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The information plus noise model

Introduced in Dozier-Silverstein-2007.

M(N) × N matrix ΣN

ΣN = BN + σWN

BN deterministic matrix supN ‖BN‖ < +∞

WN zero mean complex Gaussian i.i.d. matrix
E|WN,i ,j |

2 = 1
N
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Problem statement

Empirical covariance matrix R̂N = ΣNΣ
∗
N

(M,N) → +∞, cN = M
N → c < 1

Prove the ”Exact Separation” of the eigenvalues of R̂N

Property introduced by Bai and Silverstein 1999 in the context
of zero mean possibly non Gaussian correlated random
matrices
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Numerical illustration (I).

σ2 = 2

Eigenvalues of BNB∗
N 0 with multiplicity M

2 , 5 with
multiplicity M

2

cN = M
N , cN = 0.2

Representation of histograms of the eigenvalues of R̂N
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Numerical illustration (II).

c = M
N = 0.2



Problem statement. Behaviour of the eigenvalue distribution of R̂N . Exact separation of the eigenvalues of R̂N . Conclusion

Motivation

See the talk of P. Vallet tomorrow
Rank(BN) = K (N) < M

ΠN orthogonal projection matrix on (Range(BN))⊥

Subspace estimation methods.

Estimate consistently a∗
NΠNaN from ΣN

Needs to evaluate the location of the eigenvalues of R̂N
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The ”asymptotic” limit eigenvalue distribution µN

Notation

N → +∞ stands for (M,N) → +∞, cN = M
N → c < 1

(λ̂k ,N)k=1,...,M eigenvalues of R̂N , (λk ,N)k=1,...,M

eigenvalues of BNB∗
N , arranged in decreasing order

Rank(BN) = K (N) < M, λK+1,N = . . . = λM,N = 0

Dozier-Silverstein 2007 : It exists a deterministic
probability measure µN carried by R

+ such that
1
M

∑M
k=1 δ(λ− λ̂k ,N) − µN → 0 weakly almost surely
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How to characterize µN

The Stieltj ès transform mN(z) of µN

mN(z) =
∫

R+
µN (dλ)

λ−z defined on C − R
+

mN(z) is solution of the equation

mN(z)

1 + σ2cNmN(z)
= fN(wN(z))

wN(z) = z(1 + σ2cNmN(z))2 − σ2(1 − cN)(1 + σ2cNmN(z))

fN(w) = 1
M Trace(BNB∗

N − w IM)−1 = 1
M

∑M
k=1

1
λk,N−w
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Properties of µN , cN = M
N < 1

SN support of µN

Dozier-Silverstein-2007
For each x ∈ R, limz→x,z∈C+ mN(z) = mN(x) exists

x → mN(x) continuous on R, continuously differentiable on
R\∂SN

µN(dλ) absolutely continuous, density 1
π

Im(mN(x))
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Characterization of SN .

Reformulation of D-S 2007 in Vallet-Loubaton-Mestre-2009
Function φN(w) defined on R by
φN(w) = w(1 − σ2cN fN(w))2 + σ2(1 − cN)(1 − σ2cN fN(w))

φN has 2Q positive extrema with preimages
w (N)

1,− < w (N)
1,+ < . . .w (N)

Q,− < w (N)
Q,+. These extrema verify

x (N)
1,− < x (N)

1,+ < . . . x (N)
Q,− < x (N)

Q,+.

SN = [x (N)
1,− , x

(N)
1,+ ] ∪ . . . [x (N)

Q,−, x
(N)
Q,+]

Each eigenvalue λl ,N of BNB∗
N belongs to an interval

(w (N)
k ,−,w

(N)
k ,+)
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Some definitions

Each interval [x (N)
q,−, x

(N)
q,+] is called a cluster

An eigenvalue λl ,N of BNB∗
N is said to be associated to

cluster [x (N)
q,−, x

(N)
q,+] if λl ,N ∈ (w (N)

q,−,w
(N)
q,+)

2 eigenvalues of BNB∗
N are said to be separated if they are

associated to different clusters
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Some useful properties of wN(x)

wN(x) = x(1 + σ2cNmN(x))2 − σ2(1 − cN)(1 + σ2cNmN(x)).

φN(wN(x)) = x for each x

Int(SN) = {x , Im(wN(x)) > 0}

wN(x) is real and increasing on each component of Sc
N

wN(x−
q,N) = w−

q,N ,wN(x+
q,N) = w+

q,N

wN(x) is continuous on R and continuously differentiable
on R\∂SN

|w
′

N(x)| ≃ 1
|x−x−,+

q,N |1/2 if x ≃ x−,+
q,N
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Contours associated to function x → wN(x) (I)

Illustration 2 clusters.

Re{w(x)}

Im{w(x)}

w(x
−

1
) = w

−

1
w(x

+

1
) = w

+

1

w(x
−

2
) = w

−

2
w(x

+

2
)= w

+

2

λ3
λ4

0
λ2 λ1
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Contours associated to function x → wN(x) (II)

Cq = {wN(x), x ∈ [x−
q,N , x

+
q,N ]} ∪ {wN(x)∗, x ∈ [x−

q,N , x
+
q,N ]}

Encloses the eigenvalues of BNB∗
N associated to cluster

[x−
q,N , x

+
q,N ]

Continuously differentiable path (except at x−
q,N , x

+
q,N where

|w
′

N(x)| ≃ 1
|x−x−,+

q,N |1/2 )

g(w) continuous in a neighborhood of Cq, g(w∗) = g(w)∗

∫

C−

q

g(w)dw = 2i
∫ x+

q,N

x−

q,N

Im
(

g(wN(x))w
′

N(x)
)

dx
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The results.

Theorem 1
Let [a,b] such that ]a − ǫ,b + ǫ[⊂ (SN)c for each N > N0. Then,
almost surely, for N large enough, none of the eigenvalues of
R̂N appears in [a,b].

Theorem 2

Let [a,b] such that ]a − ǫ,b + ǫ[⊂ (SN)c for each N > N0. Then,
almost surely, for N large enough,

card{k : λ̂k ,N < a} = card{k : λk ,N < wN(a)}

card{k : λ̂k ,N > b} = card{k : λk ,N > wN(b)}
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Existing related results.

Bai and Silverstein 1998 in the context of the model
Y = HW, W possibly non Gaussian

Capitaine, Donati-Martin, and Feral 2009 in the context of
the deformed Wigner model Y = A + X, X Gaussian i.i.d.
Wigner matrix (or entries verifying the Poincaré-Nash
inequality), A deterministic hermitian matrix with constant
rank.

No previous result in the context of the Information plus
Noise model
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Proof of Theorem I.

Follow the Gaussian methods of Capitaine, Donati-Martin,
and Feral 2009 based on ideas developed by Haagerup and
Thorbjornsen 2005 in a different context.

Show that E

(

1
M

∑M
k=1

1
λ̂k,N−z

)

= mN(z) + ξN(z)
N2 where ξN(z) is

analytic on C − R
+, and satisfies

|ξN(z)| ≤ (|z| + C)l P(
1

|Im(z)|
)

P is a polynomial independent of N, C and l are independent of
N. Use Poincaré-Nash inequality and the Gaussian integration
by parts formula.
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Proof of Theorem I.

Fundamental Lemma in Haagerup and Thorbjornsen 2005

E

(

1
M

Trψ(R̂N)

)

= E

(

1
M

M
∑

k=1

ψ(λ̂k ,N)

)

=

∫

SN

ψ(λ)µN(dλ)+O(
1

N2 )

for each ψ ∈ C∞
c (R,R).

Use this for well chosen functions ψ
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Proof of Theorem 2.

η > 0 such that a − ǫ < a − η

ψ(λ) = 1 on [0,a − η]

ψ(λ) = 0 if λ ≥ a

ψ(λ) ∈ C∞
c (R,R)

Theorem 1 with [a − η,b] in place of [a,b]

Almost surely for N large enough

Trψ(R̂N) =

M
∑

k=1

ψ(λ̂k ,N) = card{k : λ̂k ,N < a}
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Use Haagerup-Thorbjornsen Lemma

E

(

1
M Trψ(R̂N)

)

= µN([0,a − η]) + O( 1
N2 ) = µN([0,a]) + O( 1

N2 )

Use Poincar é-Nash inequality and Haagerup-Thorbjornsen
Lemma

Var
(

1
M Trψ(R̂N)

)

= O( 1
N4 )

Markov inequality and Borel-Cantelli lemma

Trψ(R̂N) − M µN([0,a]) → 0 almost surely
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Evaluate MµN([x−
q,N, x+

q,N])

Show that MµN([x−
q,N , x

+
q,N ]) = number of eigenvalues of

BNB∗
N associated to cluster [x−

q,N , x
+
q,N ]

µN([x−
q,N , x

+
q,N ]) = 1

π

∫ x+
q,N

x−

q,N
Im mN(x) dx

Evaluate the integral as a contour integral along path Cq

mN(x) = fN(wN(x))
1−σ2cN fN (wN(x))

φ
′

N(wN(x))w
′

N(x) = 1 because φN(wN(x)) = x
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Alternative expression of µN([x−
q,N , x

+
q,N ])

µN([x−
q,N , x

+
q,N ]) =

1
2iπ

∫

C−

q

fN(w)φ
′

N(w)

1 − σ2cNφN(w)
dw

Can be evaluted using the Residu Theorem

M µN([x−
q,N , x

+
q,N ] = number of eigenvalues of BNB∗

N
enclosed by Cq

M µN([x−
q,N , x

+
q,N ] = number of eigenvalues of BNB∗

N

associated to [x−
q,N , x

+
q,N ]
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Possible extensions of the approach.

Non Gaussian model, but entries of W satisfy the
Poincar é-Nash inequality.

E

(

1
M

M
∑

k=1

1

λ̂k ,N − z

)

= mN(z) +
1
N

∫

d νN(λ)

λ− z
dλ+

ξN(z)

N2

Support of νN ⊂ SN ? If yes, exact separation holds if and only
for each q,

νN([[x−
q,N , x

+
q,N ]) = 0
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Statistical applications

Consistent estimation of direction of arrivals using
subspace methods (Vallet-Loubaton-Mestre 2009)

Information plus Noise spiked models (Rank(BN) is fixed) :
easy to prove Benaych and Rao results on the behaviour
of the largest eigenvalues

....
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