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The information plus noise model

Introduced in Dozier-Silverstein-2007.

M(N) x N matrix Xy

ZN = BN —|—0‘WN

@ By deterministic matrix supy ||Bn| < 400

@ Wy zero mean complex Gaussian i.i.d. matrix
2 _ 1
EWnijlc =g
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Problem statement

Empirical covariance matrix Ry = XNXy

Prove the "Exact Separation” of the eigenvalues of Rn
Property introduced by Bai and Silverstein 1999 in the context
of zero mean possibly non Gaussian correlated random
matrices
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Numerical illustration (1).

@ 52=2

@ Eigenvalues of ByBj; 0 with multiplicity %, 5 with
multiplicity %

ocy=M cy=02

@ Representation of histograms of the eigenvalues of =N
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Numerical illustration (Il).

True Density and Empirical Distribution
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Motivation

See the talk of P. Vallet tomorrow

@ Rank(By) =K(N) <M
@ Ny orthogonal projection matrix on (Range(By )™

4

Subspace estimation methods.

@ Estimate consistently af,Myay from Xy
N

@ Needs to evaluate the location of the eigenvalues of Ry
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The "asymptotic” limit eigenvalue distribution LN

N — oo stands for (M,N) — +oco,cy =N —c <1

® (Mn)k=1....m eigenvalues of Ry, (Akn)k=1,...m
eigenvalues of By By, arranged in decreasing order

@ Rank(By) =K(N) <M, dxyin=...=Aun=0

Dozier-Silverstein 2007 : It exists a deterministic

probability measure juy carried by R such that

o LS 6\ —n) — un — 0 weakly almost surely
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How to characterize puy

The Stieltj es transform my(z) of un

@ my(z) = fp, XY defined on C — R*

my (z) is solution of the equation

My (2)
1+0'22NmN(Z) = fn(wn(2))

® wy(z) =z(1 + o’enmp(2))? - o%(1 _CN)(1+UZCNmN(Z))

o fiy(w) = 1Trace(BNB* —WlM) =™ Zk 1)\kN1 W

\
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Properties of un, cn =M <1

Sn support of uy

Dozier-Silverstein-2007

@ Foreachx € R, lim,_ ;ec+ My(z) = my(X) exists

@ x — my(x) continuous on R, continuously differentiable on
R\OSN

@ pn(d)) absolutely continuous, density £Im(my(x))
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Characterization of Sy.

Reformulation of D-S 2007 in Vallet-Loubaton-Mestre-2009
@ Function ¢n(w) defined on R by
on(W) = w(1 —o®enfy(w))? + o?(1 — on)(1 — o®enfn(w))
@ ¢n has 2Q positive extrema with preimages

(N) < wf\f <. wéN) < wéNi. These extrema verify

(N) (N)
Q- <X+
N
o Sy = [x17_,x17+] U...[XQ7_,X((?73_]
@ Each eigenvalue ) y of ByBj belongs to an interval

N
(W™, w)

()<X(N)< X
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Some definitions

@ Each interval [xq 2y X, +] is called a cluster

@ An elgenvalue )\| ~ of ByBy, is said to be associated to
cluster [x , Xq, +] if AN € (w(g[\'_),wé[\'j)

92 elgenvalues of By B*,(l are said to be separated if they are
associated to different clusters
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Some useful properties of  wy(x)

wn (X) = X(1 + o®enmp(x))* — o?(1 — cn)(1 + o?enmn(x)).

on(wn (X)) = x for each x

Int(Sy) = {x,Im(wy(x)) > 0}

wy (x) is real and increasing on each component of Sy
W (X ) = Wo s W (Xg ) = Woy

wy (x) is continuous on R and continuously differentiable
on R\0Sy

' ~ 1 ifx ~x ot
[Wy (X)] ~ TR ifX ~ X,
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Contours associated to function ~ x — wy(x) (I)

Illustration 2 clusters.

Im{w(x)}

—) = W= +y =t
w()cz)—w2 w()cz)—w2

\

/14 ‘ U E

ot
w(x1 )—wl
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Contours associated to function ~ x — wy(x) (Il)

Cq = {W(X), X € gy Xeh T} U {Wh (X)X € gy X1}

@ Encloses the eigenvalues of By B{, associated to cluster
[Xqns Xqn]
@ Continuously differentiable path (except at x

! ~_ 1
‘WN(X)‘ - \X—X(;,’\r\l/z)

q7N,x(IN where

g(w) continuous in a neighborhood of ~ Cqy, g(W*) = g(w)*

g(w)dw = 2i /;JN Im (g(wN (X)W (x)) dx

Cq q,N
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The results.

Let [a, b] such that ]a — ¢,b + ¢[C (Sy)° for each N > Np. Then,
almost surely, for N large enough, none of the eigenvalues of
Rn appears in [a, b].

Theorem 2

Let [a, b] such that ]a — €,b + ¢[C (Sy)° for each N > Ng. Then,
almost surely, for N large enough,

card{k : \yy <@} = card{k : Ay < Wn(2)}
card{k : \yn > b} = card{k : \n > wy(b)}
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Existing related results.

@ Bai and Silverstein 1998 in the context of the model
Y = HW, W possibly non Gaussian

@ Capitaine, Donati-Martin, and Feral 2009 in the context of
the deformed Wigner model Y = A + X, X Gaussian i.i.d.
Wigner matrix (or entries verifying the Poincaré-Nash
inequality), A deterministic hermitian matrix with constant
rank.

@ No previous result in the context of the Information plus
Noise model
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Proof of Theorem |I.

Follow the Gaussian methods of Capitaine, Donati-Martin,
and Feral 2009 based on ideas developed by Haagerup and
Thorbjornsen 2005 in a different context.

Show that E (ﬁ S, > =mn(z) + S“‘N—(f) where &y(2) is

j\k,N_Z

analytic on C — RT, and satisfies

én(2)] < (2] +C)'P(

1
im@)]

P is a polynomial independent of N, C and | are independent of
N. Use Poincaré-Nash inequality and the Gaussian integration
by parts formula.
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Proof of Theorem |I.

Fundamental Lemma in Haagerup and Thorbjornsen 2005

M
E <$Tr¢(§N)> =E (%Zw(m)) :/s P(N)un (dA)+0(5)
k=1 N

for each ¢ € C°(R, R).

Use this for well chosen functions
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Proof of Theorem 2.

@ y(A)=1on][0,a— 1]
@ Y(A\)=0ifr>a
@ () € C°(R,R)

4

Theorem 1 with [a — 7, b] in place of [a,b]

Almost surely for N large enough

Tryp(Rn) ZszkN)—card{k Men < a}
k=1

\
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Use Haagerup-Thorbjornsen Lemma

E (%Trzb(FAQN)) = un([0,a — 1)) + O() = un([0,a]) + O()

Use Poincar é-Nash inequality and Haagerup-Thorbjornsen
Lemma

Var (%Tro(Ru)) = O(5k)

| \

Markov inequality and Borel-Cantelli lemma
Try)(Ry) — M un([0,a]) — O almost surely
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Evaluate M puy ([X(;N, X(IN])

Show that My ([Xg v X;:N]) = number of eigenvalues of

* H = aF
BnBY associated to cluster  [x; ., X, ]

in (X X)) = %fxﬂ;“'“ Im my (x) dx
q,

Evaluate the integral as a contour integral along path

_ fu(wn(x))
® MN(X) = et (o))

@ &y (W (X))wy(x) = 1 because ¢y (W (X)) = x

Cq
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Alternative expression of  uy ([x(il\| , X(IN])

1 / fin (W) (W)

N (X, q,N qN]) 2im Jo- 1— o2cnon(W)

Can be evaluted using the Residu Theorem

oM #N([X;N,XJN] = number of eigenvalues of BB
enclosed by Cq

oM MN([X_NaxJN] = number of eigenvalues of By By,
associated to [xq N Xq N

dw
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Possible extensions of the approach.

Non Gaussian model, but entries of W satisfy the
Poincar é-Nash inequality.

1. 1 B 1 [dw()) n(2)
E(ng\kyN_z>—mN(Z)+N/ = d)\+ N

Support of vy C Sy ? If yes, exact separation holds if and only
for each q,

VN([[XCINuxotN]) =0
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Statistical applications

@ Consistent estimation of direction of arrivals using
subspace methods (Vallet-Loubaton-Mestre 2009)

@ Information plus Noise spiked models (Rank(By) is fixed) :
easy to prove Benaych and Rao results on the behaviour
of the largest eigenvalues
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