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PART I : RANDOM MATRICES



SPECTRAL MEASURE

Let X = (Xij)1≤i,j≤n be a n × n complex matrix. Let λ1, · · · ,λn be its eigenvalues,
the spectral measure of X is

µX =
1
n

n∑

k=1

δλk
.

- (random hermitian) : the array (Xij)i≥j≥1 is i.i.d., Xij = X̄ji,

- (random non-hermitian) : the array (Xij)i,j≥1 is i.i.d..

=⇒ As n goes to infinity, does the spectral measure converge ?



WIGNER’S SEMI-CIRCULAR LAW

Theorem 1. If EX11 = 0, E|X11|2 = 1 and

An = X/
√

n,

then, almost surely,

µAn =⇒ µsc,

where µsc(dx) = 1
2π

√
4 − x2dx.



GIRKO’S CIRCULAR LAW

Theorem 2 (Tao & Vu (2008)). If EX11 = 0, E|X11|2 = 1 and

An = X/
√

n,

then, almost surely,

µAn =⇒ Unif(D).

where Unif(D) is the uniform distribution on the unit complex disc.

=⇒ Found by Girko, earlier versions due to Edelman, Bai, Pan & Zhou, Götze &
Tikhomirov ...



HEAVY-TAILED ENTRIES

We now assume that

P(|X11| > t) ∼ t−α

for some

0 < α < 2.

Define

An = X/n1/α,

=⇒ In the hermitian and non-hermitian cases, does µAn converge to a measure µ ?



HERMITIAN CASE

Theorem 3 (Ben Arous & Guionnet, 2008). There exists a probability measure µbc

depending only on α such that, with the above assumptions, almost surely,

µAn =⇒ µbc.

=⇒ Found non-rigourously by Bouchaud-Cizeau (1994).



PROPERTIES OF THE LIMIT MEASURE

Theorem 4. For all 0 < α< 2, the probability measure µbc

(i) is symmetric and has a bounded density fbc on R,

(ii) fbc(0) = 1
πΓ

(
1 + 2

α

) (
Γ(1−α

2 )
Γ(1+ α

2 )

) 1
α

,

(iii) fbc(t) ∼t→∞
α
2 t−α−1.

=⇒ Summarizes properties obtained by Ben Arous & Guionnet, Belinschi, Dembo &
Guionnet, Bordenave, Caputo & Chafaı̈.



NON-HERMITIAN CASE

Theorem 5. Assume that X11 has a bounded density on R or C, and is asymptotically
radial :

lim
t→∞

P
(

X11

|X11|
∈ ·

∣∣∣ |X11| ≥ t

)
= θ,

for some probability distribution θ on S1.

Then, there exists a probability measure µ depending only on α such that, with the above
assumptions, almost surely,

µAn =⇒ µ.



PROPERTIES OF THE LIMIT SPECTRAL MEASURE

Theorem 6. The measure µ has radial bounded density µ(dz) = f(|z|)dz, where

f(0) =
1
π

Γ(1 + 2
α)2Γ(1 + α

2 )
2
α

Γ(1 − α
2 )

2
α

,

and as r → ∞
f(r) ∼ c r2(α−1)e−

α
2 rα

.



PART II : OBJECTIVE METHOD AND LOCAL OPERATOR CONVERGENCE



HERMITIAN CASE : SPECTRAL MEASURE AT A VECTOR

There exists a probability measure on R such that, for all t integers,

(ek, A
t
nek) =

∫
xtdµ(k)

An
,

µAn =
1
n

n∑

k=1

µ(k)
An

and µ(k)
An

=
n∑

i=1

|(ek, ui)|2δλi .

The spectral measure at a vector is well defined for all self-adjoint operators.



HERMITIAN CASE : REDUCTION TO LOCAL CONVERGENCE

=⇒ By exchangeability, we get

EµAn = Eµ(1)
An

=⇒ From basic concentration inequality, µAn − EµAn converges a.s. to 0.

=⇒ It is enough to get the convergence of µ(1)
An

.



HERMITIAN CASE : LOCAL OPERATOR CONVERGENCE

We look for a random operator A defined in L2(V ) for some countable set V such that
there exists a sequence of bijections σn : V → N, ø ∈ V , σn(ø) = 1 and, for all
φ ∈ L2(V ) with compact support, weakly,

σ−1
n Anσnφ → Aφ.

If A is self-adjoint, then it would imply that

µ(1)
An

→ µ(ø)
A .



NON-HERMITIAN CASE

The above strategy does not work. The spectral measure at a vector does not exist for
non-normal matrices.

The local operator convergence is not sufficient.





0 1 0 0 · · ·

0 0 1 0 · · ·

· · ·

0 · · · 0 0 0





vs





0 1 0 0 · · ·

0 0 1 0 · · ·

· · ·

1 · · · 0 0 0





.

An additional ingredient is needed. (For the moment, we skip this very important part).



PART III : CONVERGENCE TO POISSON WEIGHTED INFINITE TREE



ALDOUS’ PWIT

Let V = ∪k∈NNk with N0 = ø. Consider the infinite tree on V :

ø

1 2 3 4

1, 1 1, 2 1, 3

1, 1, 1 1, 1, 2 1, 1, 3 1, 1, 4

· · ·

· · ·
· · ·

· · ·

· · ·



ALDOUS’ PWIT

Let (Zv)v∈V be iid Poisson processes of intensity λ on R+,
Zv = {0 ≤ ζv1 ≤ ζv2 ≤ · · · }

· · ·

· · ·
· · ·

· · ·

· · ·

ø

1 2 3 4

1, 1 1, 2 1, 3

1, 1, 1 1, 1, 2 1, 1, 3 1, 1, 4

ζ1 ζ2 ζ3 ζ4

ζ11
ζ12

ζ13

ζ21

ζ22
ζ23

ζ111

ζ112
ζ113 ζ114



GRAPHIC REPRESENTATION OF A MATRIX

We think of the matrix An as an oriented weighted graph on n vertices.
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ORDERED STATISTICS

The vector
((A11

A11

)
,
(A12
A21

)
, · · · ,

(A1n
An1

))
is reordered non-increasingly in

((
A1σ(1)

Aσ(1)1

)
,

(
A1σ1(2)

Aσ(2)1

)
, · · · ,

(
A1σ(n)

Aσ(n)1

))

with

‖
(

A1σ(1)

Aσ(1)1

)
‖1 ≥ ‖

(
A1σ(2)

Aσ(2)1

)
‖1 ≥ · · · .

=⇒We restrict ourselves to non-hermetian case and non-negative random variables.



CONVERGENCE OF ORDERED STATISTICS

((
A1σ(1)

Aσ(1)1

)
,

(
A1σ(2)

Aσ(2)1

)
, · · · ,

(
A1σ(n)

Aσ(n)1

))

converges to ((
ε1

1 − ε1

)
ζ
− 1

α
1 ,

(
ε2

1 − ε2

)
ζ
− 1

α
2 , · · ·

)
,

where (ζk)k≥1, ζ1 ≤ ζ2 ≤ · · · , is a Poisson point process of intensity

Λ(dx) = 21Ix>0dx

and (εk) iid Ber(1/2) random variables.



CONVERGENCE OF ORDERED STATISTICS

For fixed i, the vector ((
Ajσ(i)

Aσ(i)j

))

j '=1

is reordered non-increasingly.

It converges again to
((

εi1

1 − εi1

)
ζ
− 1

α
i1 ,

(
εi2

1 − εi2

)
ζ
− 1

α
i2 , · · ·

)
,

where (ζik)k≥1 are independent Poisson processes of intensity Λ and (εik)i,k iid
Ber(1/2) r.v.



LOCAL CONVERGENCE TO ALDOUS’ PWIT
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A31

)
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A41
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)

(A34

A43
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1 2

34 −→
n→∞

· · ·

· · ·

· · ·
· · ·

· · ·

· · ·

ø

1 2 3 4

1, 1 1, 2 1, 3

1, 1, 1 1, 1, 2 1, 1, 3 1, 1, 4

1 → ø

σ(i) → i
( ε1
1−ε1

)
ζ
− 1

α
1

( ε2
1−ε2

)
ζ
− 1

α
2

( ε3
1−ε3

)
ζ
− 1

α
3

( ε4
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)
ζ
− 1

α
4

( ε11
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)
ζ
− 1

α
11 ( ε12

1−ε12

)
ζ
− 1

α
12( ε13

1−ε13

)
ζ
− 1

α
13

( ε21
1−ε21

)
ζ
− 1

α
21 ( ε22

1−ε22

)
ζ
− 1

α
22 ( ε23

1−ε23

)
ζ
− 1

α
23

( ε111
1−ε111

)
ζ
− 1

α
111( ε112

1−ε112

)
ζ
− 1

α
112( ε113

1−ε113

)
ζ
− 1

α
113

( ε114
1−ε114

)
ζ
− 1

α
114



OPERATOR ON THE PWIT

Define the operator on compactly supported function of L2(V ),

Aδv =
∑

k≥1

(1 − εvk)ζ
− 1

α
vk δvk + εvζ

− 1
α

v δa(v),

where a(v) is the ancestor of v -= ø.

=⇒ There exists a sequence of bijections σn : V → N, ø ∈ V , σn(ø) = 1 and, for all
φ ∈ L2(V ) with compact support, weakly,

σ−1
n Anσnφ → Aφ.



HERMITIAN CASE : OPERATOR ON THE PWIT

In the hermitian case, the operator is defined similarly, we simply forget about, the ε′vs :

Aδv =
∑

k≥1

ζ
− 1

α
vk δvk + ζ

− 1
α

v δa(v).

−→ Again, for all φ ∈ L2(V ) with compact support, weakly, σ−1
n Anσnφ → Aφ.

Theorem 7. With probability one, the operator A is (essentially) self-adjoint.

=⇒ As a corollary, we obtain the convergence of µAn to µbc := Eµ(ø)
A .



HERMITIAN CASE : RECURSIVE DISTRIBUTIONAL EQUATION

The resolvent formula and the recursive structure of the PWIT implies a RDE for,
z ∈ C+ = {z ∈ C : .(z) > 0},

gø(z) := 〈δø, (A − z)−1δø〉

gø
d= −

(
z +

∑

k∈N
ξkgk

)−1

,

where gø, (gk)k∈N are i.i.d. independent of {ξk}k∈N, a independent Poisson point
process of R+ with intensity α

2 x−α
2 −1dx.



RECURSIVE DISTRIBUTIONAL EQUATION

If S is a positive α/2-stable random variable,
∑

k∈N
ξkgk

d= E[g
α
2
ø ]

2
α S.

=⇒ The RDE can be solved in terms of a scalar fixed point equation for E[g
α
2
ø ]

2
α .

=⇒ Since g is the Cauchy-Stieltjes transform of µø, we deduce the properties of
µbc = Eµ(ø)

A .



PART IV : CONVERGENCE IN THE NON-HERMITIAN CASE



SINGULAR VALUES

0 ≤ σn ≤ · · · ≤ σ1 : square roots of the eigenvalues of A∗A.

Since |det A| =
√

det(A∗A),
n∏

k=1

|λk| =
n∏

k=1

σk

For z ∈ C, let σn(z) ≤ · · · ≤ σ(z) be the singular values of A − z and

νA(z) =
1
n

n∑

k=1

δσk(z).

=⇒ for all z ∈ C\supp(µA),

UµA(z) =
∫

C
ln |λ− z|µA(dλ) =

∫

R+

ln(x)νA(z, dx)



LOGARITHMIC POTENTIAL

Uµ(z) =
∫

C
ln |λ− z|µ(dλ).

Define

∂ =
1
2

(
∂

∂x
− i

∂

∂y

)
and ∂̄ =

1
2

(
∂

∂x
+ i

∂

∂y

)
.

Laplacian differential operator

∆ = ∂̄∂ =
1
4

(
∂2

∂2x
+

∂2

∂2y

)
.

InD′(C),
∆Uµ = πµ.

=⇒ The logarithmic potential characterizes the measure.



GIRKO’S METHOD

Theorem 8 (Criterion of convergence). Let (An) be a sequence of matrices. Assume
that for almost all z ∈ C,

(i) νAn(z) converges weakly to ν(z), a probability measure on R+.

(ii)
∫

ln(x)νAn(z, dx) is uniformly integrable.

Then there exists a probability measure µ on C, such that for almost all z ∈ C,
Uµ(z) =

∫
ln(x)ν(z, dx) and µAn converges weakly to µ.



CONVERGENCE OF THE SINGULAR VALUES

Theorem 9. For all z ∈ C, there exists a measure ν(z, ·), depending only on α and z,
such that almost surely

lim
n

νAn(z) = ν(z).

(For z = 0, Belinschi, Dembo & Guionnet (2009). For an explanation of this result, wait a
few slides)



UNIFORM INTEGRABILITY

Bai (1999) has developped the first method to prove the uniform integrability of
∫

ln(x)νAn(z, dx) =
1
n

n∑

i=1

lnσi(z).

Here, we adapt the argument of Tao & Vu (2008) for the circular law.

For the large singular values, we use the inequality, for any 0 < p ≤ 2,

n∑

i=1

σp
i ≤

n∑

i=1

‖Ri‖p
2 =

n∑

i=1




n∑

j=1

|Aij |2




p
2

,

where R1, · · · , Rn are rows of A.



UNIFORM INTEGRABILITY

For the smallest singular value, the bounded density assumption implies easily, for some
p ≥ 1, almost surely,

σn(z) = Ω
(
n−p

)
.

=⇒ we may lower bound σn−i(z) by n−p for 0 ≤ i ≤ n1−γ .

For the moderately small singular values, Tao & Vu prove that almost surely, for all
n1−γ ≤ i ≤ n,

σn−i(z) = Ω
(

i

n

)
.

We only prove that, in a weaker sense, that

σn−i(z) = Ω
(

i

n

) 1
α+ 1

2

.



A NEW LOOK AT THE SPECTRAL MEASURE

We want to study the limit spectral measure µ.

The measure ν(z) is not explicit and we only know that

Uµ(z) =
∫

ln(x)ν(z, dx)

and

µ =
1
π
∆Uµ.

=⇒We need another characterization of the spectral measure : some have appeared in
the physics literature, Feinberg & Zee, Jarosz & Nowak, Rogers & Castillo...



BIPARTIZATION

Define

Bij =



 0 Aij

Āji 0



 ∈ M2(C).

=⇒ B = (Bij)1≤i,j≤n is an hermitian matrix inMn(M2(C)) 1 M2n(C).



BIPARTIZATION

1 2
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)
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)
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A24

Figure 1: Graphical interpretation of bipartization.



RESOLVENT

Define the quaternionic set H+ =




U =



η z

z̄ η



 , η ∈ C+, z ∈ C




 .

Resolvent matrix :

R = (B − U ⊗ In)−1 ∈ Mn(M2(C)),

B − U ⊗ In =





B11 − U B12 · · ·

B∗
12 B22 − U · · ·

· · · · · · · · ·




.



FROM THE RESOLVENT TO THE SINGULAR VALUES

Rkk(U) =



ak bk

b′k ck



 , with U =



η z

z̄ η



 .

For νA(z) : the trace of R is the Cauchy-Stieltjes transform of ν̌A(z),

1
n

n∑

k=1

1
2
(ak + ck) =

∫
1

x − η
ν̌A(z, dx),

ν̌A(z) =
1
2n

n∑

i=1

δσi(z) + δ−σi(z)



FROM THE RESOLVENT TO THE SPECTRAL MEASURE

For µA : inD′(C),

µA = − 1
πn

n∑

k=1

∂bk(·, 0) = lim
η↓0

− 1
πn

n∑

k=1

∂bk(·, η).

(Similar computation in Rogers & Costillo (2009))



LOCAL OPERATOR CONVERGENCE

=⇒ By exchangeability, we get

EµAn = lim
η↓0

− 1
π
∂Eb1(·, η).

=⇒ It is enough to get the convergence of R11(U).

The local convergence of An to an operator A

σ−1
n Anσnφ → Aφ

implies the local convergence of Bn to B, the bipartized operator of A.



LOCAL OPERATOR CONVERGENCE

We show that B is (essentially) self-adjoint =⇒ convergence of νAn(z).

+ Uniform integrability, we have µ = limt↓0 − 1
π∂Eb(·, it), where

Røø(U) =



a b

b′ c



 ,

and

R = (B − U ⊗ I)−1.



RECURSIVE DISTRIBUTIONAL EQUATION

The resolvent formula and the recursive structure of the PWIT implies a RDE for

Røø(U) =



a b

b̄ c



 .



a b

b̄ c



 d= −



U +
∑

k∈N



ξ′kck 0

0 ξkak








−1

,

where a, c, (ak)k∈N, (ck)k∈N are i.i.d. independent of {ξk}k∈N, {ξ′k}k∈N two
independent Poisson point processes of R+ with intensity α

2 x−α
2 −1dx.



RECURSIVE DISTRIBUTIONAL EQUATION

For η = it, a = ih is pure imaginary and

h
d=

t +
∑

k∈N ξkhk

|z|2 +
(
t +

∑
k∈N ξkhk

) (
t +

∑
k∈N ξ′kh

′
k

) .

If S is a positive α/2-stable random variable,
∑

k∈N
ξkhk

d= E[h
α
2
1 ]

2
α S.

=⇒ The RDE can be solved in terms of a scalar fixed point equation for E[h
α
2
1 ]

2
α .

=⇒ From µ = limt↓0 − 1
π∂Eb1(·, it), we get the properties of µ.



IN SUMMARY

- The objective method is an efficient framework to deal with sparse random matrices.

- Dependencies in the entries are allowed : all computations are done in the limit
operator.

- In other sparse cases : how to prove the uniform integrability ?

- What about eigenvectors ? analogs of local Wigner’s theorem ?



OPEN PROBLEM

Let Gn be a k-oriented regular graph on {1, · · · , n}, drawn uniformly.

Consider its adjacency matrix

(An)ij = 1I(i → j).

The limit operator is the adjacency operator of the k-oriented regular infinite tree. The
computation on the 2 × 2 resolvent shows that

µ(dz) =
1
π

k2(k − 1)
(k2 − |z|2)2

1I|z|<√
kdz.

(= Brown’s measure of the free sum of k Haar unitary, Haagerup and Larsen (2000))

=⇒ How to prove the uniform integrability of the spectral measure in this case ?


