

A CLT for Information-Theoretic Statistics of Gram Random Matrices

Malika Kharouf Joint work with W.Hachem, J.Najim and J.Silverstein

October 12, 2010

The Model: A Non-Centered Random Matrices

Consider a $p \times n$ random matrices:

$$\Sigma_n=\frac{1}{\sqrt{n}}X_n+A_n,$$

where,

- X_{n_{ij}}, 1 ≤ i ≤ p, 1 ≤ j ≤ n are i.i.d. centered with unit variance and E|X₁₁|¹⁶ < ∞.
- ► A_n is a p × n deterministic matrix with uniformly bounded spectral norm.

The Model: Information-Theoretic Statistics of Gram random matrices

Linear spectral statistics:

$$\mathcal{I}_n(\rho) = rac{1}{p} \sum_{i=1}^p \log\left(\lambda_i^{(n)} + \rho\right),$$

where, $\lambda_i^{(n)}$, i = 1, ..., p are the eigenvalues of the Gram random matrix $\Sigma_n \Sigma_n^*$ and ρ is a nonnegative parameter.

Objective: Understanding the asymptotic distribution of the fluctuations of $\mathcal{I}_n(\rho)$, when the dimensions of the matrix Σ_n converge to infinity at the same pace and obtain a simple form of the variance.

Plan

Motivations: Mutual Information for Multiple Antenna Radio Channels

Asymptotic behavior of $\mathcal{I}_n(\rho)$: First-order results Fundamental system of equations Deterministic equivalents

Study of the fluctuations

Definition of the variance The Central Limit Theorem

Outline of the proof of the CLT

The approach: REFORM method Main steps of the proof

The bias

Outline of the proof of the bias term

Motivations:

Mutual Information for Multiple Antenna Radio Channels

Multi-user MIMO scheme

Figure: MIMO Systems

MIMO System: Mathematical Model

The *p*-dimensional receiver vector \mathbf{r}_n is given by:

$$\mathbf{r}_n = \boldsymbol{\Sigma}_n \mathbf{t}_n + \mathbf{b}_n,$$

where,

• Σ_n represents the channel matrix which assumed to be random.

t_n is the n-dimensional transmitter vector.

► \mathbf{b}_n is an additive white Gaussian noise with covariance matrix $\mathbb{E}\mathbf{b}_n\mathbf{b}_n^* = \rho I_p$.

Performance indicator: The Mutual Information:

$$\mathcal{I}_n(\rho) = \frac{1}{\rho} \log \det \left(\Sigma_n \Sigma_n^* + \rho I_p \right) = \frac{1}{\rho} \sum_{i=1}^{\rho} \log \left(\lambda_i + \rho \right)$$

Asymptotic behavior of $\mathcal{I}_n(\rho)$ when $n, p \to \infty$ at the same rate ?

Asymptotic behavior of $\mathcal{I}_n(\rho)$: First-order results

Let f_n denotes the ST of $\mu_{\sum_n \sum_n^*}$, the spectral measure of the eigenvalues of $\sum_n \sum_n^*$. Then,

$$\mathcal{I}_n(\rho) = -\int_{\rho}^{\infty} f_n(-\omega)d\omega.$$

Then the asymptotic behavior of $\mathcal{I}_n(\rho)$ is closely linked to the asymptotic behavior of f_n as $p, n \to \infty$ with the same pace.

State of the art

F<sup>A_nA^{}_n* → *H*, *H* is a deterministic probability measure.
 Dozier and Silverstein (04):
</sup>

$$F^{\Sigma_n \Sigma_n^*} \xrightarrow{\text{weakly}} F,$$

・ロト・日本・モート モー うへで

where, F is a deterministic probability measure which the Stieltjes transform is a unique solution of a given coupled equation.

State of the art

F<sup>A_nA^{}_n* → *H*, *H* is a deterministic probability measure.
 Dozier and Silverstein (04):
</sup>

$$F^{\Sigma_n \Sigma_n^*} \xrightarrow{\text{weakly}} F,$$

where, F is a deterministic probability measure which the Stieltjes transform is a unique solution of a given coupled equation.

V. L. Girko (91), Hachem-Loubaton-Najim (07) : Look for a deterministic approximation of the Stieltjes transform f_n of F^{Σ_nΣ^{*}_n}. ∃ a p × p deterministic valued function T_n(ρ) such that:

$$f_n(-\rho) - \frac{1}{p} \operatorname{Tr} T_n(-\rho) \xrightarrow[n \to \infty]{a.s} 0$$

Fundamental equations

Theorem (Girko '91, Hachem-Loubaton-Najim '07) The following system of two equations

$$\begin{cases} \delta_n(\rho) = \frac{1}{n} \operatorname{Tr} \left(\rho \left(1 + \tilde{\delta}_n(\rho) \right) I_\rho + \frac{A_n A_n^*}{1 + \delta_n(\rho)} \right)^{-1} \stackrel{\triangle}{=} \frac{1}{n} \operatorname{Tr} T_n(\rho) \\ \tilde{\delta}_n(\rho) = \frac{1}{n} \operatorname{Tr} \left(\rho \left(1 + \delta_n(\rho) \right) I_n + \frac{A_n^* A_n}{1 + \tilde{\delta}_n(\rho)} \right)^{-1} \stackrel{\triangle}{=} \frac{1}{n} \operatorname{Tr} \tilde{T}_n(\rho), \end{cases}$$

admits a unique solution $(\delta_n, \tilde{\delta}_n)$ in $\mathcal{S}(\mathbb{R}^+)^2$. Moreover,

$$\int_{\mathbb{R}^+} f(\lambda) dF^{\sum_n \sum_n^*}(\lambda) - \int_{\mathbb{R}^+} f(\lambda) \pi_n(d\lambda) \xrightarrow[n \to \infty]{a.s} 0, \quad \forall f \in \mathcal{C}_B(\mathbb{R}^+),$$

where π_n is the positive measure where δ_n is the Stieltjes transform.

First order result: Deterministic equivalents

Theorem (Hachem-Loubaton-Najim '07) Let $V_n(\rho) = \int_{\mathbb{R}^+} \log(\lambda + \rho) \pi_n(d\lambda)$. Then we have:

$$\mathbb{E}\mathcal{I}_n(\rho) - V_n(\rho) \xrightarrow[n,p\to\infty,\frac{p}{n}\to c>0]{} 0.$$

Moreover, $V_n(\rho)$ admits a closed-form expression

$$egin{aligned} V_n(
ho) &=& rac{1}{
ho}\sum_{i=1}^{
ho}\log\left(
ho\left(1+ ilde{\delta}_n
ight)+rac{\mu_{n,i}^2}{1+\delta_n}
ight) \ &+rac{n}{
ho}\log\left(1+\delta_n
ight)-rac{
ho n}{
ho}\delta_n ilde{\delta}_n, \end{aligned}$$

where $\mu_{n,i}$ are the singular values of the mean matrix A_n .

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 のへで

In the non-centered case, the first-order asymptotic study of the mutual information depends mainly on the limiting behavior of the singular values of the mean matrix A_n .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Study of the fluctuations

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

In order to study the CLT for $p(\mathcal{I}_n(\rho) - V_n(\rho))$ we study separately two quantities:

- ► The random quantity p (I_n(ρ) EI_n(ρ)) from which the fluctuations arise and,
- ► The deterministic quantity p (EIn(ρ) Vn(ρ)) which yields a bias.

Asymptotic distribution of the fluctuations: Definition of the variance

Theorem (Hachem-Kharouf-Najim-Silverstein '10)
Let
$$\vartheta = \mathbb{E}X_{11}^2$$
, $\kappa = \mathbb{E}|X_{11}|^4 - 2 - \vartheta^2$ and let
 $\gamma = \frac{1}{n} \operatorname{Tr} T^2$, $\tilde{\gamma} = \frac{1}{n} \operatorname{Tr} \tilde{T}^2$, $\underline{\gamma} = \frac{1}{n} \operatorname{Tr} T \overline{T}$, $\underline{\tilde{\gamma}} = \frac{1}{n} \operatorname{Tr} \tilde{T} \overline{\tilde{T}}$. Denote by

$$\Theta_n^2 = -\log\left(\left(1 - \frac{1}{n\left(1 + \tilde{\delta}\right)} \operatorname{Tr} TAA^* T\right)^2 - \rho^2 \gamma \tilde{\gamma}\right) \\ -\log\left(\left|1 - \vartheta \frac{1}{n\left(1 + \tilde{\delta}\right)} \operatorname{Tr} \overline{T} \overline{A}A^* T\right|^2 - |\vartheta|^2 \rho^2 \underline{\gamma} \tilde{\gamma}\right) \\ + \kappa \frac{\rho^2}{n^2} \sum_i t_{ii}^2 \sum_j \tilde{t}_{jj}^2$$

Then Θ_n^2 is well defined.

Some remarks

- The variance is the sum of tree terms: the first term would be the same in the Gaussian case.
- The variance depends on the singular values of the main matrix as well as on its singular vectors.
- ► In the circular case $(X_{ij} \stackrel{\mathcal{D}}{=} X_{ij} e^{i\alpha}$ for all α), the second term disappears.

Asymptotic distribution of the fluctuations: The CLT

Theorem (Hachem-Kharouf-Najim-Silverstein '10) The following convergence holds true:

$$\frac{p}{\Theta_n}\left(\mathcal{I}_n(\rho) - \mathbb{E}\mathcal{I}_n(\rho)\right) \xrightarrow{\mathcal{D}} \mathcal{N}(0,1),$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where \mathcal{D} stands for convergence in distribution.

Proof of the CLT: The approach

REFORM (**RE**solvent **FOR**mula and **M**artingale).

• $\mathcal{I}_n(\rho) - \mathbb{E}\mathcal{I}_n(\rho)$ as a sum of increments of martingale.

・ロト・日本・モート モー うへで

Identification of the variance.

CLT for martingales

Theorem Let $\Gamma_1^{(n)}, \ldots, \Gamma_n^{(n)}$ be a sequence of increments of martingale with respect to a given filtration $\mathcal{F}_1^{(n)}, \ldots, \mathcal{F}_n^{(n)}$. Assume that there exists a sequence of nonnegative real numbers $(\Theta_n^2)_n$ uniformly bounded away from zero and from infinity. Assume that:

$$\sum_{j=1}^{n} \mathbb{E}\left(\Gamma_{j}^{(n)^{2}} | \mathcal{F}_{j-1}^{(n)}\right) - \Theta_{n}^{2} \xrightarrow{\mathcal{P}} 0.$$

The Lyapunov's condition

$$\exists \alpha > 0, \quad \frac{1}{\Theta_n^{2(1+\alpha)}} \sum_{j=1}^n \mathbb{E} |\Gamma_j^{(n)}|^{2+\alpha} \xrightarrow[n \to \infty]{} 0, \quad holds.$$

Then $\Theta_n^{-1} \sum_{j=1}^n \Gamma_j^{(n)}$ converges in distribution to $\mathcal{N}(0,1)$.

Sum of martingale differences

We have,

$${\mathcal I}_n - {\mathbb E} {\mathcal I}_n = \sum_{j=1}^n \left({\mathbb E}_j - {\mathbb E}_{j-1}
ight) \left(-\log(1+\xi_j)
ight) \stackrel{ riangle}{=} \sum_{j=1}^n {\mathsf F}_j,$$

where,

$$\xi_j = \frac{\eta_j^* Q_j \eta_j - \left(\frac{1}{n} \operatorname{Tr} Q_j + a_j^* Q_j a_j\right)}{1 + \frac{1}{n} \operatorname{Tr} Q_j + a_j^* Q_j a_j}.$$

with η_j , a_j are resp. the jth columns of matrices Σ_n and A_n , Q_j is the resolvent of the matrix $\Sigma_j \Sigma_j^*$ and \mathbb{E}_j stands for the conditional expectation with respect to the σ -algebra $\mathcal{F}_j^{(n)} = \sigma(x_1, \ldots, x_j)$.

Sum of the conditional variances

Some properties of the function log,

$$\sum_{j=1}^{n}\mathbb{E}_{j-1}\left(\left(\mathbb{E}_{j}-\mathbb{E}_{j-1}\right)\log(1+\xi_{j})\right)^{2}-\sum_{j=1}^{n}\mathbb{E}_{j-1}\left(\mathbb{E}_{j}\xi_{j}\right)^{2}\xrightarrow{\mathcal{P}}{p,n\rightarrow\infty}0$$

where (recall)

$$\xi_j = rac{\eta_j^* Q_j \eta_j - \left(rac{1}{n} \mathrm{Tr} \, Q_j + a_j^* Q_j a_j
ight)}{1 + rac{1}{n} \mathrm{Tr} \, Q_j + a_j^* Q_j a_j}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Study of the sum of conditional variances

Standard calculations remain the problem to the study of the asymptotic behavior of the quantities:

$$rac{1}{n} \mathrm{Tr} \, (\mathbb{E}_j Q_n)^2$$
 and $a_j^* (\mathbb{E}_j Q_n)^2 a_j$,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where Q_n is the resolvent of $\sum_n \sum_n^*$ matrix.

A good comprehension of the asymptotic behavior of these terms requires a specific study of bilinear forms of type $u_n^*Q(\rho)v_n$ where at least u_n or v_n is a given column of the deterministic mean matrix A_n .

If u_n and v_n are deterministics, Hachem-Loubaton-Najim-Vallet (preprint'10)

 $u_n^*Q(\rho)v_n \approx u_n^*T(\rho)v_n$

Asymptotic behavior of the bias:

Theorem (Hachem-Kharouf-Najim-Silverstein '10) *We have*,

$$p\left(\mathbb{E}\mathcal{I}_n(\rho)-V_n(\rho)\right)-\mathcal{B}_n(\rho)\xrightarrow[\rho,n\to\infty]{}0$$

where,

$$\mathcal{B}_n(\rho) = \kappa Cte(\rho, \delta, \tilde{\delta})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\kappa = \mathbb{E}|X_{11}|^4 - 2 - \vartheta^2.$

Outline of the proof of the bias term

The bias term is given by

$$\begin{split} \chi_n(\rho) &= p \left(\mathbb{E}\mathcal{I}_n(\rho) - V_n(\rho) \right) \\ &= p \int_{\rho}^{\infty} \frac{d}{d\omega} \mathbb{E} \log \det \left(\Sigma_n \Sigma_n^* + \omega I_p \right) d\omega \\ &\qquad -p \int_{\rho}^{\infty} \frac{d}{d\omega} \left(\int_{\mathbb{R}^+} \log \left(\lambda + \omega \right) \pi_n(d\lambda) \right) d\omega \\ &= \int_{\rho}^{\infty} \operatorname{Tr} \left(\mathbb{E}Q_n(\omega) - T_n(\omega) \right) d\omega. \end{split}$$

Then it remains to study the asymptotic behavior of $\text{Tr} (\mathbb{E}Q_n(\omega) - \mathcal{T}_n(\omega))$. We prove,

Tr
$$(\mathbb{E}Q_n(\omega) - T_n(\omega)) - \kappa Cte(\rho, \delta, \tilde{\delta}) \xrightarrow[n \to \infty]{} 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Case of a non-centered separable random matrix model

The non-centered separable case

$$\Sigma_n = \frac{1}{\sqrt{n}} D_n^{1/2} X_n \tilde{D}_n^{1/2} + A_n,$$

where, $D_n^{1/2}$ and $\tilde{D}_n^{1/2}$ are resp. $p \times p$ and $n \times n$ deterministic diagonal matrices with nonnegative entries. First-order asymptotic behavior

$$V_n(\rho) = \frac{1}{p} \log \det T_n^{-1}(\rho) + \frac{1}{p} \log \left(I_n + \delta_n \tilde{D}_n \right) - \frac{\rho n}{p} \delta_n \tilde{\delta}_n,$$

where, $\delta_n = \frac{1}{n} \text{Tr } T(\rho)$ and $\tilde{\delta}_n(\rho) = \frac{1}{n} \text{Tr } \tilde{T}(\rho)$, with

$$T_{n}(\rho) = \left(\rho\left(I_{p} + \tilde{\delta}_{n}D_{n}\right) + A_{n}\left(I_{n} + \delta_{n}\tilde{D}_{n}\right)^{-1}A_{n}^{*}\right)^{-1}$$
$$\tilde{T}_{n}(\rho) = \left(\rho\left(I_{n} + \delta_{n}\tilde{D}_{n}\right) + A_{n}^{*}\left(I_{p} + \tilde{\delta}_{n}D_{n}\right)^{-1}A_{n}\right)^{-1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

The non-centered separable case

The variance:

$$\begin{split} \Theta_n^2 &= -\log\left(\Omega_n(\rho) - \rho^2 \gamma \tilde{\gamma}\right) - \log\left(\bar{\Omega}_n(\rho) - |\vartheta|^2 \rho^2 \underline{\gamma \tilde{\gamma}}\right) \\ &+ \kappa \frac{\rho^2}{n^2} \sum_i d_i^2 t_{ii}^2 \sum_j \tilde{d}_j^2 \tilde{t}_{jj}^2 \end{split}$$

where:

$$\Omega_n(\rho) = \left(1 - \frac{1}{n} \operatorname{Tr} D_n^{1/2} T_n A_n \left(I_n + \delta \tilde{D}_n\right)^{-1} \tilde{D}_n \left(I_n + \delta \tilde{D}_n\right)^{-1} A_n^* T_n D_n^{1/2}\right)$$

and

$$\bar{\Omega}_n(\rho) = \left| 1 - \vartheta \frac{1}{n} \operatorname{Tr} D_n^{1/2} \bar{T}_n \bar{A}_n \left(I_n + \delta \tilde{D}_n \right)^{-1} \tilde{D}_n \left(I_n + \delta \tilde{D}_n \right)^{-1} A_n^* T_n D_n^{1/2} \right|$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Thank you !