Heavy-tailed random matrices and the Poisson Weighted Infinite Tree

Charles Bordenave

CNRS & University of Toulouse

Joint work with Pietro Caputo (Roma III) and Djalil Chafaï (Paris XI).

PART I : RANDOM MATRICES

SPECTRAL MEASURE

Let $X = (X_{ij})_{1 \le i,j \le n}$ be a $n \times n$ complex matrix. Let $\lambda_1, \dots, \lambda_n$ be its eigenvalues, the spectral measure of X is

$$\mu_X = \frac{1}{n} \sum_{k=1}^n \delta_{\lambda_k}.$$

- (random hermitian) : the array $(X_{ij})_{i \ge j \ge 1}$ is i.i.d., $X_{ij} = X_{ji}$,
- (random non-hermitian) : the array $(X_{ij})_{i,j\geq 1}$ is i.i.d..

 \implies As n goes to infinity, does the spectral measure converge ?

WIGNER'S SEMI-CIRCULAR LAW

Theorem 1. If $\mathbb{E}X_{11} = 0$, $\mathbb{E}|X_{11}|^2 = 1$ and

 $A_n = X/\sqrt{n},$

then, almost surely,

$$\mu_{A_n} \Longrightarrow \mu_{sc},$$

where $\mu_{sc}(dx) = \frac{1}{2\pi}\sqrt{4-x^2}dx$.

GIRKO'S CIRCULAR LAW

Theorem 2 (Tao & Vu (2008)). If $\mathbb{E}X_{11} = 0$, $\mathbb{E}|X_{11}|^2 = 1$ and $A_n = X/\sqrt{n}$,

then, almost surely,

 $\mu_{A_n} \Longrightarrow \textit{Unif}(D).$

where Unif(D) is the uniform distribution on the unit complex disc.

⇒ Found by Girko, earlier versions due to Edelman, Bai, Pan & Zhou, Götze & Tikhomirov ...

HEAVY-TAILED ENTRIES

We now assume that

 $\mathbb{P}(|X_{11}| > t) \sim t^{-\alpha}$

for some

 $0 < \alpha < 2.$

Define

 $A_n = X/n^{1/\alpha},$

 \implies In the hermitian and non-hermitian cases, does μ_{A_n} converge to a measure μ ?

HERMITIAN CASE

Theorem 3 (Ben Arous & Guionnet, 2008). There exists a probability measure μ_{bc} depending only on α such that, with the above assumptions, almost surely,

 $\mu_{A_n} \Longrightarrow \mu_{bc}.$

 \implies Found non-rigourously by Bouchaud-Cizeau (1994).

PROPERTIES OF THE LIMIT MEASURE

Theorem 4. For all $0 < \alpha < 2$, the probability measure μ_{bc}

(i) is symmetric and has a bounded density f_{bc} on \mathbb{R} ,

(ii)
$$f_{bc}(0) = \frac{1}{\pi} \Gamma \left(1 + \frac{2}{\alpha}\right) \left(\frac{\Gamma\left(1 - \frac{\alpha}{2}\right)}{\Gamma\left(1 + \frac{\alpha}{2}\right)}\right)^{\frac{1}{\alpha}}$$
,

(iii) $f_{bc}(t) \sim_{t \to \infty} \frac{\alpha}{2} t^{-\alpha - 1}$.

⇒ Summarizes properties obtained by Ben Arous & Guionnet, Belinschi, Dembo & Guionnet, Bordenave, Caputo & Chafaï.

NON-HERMITIAN CASE

Theorem 5. Assume that X_{11} has a bounded density on \mathbb{R} or \mathbb{C} , and is asymptotically radial :

$$\lim_{t \to \infty} \mathbb{P}\left(\frac{X_{11}}{|X_{11}|} \in \cdot \mid |X_{11}| \ge t\right) = \theta,$$

for some probability distribution θ on S^1 .

Then, there exists a probability measure μ depending only on α such that, with the above assumptions, almost surely,

 $\mu_{A_n} \Longrightarrow \mu.$

PROPERTIES OF THE LIMIT SPECTRAL MEASURE

Theorem 6. The measure μ has radial bounded density $\mu(dz) = f(|z|)dz$, where

$$f(0) = \frac{1}{\pi} \frac{\Gamma(1+\frac{2}{\alpha})^2 \Gamma(1+\frac{\alpha}{2})^{\frac{2}{\alpha}}}{\Gamma(1-\frac{\alpha}{2})^{\frac{2}{\alpha}}},$$

and as $r
ightarrow \infty$

$$f(r) \sim c r^{2(\alpha-1)} e^{-\frac{\alpha}{2}r^{\alpha}}.$$

PART II : OBJECTIVE METHOD AND LOCAL OPERATOR CONVERGENCE

HERMITIAN CASE : SPECTRAL MEASURE AT A VECTOR

There exists a probability measure on \mathbb{R} such that, for all t integers,

$$(e_k, A_n^t e_k) = \int x^t d\mu_{A_n}^{(k)},$$

$$\mu_{A_n} = \frac{1}{n} \sum_{k=1}^n \mu_{A_n}^{(k)}$$
 and $\mu_{A_n}^{(k)} = \sum_{i=1}^n |(e_k, u_i)|^2 \delta_{\lambda_i}.$

The spectral measure at a vector is well defined for all self-adjoint operators.

HERMITIAN CASE : REDUCTION TO LOCAL CONVERGENCE

 \implies By exchangeability, we get

$$\mathbb{E}\mu_{A_n} = \mathbb{E}\mu_{A_n}^{(1)}$$

 \implies From basic concentration inequality, $\mu_{A_n} - \mathbb{E}\mu_{A_n}$ converges a.s. to 0.

 \implies It is enough to get the convergence of $\mu_{A_n}^{(1)}$.

HERMITIAN CASE : LOCAL OPERATOR CONVERGENCE

We look for a random operator A defined in $L^2(V)$ for some countable set V such that there exists a sequence of bijections $\sigma_n : V \to \mathbb{N}$, $\emptyset \in V$, $\sigma_n(\emptyset) = 1$ and, for all $\phi \in L^2(V)$ with compact support, weakly,

$$\sigma_n^{-1} A_n \sigma_n \phi \to A \phi.$$

If A is self-adjoint, then it would imply that

$$\mu_{A_n}^{(1)} \to \mu_A^{(\emptyset)}.$$

NON-HERMITIAN CASE

The above strategy does not work. The spectral measure at a vector does not exist for non-normal matrices.

The local operator convergence is not sufficient.

An additional ingredient is needed. (For the moment, we skip this very important part).

PART III : CONVERGENCE TO POISSON WEIGHTED INFINITE TREE

ALDOUS' PWIT

Let $V = \bigcup_{k \in \mathbb{N}} \mathbb{N}^k$ with $\mathbb{N}^0 = \emptyset$. Consider the infinite tree on V:

ALDOUS' PWIT

Let $(Z_v)_{v \in V}$ be iid Poisson processes of intensity λ on \mathbb{R}_+ , $Z_v = \{0 \le \zeta_{v1} \le \zeta_{v2} \le \cdots\}$

GRAPHIC REPRESENTATION OF A MATRIX

We think of the matrix A_n as an oriented weighted graph on n vertices.

ORDERED STATISTICS

The vector $\left(\begin{pmatrix} A_{11} \\ A_{11} \end{pmatrix}, \begin{pmatrix} A_{12} \\ A_{21} \end{pmatrix}, \cdots, \begin{pmatrix} A_{1n} \\ A_{n1} \end{pmatrix} \right)$ is reordered non-increasingly in $\left(\begin{pmatrix} A_{1\sigma(1)} \\ A_{\sigma(1)1} \end{pmatrix}, \begin{pmatrix} A_{1\sigma_1(2)} \\ A_{\sigma(2)1} \end{pmatrix}, \cdots, \begin{pmatrix} A_{1\sigma(n)} \\ A_{\sigma(n)1} \end{pmatrix} \right)$

with

$$\| \begin{pmatrix} A_{1\sigma(1)} \\ A_{\sigma(1)1} \end{pmatrix} \|_1 \ge \| \begin{pmatrix} A_{1\sigma(2)} \\ A_{\sigma(2)1} \end{pmatrix} \|_1 \ge \cdots$$

 \implies We restrict ourselves to non-hermetian case and non-negative random variables.

CONVERGENCE OF ORDERED STATISTICS

$$\left(\begin{pmatrix} A_{1\sigma(1)} \\ A_{\sigma(1)1} \end{pmatrix}, \begin{pmatrix} A_{1\sigma(2)} \\ A_{\sigma(2)1} \end{pmatrix}, \cdots, \begin{pmatrix} A_{1\sigma(n)} \\ A_{\sigma(n)1} \end{pmatrix} \right)$$

converges to

$$\left(\begin{pmatrix} \varepsilon_1 \\ 1-\varepsilon_1 \end{pmatrix} \zeta_1^{-\frac{1}{\alpha}}, \begin{pmatrix} \varepsilon_2 \\ 1-\varepsilon_2 \end{pmatrix} \zeta_2^{-\frac{1}{\alpha}}, \cdots \right),$$

where $(\zeta_k)_{k\geq 1}$, $\zeta_1\leq \zeta_2\leq \cdots$, is a Poisson point process of intensity

$$\Lambda(dx) = 2 \mathbb{I}_{x>0} dx$$

and (ε_k) iid $\operatorname{Ber}(1/2)$ random variables.

CONVERGENCE OF ORDERED STATISTICS

For fixed i, the vector

 $\left(\begin{pmatrix} A_{j\sigma(i)} \\ A_{\sigma(i)j} \end{pmatrix} \right)_{i \neq 1}$

is reordered non-increasingly.

It converges again to

$$\left(\begin{pmatrix} \varepsilon_{i1} \\ 1 - \varepsilon_{i1} \end{pmatrix} \zeta_{i1}^{-\frac{1}{\alpha}}, \begin{pmatrix} \varepsilon_{i2} \\ 1 - \varepsilon_{i2} \end{pmatrix} \zeta_{i2}^{-\frac{1}{\alpha}}, \cdots \right),$$

where $(\zeta_{ik})_{k\geq 1}$ are independent Poisson processes of intensity Λ and $(\varepsilon_{ik})_{i,k}$ iid Ber(1/2) r.v.

LOCAL CONVERGENCE TO ALDOUS' PWIT

OPERATOR ON THE PWIT

Define the operator on compactly supported function of $L^2(V)$,

$$A\delta_{v} = \sum_{k\geq 1} (1-\varepsilon_{vk}) \zeta_{vk}^{-\frac{1}{\alpha}} \delta_{vk} + \varepsilon_{v} \zeta_{v}^{-\frac{1}{\alpha}} \delta_{a(v)},$$

where a(v) is the ancestor of $v \neq \phi$.

 \implies There exists a sequence of bijections $\sigma_n : V \to \mathbb{N}$, $\phi \in V$, $\sigma_n(\phi) = 1$ and, for all $\phi \in L^2(V)$ with compact support, weakly,

 $\sigma_n^{-1} A_n \sigma_n \phi \to A \phi.$

HERMITIAN CASE : OPERATOR ON THE PWIT

In the hermitian case, the operator is defined similarly, we simply forget about, the ε'_v s :

$$A\delta_v = \sum_{k\geq 1} \zeta_{vk}^{-\frac{1}{\alpha}} \delta_{vk} + \zeta_v^{-\frac{1}{\alpha}} \delta_{a(v)}.$$

 \longrightarrow Again, for all $\phi \in L^2(V)$ with compact support, weakly, $\sigma_n^{-1}A_n\sigma_n\phi \to A\phi$.

Theorem 7. With probability one, the operator A is (essentially) self-adjoint.

 \implies As a corollary, we obtain the convergence of μ_{A_n} to $\mu_{bc} := \mathbb{E}\mu_A^{(\phi)}$.

HERMITIAN CASE : RECURSIVE DISTRIBUTIONAL EQUATION

The resolvent formula and the recursive structure of the PWIT implies a RDE for, $z \in \mathbb{C}_+ = \{z \in \mathbb{C} : \Im(z) > 0\},\$

$$g_{\emptyset}(z) := \langle \delta_{\emptyset}, (A-z)^{-1} \delta_{\emptyset} \rangle$$

$$g_{\emptyset} \stackrel{d}{=} -\left(z + \sum_{k \in \mathbb{N}} \xi_k g_k\right)^{-1},$$

where g_{\emptyset} , $(g_k)_{k \in \mathbb{N}}$ are i.i.d. independent of $\{\xi_k\}_{k \in \mathbb{N}}$, a independent Poisson point process of \mathbb{R}_+ with intensity $\frac{\alpha}{2}x^{-\frac{\alpha}{2}-1}dx$.

RECURSIVE DISTRIBUTIONAL EQUATION

If S is a positive $\alpha/2$ -stable random variable,

$$\sum_{k \in \mathbb{N}} \xi_k g_k \stackrel{d}{=} \mathbb{E}[g_{\phi}^{\frac{\alpha}{2}}]^{\frac{2}{\alpha}} S.$$

 \implies The RDE can be solved in terms of a scalar fixed point equation for $\mathbb{E}[g_{\phi}^{\frac{\alpha}{2}}]^{\frac{2}{\alpha}}$.

 \implies Since g is the Cauchy-Stieltjes transform of μ_{\emptyset} , we deduce the properties of $\mu_{bc} = \mathbb{E}\mu_A^{(\emptyset)}$.

PART IV : CONVERGENCE IN THE NON-HERMITIAN CASE

SINGULAR VALUES

 $0 \le \sigma_n \le \dots \le \sigma_1$: square roots of the eigenvalues of A^*A . Since $|\det A| = \sqrt{\det(A^*A)}$,

$$\prod_{k=1}^{n} |\lambda_k| = \prod_{k=1}^{n} \sigma_k$$

For $z \in \mathbb{C}$, let $\sigma_n(z) \leq \cdots \leq \sigma(z)$ be the singular values of A-z and

$$\nu_A(z) = \frac{1}{n} \sum_{k=1}^n \delta_{\sigma_k(z)}.$$

 \implies for all $z \in \mathbb{C} \setminus \operatorname{supp}(\mu_A)$,

$$U_{\mu_A}(z) = \int_{\mathbb{C}} \ln |\lambda - z| \mu_A(d\lambda) = \int_{\mathbb{R}_+} \ln(x) \nu_A(z, dx)$$

LOGARITHMIC POTENTIAL

$$U_{\mu}(z) = \int_{\mathbb{C}} \ln |\lambda - z| \mu(d\lambda).$$

Define

$$\partial = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right)$$
 and $\bar{\partial} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$.

Laplacian differential operator

$$\Delta = \bar{\partial}\partial = \frac{1}{4} \left(\frac{\partial^2}{\partial^2 x} + \frac{\partial^2}{\partial^2 y} \right).$$

In $\mathcal{D}'(\mathbb{C})$,

$$\Delta U_{\mu} = \pi \mu.$$

 \implies The logarithmic potential characterizes the measure.

GIRKO'S METHOD

Theorem 8 (Criterion of convergence). Let (A_n) be a sequence of matrices. Assume that for almost all $z \in \mathbb{C}$,

(i) $\nu_{A_n}(z)$ converges weakly to $\nu(z)$, a probability measure on \mathbb{R}_+ .

(ii) $\int \ln(x)\nu_{A_n}(z, dx)$ is uniformly integrable.

Then there exists a probability measure μ on \mathbb{C} , such that for almost all $z \in \mathbb{C}$, $U_{\mu}(z) = \int \ln(x)\nu(z, dx)$ and μ_{A_n} converges weakly to μ .

CONVERGENCE OF THE SINGULAR VALUES

Theorem 9. For all $z \in \mathbb{C}$, there exists a measure $\nu(z, \cdot)$, depending only on α and z, such that almost surely

 $\lim_{n}\nu_{A_n}(z)=\nu(z).$

(For z = 0, Belinschi, Dembo & Guionnet (2009). For an explanation of this result, wait a few slides)

UNIFORM INTEGRABILITY

Bai (1999) has developped the first method to prove the uniform integrability of

$$\int \ln(x)\nu_{A_n}(z,dx) = \frac{1}{n}\sum_{i=1}^n \ln \sigma_i(z).$$

Here, we adapt the argument of Tao & Vu (2008) for the circular law.

For the large singular values, we use the inequality, for any 0 ,

$$\sum_{i=1}^{n} \sigma_{i}^{p} \leq \sum_{i=1}^{n} ||R_{i}||_{2}^{p} = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} |A_{ij}|^{2} \right)^{\frac{p}{2}},$$

where R_1, \cdots, R_n are rows of A.

UNIFORM INTEGRABILITY

For the smallest singular value, the bounded density assumption implies easily, for some $p \ge 1$, almost surely,

$$\sigma_n(z) = \Omega\left(n^{-p}\right).$$

 \implies we may lower bound $\sigma_{n-i}(z)$ by n^{-p} for $0 \le i \le n^{1-\gamma}$.

For the moderately small singular values, Tao & Vu prove that almost surely, for all $n^{1-\gamma} \leq i \leq n$,

$$\sigma_{n-i}(z) = \Omega\left(\frac{i}{n}\right).$$

We only prove that, in a weaker sense, that

$$\sigma_{n-i}(z) = \Omega\left(\frac{i}{n}\right)^{\frac{1}{\alpha} + \frac{1}{2}}.$$

A NEW LOOK AT THE SPECTRAL MEASURE

We want to study the limit spectral measure μ .

The measure $\nu(z)$ is not explicit and we only know that

$$U_{\mu}(z) = \int \ln(x)\nu(z, dx)$$

and

$$\mu = \frac{1}{\pi} \Delta U_{\mu}.$$

⇒ We need another characterization of the spectral measure : some have appeared in the physics literature, Feinberg & Zee, Jarosz & Nowak, Rogers & Castillo...

BIPARTIZATION

Define

$$B_{ij} = \begin{pmatrix} 0 & A_{ij} \\ \bar{A}_{ji} & 0 \end{pmatrix} \in \mathcal{M}_2(\mathbb{C}).$$

 $\implies B = (B_{ij})_{1 \le i,j \le n}$ is an hermitian matrix in $\mathcal{M}_n(\mathcal{M}_2(\mathbb{C})) \simeq \mathcal{M}_{2n}(\mathbb{C}).$

BIPARTIZATION

Figure 1: Graphical interpretation of bipartization.

RESOLVENT

Define the quaternionic set
$$\mathbb{H}_+ = \left\{ U = \begin{pmatrix} \eta & z \\ \overline{z} & \eta \end{pmatrix}, \eta \in \mathbb{C}_+, z \in \mathbb{C} \right\}.$$

Resolvent matrix :

$$R = (B - U \otimes I_n)^{-1} \quad \in \mathcal{M}_n(\mathcal{M}_2(\mathbb{C})),$$

$$B - U \otimes I_n = \begin{pmatrix} B_{11} - U & B_{12} & \cdots \\ B_{12}^* & B_{22} - U & \cdots \\ \cdots & \cdots & \cdots \end{pmatrix}.$$

FROM THE RESOLVENT TO THE SINGULAR VALUES

$$R_{kk}(U) = \begin{pmatrix} a_k & b_k \\ b'_k & c_k \end{pmatrix}, \quad \text{with} \quad U = \begin{pmatrix} \eta & z \\ \overline{z} & \eta \end{pmatrix}.$$

For $\nu_A(z)$: the trace of R is the Cauchy-Stieltjes transform of $\check{\nu}_A(z)$,

$$\frac{1}{n}\sum_{k=1}^{n}\frac{1}{2}(a_{k}+c_{k}) = \int \frac{1}{x-\eta}\check{\nu}_{A}(z,dx),$$

$$\check{\nu}_A(z) = \frac{1}{2n} \sum_{i=1}^n \delta_{\sigma_i(z)} + \delta_{-\sigma_i(z)}$$

FROM THE RESOLVENT TO THE SPECTRAL MEASURE

For μ_A : in $\mathcal{D}'(\mathbb{C})$,

$$\mu_A = -\frac{1}{\pi n} \sum_{k=1}^n \partial b_k(\cdot, 0) = \lim_{\eta \downarrow 0} -\frac{1}{\pi n} \sum_{k=1}^n \partial b_k(\cdot, \eta).$$

(Similar computation in Rogers & Costillo (2009))

LOCAL OPERATOR CONVERGENCE

 \implies By exchangeability, we get

$$\mathbb{E}\mu_{A_n} = \lim_{\eta \downarrow 0} -\frac{1}{\pi} \partial \mathbb{E}b_1(\cdot, \eta).$$

 \implies It is enough to get the convergence of $R_{11}(U)$.

The local convergence of A_n to an operator A

$$\sigma_n^{-1} A_n \sigma_n \phi \to A \phi$$

implies the local convergence of B_n to B, the bipartized operator of A.

LOCAL OPERATOR CONVERGENCE

We show that *B* is (essentially) self-adjoint \implies convergence of $\nu_{A_n}(z)$.

+ Uniform integrability, we have $\mu = \lim_{t\downarrow 0} -rac{1}{\pi}\partial\mathbb{E}b(\cdot,it)$, where

$$R_{\emptyset\emptyset}(U) = \begin{pmatrix} a & b \\ b' & c \end{pmatrix},$$

and

 $R = (B - U \otimes I)^{-1}.$

The resolvent formula and the recursive structure of the PWIT implies a RDE for

$$R_{\phi\phi}(U) = \begin{pmatrix} a & b \\ \overline{b} & c \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ \overline{b} & c \end{pmatrix} \stackrel{d}{=} - \left(U + \sum_{k \in \mathbb{N}} \begin{pmatrix} \xi'_k c_k & 0 \\ 0 & \xi_k a_k \end{pmatrix} \right)^{-1},$$

where $a, c, (a_k)_{k \in \mathbb{N}}, (c_k)_{k \in \mathbb{N}}$ are i.i.d. independent of $\{\xi_k\}_{k \in \mathbb{N}}, \{\xi'_k\}_{k \in \mathbb{N}}$ two independent Poisson point processes of \mathbb{R}_+ with intensity $\frac{\alpha}{2}x^{-\frac{\alpha}{2}-1}dx$.

RECURSIVE DISTRIBUTIONAL EQUATION

For $\eta = it$, a = ih is pure imaginary and

$$h \stackrel{d}{=} \frac{t + \sum_{k \in \mathbb{N}} \xi_k h_k}{|z|^2 + \left(t + \sum_{k \in \mathbb{N}} \xi_k h_k\right) \left(t + \sum_{k \in \mathbb{N}} \xi'_k h'_k\right)}.$$

If S is a positive $\alpha/2$ -stable random variable,

$$\sum_{k \in \mathbb{N}} \xi_k h_k \stackrel{d}{=} \mathbb{E}[h_1^{\frac{\alpha}{2}}]^{\frac{2}{\alpha}} S.$$

 $\implies \text{The RDE can be solved in terms of a scalar fixed point equation for } \mathbb{E}[h_1^{\frac{\alpha}{2}}]^{\frac{2}{\alpha}}.$ $\implies \text{From } \mu = \lim_{t \downarrow 0} -\frac{1}{\pi} \partial \mathbb{E} b_1(\cdot, it), \text{ we get the properties of } \mu.$

IN SUMMARY

- The objective method is an efficient framework to deal with sparse random matrices.
- Dependencies in the entries are allowed : all computations are done in the limit operator.
- In other sparse cases : how to prove the uniform integrability ?
- What about eigenvectors ? analogs of local Wigner's theorem ?

OPEN PROBLEM

Let G_n be a k-oriented regular graph on $\{1, \dots, n\}$, drawn uniformly. Consider its adjacency matrix

$$(A_n)_{ij} = \mathbb{I}(i \to j).$$

The limit operator is the adjacency operator of the k-oriented regular infinite tree. The computation on the 2×2 resolvent shows that

$$\mu(dz) = \frac{1}{\pi} \frac{k^2(k-1)}{(k^2 - |z|^2)^2} \mathbb{I}_{|z| < \sqrt{k}} dz.$$

(= Brown's measure of the free sum of k Haar unitary, Haagerup and Larsen (2000))

 \implies How to prove the uniform integrability of the spectral measure in this case ?