Exact separation of eigenvalues of large information plus noise complex Gaussian models

Philippe Loubaton, Pascal Vallet

Université de Paris-Est / Marne la Vallée, LIGM

11/10/2010

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

2 Behaviour of the eigenvalue distribution of \hat{R}_N .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●

Exact separation of the eigenvalues of \hat{R}_{N} . 3

Plan

Problem statement.

2 Behaviour of the eigenvalue distribution of $\hat{\mathbf{R}}_N$.

3 Exact separation of the eigenvalues of $\hat{\mathbf{R}}_N$.

4 Conclusion

The information plus noise model

Introduced in Dozier-Silverstein-2007.

$M(N) \times N$ matrix Σ_N

$$\mathbf{\Sigma}_N = \mathbf{B}_N + \sigma \mathbf{W}_N$$

 B_N deterministic matrix sup_N ||B_N|| < +∞
 W_N zero mean complex Gaussian i.i.d. matrix E|W_{N,i,j}|² = 1/N

・ロト・「聞ト・「問ト・「問ト・「日下

Problem statement

Empirical covariance matrix $\hat{\mathbf{R}}_N = \mathbf{\Sigma}_N \mathbf{\Sigma}_N^*$

$(M,N) ightarrow +\infty$, $c_N = rac{M}{N} ightarrow c < 1$

Prove the "Exact Separation" of the eigenvalues of $\hat{\mathbf{R}}_N$ Property introduced by Bai and Silverstein 1999 in the context of zero mean possibly non Gaussian correlated random matrices

(日) (日) (日) (日) (日) (日) (日)

Numerical illustration (I).

•
$$\sigma^2 = 2$$

Eigenvalues of **B**_N**B**^{*}_N 0 with multiplicity ^M/₂, 5 with multiplicity ^M/₂

•
$$c_N = \frac{M}{N}, c_N = 0.2$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Numerical illustration (II).

$c = \frac{M}{N} = 0.2$

Motivation

See the talk of P. Vallet tomorrow

- $\operatorname{Rank}(\mathbf{B}_N) = K(N) < M$
- Π_N orthogonal projection matrix on $(\text{Range}(\mathbf{B}_N))^{\perp}$

Subspace estimation methods.

- Estimate consistently a^{*}_NΠ_Na_N from Σ_N
- Needs to evaluate the location of the eigenvalues of R_N

(日) (日) (日) (日) (日) (日) (日)

Problem statement. Behaviour of the eigenvalue distribution of R_N. Exact separation of the eigenvalues of R_N. Conclusion

(日) (日) (日) (日) (日) (日) (日)

2 Behaviour of the eigenvalue distribution of \hat{R}_N .

3 Exact separation of the eigenvalues of $\hat{\mathbf{R}}_N$.

4 Conclusion

The "asymptotic" limit eigenvalue distribution μ_N

Notation

$$N
ightarrow +\infty$$
 stands for $(M, N)
ightarrow +\infty$, $c_N = rac{M}{N}
ightarrow c < 1$

•
$$(\hat{\lambda}_{k,N})_{k=1,...,M}$$
 eigenvalues of $\hat{\mathbf{R}}_N$, $(\lambda_{k,N})_{k=1,...,M}$ eigenvalues of $\mathbf{B}_N \mathbf{B}_N^*$, arranged in decreasing order

•
$$Rank(\mathbf{B}_N) = K(N) < M, \ \lambda_{K+1,N} = ... = \lambda_{M,N} = 0$$

Dozier-Silverstein 2007 : It exists a deterministic probability measure μ_N carried by \mathbb{R}^+ such that

•
$$\frac{1}{M} \sum_{k=1}^{M} \delta(\lambda - \hat{\lambda}_{k,N}) - \mu_N \to 0$$
 weakly almost surely

How to characterize μ_N

The Stieltjès transform $m_N(z)$ of μ_N

•
$$m_N(z) = \int_{\mathbb{R}^+} rac{\mu_N(d\lambda)}{\lambda-z}$$
 defined on $\mathbb{C} - \mathbb{R}^+$

$m_N(z)$ is solution of the equation

$$\frac{m_N(z)}{1+\sigma^2 c_N m_N(z)} = f_N(w_N(z))$$

•
$$w_N(z) = z(1 + \sigma^2 c_N m_N(z))^2 - \sigma^2 (1 - c_N)(1 + \sigma^2 c_N m_N(z))$$

• $f_N(w) = \frac{1}{M} \operatorname{Trace}(\mathbf{B}_N \mathbf{B}_N^* - w \mathbf{I}_M)^{-1} = \frac{1}{M} \sum_{k=1}^M \frac{1}{\lambda_{k,N} - w}$

Properties of μ_N , $c_N = \frac{M}{N} < 1$

S_N support of μ_N

Dozier-Silverstein-2007

- For each $x \in \mathbb{R}$, $\lim_{z \to x, z \in \mathbb{C}^+} m_N(z) = m_N(x)$ exists
- $x \to m_N(x)$ continuous on \mathbb{R} , continuously differentiable on $\mathbb{R} \setminus \partial S_N$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

• $\mu_N(d\lambda)$ absolutely continuous, density $\frac{1}{\pi} \text{Im}(m_N(x))$

Characterization of S_N .

Reformulation of D-S 2007 in Vallet-Loubaton-Mestre-2009

- Function $\phi_N(w)$ defined on \mathbb{R} by $\phi_N(w) = w(1 - \sigma^2 c_N f_N(w))^2 + \sigma^2 (1 - c_N)(1 - \sigma^2 c_N f_N(w))$
- φ_N has 2Q positive extrema with preimages w^(N)_{1,-} < w^(N)_{1,+} < ... w^(N)_{Q,-} < w^(N)_{Q,+}. These extrema verify x^(N)_{1,-} < x^(N)_{1,+} < ... x^(N)_{Q,-} < x^(N)_{Q,+}.
 S_N = [x^(N)_{1,-}, x^(N)_{1,+}] ∪ ... [x^(N)_{Q,-}, x^(N)_{Q,+}]
 Each eigenvalue λ_{I,N} of B_NB^{*}_N belongs to an interval (w^(N)_k, w^(N)_{k+})

Some definitions

- Each interval $[x_{q,-}^{(N)}, x_{q,+}^{(N)}]$ is called a cluster
- An eigenvalue λ_{I,N} of B_NB^{*}_N is said to be associated to cluster [x^(N)_{q,−}, x^(N)_{q,+}] if λ_{I,N} ∈ (w^(N)_{q,−}, w^(N)_{q,+})
- 2 eigenvalues of B_NB^{*}_N are said to be separated if they are associated to different clusters

(日) (日) (日) (日) (日) (日) (日)

Some useful properties of $w_N(x)$

$w_N(x) = x(1 + \sigma^2 c_N m_N(x))^2 - \sigma^2 (1 - c_N)(1 + \sigma^2 c_N m_N(x)).$

•
$$\phi_N(w_N(x)) = x$$
 for each x

•
$$\operatorname{Int}(\mathcal{S}_N) = \{x, \operatorname{Im}(w_N(x)) > 0\}$$

w_N(x) is real and increasing on each component of S^c_N

•
$$w_N(x_{q,N}^-) = w_{q,N}^-, w_N(x_{q,N}^+) = w_{q,N}^+$$

w_N(x) is continuous on ℝ and continuously differentiable on ℝ\∂S_N

•
$$|w'_N(x)| \simeq rac{1}{|x - x^{-,+}_{q,N}|^{1/2}}$$
 if $x \simeq x^{-,+}_{q,N}$

Contours associated to function $x \rightarrow w_N(x)$ (I)

Illustration 2 clusters.

Contours associated to function $x \rightarrow w_N(x)$ (II)

$\mathcal{C}_{q} = \{w_{N}(x), x \in [x_{q,N}^{-}, x_{q,N}^{+}]\} \cup \{w_{N}(x)^{*}, x \in [x_{q,N}^{-}, x_{q,N}^{+}]\}$

- Encloses the eigenvalues of $\mathbf{B}_N\mathbf{B}_N^*$ associated to cluster $[x_{q,N}^-,x_{q,N}^+]$
- Continuously differentiable path (except at $x_{q,N}^-, x_{q,N}^+$ where $|w'_N(x)| \simeq \frac{1}{|x x_{q,N}^{-,+}|^{1/2}}$)

g(w) continuous in a neighborhood of C_q , $g(w^*) = g(w)^*$

$$\int_{\mathcal{C}_{q}^{-}} g(w) dw = 2i \int_{x_{q,N}^{-}}^{x_{q,N}^{+}} \operatorname{Im} \left(g(w_{N}(x)) w_{N}'(x) \right) dx$$

Plan

3 Exact separation of the eigenvalues of \hat{R}_N .

4 Conclusion

▲□▶▲□▶▲目▶▲目▶ 目 のへで

The results.

Theorem 1

Let [a, b] such that $]a - \epsilon, b + \epsilon [\subset (S_N)^c$ for each $N > N_0$. Then, almost surely, for N large enough, none of the eigenvalues of $\hat{\mathbf{R}}_N$ appears in [a, b].

Theorem 2

Let [a, b] such that $]a - \epsilon, b + \epsilon [\subset (S_N)^c$ for each $N > N_0$. Then, almost surely, for N large enough,

$$\operatorname{card}\{\boldsymbol{k}:\hat{\lambda}_{\boldsymbol{k},\boldsymbol{N}}<\boldsymbol{a}\} = \operatorname{card}\{\boldsymbol{k}:\lambda_{\boldsymbol{k},\boldsymbol{N}}<\boldsymbol{w}_{\boldsymbol{N}}(\boldsymbol{a})\}$$
$$\operatorname{card}\{\boldsymbol{k}:\hat{\lambda}_{\boldsymbol{k},\boldsymbol{N}}>\boldsymbol{b}\} = \operatorname{card}\{\boldsymbol{k}:\lambda_{\boldsymbol{k},\boldsymbol{N}}>\boldsymbol{w}_{\boldsymbol{N}}(\boldsymbol{b})\}$$

Existing related results.

- Bai and Silverstein 1998 in the context of the model
 Y = HW, W possibly non Gaussian
- Capitaine, Donati-Martin, and Feral 2009 in the context of the deformed Wigner model Y = A + X, X Gaussian i.i.d. Wigner matrix (or entries verifying the Poincaré-Nash inequality), A deterministic hermitian matrix with constant rank.
- No previous result in the context of the Information plus Noise model

(日) (日) (日) (日) (日) (日) (日)

Proof of Theorem I.

Follow the Gaussian methods of Capitaine, Donati-Martin, and Feral 2009 based on ideas developed by Haagerup and Thorbjornsen 2005 in a different context.

Show that
$$\mathbb{E}\left(\frac{1}{M}\sum_{k=1}^{M}\frac{1}{\hat{\lambda}_{k,N}-z}\right) = m_N(z) + \frac{\xi_N(z)}{N^2}$$
 where $\xi_N(z)$ is analytic on $\mathbb{C} - \mathbb{R}^+$ and satisfies

$$|\xi_N(z)| \leq (|z|+C)^{\prime} P(\frac{1}{|\mathrm{Im}(z)|})$$

P is a polynomial independent of *N*, *C* and *I* are independent of *N*. Use Poincaré-Nash inequality and the Gaussian integration by parts formula.

Proof of Theorem I.

Fundamental Lemma in Haagerup and Thorbjornsen 2005

$$\mathbb{E}\left(\frac{1}{M}\mathrm{Tr}\,\psi(\hat{\mathbf{R}}_N)\right) = \mathbb{E}\left(\frac{1}{M}\sum_{k=1}^M\psi(\hat{\lambda}_{k,N})\right) = \int_{\mathcal{S}_N}\psi(\lambda)\mu_N(d\lambda) + O(\frac{1}{N^2})$$

(日) (日) (日) (日) (日) (日) (日)

for each $\psi \in \mathcal{C}^{\infty}_{c}(\mathbb{R},\mathbb{R})$.

Use this for well chosen functions ψ

Proof of Theorem 2.

$\eta > 0$ such that $a - \epsilon < a - \eta$

•
$$\psi(\lambda) \in \mathcal{C}^{\infty}_{c}(\mathbb{R},\mathbb{R})$$

Theorem 1 with $[a - \eta, b]$ in place of [a, b]

Almost surely for N large enough

$$\operatorname{Tr} \psi(\hat{\mathbf{R}}_N) = \sum_{k=1}^{M} \psi(\hat{\lambda}_{k,N}) = \operatorname{card}\{k : \hat{\lambda}_{k,N} < a\}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ →□= →のへで

Use Haagerup-Thorbjornsen Lemma

$$\mathbb{E}\left(\frac{1}{M}\operatorname{Tr}\psi(\hat{\mathbf{R}}_N)\right) = \mu_N([0, \mathbf{a} - \eta]) + O(\frac{1}{N^2}) = \mu_N([0, \mathbf{a}]) + O(\frac{1}{N^2})$$

Use Poincaré-Nash inequality and Haagerup-Thorbjornsen Lemma

・ロト・日本・日本・日本・日本

$$\operatorname{Var}\left(\frac{1}{M}\operatorname{Tr}\psi(\hat{\mathbf{R}}_N)\right) = O(\frac{1}{N^4})$$

Markov inequality and Borel-Cantelli lemma

 $\operatorname{Tr} \psi(\hat{\mathbf{R}}_N) - M \mu_N([0, a]) \to 0$ almost surely

Evaluate $M\mu_N([x_{q,N}^-, x_{q,N}^+])$

Show that $M\mu_N([x_{q,N}^-, x_{q,N}^+]) =$ number of eigenvalues of $B_N B_N^*$ associated to cluster $[x_{q,N}^-, x_{q,N}^+]$

$$\mu_N([x_{q,N}^-, x_{q,N}^+]) = \frac{1}{\pi} \int_{x_{q,N}^-}^{x_{q,N}^+} \operatorname{Im} m_N(x) \, dx$$

Evaluate the integral as a contour integral along path C_q

•
$$m_N(x) = \frac{f_N(w_N(x))}{1 - \sigma^2 c_N f_N(w_N(x))}$$

•
$$\phi'_N(w_N(x))w'_N(x) = 1$$
 because $\phi_N(w_N(x)) = x$

・ロト・日本・山田・ 山田・ 山口・

Alternative expression of $\mu_N([x_{a,N}^-, x_{a,N}^+])$

$$\mu_N([\mathbf{x}_{q,N}^-, \mathbf{x}_{q,N}^+]) = \frac{1}{2i\pi} \int_{\mathcal{C}_q^-} \frac{f_N(w)\phi_N'(w)}{1 - \sigma^2 c_N \phi_N(w)} \, dw$$

Can be evaluted using the Residu Theorem

- *M* μ_N([*x*⁻_{q,N}, *x*⁺_{q,N}] = number of eigenvalues of **B**_N**B**^{*}_N enclosed by C_q
- M μ_N([x⁻_{q,N}, x⁺_{q,N}] = number of eigenvalues of B_NB^{*}_N associated to [x⁻_{q,N}, x⁺_{q,N}]

・ロト・日本・日本・日本・日本

Plan

2 Behaviour of the eigenvalue distribution of \hat{R}_N .

3 Exact separation of the eigenvalues of $\hat{\mathbf{R}}_N$.

4 Conclusion

▲ロト▲御▶▲臣▶▲臣▶ 臣 のQ@

Possible extensions of the approach.

Non Gaussian model, but entries of W satisfy the Poincaré-Nash inequality.

$$\mathbb{E}\left(\frac{1}{M}\sum_{k=1}^{M}\frac{1}{\hat{\lambda}_{k,N}-z}\right) = m_N(z) + \frac{1}{N}\int\frac{d\nu_N(\lambda)}{\lambda-z}\,d\lambda + \frac{\xi_N(z)}{N^2}$$

Support of $\nu_N \subset S_N$? If yes, exact separation holds if and only for each q,

$$u_N([[x_{q,N}^-, x_{q,N}^+]) = 0$$

Statistical applications

....

- Consistent estimation of direction of arrivals using subspace methods (Vallet-Loubaton-Mestre 2009)
- Information plus Noise spiked models (Rank(**B**_N) is fixed) : easy to prove Benaych and Rao results on the behaviour of the largest eigenvalues

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆