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@ We will assume that K source signals are received by an
antenna array of M elements, and K < M. At time n, we receive

Yn=ASp+Vy,

with
o A=[a(f)),...,a(fk)] the M x K "steering vectors" matrix with
a(0y),...,a(@k) linearly independent.
o 8, =I[S1,,-..,Snx] the vector of non-observable transmitted
signals, assumed deterministic,
@ Vv, a gaussian white noise (zero mean, covariance 021 M).
@ 04,...,0k are the parameters of interest of the K sources, it can
be either frequencies, direction of arrival (DoA)...
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Introduction

@ We collect N observations of the previous model, stacked in
Yy =[y1,...,yn], and we can write

Yy =ASy+Vy

with Sy and Vyy built as Yy.
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Introduction

@ We collect N observations of the previous model, stacked in
Yy =[y1,...,yn], and we can write

Yy =ASy+Vy

with Sy and Vyy built as Yy.

The goal is to infer the angles 01, ...,0k from Yy. J

@ There are essentially two common methods:

o Maximum Likelihood (ML) estimation
@ Subspace method.
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Introduction

@ The ML estimator is given by
1
argmin ~ Tr (I — A(w) (A(w) *A(w)) 'A(w)*) YN Yy,
w

where A(w) is the matrix in which we have replaced [0y, ...,0k]
by the variable w = [w1, ..., wk].
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Introduction

@ The ML estimator is given by
1
argmin ~ Tr (I — A(w) (A(w) *A(w)) 'A(w)*) YN Yy,
w

where A(w) is the matrix in which we have replaced [0y, ...,0k]
by the variable w = [w1, ..., wk].

@ This estimator is consistent when M, N — oo, however, it
clearly requires a multidimensional optimization.
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@ The ML estimator is given by

argmin % Tr (I — A(w) (A(w) *A(w)) 'A(w)*) YN Yy,
w

where A(w) is the matrix in which we have replaced [0y, ...,0k]
by the variable w = [w1, ..., wk].

@ This estimator is consistent when M, N — oo, however, it
clearly requires a multidimensional optimization.

@ An alternative, requiring a monodimensional search, has been
found through the subspace method.
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Introduction

@ Assuming Sy has full rank K, then %AS NSJ*VA* has K non null
eigenvalues

0= Al,Nz e = AM—K,N < AM—K+1,N< L < AM,N-

We denote by Iy the projector onto the eigensubspace
associated with eigenvalue 0.
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@ Assuming Sy has full rank K, then %AS NSJ*VA* has K non null
eigenvalues
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We denote by Iy the projector onto the eigensubspace
associated with eigenvalue 0.

@ Since spanfa(f,),...,a(0x)} is also the eigenspace associated
with non null eigenvalues Ap/—x+1,n,--., AM,N, it is possible to
determine the (0y) =1, k-
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Introduction

@ Assuming Sy has full rank K, then %AS NSJ*VA* has K non null
eigenvalues

0= AI,N =...= AM—K,N < AM—K+1,N <...< AM,N-
We denote by Iy the projector onto the eigensubspace

associated with eigenvalue 0.

@ Since spanfa(f,),...,a(0x)} is also the eigenspace associated
with non null eigenvalues Ap/—x+1,n,--., AM,N, it is possible to
determine the (0y) =1, k-

MUSIC algorithm

The angles 03, .. .,0k are the (unique) solutions of the equation

7(0) :=a(0)*Mya(®) = 0.
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Introduction

© We denote by A} y <... < Ay n the eigenvalues of %YNYI*V, and
 N,...,0p v the associated eigenvectors.
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Introduction

© We denote by A} y <... < Ay n the eigenvalues of %YNYI*V, and
 N,...,0p v the associated eigenvectors.
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estimate function n(0) by

1raa(0) := a(0) *TIya(9),

with Ty = ¥} 5 @y v}, the projector onto the
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@ In the case where N — oo while M is constant, this estimator is
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Introduction

@ We denote by Ay y < ... < Ap n the eigenvalues of %YNY]*V, and
 N,...,0p v the associated eigenvectors.

o In practice, to estimate the angles, we only know Yy, and we
estimate function n(0) by

1raa(0) := a(0) *TIya(9),

with Iy = ¥ MK ay Ny  the pfojector E)nto the
eigensubspace associated with A; ,..., Ap—x N-

@ In the case where N — oo while M is constant, this estimator is
consistent because || %YNY;‘V - %ASNS}“VA* | — 0a.s.

@ However, when M, N — oo while cy = M/N — ¢ >0, the
previous convergence fails and the estimator is no more
consistent.
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Introduction

@ For convenience of notations, we rewrite the main model

s Yy B ASy Vy
N*=—F, N = —F—, N=—=

VN VN VN
so that 2 = By + Wy is the well-known gaussian information
plus noise model.
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Introduction

@ For convenience of notations, we rewrite the main model

5 Yy B ASy W Vy
N::=—F—) N = —/—) N= —F—,
VN VN VN

so that 2 = By + Wy is the well-known gaussian information
plus noise model.

Problem

Find a consistent estimator of the quadratic form dj IIxdy in the
case where

o supy IByll < oo,

o supy lldyll < oo,

@ Wy gaussiani.i.d (zero mean and elements having variance
a?/N),

@ M, N — ocowhile cy=M/N — ce (0,1).

22/68



Introduction

@ Some related works

23/68



@ Some related works

@ Mestre (2008) derived an estimator of the previous quadratic
form, in the case where the source signals matrix Sy is gaussian
i.i.d. In this case, X has the same distribution as
(AA* + 01Xy with Xy gaussian i.i.d.
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Introduction

@ Some related works

@ Mestre (2008) derived an estimator of the previous quadratic
form, in the case where the source signals matrix Sy is gaussian
i.i.d. In this case, X has the same distribution as
(AA* + 01Xy with Xy gaussian i.i.d.

o Couillet et al. (2010) extend this work to the case where Sy is
i.i.d but not necessarily gaussian.

@ For the remainder of the talk, we define some shortcuts

o N — oo stands for the previous regime of convergence
M, N — oo while cy = M/N — c€ (0,1).

o For two sequences of r.v (Xy), (Yn), Xy = Yy for Xy — Yy — O a.s
as N — oo
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Random matrix theory results

o Letfiy= 1\_1/122/1:1 5?lk,N the e.s.d of ZX %, and its Stieltjes
transform

A dav@) _ 1 5 -1 +
= = —Tr(ENZy -2l for ze C\R™.
my(2) fw Tz "M 1(ZnZy—2ly) " forz
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Random matrix theory results

o Letfiy= 1\_1/122/1:1 5?lk,N the e.s.d of ZX %, and its Stieltjes
transform

dianA 1
n(2) = fR Z’i(z) = TENZ - 2y~ for ze C\R™.
Theorem (Dozier-Silverstein (2007))
As N — oo, mpy(2) = my(2) with my(2) the Stieltjes transform of a

deterministic distribution uy, and unique solution to the equation
my(2) := 3; Tr' Ty (2) with

ByBY,
1+o02cymp(2)

-1
Tn(2) :=( —z(1+achmN(z))IM+02(1—cN)IM) )

v
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Random matrix theory results

o Letfiy= 1\_1/122/1:1 5?lk,N the e.s.d of ZX %, and its Stieltjes
transform

dianA 1
n(2) = fR Z’i(z) = TENZ - 2y~ for ze C\R™.
Theorem (Dozier-Silverstein (2007))
As N — oo, mpy(2) = my(2) with my(2) the Stieltjes transform of a

deterministic distribution uy, and unique solution to the equation
mn(2) == 2 Tr Ty (2) with

ByBY,
1+o02cymp(2)

-1
Tn(2) :=( —z(1+UchmN(z))IM+02(1—cN)IM) )

v

@ The same result holds for quadratic form of the resolvent
(Hachem et al.(2010)), for dy uniformly bounded in N,

dy(ENZy - 20y 'dy = dy T (2)dy.
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Random matrix theo!

@ The following result is a rephrasing of the result of
Dozier-Silverstein (2007) about the support of uy.
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Random matrix theory results

@ The following result is a rephrasing of the result of
Dozier-Silverstein (2007) about the support of uy.

o Let fy(w) = & Tr(ByB} — wly) ! and

dnw) =w(1- cfchfN(w))2 +0%(1-0) (1-c*enfv(w)).
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Random matrix theory results

@ The following result is a rephrasing of the result of
Dozier-Silverstein (2007) about the support of uy.

o Let fy(w) = & Tr(ByB} — wly) ! and

dnw) =w(1- cfchfN(w))2 +0%(1-0) (1-c*enfv(w)).

Theorem
The support supp(uy) is the union of 1 < Q < K+ 1 compact intervals

Q

supp(un) = | (x5 v Xg n1,
g=1

with {x;,_ N x:;_ N1g=1...,Q the positive local extrema of ¢ and Xy >0.

v
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Random matrix theory results

o Each eigenvalue 0,1, ..., Ap N Of BNB}*V belongs to an

: — +
interval | Wy N> Wy Nl
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Random matrix theo!

o Each eigenvalue 0,1, ..., Ap N Of BNB}*V belongs to an

: — +
interval | Wy N> Wy Nl
@ An eigenvalue Ay, y of ByBy, is said to be associated to the

cluster (X5 N x(; N if A v €] Wy n» w:;’ Nl
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Random matrix t

o Each eigenvalue 0,1, ..., Ap N Of BNB}*V belongs to an
interval | Wy, Ny :;, Nl

@ An eigenvalue Ay, y of ByBy, is said to be associated to the
cluster [qu,x 1if Ay Elw Wy, N +N[.

@ Two eigenvalues of ByB}, are "separated” if they are associated
with two different clusters.
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Random matrix tk

Each eigenvalue 0,1; y,..., Ay n of BNB}*V belongs to an
interval | Wy, Ny w:;, Nl
An eigenvalue A,y of ByBy, is said to be associated to the
cluster (X5 N x(; N if A v €] Wy n» w:;’ Nl

*

Two eigenvalues of ByB), are "separated" if they are associated
with two different clusters.

If the eigenvalues of ByB}, are sufficiently spaced, o and/or cy
are small enough, all the eigenvalues of ByB; are separated,
i.e we have exactly Q= K + 1 disjoint compact intervals in the
support of uy.
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Random matrix theory re

Assume

o 0 is separated from the other eigenvalues, i.e 0 is the unique
eigenvalue associated with [x y, X] y1,

o
-
|
8
|
8
)—‘+“

e
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Random matrix theory results

Assume

o 0 is separated from the other eigenvalues, i.e 0 is the unique
eigenvalue associated with [x y, X] y1,

o 31,1, 1, independent of N 5.t0 <t <infyx|  and

— o ¢t +
ty > 1] >supy Xy n,

S
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Random matrix theory results

Assume

o 0 is separated from the other eigenvalues, i.e 0 is the unique
eigenvalue associated with [x y, X] y1,
o 31,1, 1, independent of N 5.t0 <t <infyx|  and
t; >t >supyxi
then, for all large N, w.p.1,

. . . . _
MNy oAk NEIG,H [ and Ay-g+1,N> 8 .

o
-
|
8
|
8
ey
-
S
o+
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Consistent estimation of eigenspace

@ We want to estimate the quadratic form 7y := dy IIndy of the
noise subspace projector, under the assumption that 0 is the
unique eigenvalue associated to [x] ,, x| 5] for all large N.
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@ We want to estimate the quadratic form 7y := dy IIndy of the
noise subspace projector, under the assumption that 0 is the
unique eigenvalue associated to [x] ,, x| 5] for all large N.

@ No assumption is made on the number of sources K which
may scale-up with N or stay constant.
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Consistent estimation of eigenspace

@ We want to estimate the quadratic form 7y := dy IIndy of the
noise subspace projector, under the assumption that 0 is the
unique eigenvalue associated to [x] ,, x| 5] for all large N.

@ No assumption is made on the number of sources K which
may scale-up with N or stay constant.

@ From residues theorem, we get

1 -
nnN f _d;V(BNB]*V—/llM) 1d]\]d/l,

C27miJe

with €~ a clockwise oriented closed path enclosing 0 and no
other eigenvalue of ByBj,.
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Consistent estimation of eigenspace

We want to estimate the quadratic form ny := djIIydy of the
noise subspace projector, under the assumption that 0 is the
unique eigenvalue associated to [x] ,, x| 5] for all large N.
No assumption is made on the number of sources K which
may scale-up with N or stay constant.

From residues theorem, we get

1

nN:Z_ni

5{ d;, (ByBY — Aly) "' dydA,
.

with €~ a clockwise oriented closed path enclosing 0 and no
other eigenvalue of ByBj,.

The fundamental point is that we can find such a path which
can be parametrized by a function of my;, the Stieltjes
transform of py.
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Consistent estimation of eigenspace

@ Consider the function

wn(z) =z(1+ (72(:1\;m1\/(z))2 — crch(l + chNmN(z)) ze C\R™.
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Consistent estimation of eigenspace

@ Consider the function

wn(z) =z(1+ (72(:1\;m1\/(z))2 — crch(l + chNmN(z)) ze C\R™.

@ The following limit exists (Dozier-Silverstein (2007)), for xe R,

wy(x) := £EI}C wy (2).
Im{z}>0
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Consistent estimation of eigenspace

@ Consider the function

wn(z) =z(1+ (72(:1\;m1\/(z))2 — crch(l + chNmN(z)) ze C\R™.

@ The following limit exists (Dozier-Silverstein (2007)), for xe R,

wy(x) := £EI}C wy (2).
Im{z}>0

® We consider € = {wy () : x€ [1], ] 1} U{wn(0)* :x€ [17, £ 1}
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Consistent estimation of eigens

Im{w(x)}

wie) /4 0 \ w(t)) M Re{w(x)}
w(xy)=wy w(xi") = wf'
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Consistent estimation of eigenspace

@ This allows to rewrite the previous integral as

1 i _
NN = ;Im{f d;; (ByBY — wn(01y) lde’N(x)dx}.

b
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Consistent estimation of eigenspace

@ This allows to rewrite the previous integral as

1 f _
NN = ;Im{f d;; (ByBY — wn(01y) ldNu/N(x)dx}.

b

@ Dominated convergence can be applied to obtain

1 g _
NN = —11%11111{[ 1 dy (BNBy — wn(x+iy)Iy) lde’N(x+iy)dx}
Ty t

1 -1
=lim — dy (BNBy — wn (@) dywi(2)dz,
V10 27i ot N( NDN N M) NWN
with, for y >0, 0%, the boundary of the rectangle

Ry = {utiviue (e, 5, vel-yy}.
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Consistent estimation of eigenspace

@ This allows to rewrite the previous integral as

b

1 f _
NN = ;Im{f d;; (ByBY — wn(01y) ldNu/N(x)dx}.

@ Dominated convergence can be applied to obtain

1 g _
NN = —11%11111{[ 1 dy (BNBy — wn(x+iy)Iy) lde’N(x+iy)dx}
Ty t

1 -1
=lim — d% (ByB% — wy(2)1 dywy(2)dz,
V10 27i ot N( NDN N M) NWN

with, for y >0, 0%, the boundary of the rectangle

Ry = {utiviue (e, 5, vel-yy}.

@ The previous limit can be dropped, due to the holomorphy of
%, (ByBY, — wn(21y) ' dywy(2) on C\supp(un).
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Consistent estimation of eigenspace

o The previous integrand can be written as
gn (@) := % (ByBYy — wy (@)~ dywy(2)
wy(2)

=dyxT dy—.
NIN(Z) N1+020NmN(z)
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Consistent estimation of eigenspace

o The previous integrand can be written as

gn (@) := % (ByBYy — wy (@)~ dywy(2)
wy(2)

=dyxT dy—.
NIN(Z) N1+020NmN(z)

@ From the previous result, we have the following convergence
A 1 * *
my(2) = my(2) = MTrQN(Z) and dyTy(z)dy =dyQn(2)dy,

with Qu(2) = (EnZ3 —2lw) .
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Consistent estimation of eigenspace

o The previous integrand can be written as

gn (@) := % (ByBYy — wy (@)~ dywy(2)
wy(2)

=dyxT dy—.
NIN(Z) N1+020NmN(z)

@ From the previous result, we have the following convergence
A 1 * *
my(2) = my(2) = MTrQN(Z) and dyTy(z)dy =dyQn(2)dy,

with Qu(2) = (EnZ3 —2lw) .

iy (2)

o Let gn(2) :=dyQn (AN 1752 ;. We can show that

CNﬁZN (2

1 O ~
z_nifm; (gn(2) — &n(2)) dz| =0,

with Wy (2) = z(1 + 0% cnin(2)? — a?en (1 + a2 ey (2)).
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Consistent estimation of eigenspace

@ The new estimator is thus given by 7,6,y = 2%:1 5%@; an(a)dz.
This integral can be solved using residues theorem.
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Consistent estimation of eigenspace

@ The new estimator is thus given by 7,6,y = sz 5%@; an(a)dz.
This integral can be solved using residues theorem.

@ Since 0 is separated by assumption, we deduce from the
separation property that for N large enough, w.p.1

ANy Ak NERy and  Apygi1Ny .- AMN € Ry
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t estimation of eigenspace

@ The new estimator is thus given by 7,6,y = sz 3%@; an(a)dz.
This integral can be solved using residues theorem.

@ Since 0 is separated by assumption, we deduce from the
separation property that for N large enough, w.p.1

ANy Ak NERy and  Apygi1Ny .- AMN € Ry

@ Using argument principle, it is possible to show that for N large
enough, w.p.1

DNy, OM-k,NERy and Oy-g+1,N)-.-, OMN E Ry,

with @ ny <... < @p N the solutions of the equation
1+ a2cympy(x) =0.
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t estimation of eigenspace

The new estimator is thus given by ) ;¢ = sz 3%@; gn(z)dz.
This integral can be solved using residues theorem.

Since 0 is separated by assumption, we deduce from the
separation property that for N large enough, w.p.1

ANy Ak NERy and  Apygi1Ny .- AMN € Ry

Using argument principle, it is possible to show that for N large
enough, w.p.1

DNy, OM-k,NERy and Oy-g+1,N)-.-, OMN E Ry,
with @ ny <... < @p N the solutions of the equation
1+ a2cympy(x) =0.
PPN M ? N N . £
We obtain i7" = Y17 Sk ndpli vty ydi with (S n)
dependingon A y,..., A,y and @1 N, ..., Op,N-
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Numerical evaluations

@ We evaluate the estimator in the following context:
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Numerical evaluations

@ We evaluate the estimator in the following context:

° a(@) — \/LM 1, einsin(@)y o ei(M—l)nsin(G)]’
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@ We evaluate the estimator in the following context:
1 ein sin(0) = ei(M—l)zr sin(G)]

=_L
o source signals are AR(1) processes with correlation coefficient
of 0.9,
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Numerical evaluations

@ We evaluate the estimator in the following context:

__1 iz sin(0) i(M—-1)7sin(0)
9 a(@)—m[l,e ey € 1,
o source signals are AR(1) processes with correlation coefficient
0f0.9,

e M =20, N=40,
) K:2and61:16°,02:18°.
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Numerical evaluations

—v— Trad-MUSIC 4
—+— G-MUSIC
107 1 1 1 1
0 5 10 15 20 25 30

SNR

Figure: Mean of the MSE of 91 and éz versus SNR = 1010g(§)

67 /68



Numerical evaluations

Thank you for your attention.
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