Applications of Random Matrices to Small Cell Networks

Jakob Hoydis, Mari Kobayashi and Mérouane Debbah

Department of Telecommunications Alcatel-Lucent Chair on Flexible Radio Supélec, Gif-Sur-Yvette, France

jakob.hoydis@supelec.fr

Random Matrix Symposium October 11–13, 2010 Télécom Paristech

Outline

- What are Small Cell Networks (SCNs)?
- A general channel model for SCNs
- **③** Applications of RMT for the performance analysis of SCNs

"Globally, mobile data traffic will double every year through 2014, increasing 39 times between 2009 and 2014."

(Cisco, 2009)

How to increase the capacity of current cellular networks?

Options

More spectrum New modulation/coding schemes Interference avoidance/cancellation Cooperation (network MIMO) Cognitive radio

- \rightarrow hardly available
 - not to be expected
- \rightarrow less interference, less spectral efficiency
 - less interference, benefits only at cell edge
- \rightarrow exploit spectrum holes, does it work?

Will this be enough?

 \rightarrow

 \rightarrow

Will this be enough?

Source: ArrayComm & William Webb (Ofcom, 2007)

- Network densification seems only option to carry the forecasted traffic
- Increasing the macro cell density does not scale: too expensive to plan/deploy (CAPEX) and to maintain (OPEX)

Radical network design change required.

Small Cell Networks

Dense deployment of low-cost low-power BSs as additional capacity layer

Advantages

Collocate with existing street furniture	\rightarrow	no cell site acquisition
Use existing backhaul infrastructure	\rightarrow	reduced deployment cost
Self-organizing/optimization	\rightarrow	no planning or maintenance needed

SCNs can provide high network capacity and reduce CAPEX & OPEX.

Challenges

- Line-of-sight channels to several base stations
- User mobility requires base station cooperation
- Path loss
- Imperfect channel knowledge
- Limited backhaul capacity

New tools for the performance analysis of SCNs are required.

The Role of RMT for Small Cell Networks

A general uplink channel model

 $N \times K$ MIMO Channel:

$$\mathbf{y} = \sqrt{\rho} \mathbf{H} \mathbf{x} + \mathbf{z}$$

Rician fading channel with a variance profile: $\mathbf{H} = \mathbf{W} + \mathbf{A}$

- $[\mathbf{W}]_{ij} \sim C\mathcal{N}(0, \frac{\sigma_{ij}^2}{\kappa})$ • $\sigma_{ij}^2 \ge 0$, variance profile \rightarrow proportional to path loss
- A, deterministic \rightarrow LOS components

Why RMT for small cells?

Mutual Information

$$\mathcal{I}(\rho) = \frac{1}{N} \log \det \left(\mathbf{I}_N + \rho \mathbf{Z}^{-\frac{1}{2}} \mathbf{H} \mathbf{H}^{\mathsf{H}} \mathbf{Z}^{-\frac{1}{2}} \right)$$

Ergodic Mutual Information

$$I(\rho) = \mathbb{E}_{\mathsf{H}} \left[\mathcal{I}(\rho) \right]$$

Outage Probability

$$P_{\text{out}} = \Pr[N\mathcal{I}(\rho) \leq R]$$

SINR at the output of the MMSE detector

$$\gamma_k = \mathbf{h}_k^{\mathsf{H}} \left(\frac{1}{\rho} \mathbf{Z} + \mathbf{H}_{[k]} \mathbf{H}_{[k]}^{\mathsf{H}} \right)^{-1} \mathbf{h}_k$$

RMT can provide close approximations of all these quantities.

Applications

Approximation of the ergodic mutual information

$$\begin{split} I(\rho) &= \mathbb{E}\left[\frac{1}{N}\log\det\left(\mathbf{I}_{N} + \rho\mathbf{Z}^{-\frac{1}{2}}\mathbf{H}\mathbf{H}^{\mathsf{H}}\mathbf{Z}^{-\frac{1}{2}}\right)\right] \\ &= \mathbb{E}\left[\frac{1}{N}\log\det\left(\mathbf{I}_{N} + \mathbf{Q}(C) + \mathbf{\Delta} + \rho\mathbf{H}\mathbf{H}^{\mathsf{H}}\right)\right] - \frac{1}{N}\log\det\mathbf{Z} \end{split}$$

Note that

$$\mathbf{Q}(C) + \mathbf{\Delta} + \rho \mathbf{H} \mathbf{H}^{\mathsf{H}} = (\mathbf{\Gamma} + \mathbf{\Phi}) (\mathbf{\Gamma} + \mathbf{\Phi})^{\mathsf{H}}$$

where

$$\mathbf{\Gamma} = [\sqrt{\rho} \mathbf{W} \ \mathbf{0}_{N \times N}]$$
$$\mathbf{\Phi} = \left[\sqrt{\rho} \mathbf{A} \ (\mathbf{Q}(C) + \mathbf{\Delta})^{\frac{1}{2}}\right]$$

٠

This is a Rician fading channel with a variance profile.

Theorem 4.1 (Hachem, Loubaton, Najim: AAP'2007)

Under some mild technical assumptions, the following limit holds true:

$$I(\rho) - \overline{I}(\rho) \xrightarrow[N,K\to\infty]{} 0$$
.

Jakob Hoydis (Supélec)

Approximation of the ergodic mutual information: Numerical results

Approximation of the outage probability

Claim 1 (Hoydis, Kammoun, Najim, Debbah: ICC'11)

Let $\mathbf{Z} = \mathbf{I}_{N}$. Under some mild technical assumptions, the mutual information $\mathcal{I}(\rho)$ satisfies

$$\frac{N}{\Theta_{N,K}} \left(\mathcal{I}(\rho) - \overline{I}(\rho) \right) \xrightarrow[N,K\to\infty]{\mathcal{D}} \mathcal{N}(0,1)$$

where

$$\Theta_{N,K}^2 = -\log \det(\mathbf{J}_{N,K})$$
.

Remark

 $J_{N,K}$ is the Jacobian matrix of the fundamental equations of the random matrix model.

This result can be used to approximate the outage probability:

$$P_{ ext{out}}(R) \stackrel{ riangle}{=} \Pr(N\mathcal{I}(
ho) < R) pprox 1 - Q\left(rac{R - N\overline{I}(
ho)}{\Theta_{N,K}}
ight)$$

Approximation of the outage probability: Numerical Results

$$N=6, K=9$$

Performance of linear receivers with imperfect CSI

Partial channel knowledge

$$\mathsf{H} = \hat{\mathsf{H}} + \tilde{\mathsf{H}}$$

•
$$\hat{\mathbf{H}}_{ij} \sim \mathcal{CN}(0, \frac{\hat{\sigma}_{ij}^2}{K}), \ \tilde{\mathbf{H}}_{ij} \sim \mathcal{CN}(0, \frac{\tilde{\sigma}_{ij}^2}{K})$$

• \hat{H}_{ij} and \tilde{H}_{ij} mutually independent

SINR at the MMSE detector

$$\hat{\gamma}_{k} = \frac{\left(\hat{\mathbf{h}}_{k}^{\mathsf{H}}\left(\hat{\mathbf{H}}_{[k]}\hat{\mathbf{H}}_{[k]}^{\mathsf{H}} + \frac{1}{\rho}\mathbf{I}_{N}\right)^{-1}\hat{\mathbf{h}}_{k}\right)^{2}}{\left|\hat{\mathbf{h}}_{k}^{\mathsf{H}}\left(\hat{\mathbf{H}}_{[k]}\hat{\mathbf{H}}_{[k]}^{\mathsf{H}} + \frac{1}{\rho}\mathbf{I}_{N}\right)^{-1}\left(\hat{\mathbf{H}}_{[k]}\hat{\mathbf{H}}_{[k]}^{\mathsf{H}} + \frac{1}{\rho}\mathbf{I}_{N}\right)\left(\hat{\mathbf{H}}_{[k]}\hat{\mathbf{H}}_{[k]}^{\mathsf{H}} + \frac{1}{\rho}\mathbf{I}_{N}\right)^{-1}\hat{\mathbf{h}}_{k}}\right|^{2}$$

Corollary 1 (Hoydis, Kobayashi, Debbah: Asilomar'10)

Under some mild assumptions, the following limit holds true:

$$\hat{\gamma}_k - \overline{\gamma}_k \xrightarrow[N,K \to \infty]{a.s.} 0$$
.

Jakob Hoydis (Supélec)

Performance of linear receivers with imperfect CSI: Numerical results

Optimal channel training

Partial channel knowledge through channel training

The channel ${\bf H}$ remains constant during ${\cal T}$ channel uses of which τ are used for channel estimation:

- $\hat{\sigma}_{ij}^2(\tau)$, concave increasing
- $\tilde{\sigma}_{ij}^2(\tau)$, convex decreasing

Goal: Maximization of the net ergodic achievable rate

$$\tau^* = \arg \max_{\tau} \left(1 - \frac{\tau}{T} \right) \mathbb{E} \left[\frac{1}{N} \log \det \left(\mathbf{I}_N + \rho \mathbf{Z}^{-\frac{1}{2}}(\tau) \hat{\mathbf{H}} \hat{\mathbf{H}}^{\mathsf{H}} \mathbf{Z}^{-\frac{1}{2}}(\tau) \right) \right]$$

Solution: Maximize the deterministic equivalent approximation instead

$$\overline{ au}^* \;=\; rg\max_{ au} \left(1 - rac{ au}{ au}
ight) \hat{ar{I}}(
ho, au)$$

Theorem 4 (Hoydis, Kobayashi, Debbah: IEEE Trans. SP'10)

$$\tau^* - \overline{\tau}^* \xrightarrow[N,K \to \infty]{} 0$$

Jakob Hoydis (Supélec)

Optimal channel training: Numerical Results

$$N = 6, K = 3$$

Current work

Polynomial expansion detectors

- Closed-form expression of the asymptotic moments of the matrix HH^H
- These results can be used to compute an approximation of the matrix

$$\left(\mathbf{H}\mathbf{H}^{\mathsf{H}} + \frac{1}{\rho}\mathbf{I}_{N}\right)^{-1} \approx \sum_{l=0}^{L} \lambda_{l} \left(\mathbf{H}\mathbf{H}^{\mathsf{H}}\right)^{l}$$

where the λ_l are only related to the asymptotic moments and can be precomputed.

Distributed Downlink Beamforming (Lakshminarayana, Hoydis, Debbah, Assad: PIMRC'10)

- Optimal downlink beamforming vectors can be computed by a distributed algorithm which requires the exchange of full CSI (Dahrouj, Yu: CISS'08).
- Proposed algorithm requires only exchange of statistical CSI.
- Significant reduction of message exchange over the backhaul network.

Conclusions

• Small cells are a promising network architecture to provide high capacity coverage.

- Smaller cell sizes pose many new challenges:
 - LOS channels
 - How to deal with imperfect CSI?
 - Cooperation of BSs necessary to handle user mobility
 - Limited backhaul capacity
- Asymptotic results of information-theoretic quantities for involved matrix models
- Close approximations for realistic system dimensions
- Simplify optimization problems
- Develop distributed algorithms

Thank you !