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Jakob Hoydis (Supélec) RMT in Small Cells October 13, Télécom Paristech 1 / 22
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“Globally, mobile data traffic will double every year through 2014,
increasing 39 times between 2009 and 2014.”

(Cisco, 2009)
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How to increase the capacity of current cellular networks?

Options

More spectrum → hardly available
New modulation/coding schemes → not to be expected
Interference avoidance/cancellation → less interference, less spectral efficiency
Cooperation (network MIMO) → less interference, benefits only at cell edge
Cognitive radio → exploit spectrum holes, does it work?

Will this be enough?
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Will this be enough?
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Source: ArrayComm & William Webb (Ofcom, 2007)

Network densification seems only option to carry the forecasted traffic

Increasing the macro cell density does not scale: too expensive to plan/deploy
(CAPEX) and to maintain (OPEX)

Radical network design change required.
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Small Cell Networks

Dense deployment of low-cost low-power BSs as additional capacity layer

Advantages

Collocate with existing street furniture → no cell site acquisition
Use existing backhaul infrastructure → reduced deployment cost
Self-organizing/optimization → no planning or maintenance needed

SCNs can provide high network capacity and reduce CAPEX & OPEX.
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Challenges

Line-of-sight channels to several base stations

User mobility requires base station cooperation

Path loss

Imperfect channel knowledge

Limited backhaul capacity

New tools for the performance analysis of SCNs are required.

Jakob Hoydis (Supélec) RMT in Small Cells October 13, Télécom Paristech 7 / 22



The Role of RMT for Small Cell Networks
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A general uplink channel model
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N × K MIMO Channel:

y =
√
ρH x + z

Gaussian Signaling

x ∼ CN (0, IK )

ρ ≥ 0

Rician fading channel with a variance profile: H = W + A

[W]ij ∼ CN (0,
σ2
ij

K
)

σ2
ij ≥ 0, variance profile → proportional to path loss

A, deterministic → LOS components

Noise, quantization error and correlated interference

Z
4
= E

[
zzH
]

= IN︸︷︷︸
thermal noise

+ Q(C)︸ ︷︷ ︸
quantization errors

+ ∆︸︷︷︸
correlated interference

, z ∼ CN (0,Z)
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Why RMT for small cells?

Mutual Information

I(ρ) =
1

N
log det

(
IN + ρZ−

1
2 HHHZ−

1
2

)
Ergodic Mutual Information

I (ρ) = EH [I(ρ)]

Outage Probability

Pout = Pr [NI(ρ) ≤ R]

SINR at the output of the MMSE detector

γk = hH
k

(
1

ρ
Z + H[k]H

H
[k]

)−1

hk

RMT can provide close approximations of all these quantities.
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Applications
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Approximation of the ergodic mutual information

I (ρ) = E
[

1

N
log det

(
IN + ρZ−

1
2 HHHZ−

1
2

)]
= E

[
1

N
log det

(
IN + Q(C) + ∆ + ρHHH

)]
− 1

N
log det Z

Note that
Q(C) + ∆ + ρHHH = (Γ + Φ) (Γ + Φ)H

where

Γ = [
√
ρW 0N×N ]

Φ =
[√

ρA (Q(C) + ∆)
1
2

]
.

This is a Rician fading channel with a variance profile.

Theorem 4.1 (Hachem, Loubaton, Najim: AAP’2007)

Under some mild technical assumptions, the following limit holds true:

I (ρ)− I (ρ) −−−−−→
N,K→∞

0 .

Jakob Hoydis (Supélec) RMT in Small Cells October 13, Télécom Paristech 12 / 22



Approximation of the ergodic mutual information: Numerical results
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Approximation of the outage probability

Claim 1 (Hoydis, Kammoun, Najim, Debbah: ICC’11)

Let Z = IN . Under some mild technical assumptions, the mutual information I(ρ)
satisfies

N

ΘN,K

(
I(ρ)− I (ρ)

) D−−−−−→
N,K→∞

N (0, 1)

where
Θ2

N,K = − log det(JN,K ) .

Remark

JN,K is the Jacobian matrix of the fundamental equations of the random matrix model.

This result can be used to approximate the outage probability:

Pout(R)
4
= Pr(NI(ρ) < R) ≈ 1− Q

(
R−NI (ρ)

ΘN,K

)
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Approximation of the outage probability: Numerical Results
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Performance of linear receivers with imperfect CSI

Partial channel knowledge

H = Ĥ + H̃

Ĥij ∼ CN (0,
σ̂2
ij

K
), H̃ij ∼ CN (0,

σ̃2
ij

K
)

Ĥij and H̃ij mutually independent

SINR at the MMSE detector

γ̂k =

(
ĥH
k

(
Ĥ[k]Ĥ

H
[k] + 1

ρ IN
)−1

ĥk

)2

∣∣∣∣ĥH
k

(
Ĥ[k]Ĥ

H
[k]

+ 1
ρ IN

)−1
h̃k

∣∣∣∣2

+ ĥH
k

(
Ĥ[k]Ĥ

H
[k]

+ 1
ρ IN

)−1 (
H[k]H

H
[k]

+ 1
ρ IN

)(
Ĥ[k]Ĥ

H
[k]

+ 1
ρ IN

)−1
ĥk

Corollary 1 (Hoydis, Kobayashi, Debbah: Asilomar’10)

Under some mild assumptions, the following limit holds true:

γ̂k − γk
a.s.−−−−−→

N,K→∞
0 .
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Performance of linear receivers with imperfect CSI: Numerical results
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Optimal channel training

Partial channel knowledge through channel training

The channel H remains constant during T channel uses of which τ are used for channel
estimation:

σ̂2
ij(τ), concave increasing

σ̃2
ij(τ), convex decreasing

Goal: Maximization of the net ergodic achievable rate

τ∗ = arg max
τ

(
1− τ

T

)
E
[

1

N
log det

(
IN + ρZ−

1
2 (τ)ĤĤHZ−

1
2 (τ)

)]

Solution: Maximize the deterministic equivalent approximation instead

τ∗ = arg max
τ

(
1− τ

T

)
Î (ρ, τ)

Theorem 4 (Hoydis, Kobayashi, Debbah: IEEE Trans. SP’10)

τ∗ − τ∗ −−−−−→
N,K→∞

0 .
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Optimal channel training: Numerical Results
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Current work

Polynomial expansion detectors

Closed-form expression of the asymptotic moments of the matrix HHH

These results can be used to compute an approximation of the matrix(
HHH +

1

ρ
IN

)−1

≈
L∑

l=0

λl

(
HHH

)l
where the λl are only related to the asymptotic moments and can be precomputed.

Distributed Downlink Beamforming
(Lakshminarayana, Hoydis, Debbah, Assad: PIMRC’10)

Optimal downlink beamforming vectors can be computed by a distributed algorithm
which requires the exchange of full CSI (Dahrouj, Yu: CISS’08).

Proposed algorithm requires only exchange of statistical CSI.

Significant reduction of message exchange over the backhaul network.
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Conclusions

Small cells are a promising network architecture to provide high capacity coverage.

Smaller cell sizes pose many new challenges:
I LOS channels
I How to deal with imperfect CSI?
I Cooperation of BSs necessary to handle user mobility
I Limited backhaul capacity

Asymptotic results of information-theoretic quantities for involved matrix models

Close approximations for realistic system dimensions

Simplify optimization problems

Develop distributed algorithms
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Thank you !
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