Eigenvectors of some large sample covariance matrix ensembles

Random Matrix Workshop, Télécom ParisTech

 Monday, October $11^{\text {th }} 2010$Olivier Ledoit - Sandrine Péché
oledoit@iew.uzh.ch - sandrine.peche@ujf-grenoble.fr

University of Zürich - Université Grenoble 1

Sample Covariance Matrix

Sample Covariance Matrix

$$
S_{N}=\frac{1}{p} \Sigma_{N}^{1 / 2} X_{N} X_{N}^{*} \Sigma_{N}^{1 / 2}
$$

Sample Covariance Matrix

$$
S_{N}=\frac{1}{p} \Sigma_{N}^{1 / 2} X_{N} X_{N}^{*} \Sigma_{N}^{1 / 2}
$$

- $N=$ number of variables

Sample Covariance Matrix

$$
S_{N}=\frac{1}{p} \Sigma_{N}^{1 / 2} X_{N} X_{N}^{*} \Sigma_{N}^{1 / 2}
$$

- $N=$ number of variables
- $p=$ sample size

Sample Covariance Matrix

$$
S_{N}=\frac{1}{p} \Sigma_{N}^{1 / 2} X_{N} X_{N}^{*} \Sigma_{N}^{1 / 2}
$$

- $N=$ number of variables
- $p=$ sample size
- N and p go to infinity together with $N / p \rightarrow c \in(0,+\infty)$

Sample Covariance Matrix

$$
S_{N}=\frac{1}{p} \Sigma_{N}^{1 / 2} X_{N} X_{N}^{*} \Sigma_{N}^{1 / 2}
$$

- $N=$ number of variables
- $p=$ sample size
- N and p go to infinity together with $N / p \rightarrow c \in(0,+\infty)$
- $X_{N}=$ real or complex iid random variables mean 0 , variance 1 , bounded $12^{\text {th }}$ moment

Sample Covariance Matrix

$$
S_{N}=\frac{1}{p} \Sigma_{N}^{1 / 2} X_{N} X_{N}^{*} \Sigma_{N}^{1 / 2}
$$

- $N=$ number of variables
- $p=$ sample size
- N and p go to infinity together with $N / p \rightarrow c \in(0,+\infty)$
- $X_{N}=$ real or complex iid random variables mean 0 , variance 1 , bounded $12^{\text {th }}$ moment
- $\Sigma_{N}=$ population covariance matrix

Population Covariance Matrix Σ_{N}

Population Covariance Matrix Σ_{N}

- Hermitian positive definite matrix

Population Covariance Matrix Σ_{N}

- Hermitian positive definite matrix
- Independent of X_{N}

Population Covariance Matrix Σ_{N}

- Hermitian positive definite matrix
- Independent of X_{N}
- Eigenvalues: $\tau_{1} \leq \ldots \leq \tau_{N}$

Population Covariance Matrix Σ_{N}

- Hermitian positive definite matrix
- Independent of X_{N}
- Eigenvalues: $\tau_{1} \leq \ldots \leq \tau_{N}$
- Eigenvectors: v_{1}, \ldots, v_{N}

Population Covariance Matrix Σ_{N}

- Hermitian positive definite matrix
- Independent of X_{N}

E Eigenvalues: $\tau_{1} \leq \ldots \leq \tau_{N}$

- Eigenvectors: v_{1}, \ldots, v_{N}
- Empirical Spectral Distribution (e.s.d.): $H_{N}(\tau)=\frac{1}{N} \sum_{i=1}^{N} \mathbf{1}_{\left[\tau_{i},+\infty\right)}(\tau)$

Population Covariance Matrix Σ_{N}

- Hermitian positive definite matrix
- Independent of X_{N}
- Eigenvalues: $\tau_{1} \leq \ldots \leq \tau_{N}$
- Eigenvectors: v_{1}, \ldots, v_{N}
- Empirical Spectral Distribution (e.s.d.):
$H_{N}(\tau)=\frac{1}{N} \sum_{i=1}^{N} \mathbf{1}_{\left[\tau_{i},+\infty\right)}(\tau)$
- $H_{N}(\tau) \rightarrow H(\tau)$ at all points of continuity of H

Population Covariance Matrix Σ_{N}

Hermitian positive definite matrix

- Independent of X_{N}
- Eigenvalues: $\tau_{1} \leq \ldots \leq \tau_{N}$
- Eigenvectors: v_{1}, \ldots, v_{N}
- Empirical Spectral Distribution (e.s.d.): $H_{N}(\tau)=\frac{1}{N} \sum_{i=1}^{N} \mathbf{1}_{\left[\tau_{i},+\infty\right)}(\tau)$
- $H_{N}(\tau) \rightarrow H(\tau)$ at all points of continuity of H
- Supp (H) bounded away from 0 and $+\infty$

Spectral Decomposition of S_{N}

Spectral Decomposition of S_{N}

eigenvalues: $\lambda_{1} \leq \ldots \leq \lambda_{N}$

Spectral Decomposition of S_{N}

eigenvalues: $\lambda_{1} \leq \ldots \leq \lambda_{N}$
d eigenvectors: u_{1}, \ldots, u_{N}

Spectral Decomposition of S_{N}

- eigenvalues: $\lambda_{1} \leq \ldots \leq \lambda_{N}$
- eigenvectors: u_{1}, \ldots, u_{N}
e.s.d: $F_{N}(\lambda)=\frac{1}{N} \sum_{i=1}^{N} \mathbf{1}_{\left[\lambda_{i},+\infty\right)}(\lambda)$

Spectral Decomposition of S_{N}

eigenvalues: $\lambda_{1} \leq \ldots \leq \lambda_{N}$

- eigenvectors: u_{1}, \ldots, u_{N}
- e.s.d: $F_{N}(\lambda)=\frac{1}{N} \sum_{i=1}^{N} 1_{\left[\lambda_{i}+\infty\right)}(\lambda)$

Marčenko and Pastur (1967), Silverstein (1995):

$$
\exists F \quad \text { s.t. } \quad F_{N}(\lambda) \xrightarrow{\text { a.s. }} F(\lambda)
$$

at all points of continuity of F

Stieltjes Transform

Stieltjes Transform

$$
\forall z \in \mathbb{C}^{+} \quad m_{F}(z)=\int_{-\infty}^{+\infty} \frac{1}{\lambda-z} d F(\lambda)
$$

Stieltjes Transform

$$
\begin{gathered}
\forall z \in \mathbb{C}^{+} \quad m_{F}(z)=\int_{-\infty}^{+\infty} \frac{1}{\lambda-z} d F(\lambda) \\
m_{F_{N}}(z)=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{\lambda_{i}-z}=\frac{1}{N} \operatorname{Tr}\left[\left(S_{N}-z I\right)^{-1}\right]
\end{gathered}
$$

Stieltjes Transform

$$
\begin{gathered}
\forall z \in \mathbb{C}^{+} \quad m_{F}(z)=\int_{-\infty}^{+\infty} \frac{1}{\lambda-z} d F(\lambda) \\
m_{F_{N}}(z)=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{\lambda_{i}-z}=\frac{1}{N} \operatorname{Tr}\left[\left(S_{N}-z I\right)^{-1}\right]
\end{gathered}
$$

Inversion formula: if F is continuous at a and b :

$$
F(b)-F(a)=\lim _{\eta \rightarrow 0^{+}} \frac{1}{\pi} \int_{a}^{b} \operatorname{Im}\left[m_{F}(\xi+i \eta)\right] d \xi
$$

MP67/Silverstein (1995) Equation

MP67/Silverstein (1995) Equation

$\forall z \in \mathbb{C}^{+}, m=m_{F}(z)$ is the unique solution in $\left\{m \in \mathbb{C}: \frac{c-1}{z}+c m \in \mathbb{C}^{+}\right\}$to

$$
m=\int_{-\infty}^{+\infty} \frac{1}{\tau(1-c-c z m)-z} d H(\tau)
$$

Extension to the Real Line

Extension to the Real Line

Silverstein and Choi (1995):

Extension to the Real Line

Silverstein and Choi (1995):

- $\forall \lambda \in \mathbb{R}-\{0\}, \lim _{z \in \mathbb{C}^{+} \rightarrow \lambda} m_{F}(z) \equiv \breve{m}_{F}(\lambda)$ exists

Extension to the Real Line

Silverstein and Choi (1995):

- $\forall \lambda \in \mathbb{R}-\{0\}, \lim _{z \in \mathbb{C}^{+} \rightarrow \lambda} m_{F}(z) \equiv \breve{m}_{F}(\lambda)$ exists
- F has continuous derivative $F^{\prime}=\frac{1}{\pi} \operatorname{Im}\left[\breve{m}_{F}\right]$ on $\mathbb{R}-\{0\}$

Intuition for MP67/S95 Equation

Intuition for MP67/S95 Equation

Sample eigenvalues are a reflection of population eigenvalues

Intuition for MP67/S95 Equation

- Sample eigenvalues are a reflection of population eigenvalues
They are noisier, more diffuse, like spreading butter

Intuition for MP67/S95 Equation

- Sample eigenvalues are a reflection of population eigenvalues
They are noisier, more diffuse, like spreading butter

The higher the c, the more spreading there is

Intuition for MP67/S95 Equation

- Sample eigenvalues are a reflection of population eigenvalues
They are noisier, more diffuse, like spreading butter

The higher the c, the more spreading there is

- (Not obvious) Large eigenvalues get more spread out than small ones

Generalization of MP67/S95 Equation

Generalization of MP67/S95 Equation

g : piecewise continuous function

Generalization of MP67/S95 Equation

g : piecewise continuous function

$$
m_{F_{N}}(z)=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{\lambda_{i}-z} \sum_{j=1}^{N}\left|u_{i}^{*} v_{j}\right|^{2} \times 1
$$

Generalization of MP67/S95 Equation

g : piecewise continuous function

$$
\begin{aligned}
m_{F_{N}}(z) & =\frac{1}{N} \sum_{i=1}^{N} \frac{1}{\lambda_{i}-z} \sum_{j=1}^{N}\left|u_{i}^{*} v_{j}\right|^{2} \times 1 \\
\Theta_{N}^{g}(z) & =\frac{1}{N} \sum_{i=1}^{N} \frac{1}{\lambda_{i}-z} \sum_{j=1}^{N}\left|u_{i}^{*} v_{j}\right|^{2} \times g\left(\tau_{j}\right)
\end{aligned}
$$

Generalization of MP67/S95 Equation

g : piecewise continuous function

$$
\begin{gathered}
m_{F_{N}}(z)=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{\lambda_{i}-z} \sum_{j=1}^{N}\left|u_{i}^{*} v_{j}\right|^{2} \times 1 \\
\Theta_{N}^{g}(z)=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{\lambda_{i}-z} \sum_{j=1}^{N}\left|u_{i}^{*} v_{j}\right|^{2} \times g\left(\tau_{j}\right) \\
g(\tau) \equiv 1 \quad \Longleftrightarrow \Theta_{N}^{g}=m_{F_{N}}
\end{gathered}
$$

Generalization of MP67/S95 Equation

Generalization of MP67/S95 Equation

$$
m_{F_{N}}(z)=\frac{1}{N} \operatorname{Tr}\left[\left(S_{N}-z I\right)^{-1}\right]
$$

Generalization of MP67/S95 Equation

$$
\begin{aligned}
m_{F_{N}}(z) & =\frac{1}{N} \operatorname{Tr}\left[\left(S_{N}-z I\right)^{-1}\right] \\
\Theta_{N}^{g}(z) & =\frac{1}{N} \operatorname{Tr}\left[\left(S_{N}-z I\right)^{-1} g\left(\Sigma_{N}\right)\right]
\end{aligned}
$$

Generalization of MP67/S95 Equation

Generalization of MP67/S95 Equation

$$
\exists \Theta^{g}: \quad \forall z \in \mathbb{C}^{+} \quad \Theta_{N}^{g}(z) \xrightarrow{\text { a.s. }} \Theta^{g}(z)
$$

Generalization of MP67/S95 Equation

$$
\begin{aligned}
& \exists \Theta^{g}: \quad \forall z \in \mathbb{C}^{+} \quad \Theta_{N}^{g}(z) \xrightarrow{\text { a.s. }} \Theta^{g}(z) \\
& \Theta^{g}(z)=\int_{-\infty}^{+\infty} g(\tau) \times \frac{1}{\tau\left[1-c-c z m_{F}(z)\right]-z} d H(\tau)
\end{aligned}
$$

Generalization of MP67/S95 Equation

$$
\begin{aligned}
& \exists \Theta^{g}: \quad \forall z \in \mathbb{C}^{+} \quad \Theta_{N}^{g}(z) \xrightarrow{\text { a.s. }} \Theta^{g}(z) \\
& \Theta^{g}(z)=\int_{-\infty}^{+\infty} g(\tau) \times \frac{1}{\tau\left[1-c-c z m_{F}(z)\right]-z} d H(\tau)
\end{aligned}
$$

Same integration kernel!

Extension to the Real Line

Extension to the Real Line

$$
\Theta_{N}^{g}(z)=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{\lambda_{i}-z} \sum_{j=1}^{N}\left|u_{i}^{*} v_{j}\right|^{2} \times g\left(\tau_{j}\right)
$$

Extension to the Real Line

$$
\begin{aligned}
& \Theta_{N}^{g}(z)=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{\lambda_{i}-z} \sum_{j=1}^{N}\left|u_{i}^{*} v_{j}\right|^{2} \times g\left(\tau_{j}\right) \\
& \Omega_{N}^{g}(\lambda)=\frac{1}{N} \sum_{i=1}^{N} 1_{\left[\lambda_{i},+\infty\right)}(\lambda) \sum_{j=1}^{N}\left|u_{i}^{*} v_{j}\right|^{2} \times g\left(\tau_{j}\right)
\end{aligned}
$$

Extension to the Real Line

$$
\begin{aligned}
& \Theta_{N}^{g}(z)=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{\lambda_{i}-z} \sum_{j=1}^{N}\left|u_{i}^{*} v_{j}\right|^{2} \times g\left(\tau_{j}\right) \\
& \Omega_{N}^{g}(\lambda)=\frac{1}{N} \sum_{i=1}^{N} 1_{\left[\lambda_{i},+\infty\right)}(\lambda) \sum_{j=1}^{N}\left|u_{i}^{*} v_{j}\right|^{2} \times g\left(\tau_{j}\right) \\
& \Omega_{N}^{g}(\lambda) \xrightarrow{\text { a.s. }} \Omega^{g}(\lambda)=\lim _{\eta \rightarrow 0^{+}} \frac{1}{\pi} \int_{-\infty}^{\lambda} \operatorname{Im}\left[\Theta^{g}(l+i \eta)\right] d l
\end{aligned}
$$

wherever Ω^{g} is continuous

Sample Eigenvectors

Sample Eigenvectors

Fix τ and take $g=\mathbf{1}_{(-\infty, \tau)}$

Sample Eigenvectors

Fix τ and take $g=\mathbf{1}_{(-\infty, \tau)}$

$$
\begin{aligned}
& \Omega_{N}^{g}(\lambda)=\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N}\left|u_{i}^{*} v_{j}\right|^{2} 1_{\left[\lambda_{i},+\infty\right)}(\lambda) \times \mathbf{1}_{\left[\tau_{j},+\infty\right)}(\tau) \\
& \rightarrow \int_{-\infty}^{\lambda} \int_{-\infty}^{\tau} \frac{c l t}{\left|t\left[1-c-c m_{F}(l)\right]-l\right|^{2}} d H(t) d F(l)
\end{aligned}
$$

Sample Eigenvectors

Fix τ and take $g=\mathbf{1}_{(-\infty, \tau)}$

$$
\begin{gathered}
\Omega_{N}^{g}(\lambda)=\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N}\left|u_{i}^{*} v_{j}\right|^{2} 1_{\left[\lambda_{i},+\infty\right)}(\lambda) \times \mathbf{1}_{\left[\tau_{j},+\infty\right)}(\tau) \\
\rightarrow \int_{-\infty}^{\lambda} \int_{-\infty}^{\tau} \frac{c l t}{\left|t\left[1-c-c l m_{F}(l)\right]-l\right|^{2}} d H(t) d F(l) \\
N\left|u_{i}^{*} v_{j}\right|^{2} \approx \frac{c \lambda_{i} \tau_{j}}{\left|\tau_{j}\left[1-c-c \lambda_{i} \breve{m}_{F}\left(\lambda_{i}\right)\right]-\lambda_{i}\right|^{2}}
\end{gathered}
$$

Eigenvalues with Multiplicity

Eigenvalues with Multiplicity

Σ_{N} has K distinct eigenvalues t_{1}, \ldots, t_{K} with multiplicities n_{1}, \ldots, n_{K}

Eigenvalues with Multiplicity

Σ_{N} has K distinct eigenvalues t_{1}, \ldots, t_{K} with multiplicities n_{1}, \ldots, n_{K}
$P_{k}=$ projection onto $k^{\text {th }}$ eigenspace

Eigenvalues with Multiplicity

Σ_{N} has K distinct eigenvalues t_{1}, \ldots, t_{K} with multiplicities n_{1}, \ldots, n_{K}
$P_{k}=$ projection onto $k^{\text {th }}$ eigenspace

$$
\left|P_{k} u_{i}\right|^{2} \approx \frac{n_{k} c \lambda_{i} t_{k}}{N\left|t_{k}\left[1-c-c \lambda_{i} \check{m}_{F}\left(\lambda_{i}\right)\right]-\lambda_{i}\right|^{2}}
$$

Estimating the Covariance Matrix (1)

Estimating the Covariance Matrix (1)

Frobenius norm: $\|A\|=\sqrt{\operatorname{Tr}\left(A A^{*}\right)}$

Estimating the Covariance Matrix (1)

Frobenius norm: $\|A\|=\sqrt{\operatorname{Tr}\left(A A^{*}\right)}$
U_{N} : matrix of eigenvectors of S_{N}

Estimating the Covariance Matrix (1)

Frobenius norm: $\|A\|=\sqrt{\operatorname{Tr}\left(A A^{*}\right)}$
U_{N} : matrix of eigenvectors of S_{N}
Find matrix closest to Σ_{N} among those that have eigenvectors U_{N}

Estimating the Covariance Matrix (1)

Frobenius norm: $\|A\|=\sqrt{\operatorname{Tr}\left(A A^{*}\right)}$
U_{N} : matrix of eigenvectors of S_{N}
Find matrix closest to Σ_{N} among those that have eigenvectors U_{N}

$$
\min _{D_{N}} \text { diagonal }\left\|U_{N} D_{N} U_{N}^{*}-\Sigma_{N}\right\|
$$

Estimating the Covariance Matrix (1)

Frobenius norm: $\|A\|=\sqrt{\operatorname{Tr}\left(A A^{*}\right)}$
U_{N} : matrix of eigenvectors of S_{N}
Find matrix closest to Σ_{N} among those that have eigenvectors U_{N}

$$
\min _{D_{N} \text { diagonal }}\left\|U_{N} D_{N} U_{N}^{*}-\Sigma_{N}\right\|
$$

Solution:

$$
\widetilde{D}_{N}=\operatorname{Diag}\left(\widetilde{d}_{1}, \ldots, \widetilde{d}_{N}\right) \quad \text { where } \quad \widetilde{d}_{i}=u_{i}^{*} \Sigma_{N} u_{i}
$$

Estimating the Covariance Matrix (2)

Estimating the Covariance Matrix (2)

Take $g(\tau)=\tau$

Estimating the Covariance Matrix (2)

Take $g(\tau)=\tau$

$$
\begin{aligned}
\Omega_{N}^{g}(\lambda)=\frac{1}{N} \sum_{i=1}^{N} & u_{i}^{*} \Sigma_{N} u_{i} \mathbf{1}_{\left[\lambda_{i},+\infty\right)}(\lambda) \\
& \rightarrow \int_{-\infty}^{\lambda} \frac{l}{\left|1-c-c m_{F}(l)\right|^{2}} d F(l)
\end{aligned}
$$

Estimating the Covariance Matrix (2)

Take $g(\tau)=\tau$

$$
\begin{aligned}
\Omega_{N}^{g}(\lambda)= & \frac{1}{N} \sum_{i=1}^{N} u_{i}^{*} \Sigma_{N} u_{i} \mathbf{1}_{\left[\lambda_{i},+\infty\right)}(\lambda) \\
& \rightarrow \int_{-\infty}^{\lambda} \frac{l}{\left|1-c-c l m_{F}(l)\right|^{2}} d F(l) \\
u_{i}^{*} \Sigma_{N} u_{i} & \approx \frac{\lambda_{i}}{\left|1-c-c \lambda_{i} \breve{m}_{F}\left(\lambda_{i}\right)\right|^{2}}
\end{aligned}
$$

Oracle Estimator

Oracle Estimator

Keep same eigenvectors as those of S_{n},

Oracle Estimator

Keep same eigenvectors as those of S_{n}, divide $i^{\text {th }}$ sample eigenvalue by $\left|1-c-c \lambda_{i} \breve{m}_{F}\left(\lambda_{i}\right)\right|^{2}$

Oracle Estimator

Keep same eigenvectors as those of S_{n}, divide $i^{\text {th }}$ sample eigenvalue by $\left|1-c-c \lambda_{i} \breve{m}_{F}\left(\lambda_{i}\right)\right|^{2}$ \longrightarrow oracle estimator \widetilde{S}_{N}

Oracle Estimator

Keep same eigenvectors as those of S_{n}, divide $i^{\text {th }}$ sample eigenvalue by $\left|1-c-c \lambda_{i} \breve{m}_{F}\left(\lambda_{i}\right)\right|^{2}$ \longrightarrow oracle estimator \widetilde{S}_{N}
Percentage Relative Improvement in Average Loss:

$$
P R I A L=100 \times\left[1-\frac{\mathbb{E}\left\|\widetilde{S}_{N}-U_{N} \widetilde{D}_{N} U_{N}^{*}\right\|^{2}}{\mathbb{E}\left\|S_{N}-U_{N} \widetilde{D}_{N} U_{N}^{*}\right\|^{2}}\right]
$$

Monte-Carlo Simulations

Monte-Carlo Simulations

10,000 simulations

Monte-Carlo Simulations

10,000 simulations
C=1/2

Monte-Carlo Simulations

10,000 simulations
C=1/2
Population eigenvalues:

- 20% equal to 1
- 40% equal to 3
- 40% equal to 10

Monte-Carlo Simulations

10,000 simulations
c=1/2
Population eigenvalues:

- 20% equal to 1
- 40% equal to 3
- 40% equal to 10

Compare with Ledoit-Wolf (2004) linear shrinkage estimator

Simulation Results

Simulation Results

Inverse of the Covariance Matrix (1)

Inverse of the Covariance Matrix (1)

Find matrix closest to Σ_{N}^{-1} among those that have eigenvectors U_{N}

Inverse of the Covariance Matrix (1)

Find matrix closest to Σ_{N}^{-1} among those that have eigenvectors U_{N}

$$
\min _{\Delta_{N}} \text { diagonal }\left\|U_{N} \Delta_{N} U_{N}^{*}-\Sigma_{N}^{-1}\right\|
$$

Inverse of the Covariance Matrix (1)

Find matrix closest to Σ_{N}^{-1} among those that have eigenvectors U_{N}

$$
\min _{\Delta_{N}} \text { diagonal }\left\|U_{N} \Delta_{N} U_{N}^{*}-\Sigma_{N}^{-1}\right\|
$$

Solution:

$$
\widetilde{\Delta}_{N}=\operatorname{Diag}\left(\widetilde{\delta}_{1}, \ldots, \widetilde{\delta}_{N}\right) \text { where } \widetilde{\delta}_{i}=u_{i}^{*} \Sigma_{N}^{-1} u_{i}
$$

Inverse of the Covariance Matrix (1)

Find matrix closest to Σ_{N}^{-1} among those that have eigenvectors U_{N}

$$
\min \left\|U_{N} \Delta_{N} U_{N}^{*}-\Sigma_{N}^{-1}\right\|
$$

Solution:

$$
\begin{gathered}
\widetilde{\Delta}_{N}=\operatorname{Diag}\left(\widetilde{\delta}_{1}, \ldots, \widetilde{\delta}_{N}\right) \quad \text { where } \widetilde{\delta}_{i}=u_{i}^{*} \Sigma_{N}^{-1} u_{i} \\
u_{i}^{*} \Sigma_{N}^{-1} u_{i} \geq\left(u_{i}^{*} \Sigma_{N} u_{i}\right)^{-1}
\end{gathered}
$$

Inverse of the Covariance Matrix (2)

Inverse of the Covariance Matrix (2)

Take $g(\tau)=\frac{1}{\tau}$

Inverse of the Covariance Matrix (2)

Take $g(\tau)=\frac{1}{\tau}$
$\Omega_{N}^{g}(\lambda)=\frac{1}{N} \sum_{i=1}^{N} u_{i}^{*} \Sigma_{N}^{-1} u_{i} \mathbf{1}_{\left[\lambda_{i},+\infty\right)}(\lambda)$

$$
\rightarrow \int_{-\infty}^{\lambda} \frac{1-c-2 c l \operatorname{Re}\left[m_{F}(l)\right]}{l} d F(l)
$$

Inverse of the Covariance Matrix (2)

Take $g(\tau)=\frac{1}{\tau}$

$$
\Omega_{N}^{g}(\lambda)=\frac{1}{N} \sum_{i=1}^{N} u_{i}^{*} \Sigma_{N}^{-1} u_{i} \mathbf{1}_{\left[\lambda_{i},+\infty\right)}(\lambda)
$$

$$
\begin{aligned}
& \rightarrow \int_{-\infty}^{\lambda} \frac{1-c-2 c l \operatorname{Re}\left[m_{F}(l)\right]}{l} d F(l) \\
u_{i}^{*} \Sigma_{N}^{-1} u_{i} & \approx \frac{1-c-2 c \lambda_{i} \operatorname{Re}\left[\breve{m}_{F}\left(\lambda_{i}\right)\right]}{\lambda_{i}}
\end{aligned}
$$

Conclusion

Conclusion

Generalization of the Marčenko-Pastur (1967)/Silverstein (1995) Equation

Conclusion

- Generalization of the Marčenko-Pastur (1967)/Silverstein (1995) Equation

Gives location of sample eigenvectors relative to:

Conclusion

- Generalization of the Marčenko-Pastur (1967)/Silverstein (1995) Equation

Gives location of sample eigenvectors relative to:

- Population eigenvectors

Conclusion

- Generalization of the Marčenko-Pastur (1967)/Silverstein (1995) Equation
- Gives location of sample eigenvectors relative to:
- Population eigenvectors
- Population covariance matrix as a whole

Conclusion

- Generalization of the Marčenko-Pastur (1967)/Silverstein (1995) Equation
- Gives location of sample eigenvectors relative to:
- Population eigenvectors
- Population covariance matrix as a whole
- Inverse of population covariance matrix

Conclusion

- Generalization of the Marčenko-Pastur (1967)/Silverstein (1995) Equation
- Gives location of sample eigenvectors relative to:
- Population eigenvectors
- Population covariance matrix as a whole
- Inverse of population covariance matrix
- We do for sample eigenvectors what MP67/S95 did for sample eigenvalues

Directions for Future Research

Directions for Future Research

1. Construct bona fide nonlinear shrinkage estimator of the covariance matrix

Directions for Future Research

1. Construct bona fide nonlinear shrinkage estimator of the covariance matrix
2. Construct bona fide nonlinear shrinkage estimator of the inverse of the covariance matrix

Directions for Future Research

1. Construct bona fide nonlinear shrinkage estimator of the covariance matrix
2. Construct bona fide nonlinear shrinkage estimator of the inverse of the covariance matrix
3. Show that $N\left|u_{i}^{*} v_{j}\right|^{2}$ is even closer to

$$
\frac{c \lambda_{i} \tau_{j}}{\left|\tau_{j}\left[1-c-c \lambda_{i} \breve{m}_{F}\left(\lambda_{i}\right)\right]-\lambda_{i}\right|^{2}}
$$

than we have shown in this paper

