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We will assume that K source signals are received by an

antenna array of M elements, and K < M . At time n, we receive

yn = Asn +vn,

with

A = [a(θ1), . . . ,a(θK )] the M ×K "steering vectors" matrix with

a(θ1), . . . ,a(θK ) linearly independent.

sn = [s1,n, . . . ,sn,K ] the vector of non-observable transmitted

signals, assumed deterministic,

vn a gaussian white noise (zero mean, covariance σ2IM ).

θ1, . . . ,θK are the parameters of interest of the K sources, it can

be either frequencies, direction of arrival (DoA)...
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We collect N observations of the previous model, stacked in

YN = [y1, . . . ,yN ], and we can write

YN = ASN +VN

with SN and VN built as YN .

The goal is to infer the angles θ1, . . . ,θK from YN .

There are essentially two common methods:

Maximum Likelihood (ML) estimation

Subspace method.
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The ML estimator is given by

argmin
ω

1

N
Tr

(

IM −A(ω)(A(ω)∗A(ω))−1A(ω)∗
)

YN Y∗
N ,

where A(ω) is the matrix in which we have replaced [θ1, . . . ,θK ]

by the variable ω= [ω1, . . . ,ωK ].

This estimator is consistent when M ,N →∞, however, it

clearly requires a multidimensional optimization.

An alternative, requiring a monodimensional search, has been

found through the subspace method.
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Assuming SN has full rank K , then 1
N

ASN S∗
N A∗ has K non null

eigenvalues

0 =λ1,N = . . . =λM−K ,N <λM−K+1,N < . . . <λM ,N .

We denote by ΠN the projector onto the eigensubspace

associated with eigenvalue 0.

Since span{a(θ1), . . . ,a(θK )} is also the eigenspace associated

with non null eigenvalues λM−K+1,N , . . . ,λM ,N , it is possible to

determine the (θk)k=1,...,K .

MUSIC algorithm

The angles θ1, . . . ,θK are the (unique) solutions of the equation

η(θ) := a(θ)∗ΠN a(θ) = 0.
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We denote by λ̂1,N ≤ . . . ≤ λ̂M ,N the eigenvalues of 1
N

YN Y∗
N , and

û1,N , . . . , ûM ,N the associated eigenvectors.

In practice, to estimate the angles, we only know YN , and we

estimate function η(θ) by

η̂trad(θ) := a(θ)∗Π̂N a(θ),

with Π̂N =
∑M−K

k=1
ûk,N û∗

k,N
the projector onto the

eigensubspace associated with λ̂1,N , . . . , λ̂M−K ,N .

In the case where N →∞ while M is constant, this estimator is

consistent because ‖ 1
N

YN Y∗
N − 1

N
ASN S∗

N A∗‖→ 0 a.s.

However, when M ,N →∞ while cN = M/N → c > 0, the

previous convergence fails and the estimator is no more

consistent.
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For convenience of notations, we rewrite the main model

ΣN :=
YNp

N
, BN :=

ASNp
N

, WN :=
VNp

N
,

so that ΣN = BN +WN is the well-known gaussian information

plus noise model.

Problem

Find a consistent estimator of the quadratic form d∗
NΠN dN in the

case where

supN ‖BN‖ <∞,

supN ‖dN‖ <∞,

WN gaussian i.i.d (zero mean and elements having variance

σ2/N),

M ,N →∞ while cN = M/N → c ∈ (0,1).
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Some related works

Mestre (2008) derived an estimator of the previous quadratic

form, in the case where the source signals matrix SN is gaussian

i.i.d. In this case, ΣN has the same distribution as

(AA∗+σ2IM )XN with XN gaussian i.i.d.

Couillet et al. (2010) extend this work to the case where SN is

i.i.d but not necessarily gaussian.

For the remainder of the talk, we define some shortcuts

N →∞ stands for the previous regime of convergence

M ,N →∞ while cN = M/N → c ∈ (0,1).

For two sequences of r.v (XN ), (YN ), XN ≍ YN for XN −YN → 0 a.s

as N →∞
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Let µ̂N = 1
M

∑M
k=1

δλ̂k,N
the e.s.d of ΣNΣ

∗
N , and its Stieltjes

transform

m̂N (z) :=
∫

R+

dµ̂N (λ)

λ−z
:=

1

M
Tr(ΣNΣ

∗
N −zIM )−1 for z ∈C\R+.

Theorem (Dozier-Silverstein (2007))

As N →∞, m̂N (z) ≍ mN (z) with mN (z) the Stieltjes transform of a

deterministic distribution µN , and unique solution to the equation

mN (z) := 1
M

TrTN (z) with

TN (z) :=
(

BN B∗
N

1+σ2cN mN (z)
−z(1+σ2cN mN (z))IM +σ2(1− cN )IM

)−1

.

The same result holds for quadratic form of the resolvent

(Hachem et al.(2010)), for dN uniformly bounded in N ,

d∗
N (ΣNΣ

∗
N −zIM )−1dN ≍ d∗

N TN (z)dN .
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The following result is a rephrasing of the result of

Dozier-Silverstein (2007) about the support of µN .

Let fN (w) = 1
M

Tr(BN B∗
N −wIM )−1 and

φN (w) = w
(

1−σ2cN fN (w)
)2 +σ2(1− c)

(

1−σ2cN fN (w)
)

.

Theorem

The support supp(µN ) is the union of 1 ≤ Q ≤ K +1 compact intervals

supp(µN ) =
Q
⋃

q=1

[x−
q,N ,x+

q,N ],

with {x−
q,N ,x+

q,N }q=1,...,Q the positive local extrema of φN and x−
1,N > 0.
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Each eigenvalue 0,λ1,N , . . . ,λM ,N of BN B∗
N belongs to an

interval ]w−
q,N ,w+

q,N [.

An eigenvalue λk,N of BN B∗
N is said to be associated to the

cluster [x−
q,N ,x+

q,N ] if λk,N ∈]w−
q,N ,w+

q,N [.

Two eigenvalues of BN B∗
N are "separated" if they are associated

with two different clusters.

If the eigenvalues of BN B∗
N are sufficiently spaced, σ and/or cN

are small enough, all the eigenvalues of BN B∗
N are separated,

i.e we have exactly Q = K +1 disjoint compact intervals in the

support of µN .
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Theorem

Assume

0 is separated from the other eigenvalues, i.e 0 is the unique

eigenvalue associated with [x−
1,N ,x+

1,N ],

∃ t−1 , t+1 , t−2 independent of N s.t 0 < t−1 < infN x−
1,N and

t−2 > t+1 > supN x+
1,N ,

then, for all large N, w.p.1,

λ̂1,N , . . . , λ̂M−K ,N ∈]t−1 , t+1 [ and λ̂M−K+1,N > t−2 .

0 t
−

1
x
−

1
x
+
2

x
+
1

t
+
1

t
−

2
x
−

2
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We want to estimate the quadratic form ηN := d∗
NΠN dN of the

noise subspace projector, under the assumption that 0 is the

unique eigenvalue associated to [x−
1,N ,x+

1,N ] for all large N .

No assumption is made on the number of sources K which

may scale-up with N or stay constant.

From residues theorem, we get

ηN =
1

2πi

∮

C −
d∗

N

(

BN B∗
N −λIM

)−1
dN dλ,

with C
− a clockwise oriented closed path enclosing 0 and no

other eigenvalue of BN B∗
N .

The fundamental point is that we can find such a path which

can be parametrized by a function of mN , the Stieltjes

transform of µN .
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Consider the function

wN (z) = z(1+σ2cN mN (z))2 −σ2cN (1+σ2cN mN (z)) z ∈C\R+.

The following limit exists (Dozier-Silverstein (2007)), for x ∈R,

wN (x) := lim
z→x

Im{z}>0

wN (z).

We consider C =
{

wN (x) : x ∈ [t−1 , t+1 ]
}

∪
{

wN (x)∗ : x ∈ [t−1 , t+1 ]
}

.
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Re{w(x)}

Im{w(x)}

0 λ1

w(x
−
1

)= w
−
1

w(x
+
1

)= w
+
1

w(t
−
1

) w(t
+
1

)

51 / 68



Introduction
Random matrix theory results

Consistent estimation of eigenspace
Numerical evaluations

This allows to rewrite the previous integral as

ηN =
1

π
Im

{
∫t+1

t−1

d∗
N

(

BN B∗
N −wN (x)IM

)−1
dN w′

N (x)dx

}

.

Dominated convergence can be applied to obtain

ηN =
1

π
lim
y↓0

Im

{
∫t+1

t−1

d∗
N

(

BN B∗
N −wN (x+ iy)IM

)−1
dN w′

N (x+ iy)dx

}

= lim
y↓0

1

2πi

∮

∂R
−
y

d∗
N

(

BN B∗
N −wN (z)IM

)−1
dN w′

N (z)dz,

with, for y > 0, ∂R
−
y the boundary of the rectangle

Ry =
{

u+ iv : u ∈ [t−1 , t+1 ],v ∈ [−y,y]
}

.

The previous limit can be dropped, due to the holomorphy of

d∗
N

(

BN B∗
N −wN (z)IM

)−1
dN w′

N (z) on C\supp(µN ).
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The previous integrand can be written as

gN (z) := d∗
N

(

BN B∗
N −wN (z)IM

)−1
dN w′

N (z)

= d∗
N TN (z)dN

w′
N (z)

1+σ2cN mN (z)
.

From the previous result, we have the following convergence

mN (z) ≍ m̂N (z) =
1

M
TrQN (z) and d∗

N TN (z)dN ≍ d∗
N QN (z)dN ,

with QN (z) = (ΣNΣ
∗
N −zIM )−1.

Let ĝN (z) := d∗
N QN (z)dN

ŵ′
N (z)

1+σ2cN m̂N (z)
. We can show that

∣

∣

∣

∣

∣

1

2πi

∮

∂R
−
y

(

gN (z)− ĝN (z)
)

dz

∣

∣

∣

∣

∣

≍ 0,

with ŵN (z) = z(1+σ2cN m̂N (z))2 −σ2cN (1+σ2cN m̂N (z)).
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The new estimator is thus given by η̂new = 1
2πi

∮

∂R
−
y

ĝN (z)dz.

This integral can be solved using residues theorem.

Since 0 is separated by assumption, we deduce from the

separation property that for N large enough, w.p.1

λ̂1,N , . . . , λ̂M−K ,N ∈Ry and λ̂M−K+1,N , . . . , λ̂M ,N 6∈Ry.

Using argument principle, it is possible to show that for N large

enough, w.p.1

ω̂1,N , . . . ,ω̂M−K ,N ∈Ry and ω̂M−K+1,N , . . . ,ω̂M ,N 6∈Ry,

with ω̂1,N ≤ . . . ≤ ω̂M ,N the solutions of the equation

1+σ2cN m̂N (x) = 0.

We obtain η̂new
N =

∑M
k=1

ξ̂k,N d∗
N ûk,N û∗

k,N
dN with (ξ̂k,N )

depending on λ̂1,N , . . . , λ̂M ,N and ω̂1,N , . . . ,ω̂M ,N .

58 / 68



Introduction
Random matrix theory results

Consistent estimation of eigenspace
Numerical evaluations

The new estimator is thus given by η̂new = 1
2πi

∮

∂R
−
y
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We evaluate the estimator in the following context:

a(θ) = 1p
M

[1,eiπsin(θ), . . . ,ei(M−1)πsin(θ)],

source signals are AR(1) processes with correlation coefficient

of 0.9,

M = 20, N = 40,

K = 2 and θ1 = 16◦, θ2 = 18◦.
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Figure: Mean of the MSE of θ̂1 and θ̂2 versus SNR = 10log( 1
σ2 )
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Thank you for your attention.
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