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p = sample size

N and p go to infinity together with
N/p → c ∈ (0,+∞)

XN = real or complex iid random variables
mean 0, variance 1, bounded 12th moment

ΣN = population covariance matrix
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Population Covariance Matrix ΣN

Hermitian positive definite matrix

Independent of XN

Eigenvalues: τ1 ≤ . . . ≤ τN

Eigenvectors: v1, . . . , vN
Empirical Spectral Distribution (e.s.d.):
HN(τ) =

1
N

∑N
i=1 1[τi,+∞)(τ)

HN(τ) → H(τ) at all points of continuity of H

Supp(H) bounded away from 0 and +∞
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Spectral Decomposition of SN

eigenvalues: λ1 ≤ . . . ≤ λN

eigenvectors: u1, . . . , uN

e.s.d: FN(λ) =
1
N

∑N
i=1 1[λi,+∞)(λ)

Marčenko and Pastur (1967), Silverstein (1995):

∃F s.t. FN(λ)
a.s.
−→ F (λ)

at all points of continuity of F
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+ mF (z) =
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1

λ− z
dF (λ)

mFN
(z) =

1

N

N∑

i=1

1

λi − z
=

1

N
Tr

[
(SN − zI)−1

]

Inversion formula: if F is continuous at a and b:

F (b)− F (a) = lim
η→0+

1

π

∫ b

a

Im [mF (ξ + iη)] dξ
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MP67/Silverstein (1995) Equation

∀z ∈ C
+, m = mF (z) is the unique solution in

{m ∈ C : c−1
z + cm ∈ C

+} to

m =

∫ +∞

−∞

1

τ (1− c− czm)− z
dH(τ)
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Extension to the Real Line

Silverstein and Choi (1995):

∀λ ∈ R−{0}, limz∈C+→λmF (z) ≡ m̆F (λ) exists

F has continuous derivative F ′ = 1
π Im [m̆F ] on

R− {0}
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Intuition for MP67/S95 Equation

Sample eigenvalues are a reflection of
population eigenvalues

They are noisier, more diffuse, like spreading
butter

The higher the c, the more spreading there is

(Not obvious) Large eigenvalues get more
spread out than small ones
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Θg
N(z) =

1

N

N∑

i=1

1

λi − z

N∑

j=1

|u∗i vj|
2 × g(τj)

g(τ) ≡ 1 ⇐⇒ Θg
N = mFN
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mFN
(z) =
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N
Tr
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]

Θg
N(z) =

1

N
Tr

[
(SN − zI)−1 g(ΣN)

]
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Generalization of MP67/S95 Equation

∃Θg : ∀z ∈ C
+ Θg

N(z)
a.s.
−→ Θg(z)

Θg(z) =

∫ +∞

−∞

g(τ)×
1

τ [1− c− czmF (z)]− z
dH(τ)

Same integration kernel!
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Extension to the Real Line

Θg
N(z) =

1

N

N∑

i=1

1

λi − z

N∑

j=1

|u∗i vj|
2 × g(τj)

Ωg
N(λ) =

1

N

N∑

i=1

1[λi,+∞)(λ)
N∑

j=1

|u∗i vj|
2 × g(τj)

Ωg
N(λ)

a.s.
→ Ωg(λ) = lim

η→0+

1

π

∫ λ

−∞

Im [Θg (l + iη)] dl

wherever Ωg is continuous
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Ωg
N(λ) =

1

N

N∑
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N∑
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2
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Sample Eigenvectors

Fix τ and take g = 1(−∞,τ)

Ωg
N(λ) =

1

N

N∑

i=1

N∑

j=1

|u∗i vj|
2
1[λi,+∞)(λ)× 1[τj ,+∞)(τ)

→

∫ λ

−∞

∫ τ

−∞

clt

|t [1− c− clmF (l)]− l|2
dH(t)dF (l)

N |u∗i vj|
2 ≈

cλiτj

|τj [1− c− cλim̆F (λi)]− λi|
2
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Eigenvalues with Multiplicity

ΣN has K distinct eigenvalues t1, . . . , tK
with multiplicities n1, . . . , nK

Pk = projection onto kth eigenspace

|Pkui|
2 ≈

nkcλitk

N |tk [1− c− cλim̆F (λi)]− λi|
2
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Estimating the Covariance Matrix (1)

Frobenius norm: ‖A‖ =
√
Tr(AA∗)

UN : matrix of eigenvectors of SN

Find matrix closest to ΣN among those that have
eigenvectors UN

min
DN diagonal

‖UNDNU
∗
N − ΣN‖

Solution:

D̃N = Diag(d̃1, . . . , d̃N) where d̃i = u∗i ΣN ui
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Estimating the Covariance Matrix (2)

Take g(τ) = τ

Ωg
N(λ) =

1

N

N∑

i=1

u∗iΣNui 1[λi,+∞)(λ)

→

∫ λ

−∞

l

|1− c− clmF (l)|
2dF (l)
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Estimating the Covariance Matrix (2)

Take g(τ) = τ

Ωg
N(λ) =

1

N

N∑

i=1

u∗iΣNui 1[λi,+∞)(λ)

→

∫ λ

−∞

l

|1− c− clmF (l)|
2dF (l)

u∗iΣNui ≈
λi

|1− c− cλim̆F (λi)|
2
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Oracle Estimator

Keep same eigenvectors as those of Sn, divide
ith sample eigenvalue by |1− c− cλim̆F (λi)|

2

−→ oracle estimator S̃N

Percentage Relative Improvement in Average
Loss:

PRIAL = 100×


1−

E

∥∥∥S̃N − UND̃NU
∗
N

∥∥∥
2

E

∥∥∥SN − UND̃NU ∗
N

∥∥∥
2



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10,000 simulations
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Population eigenvalues:

20% equal to 1

40% equal to 3
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Monte-Carlo Simulations

10,000 simulations
c=1/2
Population eigenvalues:

20% equal to 1

40% equal to 3

40% equal to 10

Compare with Ledoit-Wolf (2004) linear
shrinkage estimator
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Inverse of the Covariance Matrix (1)

Find matrix closest to Σ−1
N among those that have

eigenvectors UN

min
∆N diagonal

‖UN∆NU
∗
N − Σ−1

N ‖

Solution:

∆̃N = Diag(δ̃1, . . . , δ̃N) where δ̃i = u∗i Σ
−1
N ui
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Inverse of the Covariance Matrix (1)

Find matrix closest to Σ−1
N among those that have

eigenvectors UN

min
∆N diagonal

‖UN∆NU
∗
N − Σ−1

N ‖

Solution:

∆̃N = Diag(δ̃1, . . . , δ̃N) where δ̃i = u∗i Σ
−1
N ui

u∗i Σ
−1
N ui ≥ (u∗i ΣN ui)

−1
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Inverse of the Covariance Matrix (2)

Take g(τ) = 1
τ

Ωg
N(λ) =

1

N

N∑

i=1

u∗iΣ
−1
N ui 1[λi,+∞)(λ)

→

∫ λ

−∞

1− c− 2clRe[mF (l)]

l
dF (l)
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Inverse of the Covariance Matrix (2)

Take g(τ) = 1
τ

Ωg
N(λ) =

1

N

N∑

i=1

u∗iΣ
−1
N ui 1[λi,+∞)(λ)

→

∫ λ

−∞

1− c− 2clRe[mF (l)]

l
dF (l)

u∗iΣ
−1
N ui ≈

1− c− 2cλiRe[m̆F (λi)]

λi
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Conclusion

Generalization of the Marčenko-Pastur
(1967)/Silverstein (1995) Equation

Gives location of sample eigenvectors relative
to:

Population eigenvectors
Population covariance matrix as a whole
Inverse of population covariance matrix

We do for sample eigenvectors what
MP67/S95 did for sample eigenvalues
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Directions for Future Research

1. Construct bona fide nonlinear shrinkage
estimator of the covariance matrix

2. Construct bona fide nonlinear shrinkage
estimator of the inverse of the covariance
matrix

3. Show that N |u∗i vj|
2 is even closer to

cλiτj

|τj [1− c− cλim̆F (λi)]− λi|
2

than we have shown in this paper
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