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PART | : RANDOM MATRICES




SPECTRAL MEASURE

Let X = (X;)1<i j<n bean x n complex matrix. Let A1, - - - , A\, be its eigenvalues,

the spectral measure of X is

1 n
==Y "4y,
1294 nk_l A\

- (random hermitian) : the array (X;;);>;>1 isiid., X;; = ij’,

- (random non-hermitian) : the array (X;; )i j>1 is i.i.d..

— As n goes to infinity, does the spectral measure converge ?



WIGNER’S SEMI-CIRCULAR LAW

Theorem 1. IfEX ; = 0, E|X{{|* = 1 and

Ap :X/\/ﬁa

then, almost surely,

HA, — Msc,

where Jis.(dr) = s=v/4 — x2d.

s



GIRKO’S CIRCULAR LAW

Theorem 2 (Tao & Vu (2008)). IfEX{; = 0, E| X 1|*> = 1 and

Ay, :X/\/ﬁa

then, almost surely,

pa, = Unif(D).

where Unif( D) is the uniform distribution on the unit complex disc.

—> Found by Girko, earlier versions due to Edelman, Bai, Pan & Zhou, Gotze &

Tikhomirov ...



HEAVY-TAILED ENTRIES

We now assume that
P(‘Xll‘ > t) ~ 1t ¢

for some

0< a<?2.

Define

A, :X/nl/o‘,

— In the hermitian and non-hermitian cases, does [ 4, converge to a measure [t ?



HERMITIAN CASE

Theorem 3 (Ben Arous & Guionnet, 2008). There exists a probability measure [y

depending only on v such that, with the above assumptions, almost surely,

— Found non-rigourously by Bouchaud-Cizeau (1994).



PROPERTIES OF THE LIMIT MEASURE

Theorem 4. Forall0 < a< 2, the probability measure [,

(i) is symmetric and has a bounded density fp. on R,

(i) foe(0) = 1T (1 + 2) (F(lg)) %,

r(1+5)

(ii)) foe(t) ~ioo ST

—> Summarizes properties obtained by Ben Arous & Guionnet, Belinschi, Dembo &

Guionnet, Bordenave, Caputo & Chafai.



NON-HERMITIAN CASE

Theorem 5. Assume that X1 has a bounded density on R or C, and is asymptotically

radial :

. X11
lim P e-‘ X >t) =0,
oo (\Xn\ Xul 2 )

for some probability distribution 6 on S*.

Then, there exists a probability measure (i depending only on cx such that, with the above

assumptions, almost surely,

maA, — U.



PROPERTIES OF THE LIMIT SPECTRAL MEASURE

Theorem 6. The measure . has radial bounded density j1(dz) = f(|z])dz, where

NIV

£(0)

Y

1T(1+2)°T(1+9)
— 2
T I'(1l—9)a

andasr — o0

Sy e

F(r) ~er?lebe=s



PART Il : OBJECTIVE METHOD AND LOCAL OPERATOR CONVERGENCE




HERMITIAN CASE : SPECTRAL MEASURE AT A VECTOR

There exists a probability measure on R such that, for all ¢ integers,

(ex, Aner) = /mtdﬂfza

Han = 2“542 and %(43 = Z [(ex, ui) |6y,
k=1 i=1

The spectral measure at a vector is well defined for all self-adjoint operators.



HERMITIAN CASE : REDUCTION TO LOCAL CONVERGENCE

—> By exchangeability, we get

Epa, = Eufii

—> From basic concentration inequality, a4 — [Eu 4. converges a.s. to 0.

(1)

— It is enough to get the convergence of My, -



HERMITIAN CASE : LOCAL OPERATOR CONVERGENCE

We look for a random operator A defined in LQ(V) for some countable set V' such that
there exists a sequence of bijections 0, : V' — N, 6 € V, 0,,(¢) = 1 and, for all

¢ € L*(V') with compact support, weakly,

o Y Aponp — Ag.

If A is self-adjoint, then it would imply that

Ha) = -



NON-HERMITIAN CASE

The above strategy does not work. The spectral measure at a vector does not exist for

non-normal matrices.

The local operator convergence is not sufficient.

(01 0 0 - (01 0 0 -

o o0 1 0 -- 0O 0 1 O

VS

\0 -~ 0 0 0/ \l -~ 0 0 0

An additional ingredient is needed. (For the moment, we skip this very important part).




PART 1ll : CONVERGENCE TO POISSON WEIGHTED INFINITE TREE




ALDOUS’ PWIT

Let V = UrenNF with NY = ¢. Consider the infinite tree on V:

0

1,1 1,2 1,3
1,1,1 1,1,2 1,1,3 1,1,4



ALDOUS’ PWIT

Let (Z,,),cy be iid Poisson processes of intensity A on R, ,
Z’U:{OSC’Ul SC’UQ S }
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GRAPHIC REPRESENTATION OF A MATRIX

We think of the matrix A,, as an oriented weighted graph on n vertices.




ORDERED STATISTICS

A11 A12 L Aln . . . .
The vector ((Au)’ (A21), : (An1)> is reordered non-increasingly in

(<A10(1)>’ <A101(2)> . (Ala(n)>>
Az A 2)1 Agm
(Y = 15 ) =
Az Ag2)1

—> We restrict ourselves to non-hermetian case and non-negative random variables.

with



CONVERGENCE OF ORDERED STATISTICS

((Am(n) (A10(2)) <A1a(n)>>
As/) \Ao1/)  \Asmn
((2)an(2)em).

where ((x)r>1, (1 < (2 < -- -, is a Poisson point process of intensity

converges to

A(dlB) = 2]Ix>0d$

and () iid Ber(1/2) random variables.



CONVERGENCE OF ORDERED STATISTICS

For fixed 1, the vector
()
Ag (i) j#£1
IS reordered non-increasingly.

It converges again to

€il -2 €i2 -3
Cz' a? C@ aa"' ’
I —en I — €0

where ((;x ),>1 are independent Poisson processes of intensity A and (&5 ); 1, iid
Ber(1/2) rv.



LOCAL CONVERGENCE TO ALDOUS’ PWIT

(32) 2( 92
(42
(4)
() 3 SN

33

n—aoeo



OPERATOR ON THE PWIT

Define the operator on compactly supported function of LQ(V),

_1 — 1
A(Sv — Z(l — E,Uk)cvka 5vk + E’UCU a5a(v)7

k>1

where a(v) is the ancestor of v £ @.

— There exists a sequence of bijections o, : V — N, 0 € V, 0,,(¢) = 1 and, for all
¢ € L*(V') with compact support, weakly,

o Y Aponp — Ag.



HERMITIAN CASE : OPERATOR ON THE PWIT

In the hermitian case, the operator is defined similarly, we simply forget about, the 82)5 ;

_1 _1
Aoy = Z Cvka Ok + Go © 5a(v)°
k>1

— Again, for all ¢ € L*(V) with compact support, weakly, o, ' A, 0,0 — Ag.

Theorem 7. With probability one, the operator A is (essentially) self-adjoint.

—> As a corollary, we obtain the convergence of (14 10 ppe = Eyff).



HERMITIAN CASE : RECURSIVE DISTRIBUTIONAL EQUATION

The resolvent formula and the recursive structure of the PWIT implies a RDE for,
2e€Cr={2€C:3(2) >0},

9o(2) := (0g, (A — Z)_15¢>

1
gs = —<Z+Z€kgk> :

where g4, (g1 )rcry are i.i.d. independent of {&. } e, @ independent Poisson point

process of R . with intensity %m_%_ldaz.



RECURSIVE DISTRIBUTIONAL EQUATION

If S is a positive «/2-stable random variable,

&
2

—> The RDE can be solved in terms of a scalar fixed point equation for E[g,7 |

QN

—> Since g is the Cauchy-Stieltjes transform of 14, we deduce the properties of

be = Euff)-



PART IV : CONVERGENCE IN THE NON-HERMITIAN CASE




SINGULAR VALUES

0 <o, <---< oy :square roots of the eigenvalues of A* A.

Since | det A| = /det(A*A),

n n
1A= 1] on
k=1 k=1
For z € C,leto,(z) < -+ < g(z) be the singular values of A — z and
1 n
VA(Z) — E Z 50k(z)°
k=1

— forall z € C\supp(ua),

UMA(Z):/Cln’)\_Z’MA(d)\) = /Rln(:v)yA(z,daz)



LOGARITHMIC POTENTIAL

U,(z) = / In |A — z|p(dX).
C
Define

Laplacian differential operator

_ 1 [ O? 0?
A_86_1<%+87y>.

In D' (C),
AU, = mp.

—> The logarithmic potential characterizes the measure.



GIRKO’S METHOD

Theorem 8 (Criterion of convergence). Let (A,,) be a sequence of matrices. Assume
that for almost all z € C,

(i) va, (z) converges weakly to v(z), a probability measure on R ;. .
(i) [ In(x)va, (z,dz) is uniformly integrable.

Then there exists a probability measure (1 on C, such that for almost all z € C,

U,(z) = [ In(z)v(z,dz) and pa,, converges weakly to fi.



CONVERGENCE OF THE SINGULAR VALUES

Theorem 9. For all z € C, there exists a measure v(z, ), depending only on «v and z,

such that almost surely

1i7£n va, (2) =v(z2).

(For z = 0, Belinschi, Dembo & Guionnet (2009). For an explanation of this result, wait a

few slides)



UNIFORM INTEGRABILITY

Bai (1999) has developped the first method to prove the uniform integrability of

/ln(:v)z/A z,dx) Zlnaz

Here, we adapt the argument of Tao & Vu (2008) for the circular law.

For the large singular values, we use the inequality, for any 0 < p < 2,

NS

ZafSZ\\RMP:Z Z\Awﬁ |
1=1 1=1

1=1 71=1

where Ry, -- , R,, are rows of A.



UNIFORM INTEGRABILITY

For the smallest singular value, the bounded density assumption implies easily, for some

p > 1, almost surely,
on(z) = Q (n_p) :

— we may lower bound o, _;(z) by n P for0 < i < n'™7.

For the moderately small singular values, Tao & Vu prove that almost surely, for all

nl=7 <i<n,
?
n—1u =Q(—.
On—i(2) (n)

We only prove that, in a weaker sense, that

i\ =tz



A NEW LOOK AT THE SPECTRAL MEASURE

We want to study the limit spectral measure L.

The measure v/(2) is not explicit and we only know that

U,(z) = /ln(a:)l/(z,d:v)

and

1
p=—=AU,.

T

——> We need another characterization of the spectral measure : some have appeared in

the physics literature, Feinberg & Zee, Jarosz & Nowak, Rogers & Castillo...



BIPARTIZATION

Define

0 Ajj
Bz’j = / < MQ((C)

A; 0

—> B = (Bi;)1<i j<n is an hermitian matrix in M,,(M2(C)) ~ Ma, (C).



BIPARTIZATION

Figure 1: Graphical interpretation of bipartization.



Define the quaternionic set H, = <

Resolvent matrix :

2

\

RESOLVENT

R=(B-U®I,) !

B-U®I,=

(Bn - U
By

< Mn(MQ((C))a

By, o)
Boy — U

>




FROM THE RESOLVENT TO THE SINGULAR VALUES

ar b 2z
Ru(0) =[5 M), with U= |
b  Ck zZ n




FROM THE RESOLVENT TO THE SPECTRAL MEASURE

For 14 : in D' (C),

n

1 — _ 1
pa =—— ;%k('ﬁ) = 17%1—% l;abk(’ﬂ?)-

(Similar computation in Rogers & Costillo (2009))



LOCAL OPERATOR CONVERGENCE

—> By exchangeability, we get

1
Epa, =lim ——0Ebi(-,n).
nl0 T

— It is enough to get the convergence of R11(U).

The local convergence of A,, to an operator A
o A ond — A

implies the local convergence of B,, to B, the bipartized operator of A.



LOCAL OPERATOR CONVERGENCE

We show that B is (essentially) self-adjoint = convergence of 4 (z).

+ Uniform integrability, we have t = limy|g —%(’ﬂEb(-, it), where

a b
RM(U) — , .
b ¢

and

R=(B-UxI)".



RECURSIVE DISTRIBUTIONAL EQUATION

The resolvent formula and the recursive structure of the PWIT implies a RDE for

a b
RM(U): _
b c
/ 1
a b C 0
) < v+ ke ,
b C kLeN O fkak

where a, ¢, (ax)ken, (¢k)ken are iid. independent of {&y; Fren, {£). }ren two

@

independent Poisson point processes of R | with intensity %x_ > ldx.



RECURSIVE DISTRIBUTIONAL EQUATION

For 1 = it, a = ih is pure imaginary and

d L+ 2 pen Skl

h .
2% + (t + ZkeN gkhk) (t T ZkeN géch;c)

If S is a positive «/2-stable random variable,

—— The RDE can be solved in terms of a scalar fixed point equation for E[h

— From p = limy g —%éﬂEbl(-, it), we get the properties of /.

]

Q|



IN SUMMARY

The objective method is an efficient framework to deal with sparse random matrices.

Dependencies in the entries are allowed : all computations are done in the limit

operator.
In other sparse cases : how to prove the uniform integrability ?

What about eigenvectors ? analogs of local Wigner’s theorem ?



OPEN PROBLEM

Let G, be a k-oriented regular graph on {1, - -+ ., n}, drawn uniformly.

Consider its adjacency matrix
(An)ij = (i — j).

The limit operator is the adjacency operator of the k-oriented regular infinite tree. The

computation on the 2 X 2 resolvent shows that

1 k*(k—1)
— _ I dz.
pldz) 7w (k2 — [2]2)2 1el<VE o

(= Brown’s measure of the free sum of k Haar unitary, Haagerup and Larsen (2000))

—> How to prove the uniform integrability of the spectral measure in this case ?



