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1
Sy = — TP Xy X535
p

N = number of variables
p = sample size

N and p go to Iinfinity together with
N/p — c € (0,+00)

X = real or complex iid random variables
mean 0, variance 1, bounded 12" moment

Y.y = population covariance matrix
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Population Covariance Matrix >y

Hermitian positive definite matrix
Independent of Xy

Eigenvalues: ; < ... <7y

Eigenvectors: vy, ..., vy

Empirical Spectral Distribution (e.s.d.):
Hy(r) = % 27{\;1 Lz, +o0) (7)

Hy(7) — H(7) at all points of continuity of H
Supp(H ) bounded away from 0 and +oc
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Spectral Decomposition of Sy

eigenvalues: \; < ... <y
eigenvectors: uy, ..., uy

e.s.d: Fy(\) = 2 30 11 4oo)(A)
Marcenko and Pastur (1967), Silverstein (1995):
JF st. Fy(\) = F(\)

at all points of continuity of F’
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Stieltjes Transform
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Inversion formula: If ' 1s continuous at ¢ and b:
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MPG67/Sllverstein (1995) Equation

Vz € C*, m = mp(z) is the unique solution in
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Extension tothe Real Line

Silverstein and Choi (1995).
VA € R— {0}, lim,cc+ )y mp(2) = mp(X) exists

F' has continuous derivative F’ = £Im [rmp] on
R — {0}
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Intuition for M P67/S95 Equation

Sample eigenvalues are a reflection of
population eigenvalues

They are noisier, more diffuse, like spreading
butter

The higher the ¢, the more spreading there is

(Not obvious) Large eigenvalues get more
spread out than small ones
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Generalization of M P67/S95 Equation

g. piecewise continuous function

N A
* 2
My (2) N; | Z; uiv;|” x 1

N N

1 1 :
Oh(2) = = > Il x g(7)

i=1 " j=1

gfr) =1 <= 0O} =mp,
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Generalization of M P67/S95 Equation
309 : Vze Ct 6% (z) = 69(z)

1

1 —c—czmp(z)] — 2

@g(z):/ Oog(T)xT[ dH (T)

Same integration kernel!
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Extension tothe Real Line

wherever (29 Is continuous



Sample Eigenvect



)




Sample Eigenvectors

Fix 7 and take g = 1(_ 5

N
1
() = 1 S: uj o (V) X 1oy (7)

Z: ]:1

[ clt
— /_OO /_oo t|l —c—clmp(l)] — l|2dH(t)dF(g)




Sample Eigenvector s

Fix 7 and take g = 1(_ 5

N
1
() = 1 S: uj o (V) X 1oy (7)

Z: ]:1

[ clt
— /_OO /_oo t|l —c—clmp(l)] — l|2dH(t)dF(g)

C)\@'Tj

x 12
Nujv;|” = | N ' E
’T] []- — G C)\ZmF()\Z)] S >\Z|




Eigenvalues with



Eigenvalues with M ultiplicity

>.xy has K distinct eigenvalues ¢4, ..., tg
with multiplicities nq, ..., ng



Eigenvalues with M ultiplicity

>.xy has K distinct eigenvalues ¢4, ..., tg
with multiplicities nq, ..., ng

P, = projection onto k' eigenspace



Eigenvalues with M ultiplicity

>.xy has K distinct eigenvalues ¢4, ..., tg
with multiplicities nq, ..., ng

P, = projection onto k™ eigenspace

nkc)\z-tk

]PkuiP ~ -
N ‘tk [1 — (e C)\Zmp()\z)] = )\z’
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Estimating the Covariance Matrix (1)

Frobenius norm: ||Al| = /Tr(AA*)

Uy : matrix of eigenvectors of Sy
Find matrix closest to >y among those that have

eigenvectors Uy

min |[UnDyUy — Xn||
Dy diagonal

Solution:

EN = Dlag(gl/l, . ,JN) where CTZ — u;k DN U,
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Estimating the Covariance Matrix (2)

Take g(7) =7
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Oracle Estimator

Keep same eigenvectors as those of §5,,, divide
i sample eigenvalue by |1 — ¢ — e\jp(\)|°
— oracle estimator Sy

Percentage Relative Improvement in Average
Loss:

E|[Sy — UvDnU%
PRIAL =100 x |1

E ||Sy — UyDnU%
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Monte-Carlo Simulations

10,000 simulations
c=1/2
Population eigenvalues:

20% equal to 1
40% equal to 3
40% equal to 10

Compare with Ledoit-Wolf (2004) linear
shrinkage estimator
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| nver se of the Covariance M atrix (1)

Find matrix closest to ¥,;' among those that have
eigenvectors Uy

min [ UnANUy — Zz_le
Ay diagonal

Solution:
AN = Diag(gl, - P ,gN) where 8; = Uj Z]_Vl U,

Uy Z]_Vl u; > (u; Xy Ui)_l
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| nver se of the Covariance M atrix (2)

Take g(7) = 2
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| nver se of the Covariance M atrix (2)

Take g(7) = 2

N
1 o
QN (A) = N E U YN U 11, 400)(A)

1=1

R /A 1 —c— QClZRe[mF(l)]dF(l)

1 — ¢ — 2e\Refip(\)]
Aj

x\1— 1 "y
U; 20 Uy R



Conclusion



Conclusion

Generalization of the Marcenko-Pastur
(1967)/Silverstein (1995) Equation



Conclusion

Generalization of the Marcenko-Pastur
(1967)/Silverstein (1995) Equation

Gives location of sample eigenvectors relative
to:



Conclusion

Generalization of the Marcenko-Pastur
(1967)/Silverstein (1995) Equation

Gives location of sample eigenvectors relative
to:

- Population eigenvectors



Conclusion

Generalization of the Marcenko-Pastur
(1967)/Silverstein (1995) Equation

Gives location of sample eigenvectors relative
to:

- Population eigenvectors

. Population covariance matrix as a whole



Conclusion

Generalization of the Marcenko-Pastur
(1967)/Silverstein (1995) Equation

Gives location of sample eigenvectors relative
to:

- Population eigenvectors

. Population covariance matrix as a whole
nverse of population covariance matrix




Conclusion

Generalization of the Marcenko-Pastur
(1967)/Silverstein (1995) Equation

Gives location of sample eigenvectors relative
to:

- Population eigenvectors

. Population covariance matrix as a whole
nverse of population covariance matrix

We do for sample eigenvectors what
MP67/S95 did for sample eigenvalues
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Directionsfor Future Research

1. Construct bona fide nonlinear shrinkage
estimator of the covariance matrix

2. Construct bona fide nonlinear shrinkage
estimator of the inverse of the covariance
matrix

3. Show that N|u}v;|? is even closer to

C)\Z'Tj
75 [L — ¢ — chithp(\)] — Al

than we have shown in this paper
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