For matrix A (p x p) with real eigenvalues, define F'4, the empirical

distribution function of the eigenvalues of A, to be
FA(z) = (1/p) - (number of eigenvalues of A < x).

For and p.d.f. GG the Stieltjes transform of G is defined as

1
mg(z)E/)\_ZdG(A), zeCt={2€C:S3z>0}.

Inversion formula

b
G{la,b]} = (1/m) lim [ Fma(€+ in)dé

77—>0+ a

(a, b continuity points of G).
Notice
mpa(z) = (1/p)tr (A — 2I)~ 1.



a)

Theorem [S. (1995)]. Assume

Forn =1,2,... X,, = (X[%), n x N, X7% € C, i.d. for all n,i,j,
independent across i, j for each n, E|X{; — EX{,]? = 1.

N = N(n) with n/N — ¢ >0 as n — oo.

T,, n x n random Hermitian nonnegative definite, with F7» con-
verging almost surely in distribution to a p.d.f. H on [0,00) as
n — oo.

X,, and T, are independent.

Let Tﬁ/ > be the Hermitian nonnegative square root of T),,, and
let B, = (1/N)Ta>X, X:Ta'? (obviously FBr = FO/N)XuX Tuy,
Then, almost surely, FP~ converges in distribution, as n — 0o, to
a (nonrandom) p.d.f. F', whose Stieltjes transform m(z) (z € CV)

satisfies

1
(*) e / t(l1—c—czm) — de(t)’

in the sense that, for each z € C*, m = m(z) is the unique solution

to (x) in {me C: -1=¢ +em e Ct}.

A



We have

FA/NX*TX _ (q _ n T ﬁFu/N)XX*T
( N) [0,00) _|_ N

=5 (1= e)jgoo) +cF=F.

Notice mr and mp satisfy

1_C+1mF(z) =mp(z) :/ ! dH ().

cz c —zmpt — 2

Therefore, m = mpg solves

z:—i+c/ L aH®).

m 1+tm



Facts on F:
. The endpoints of the connected components (away from 0) of the

support of F' are given by the extrema of

f(m)z—%—l—c/l_i_ttmd[{(t) m € R

[Marcenko and Pastur (1967), S. and Choi (1995)].

. F' has a continuous density away from the origin given by

—SQm(z) 0<x € support of F
CT
where
m(zx) = lim mgr(z
_( ) z2eCt—x E( )
solves

1 t
= —— dH (t).
) m+c/1+tm ()

(S. and Choi 1995).

. I’ is analytic inside its support, and when H is discrete, has infinite
slopes at boundaries of its support [S. and Choi (1995)].

. ¢ and F' uniquely determine H.

F 2 Hase—0 (complements B,, =5 T, as N — oo, n fixed).
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T, =1, = F = F,, where, for 0 < c <1, Fl(x) = f.(z) =
1
2mex

\/(Qf—bl)(bg—ﬂf) bl <l’<b2,

0 otherwise, where

b1 = (1—+0c)?, by=(1++c),

and for 1 < ¢ < o0,

Fe(z) = (1 = (1/¢)0,00) () + b fe(t)dt.
Marcenko and Pastur (1967)

Grenander and S. (1977)

Multivariate F matrix: T,, = ((1/N)X,X*)"1, X, n x N’ con-
taining i.i.d. standardized entries, n/N’ — ¢ € (0,1) = F =

F. o,where, for 0 < ¢ <1, FC”C,(x) = foo(x) =

(1 —c)/(z = b1)(b2 — x)
2wz (xc 4+ ¢

bl<$<b2,

where

by 1—\/1—(1—(;)(1—(;/)]27 b2:[1+¢1—(1—(;)(1—d) :

1—¢ 1—¢ ’

and for 1 < ¢ < o0,

x

Fre () = (1= (T (@) + [ fecr(t)at.

S. (1985)



Let, for any d > 0 and d.f. G, F®% denote the limiting spectral
d.f. of (1/N)X*TX corresponding to limiting ratio d and limiting
Fn G,

Theorem [Bai and S. (1998)]. Assume:

Xij, 4,7 = 1,2,... are i.i.d. random variables in C with EX;; = 0,
E|X11]? =1, and E|X{1]* < 0.

N = N(n) with ¢, =n/N — ¢ > 0 as n — o0.

For each n T, is an n x n Hermitian nonnegative definite satisfying
H,=F" 2, 0 ap.df

| T ||, the spectral norm of T;, is bounded in n.

B, = (1/N)T71/2XHX;‘LTT1/2, Tr/? any Hermitian square root of
T., B, = (1/N)X:T,X,, where X,, = (X;;), i« = 1,2,... ,n,
j=1,2,...,N.

The interval [a,b] with a > 0 lies in an open interval outside the

support of FH= for all large n.

Then

P( no eigenvalue of B,, appears in |a, b] for all large n ) = 1.



Theorem [Bai and S. (1999)]. Assume (a)—(f) of the previous the-
orem.

If ¢[l — H(0)] > 1, then x(, the smallest value in the support of
FeH | is positive, and with probability one Aﬁ” — Tg as n — oQ.

The number x( is the maximum value of the function

z(m):—l+c/ L aH®)

m 1+tm

for m € RT.

If [l — H(0)] <1, or ¢[l — H(0)] > 1 but [a,b] is not contained in
[0, 2] then mpe.u(b) < 0. Let for large n integer i,, > 0 be such
that

At > —1/mpen(b)  and A"y < —1/mpen(a)
(eigenvalues arranged in non-increasing order). Then

P()\fi” >b and )\iﬁrl < a for all large n ) = 1.

10



From the work of X. Mestre (2008):

For fixed n, N, and H,, = F» let m = m(z) = mpen.m, (2). Then

z:z(m):———l—cn/

1 e [ 1

P dH,, 1
m(c ) mz/t+% Q
1 Cn,

= ﬁ(cn 1) = —sma, ()

Suppose T, has positive eigenvalue t; with multiplicity n;. Then
on any contour in C positively oriented, encircling only eigenvalue

t1 of T,, we have

n 1
— - —dH A)dy
ny 2me ym, (y)dy ni 27m 7{ /

- /j{—dde (\) = ﬁ/ NdH, (\) = t.
n12m n1 Sy

11



Substitute m = —%. Then

n 1 1 1
ti = — — S S
e _mHn( m)m2 m
n 1 1 1 1
=——— ¢ — [ =(cn—1) — d
Ny Cp 271 m(m(c ) z(m)) =

_ N1 fz(m)dm,

ni 2me m

the contour contained in the negative real portion of C, encircling

—% and no other —

1

P t; an eigenvalue of T},.

Suppose exact separation occurs for the eigenvalues of B,, for all
n large, associated with t;. Then the contour can be chosen so
that it intersects the real line at two places m, < m,; for which
r, = z(m,) and x;, = 2(m,) are outside the support of F¢n:Hn
and [z4, 73] contains only the support of F¢+Hn» associated with
t1. Then, with substitution m = m(z) we have

N 1 zm/(z)
ny 2mi m(z)

t1 = dZ,

the contour, C, only containing the support of F¢H» associated

12



Let m,, = mpa/nxzr.x, . We have, with probability 1

sup max |m(z) — m, (2)], |m' () — my, ()| = 0,
zGC

as n — oo. Thus
N 1 zm’n(z)d
ny 2mi ) m,(2)

z

can be taken as an estimate of ¢;. This quantity equals
N
oo X ow)

1 Aj€lxq,Tp] Hi€[Ta,Ts]

where \;’s are the eigenvalues of B,,, 11;’s are the zeros of m,,(2).

We have

1 — N—-n1
m,,( :NZ:: N —z:O

— 2 En Ny
N - )\j — Z N
g=1
The solutions are the eigenvalues of the matrix

Diag(Ai, ..., ) — N tss*,

where s = (v A1, ...,V )"

13



Population eigenvalues 1 3 10
Estimates 9946 2.9877 10.0365

14



Theorem [Bai, S. (2009)]. Replace assumption a) in S. (1995) with:
Forn=1,2,... X, = (X[3), nx N, X[’ € C are independent with

common mean, unit variance, such that for any n > 0

ZE\ SIPI(XT| = nv/n)) — 0

nnN

as n — oo. Then the conclusion of S. (1995) remains true.

Theorem [Couillet, S., Bai, Debbah (to appear in IEEE Transac-
tions on Information Theory)|. Replace assumption a) in Bai and
S. (1998) with:

Xij, 4,5 = 1,2,... are independent random variables in C with
EX:1=0and E|E;{|? = 1.

There exists a K > 0 and a random variable X with finite fourth

moment such that, for any x > 0

1
> P(Xyl > 2) < KP(IX] > )
M2 i <ns

for any positive integers ni, ns.
There is a positive function ¥ (x) T co as x — oo, and M > 0, such
that

max E[| X 241X, )] < M

Then the conlusions of Bai and S. (1998,1999) remain true.

15



Extension to power estimation of multiple signal sources in multi-
antenna fading channels (Couillet, S., Bai, Debbah):

Consider K entities transmitting data. Transmitter &k € {1,... , K}
has (unknown) transmission power P, with nj antennas. They
transmit data to IV sensing devices (receiver). The multiple an-
tenna channel matrix between transmitter k£ and the receiver is
denoted by Hj € CN*"t where the entries of v NH}, are i.i.d.
standardized.

At time instant m € {1,... , M}, transmitter k emits signal x,gm) S
C"x, entries independent and standardized, independent for differ-
ent m’s. At the same time the receive signal is impaired by additive
noise ow(™ € CN (o > 0), the entries of w(™) are i.i.d. standard-

ized (independent across m). Therefore at time m the receiver

senses the signal

K
Yyl = Z Vi Pkax,im) + ow™.
k=1

16



Therefore, with Y = [yD), ... ,yM] e CV*M X, = [x,gl), - ,xéM)

c C>*M and W = [w®, ... w?)] e CN*M we have
K
Y =Y VPH.Xy+0W = HP'’X+oW,
k=1

where, with n =ny; 4+ ---+ng, H=[Hy,... ,Hg],
X1
X: : EC?’LXM’
XK

and P'/? is the positive square root of the n x n diagonal matrix
P having first ny diagonal entries equal to P;, next no diagonal
matrices equal to Ps, etc.

Goal is to estimate the P.’s. Notice Y is the first N rows of

HPY? Iy X
04 05 W)’

(Iny N x N identity matrix, 01, n X n, Oy n X N zero matrices) so

previous results apply.

17



Theorem. Assume ¢ and K are fixed, M/N — ¢ > 0, and each
N/np — ¢ > 0, as N — oo. Let By = (1/M)YY*. Then,
almost surely, FP~ converges in distribution, as N — oo, to a
(nonrandom) p.d.f., whose Stieltjes transform, mp(z) (z € CV)
satisfies

() = emp(2) + (= 1)7,

where mp is the unique solution with positive imaginary part to

the equation

1
me +__ch1+Pkf

with

f=1—-cmp — czmQE.

18



Theorem. Assuming M > N, n < N, the P’s are distinct, and
certain assumptions on the size of ¢, and the c¢;’s, exact separation
occurs. Let )\; denote the i-th smallest eigenvalue of By and s =
(VA1,...,v/An)T. Then with probability 1 P, — P, as N — o0

where

A NM
Py = (n; — i),
nx(M — N) esz

where NV, = {N — Efik ni+1,... , N — ZfikH ni}, the n;’s are
the ordered eigenvalues of diag(A1,...,An) — (1/N)ss*, and the
pi’s are the ordered eigenvalues of diag(A1,...,An) — (1/M)ss™.

19



	eigeninf.pdf
	cin10.pdf
	mestre

	mestremore



