
For matrix A (p×p) with real eigenvalues, define FA, the empirical

distribution function of the eigenvalues of A, to be

FA(x) ≡ (1/p) · (number of eigenvalues of A ≤ x).

For and p.d.f. G the Stieltjes transform of G is defined as

mG(z) ≡
∫

1
λ− z

dG(λ), z ∈ C+ ≡ {z ∈ C : =z > 0}.

Inversion formula

G{[a, b]} = (1/π) lim
η→0+

∫ b

a

=mG(ξ + iη)dξ

(a, b continuity points of G).

Notice

mF A(z) = (1/p)tr (A− zI)−1.
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Theorem [S. (1995)]. Assume

a) For n = 1, 2, . . . Xn = (Xn
ij), n × N , Xn

ij ∈ C, i.d. for all n, i, j,

independent across i, j for each n, E|X1
1 1 − EX1

1 1|2 = 1.

b) N = N(n) with n/N → c > 0 as n →∞.

c) Tn n × n random Hermitian nonnegative definite, with FTn con-

verging almost surely in distribution to a p.d.f. H on [0,∞) as

n →∞.

d) Xn and Tn are independent.

Let T
1/2
n be the Hermitian nonnegative square root of Tn, and

let Bn = (1/N)T 1/2
n XnX∗

nT
1/2
n (obviously FBn = F (1/N)XnX∗

nTn).

Then, almost surely, FBn converges in distribution, as n →∞, to

a (nonrandom) p.d.f. F , whose Stieltjes transform m(z) (z ∈ C+)

satisfies

(∗) m =
∫

1
t(1− c− czm)− z

dH(t),

in the sense that, for each z ∈ C+, m = m(z) is the unique solution

to (∗) in {m ∈ C : − 1−c
z + cm ∈ C+}.
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We have

F (1/N)X∗TX = (1− n

N
)I[0,∞) +

n

N
F (1/N)XX∗T

a.s.−→ (1− c)I[0,∞) + cF ≡ F .

Notice mF and mF satisfy

1− c

cz
+

1
c
mF (z) = mF (z) =

∫
1

−zmF t− z
dH(t).

Therefore, m = mF solves

z = − 1
m

+ c

∫
t

1 + tm
dH(t).

3



Facts on F:

1. The endpoints of the connected components (away from 0) of the

support of F are given by the extrema of

f(m) = − 1
m

+ c

∫
t

1 + tm
dH(t) m ∈ R

[Marčenko and Pastur (1967), S. and Choi (1995)].

2. F has a continuous density away from the origin given by

1
cπ

=m(x) 0 < x ∈ support of F

where

m(x) = lim
z∈C+→x

mF (z)

solves

x = − 1
m

+ c

∫
t

1 + tm
dH(t).

(S. and Choi 1995).

3. F ′ is analytic inside its support, and when H is discrete, has infinite

slopes at boundaries of its support [S. and Choi (1995)].

4. c and F uniquely determine H.

5. F
D−→ H as c → 0 (complements Bn

a.s.−→ Tn as N → ∞, n fixed).
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Tn = In =⇒ F = Fc, where, for 0 < c ≤ 1, F ′
c(x) = fc(x) =

1
2πcx

√
(x − b1)(b2 − x) b1 < x < b2,

0 otherwise, where

b1 = (1 −√
c)2, b2 = (1 +

√
c)2,

and for 1 < c < ∞,

Fc(x) = (1 − (1/c))I[0,∞)(x) +
∫ x

b1

fc(t)dt.

Marčenko and Pastur (1967)

Grenander and S. (1977)

Multivariate F matrix: Tn = ((1/N ′)XnX∗
n)−1, Xn n × N ′ con-

taining i.i.d. standardized entries, n/N ′ → c′ ∈ (0, 1) =⇒ F =

Fc,c′ ,where, for 0 < c ≤ 1, F ′
c,c′(x) = fc,c′(x) =

(1 − c′)
√

(x − b1)(b2 − x)
2πx(xc′ + c)

b1 < x < b2,

where

b1 =
[
1 − √

1 − (1 − c)(1 − c′)
1 − c′

]2

, b2 =
[
1 +

√
1 − (1 − c)(1 − c′)

1 − c′

]2

,

and for 1 < c < ∞,

Fc,c′(x) = (1 − (1/c))I[0,∞)(x) +
∫ x

b1

fc,c′(t)dt.

S. (1985)
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Let, for any d > 0 and d.f. G, F d,G denote the limiting spectral

d.f. of (1/N)X∗TX corresponding to limiting ratio d and limiting

FTn G.

Theorem [Bai and S. (1998)]. Assume:

a) Xij , i, j = 1, 2, ... are i.i.d. random variables in C with EX11 = 0,

E|X11|2 = 1, and E|X11|4 < ∞.

b) N = N(n) with cn = n/N → c > 0 as n →∞.

c) For each n Tn is an n×n Hermitian nonnegative definite satisfying

Hn ≡ FTn
D−→ H, a p.d.f.

d) ‖Tn‖, the spectral norm of Tn is bounded in n.

e) Bn = (1/N)T 1/2
n XnX∗

nT
1/2
n , T

1/2
n any Hermitian square root of

Tn, Bn = (1/N)X∗
nTnXn, where Xn = (Xij), i = 1, 2, . . . , n,

j = 1, 2, . . . , N .

f) The interval [a, b] with a > 0 lies in an open interval outside the

support of F cn,Hn for all large n.

Then

P( no eigenvalue of Bn appears in [a, b] for all large n ) = 1.
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Theorem [Bai and S. (1999)]. Assume (a)–(f) of the previous the-

orem.

1) If c[1 − H(0)] > 1, then x0, the smallest value in the support of

F c,H , is positive, and with probability one λBn

N → x0 as n → ∞.

The number x0 is the maximum value of the function

z(m) = − 1
m

+ c

∫
t

1 + tm
dH(t)

for m ∈ R+.

2) If c[1−H(0)] ≤ 1, or c[1−H(0)] > 1 but [a, b] is not contained in

[0, x0] then mF c,H (b) < 0. Let for large n integer in ≥ 0 be such

that

λTn
in

> −1/mF c,H (b) and λTn
in+1 < −1/mF c,H (a)

(eigenvalues arranged in non-increasing order). Then

P(λBn
in

> b and λBn
in+1 < a for all large n ) = 1.
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From the work of X. Mestre (2008):

For fixed n, N , and Hn = FTn , let m = m(z) = mF cn,Hn (z). Then

z = z(m) = − 1
m

+ cn

∫
t

1 + tm
dHn(t)

=
1
m

(cn − 1) − cn

m2

∫
1

t + 1
m

dHn(t)

=
1
m

(cn − 1) − cn

m2
mHn(− 1

m ).

Suppose Tn has positive eigenvalue t1 with multiplicity n1. Then

on any contour in C positively oriented, encircling only eigenvalue

t1 of Tn we have

− n

n1

1
2πi

∮
ymHn(y)dy = − n

n1

1
2πi

∮
y

∫
1

λ − y
dHn(λ)dy

=
n

n1

1
2πi

∫ ∮
y

y − λ
dydHn(λ) =

n

n1

∫
{t1}

λdHn(λ) = t1.
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Substitute m = − 1
y . Then

t1 =
n

n1

1
2πi

∮
1
m

mHn(− 1
m )

1
m2

dm

=
n

n1

1
cn

1
2πi

∮
1
m

(
1
m

(cn − 1) − z(m)
)

dm

= −N

n1

1
2πi

∮
z(m)
m

dm,

the contour contained in the negative real portion of C, encircling

− 1
t1

and no other − 1
tj

, tj an eigenvalue of Tn.

Suppose exact separation occurs for the eigenvalues of Bn for all

n large, associated with t1. Then the contour can be chosen so

that it intersects the real line at two places ma < mb for which

xa = z(ma) and xb = z(mb) are outside the support of F cn,Hn ,

and [xa, xb] contains only the support of F cn,Hn associated with

t1. Then, with substitution m = m(z) we have

t1 = −N

n1

1
2πi

∮
zm′(z)
m(z)

dz,

the contour, C, only containing the support of F cn,Hn associated

with t1.
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Let mn = mF (1/N)X∗
nTnXn . We have, with probability 1,

sup
z∈C

max |m(z) − mn(z)|, |m′(z) − m′
n(z)| → 0,

as n → ∞. Thus

−N

n1

1
2πi

∮
zm′

n(z)
mn(z)

dz

can be taken as an estimate of t1. This quantity equals

N

n1


 ∑

λj∈[xa,xb]

λj −
∑

µj∈[xa,xb]

µj


 ,

where λj ’s are the eigenvalues of Bn, µj ’s are the zeros of mn(z).

We have

mn(z) =
1
N

n∑
j=1

1
λj − z

+
N − n

N

1
−z

= 0

⇐⇒ 1
N

n∑
j=1

λj

λj − z
= 1.

The solutions are the eigenvalues of the matrix

Diag(λ1, . . . , λn) − N−1ss∗,

where s = (
√

λ1, . . . ,
√

λn)∗.
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Population eigenvalues 1 3 10
Estimates .9946 2.9877 10.0365
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Theorem [Bai, S. (2009)]. Replace assumption a) in S. (1995) with:

For n = 1, 2, . . . Xn = (Xn
ij), n×N , Xn

ij ∈ C are independent with

common mean, unit variance, such that for any η > 0

1
η2nN

∑
ij

E(|Xn
ij |2I(|Xn

ij | ≥ η
√

n)) → 0

as n → ∞. Then the conclusion of S. (1995) remains true.

Theorem [Couillet, S., Bai, Debbah (to appear in IEEE Transac-

tions on Information Theory)]. Replace assumption a) in Bai and

S. (1998) with:

1) Xij , i, j = 1, 2, ... are independent random variables in C with

EX1 1 = 0 and E|E1 1|2 = 1.

2) There exists a K > 0 and a random variable X with finite fourth

moment such that, for any x > 0

1
n1n2

∑
i≤n1,j≤n2

P(|Xij | > x) ≤ KP(|X| > x)

for any positive integers n1, n2.

3) There is a positive function ψ(x) ↑ ∞ as x → ∞, and M > 0, such

that

max
ij

E[|Xij |2ψ(|Xij |)] ≤ M.

Then the conlusions of Bai and S. (1998,1999) remain true.
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Extension to power estimation of multiple signal sources in multi-

antenna fading channels (Couillet, S., Bai, Debbah):

Consider K entities transmitting data. Transmitter k ∈ {1, . . . , K}
has (unknown) transmission power Pk with nk antennas. They

transmit data to N sensing devices (receiver). The multiple an-

tenna channel matrix between transmitter k and the receiver is

denoted by Hk ∈ CN×nk , where the entries of
√

NHk are i.i.d.

standardized.

At time instant m ∈ {1, . . . , M}, transmitter k emits signal x
(m)
k ∈

Cnk , entries independent and standardized, independent for differ-

ent m’s. At the same time the receive signal is impaired by additive

noise σw(m) ∈ CN (σ > 0), the entries of w(m) are i.i.d. standard-

ized (independent across m). Therefore at time m the receiver

senses the signal

y(m) =
K∑

k=1

√
PkHkx

(m)
k + σw(m).
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Therefore, with Y = [y(1), . . . , y(M)] ∈ CN×M , Xk = [x(1)
k , . . . , x

(M)
k ]

∈ Cnk×M , and W = [w(1), . . . , w(M)] ∈ CN×M we have

Y =
K∑

k=1

√
PkHkXk + σW = HP 1/2X + σW,

where, with n = n1 + · · · + nK , H = [H1, . . . , HK ],

X =




X1
...

XK


 ∈ Cn×M ,

and P 1/2 is the positive square root of the n × n diagonal matrix

P having first n1 diagonal entries equal to P1, next n2 diagonal

matrices equal to P2, etc.

Goal is to estimate the Pk’s. Notice Y is the first N rows of

(
HP 1/2 IN

01 02

) (
X
W

)
,

(IN N × N identity matrix, 01, n × n, 02 n × N zero matrices) so

previous results apply.
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Theorem. Assume σ and K are fixed, M/N → c > 0, and each

N/nk → ck > 0, as N → ∞. Let BN = (1/M)Y Y ∗. Then,

almost surely, FBN converges in distribution, as N → ∞, to a

(nonrandom) p.d.f., whose Stieltjes transform, mF (z) (z ∈ C+)

satisfies

mF (z) = cmF (z) + (c − 1)
1
z
,

where mF is the unique solution with positive imaginary part to

the equation

1
mF

= −σ2 +
1
f
−

K∑
k=1

1
ck

Pk

1 + Pkf

with

f = (1 − c)mF − czm2
F .
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Theorem. Assuming M > N , n < N , the Pk’s are distinct, and

certain assumptions on the size of c, and the ck’s, exact separation

occurs. Let λi denote the i-th smallest eigenvalue of BN and s =

(
√

λ1, . . . ,
√

λN )T . Then with probability 1 P̂k → Pk as N → ∞
where

P̂k =
NM

nk(M − N)

∑
i∈Nk

(ηi − µi),

where Nk = {N − ∑K
i=k ni + 1, . . . , N − ∑K

i=k+1 ni}, the ηi’s are

the ordered eigenvalues of diag(λ1, . . . , λN ) − (1/N)ss∗, and the

µi’s are the ordered eigenvalues of diag(λ1, . . . , λN ) − (1/M)ss∗.
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