮ Models for Quantum Information Channels.
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Unknown Noise Level

In principle, can use same threshold th(α), since:

Theorem:[Bianchi et. al.] As p, n → ∞

Pr[U < µn,p + sσn,p] → TWβ(s)
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Ratio Distribution
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Ratio Distribution
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Ratio Distribution

Definition:

Fnp(s) = Pr

[

ℓ1 − µnp

σnp
< s

]

, Hnp(s) = Pr

[

U − µnp

σnp
< s

]

.
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Ratio Distribution

Definition:

Fnp(s) = Pr

[

ℓ1 − µnp

σnp
< s

]

, Hnp(s) = Pr

[

U − µnp

σnp
< s

]

.

Question: What is relation between Fnp and Hnp ?
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Ratio Distribution

Definition:

Fnp(s) = Pr

[

ℓ1 − µnp

σnp
< s

]

, Hnp(s) = Pr

[

U − µnp

σnp
< s

]

.

Question: What is relation between Fnp and Hnp ?

Key property: U and T = 1
p

∑

j ℓj are independent.
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Ratio Distribution

Since ℓ1 = U · T ,

Pr[ℓ1 < x ] =

∫ px

0
Pr
[

U <
x

t

]

pT (t)dt
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Ratio Distribution

Since ℓ1 = U · T ,

Pr[ℓ1 < x ] =

∫ px

0
Pr
[

U <
x

t

]

pT (t)dt

L.H.S. = approximately TW
R.H.S. = convolution of required function with χ2 density.
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Ratio Distribution

Assumptions: In the joint limit p, n → ∞ with p/n → c , the
following two conditions hold:
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Ratio Distribution

Assumptions: In the joint limit p, n → ∞ with p/n → c , the
following two conditions hold:

(i) uniformly in p and s, Hnp(s) is a smooth function with bounded
third derivative, |H ′′′

np(s)| < C .
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Ratio Distribution

Assumptions: In the joint limit p, n → ∞ with p/n → c , the
following two conditions hold:

(i) uniformly in p and s, Hnp(s) is a smooth function with bounded
third derivative, |H ′′′

np(s)| < C .

(ii)

|F ′
np(s)− TW ′

β(s)| → 0 and |F ′′
np(s)− TW ′′

β (s)| → 0 (2)
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Ratio Distribution

Theorem: In the joint limit p, n → ∞,

Hnp(s)− TWβ(s) = [Fnp(s)− TWβ(s)]−
1

2

(

2

βnp

)(

µnp

σnp

)2

TW ′′
β (s) + o(p−2/3).

[N., to appear in JMVA]
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Ratio Distribution Tail Probabilities
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Ratio Distribution Tail Probabilities

When is correction term small w.r.t. 1− TWβ(s) ?
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Ratio Distribution Tail Probabilities

When is correction term small w.r.t. 1− TWβ(s) ?

Example: n ≫ p, s = −0.2325, where

1− TW2(s) ≈ 5%

Then

|TW ′′
2 (s)|

1− TW2(s)
≈ 7 and

1

np

(

µnp

σnp

)2

≈ 1/p2/3.
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Ratio Distribution Tail Probabilities

When is correction term small w.r.t. 1− TWβ(s) ?

Example: n ≫ p, s = −0.2325, where

1− TW2(s) ≈ 5%

Then

|TW ′′
2 (s)|

1− TW2(s)
≈ 7 and

1

np

(

µnp

σnp

)2

≈ 1/p2/3.

Hence, for a 10% relative error,

1

2

2

βnp

(

µnp

σnp

)2 |TW ′′
2 (s)|

1− TW2(s)
≤ 0.1

we need p & (35)3/2 ≈ 200.
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Detection of Signals - Theoretical Questions

◮ Which Test Statistic to use ?

◮ Why does AIC overestimate number of signals

◮ Detection Performance ?

◮ Known vs. unknown noise level

◮ Non-parametric vs fully parametric setting.
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Overestimation Probability of AIC (no signals)

AIC overestimates number of signals when

− lnL0 > − lnL1 +
2p − 1

n

where

Lk =

∏

i>k ℓi
(∑

i>k ℓi
p−k

)
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Overestimation Probability of AIC

Let ξ be solution of

− ln(1 + ξ)− (p − 1) ln(1− ξ

p − 1
) =

2p − 1

n

Lemma:

Pr[kAIC > 0] = Pr[U > 1 + ξ] + O

(

1

n

)

[N., IEEE-TSP 10’]
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AIC Overestimation Probability
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AIC Overestimation Probability

Since

ξ = 2

√

p − 1/2

n

√

1− 1

p

(

1 + O

(

1

n1/2

))

AIC penalty is not sufficiently strong.
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AIC Overestimation Probability

Since

ξ = 2

√

p − 1/2

n

√

1− 1

p

(

1 + O

(

1

n1/2

))

AIC penalty is not sufficiently strong.

MDL penalty too large since contains a ln n factor.
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AIC Overestimation Probability

Since

ξ = 2

√

p − 1/2

n

√

1− 1

p

(

1 + O

(

1

n1/2

))

AIC penalty is not sufficiently strong.

MDL penalty too large since contains a ln n factor.

Legacy System:

k̂AIC = argmin − lnLk +
2Ck

n

(

p + 1− k + 1

2

)

If C = 1 penalty comparable to original AIC.
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Modified AIC

Theorem: Modified AIC estimator with C = 2 has negligible
overestimation probability, which for large n is exponential small in
p.
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Modified AIC

Theorem: Modified AIC estimator with C = 2 has negligible
overestimation probability, which for large n is exponential small in
p.

Basic idea: use non-asymptotic bound of Ledoux, valid for all p, n
(complex)

Pr[ℓ1 > (1 +
√

p/n)2 + ǫ] ≤ e−nJLAG (ǫ)
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Modified AIC
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Example:
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Detection of Signals - Theoretical Questions

◮ Which Test Statistic to use ?

◮ Why does AIC overestimate number of signals ?

◮ Detection Performance ?

◮ Known vs. unknown noise level

◮ Non-parametric vs fully parametric setting.
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Detection Performance

Depends on behavior of largest signal eigenvalue in presence of
noise. With p fixed, n → ∞,

P
Roy
d ≈ Q

[√
n

(

th(α)

1 + λ/σ2
− p − 1

Nλ/σ2
− 1

)]
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Detection Performance

Depends on behavior of largest signal eigenvalue in presence of
noise. With p fixed, n → ∞,

P
Roy
d ≈ Q

[√
n

(

th(α)

1 + λ/σ2
− p − 1

Nλ/σ2
− 1

)]

PGLRT
d ≈ Q

[√
n

(

t̃h(α)(
1

1 + λ/σ2
− 1

nλ/σ2
)− p − 1

Nλ/σ2
− 1

)]

where Q(z) = 1√
2π

∫∞
z

e−x2/2dx ,

t̃h(α) =
p − 1

p − thU(α)
thU(α)> th(α)

[Kritchman & N. 09’]
[N, Penna, Garello, submitted]
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Known vs. Unknown Noise Level

Difference can be large:
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Known vs. Unknown Noise Level

Difference can be large (several dB)
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Detection of Signals - Theoretical Questions

◮ Which Test Statistic to use ?

◮ Why does AIC overestimate number of signals ?

◮ Detection Performance ?

◮ Known vs. unknown noise level

◮ Non-parametric vs fully parametric setting.
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Non-Parametric vs. Parametric Detection

In signal array processing, the array manifold is typically known.
For Uniform Linear Array

a(θ) =
[

1e iπ sin θe2iπ sin(θ) . . . e(p−1)iπ sin θ
]
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Non-Parametric vs. Parametric Detection

In signal array processing, the array manifold is typically known.
For Uniform Linear Array

a(θ) =
[

1e iπ sin θe2iπ sin(θ) . . . e(p−1)iπ sin θ
]

Instead of largest eigenvalue of sample covariance matrix, maximal
correlation of x with a(θ)
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Non-Parametric vs. Parametric Detection

In signal array processing, the array manifold is typically known.
For Uniform Linear Array

a(θ) =
[

1e iπ sin θe2iπ sin(θ) . . . e(p−1)iπ sin θ
]

Instead of largest eigenvalue of sample covariance matrix, maximal
correlation of x with a(θ)
Theorem: Parametric Signal Detection requires

SNR ≫
√

2 ln p

n

instead of

SNR ≫
√

p

n

[Arkind & N., 10’]
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Example:
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Summary and Open Questions

Open Questions:

- Detection in unknown noise environments

- Non-Gaussian signals

- Sparse covariance matrices

http://www.wisdom.weizmann.ac.il/∼nadler/
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Summary and Open Questions

Open Questions:

- Detection in unknown noise environments

- Non-Gaussian signals

- Sparse covariance matrices

http://www.wisdom.weizmann.ac.il/∼nadler/

C’est Tou / Merci Beaucoup
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