Eigenspace estimation for source localization using large random matrices

Pascal Vallet⁽¹⁾ Joint work with Philippe Loubaton⁽¹⁾ and Xavier Mestre⁽²⁾

(1) LabInfo IGM (CNRS-UMR 8049) / Université Paris-Est (2) Centre Tecnologic de Telecomunicacions de Catalunya (CTTC) / Barcelona

Table of Contents

- Introduction
- 2 Random matrix theory results
- Consistent estimation of eigenspace
- Mumerical evaluations

$$\mathbf{y}_n = \mathbf{A}\mathbf{s}_n + \mathbf{v}_n,$$

- $\mathbf{A} = [\mathbf{a}(\theta_1), \dots, \mathbf{a}(\theta_K)]$ the $M \times K$ "steering vectors" matrix with $\mathbf{a}(\theta_1), \dots, \mathbf{a}(\theta_K)$ linearly independent.
- $\mathbf{s}_n = [s_{1,n}, \dots, s_{n,K}]$ the vector of non-observable transmitted signals, assumed deterministic,
- \mathbf{v}_n a gaussian white noise (zero mean, covariance $\sigma^2 \mathbf{I}_M$).
- $\theta_1, ..., \theta_K$ are the parameters of interest of the K sources, it can be either frequencies, direction of arrival (DoA)...

$$\mathbf{y}_n = \mathbf{A}\mathbf{s}_n + \mathbf{v}_n,$$

- $\mathbf{A} = [\mathbf{a}(\theta_1), \dots, \mathbf{a}(\theta_K)]$ the $M \times K$ "steering vectors" matrix with $\mathbf{a}(\theta_1), \dots, \mathbf{a}(\theta_K)$ linearly independent.
- $\mathbf{s}_n = [s_{1,n}, \dots, s_{n,K}]$ the vector of non-observable transmitted signals, assumed deterministic,
- \mathbf{v}_n a gaussian white noise (zero mean, covariance $\sigma^2 \mathbf{I}_M$).
- $\theta_1, ..., \theta_K$ are the parameters of interest of the K sources, it can be either frequencies, direction of arrival (DoA)...

$$\mathbf{y}_n = \mathbf{A}\mathbf{s}_n + \mathbf{v}_n,$$

- $\mathbf{A} = [\mathbf{a}(\theta_1), \dots, \mathbf{a}(\theta_K)]$ the $M \times K$ "steering vectors" matrix with $\mathbf{a}(\theta_1), \dots, \mathbf{a}(\theta_K)$ linearly independent.
- $\mathbf{s}_n = [s_{1,n}, \dots, s_{n,K}]$ the vector of non-observable transmitted signals, assumed deterministic,
- \mathbf{v}_n a gaussian white noise (zero mean, covariance $\sigma^2 \mathbf{I}_M$).
- $\theta_1, ..., \theta_K$ are the parameters of interest of the K sources, it can be either frequencies, direction of arrival (DoA)...

$$\mathbf{y}_n = \mathbf{A}\mathbf{s}_n + \mathbf{v}_n,$$

- $\mathbf{A} = [\mathbf{a}(\theta_1), \dots, \mathbf{a}(\theta_K)]$ the $M \times K$ "steering vectors" matrix with $\mathbf{a}(\theta_1), \dots, \mathbf{a}(\theta_K)$ linearly independent.
- $\mathbf{s}_n = [s_{1,n}, \dots, s_{n,K}]$ the vector of non-observable transmitted signals, assumed deterministic,
- \mathbf{v}_n a gaussian white noise (zero mean, covariance $\sigma^2 \mathbf{I}_M$).
- $\theta_1, ..., \theta_K$ are the parameters of interest of the K sources, it can be either frequencies, direction of arrival (DoA)...

$$\mathbf{y}_n = \mathbf{A}\mathbf{s}_n + \mathbf{v}_n,$$

- $\mathbf{A} = [\mathbf{a}(\theta_1), ..., \mathbf{a}(\theta_K)]$ the $M \times K$ "steering vectors" matrix with $\mathbf{a}(\theta_1), ..., \mathbf{a}(\theta_K)$ linearly independent.
- $\mathbf{s}_n = [s_{1,n}, \dots, s_{n,K}]$ the vector of non-observable transmitted signals, assumed deterministic,
- \mathbf{v}_n a gaussian white noise (zero mean, covariance $\sigma^2 \mathbf{I}_M$).
- $\theta_1, ..., \theta_K$ are the parameters of interest of the K sources, it can be either frequencies, direction of arrival (DoA)...

• We collect N observations of the previous model, stacked in $\mathbf{Y}_N = [\mathbf{y}_1, \dots, \mathbf{y}_N]$, and we can write

$$\mathbf{Y}_N = \mathbf{AS}_N + \mathbf{V}_N$$

with S_N and V_N built as Y_N .

The goal is to infer the angles $\theta_1, ..., \theta_K$ from \mathbf{Y}_N .

- There are essentially two common methods:
 - Maximum Likelihood (ML) estimation
 - Subspace method.

• We collect N observations of the previous model, stacked in $\mathbf{Y}_N = [\mathbf{y}_1, \dots, \mathbf{y}_N]$, and we can write

$$\mathbf{Y}_N = \mathbf{AS}_N + \mathbf{V}_N$$

with S_N and V_N built as Y_N .

The goal is to infer the angles $\theta_1, ..., \theta_K$ from \mathbf{Y}_N .

- There are essentially two common methods:
 - Maximum Likelihood (ML) estimation
 - Subspace method.

• We collect N observations of the previous model, stacked in $\mathbf{Y}_N = [\mathbf{y}_1, \dots, \mathbf{y}_N]$, and we can write

$$\mathbf{Y}_N = \mathbf{AS}_N + \mathbf{V}_N$$

with S_N and V_N built as Y_N .

The goal is to infer the angles $\theta_1, ..., \theta_K$ from \mathbf{Y}_N .

- There are essentially two common methods:
 - Maximum Likelihood (ML) estimation
 - Subspace method.

• The ML estimator is given by

$$\underset{\boldsymbol{\omega}}{\operatorname{argmin}} \frac{1}{N} \operatorname{Tr} \left(\mathbf{I}_{M} - \mathbf{A}(\boldsymbol{\omega}) (\mathbf{A}(\boldsymbol{\omega})^{*} \mathbf{A}(\boldsymbol{\omega}))^{-1} \mathbf{A}(\boldsymbol{\omega})^{*} \right) \mathbf{Y}_{N} \mathbf{Y}_{N}^{*},$$

where $\mathbf{A}(\boldsymbol{\omega})$ is the matrix in which we have replaced $[\theta_1, \dots, \theta_K]$ by the variable $\boldsymbol{\omega} = [\omega_1, \dots, \omega_K]$.

- This estimator is consistent when $M, N \to \infty$, however, it clearly requires a multidimensional optimization.
- An alternative, requiring a monodimensional search, has been found through the subspace method.

The ML estimator is given by

$$\underset{\boldsymbol{\omega}}{\operatorname{argmin}} \frac{1}{N} \operatorname{Tr} \left(\mathbf{I}_{M} - \mathbf{A}(\boldsymbol{\omega}) (\mathbf{A}(\boldsymbol{\omega})^{*} \mathbf{A}(\boldsymbol{\omega}))^{-1} \mathbf{A}(\boldsymbol{\omega})^{*} \right) \mathbf{Y}_{N} \mathbf{Y}_{N}^{*},$$

where $\mathbf{A}(\boldsymbol{\omega})$ is the matrix in which we have replaced $[\theta_1, \dots, \theta_K]$ by the variable $\boldsymbol{\omega} = [\omega_1, \dots, \omega_K]$.

- This estimator is consistent when $M, N \to \infty$, however, it clearly requires a multidimensional optimization.
- An alternative, requiring a monodimensional search, has been found through the subspace method.

• The ML estimator is given by

$$\underset{\boldsymbol{\omega}}{\operatorname{argmin}} \frac{1}{N} \operatorname{Tr} \left(\mathbf{I}_{M} - \mathbf{A}(\boldsymbol{\omega}) (\mathbf{A}(\boldsymbol{\omega})^{*} \mathbf{A}(\boldsymbol{\omega}))^{-1} \mathbf{A}(\boldsymbol{\omega})^{*} \right) \mathbf{Y}_{N} \mathbf{Y}_{N}^{*},$$

where $\mathbf{A}(\boldsymbol{\omega})$ is the matrix in which we have replaced $[\theta_1, \dots, \theta_K]$ by the variable $\boldsymbol{\omega} = [\omega_1, \dots, \omega_K]$.

- This estimator is consistent when $M, N \to \infty$, however, it clearly requires a multidimensional optimization.
- An alternative, requiring a monodimensional search, has been found through the subspace method.

• Assuming S_N has full rank K, then $\frac{1}{N}AS_NS_N^*A^*$ has K non null eigenvalues

$$0 = \lambda_{1,N} = \dots = \lambda_{M-K,N} < \lambda_{M-K+1,N} < \dots < \lambda_{M,N}.$$

We denote by Π_N the projector onto the eigensubspace associated with eigenvalue 0.

• Since span{ $\mathbf{a}(\theta_1), \dots, \mathbf{a}(\theta_K)$ } is also the eigenspace associated with non null eigenvalues $\lambda_{M-K+1,N}, \dots, \lambda_{M,N}$, it is possible to determine the $(\theta_k)_{k=1,\dots,K}$.

MUSIC algorithm

The angles $\theta_1, \dots, \theta_K$ are the (unique) solutions of the equation

$$\eta(\theta) := \mathbf{a}(\theta)^* \mathbf{\Pi}_N \mathbf{a}(\theta) = 0$$

• Assuming S_N has full rank K, then $\frac{1}{N}AS_NS_N^*A^*$ has K non null eigenvalues

$$0 = \lambda_{1,N} = \dots = \lambda_{M-K,N} < \lambda_{M-K+1,N} < \dots < \lambda_{M,N}.$$

We denote by Π_N the projector onto the eigensubspace associated with eigenvalue 0.

• Since span{ $\mathbf{a}(\theta_1),\ldots,\mathbf{a}(\theta_K)$ } is also the eigenspace associated with non null eigenvalues $\lambda_{M-K+1,N},\ldots,\lambda_{M,N}$, it is possible to determine the $(\theta_k)_{k=1,\ldots,K}$.

MUSIC algorithm

The angles $\theta_1, \dots, \theta_K$ are the (unique) solutions of the equation

$$\eta(\theta) := \mathbf{a}(\theta)^* \mathbf{\Pi}_N \mathbf{a}(\theta) = 0$$

• Assuming S_N has full rank K, then $\frac{1}{N}AS_NS_N^*A^*$ has K non null eigenvalues

$$0 = \lambda_{1,N} = \dots = \lambda_{M-K,N} < \lambda_{M-K+1,N} < \dots < \lambda_{M,N}$$
.

We denote by Π_N the projector onto the eigensubspace associated with eigenvalue 0.

• Since span{ $\mathbf{a}(\theta_1), \dots, \mathbf{a}(\theta_K)$ } is also the eigenspace associated with non null eigenvalues $\lambda_{M-K+1,N}, \dots, \lambda_{M,N}$, it is possible to determine the $(\theta_k)_{k=1,\dots,K}$.

MUSIC algorithm

The angles $\theta_1, \dots, \theta_K$ are the (unique) solutions of the equation

$$\eta(\theta) := \mathbf{a}(\theta)^* \mathbf{\Pi}_N \mathbf{a}(\theta) = 0.$$

- We denote by $\hat{\lambda}_{1,N} \leq ... \leq \hat{\lambda}_{M,N}$ the eigenvalues of $\frac{1}{N} \mathbf{Y}_N \mathbf{Y}_N^*$, and $\hat{\mathbf{u}}_{1,N},...,\hat{\mathbf{u}}_{M,N}$ the associated eigenvectors.
- In practice, to estimate the angles, we only know \mathbf{Y}_N , and we estimate function $\eta(\theta)$ by

$$\hat{\boldsymbol{\eta}}_{trad}(\boldsymbol{\theta}) := \mathbf{a}(\boldsymbol{\theta})^* \hat{\boldsymbol{\Pi}}_N \mathbf{a}(\boldsymbol{\theta}),$$

- In the case where $N \to \infty$ while M is constant, this estimator is consistent because $\|\frac{1}{N}\mathbf{Y}_N\mathbf{Y}_N^* \frac{1}{N}\mathbf{A}\mathbf{S}_N\mathbf{S}_N^*\mathbf{A}^*\| \to 0$ a.s.
- However, when $M, N \to \infty$ while $c_N = M/N \to c > 0$, the previous convergence fails and the estimator is no more consistent.

- We denote by $\hat{\lambda}_{1,N} \leq ... \leq \hat{\lambda}_{M,N}$ the eigenvalues of $\frac{1}{N} \mathbf{Y}_N \mathbf{Y}_N^*$, and $\hat{\mathbf{u}}_{1,N},...,\hat{\mathbf{u}}_{M,N}$ the associated eigenvectors.
- In practice, to estimate the angles, we only know \mathbf{Y}_N , and we estimate function $\eta(\theta)$ by

$$\hat{\boldsymbol{\eta}}_{trad}(\theta) := \mathbf{a}(\theta)^* \hat{\boldsymbol{\Pi}}_N \mathbf{a}(\theta),$$

- In the case where $N \to \infty$ while M is constant, this estimator is consistent because $\|\frac{1}{N}\mathbf{Y}_N\mathbf{Y}_N^* \frac{1}{N}\mathbf{A}\mathbf{S}_N\mathbf{S}_N^*\mathbf{A}^*\| \to 0$ a.s.
- However, when $M, N \to \infty$ while $c_N = M/N \to c > 0$, the previous convergence fails and the estimator is no more consistent.

- We denote by $\hat{\lambda}_{1,N} \leq ... \leq \hat{\lambda}_{M,N}$ the eigenvalues of $\frac{1}{N} \mathbf{Y}_N \mathbf{Y}_N^*$, and $\hat{\mathbf{u}}_{1,N},...,\hat{\mathbf{u}}_{M,N}$ the associated eigenvectors.
- In practice, to estimate the angles, we only know \mathbf{Y}_N , and we estimate function $\eta(\theta)$ by

$$\hat{\boldsymbol{\eta}}_{trad}(\theta) := \mathbf{a}(\theta)^* \hat{\boldsymbol{\Pi}}_N \mathbf{a}(\theta),$$

- In the case where $N \to \infty$ while M is constant, this estimator is consistent because $\|\frac{1}{N}\mathbf{Y}_N\mathbf{Y}_N^* \frac{1}{N}\mathbf{A}\mathbf{S}_N\mathbf{S}_N^*\mathbf{A}^*\| \to 0$ a.s.
- However, when $M, N \to \infty$ while $c_N = M/N \to c > 0$, the previous convergence fails and the estimator is no more consistent.

- We denote by $\hat{\lambda}_{1,N} \leq ... \leq \hat{\lambda}_{M,N}$ the eigenvalues of $\frac{1}{N} \mathbf{Y}_N \mathbf{Y}_N^*$, and $\hat{\mathbf{u}}_{1,N},...,\hat{\mathbf{u}}_{M,N}$ the associated eigenvectors.
- In practice, to estimate the angles, we only know \mathbf{Y}_N , and we estimate function $\eta(\theta)$ by

$$\hat{\eta}_{trad}(\theta) := \mathbf{a}(\theta)^* \hat{\mathbf{\Pi}}_N \mathbf{a}(\theta),$$

- In the case where $N \to \infty$ while M is constant, this estimator is consistent because $\|\frac{1}{N}\mathbf{Y}_N\mathbf{Y}_N^* \frac{1}{N}\mathbf{A}\mathbf{S}_N\mathbf{S}_N^*\mathbf{A}^*\| \to 0$ a.s.
- However, when $M, N \to \infty$ while $c_N = M/N \to c > 0$, the previous convergence fails and the estimator is no more consistent.

For convenience of notations, we rewrite the main model

$$\Sigma_N := \frac{\mathbf{Y}_N}{\sqrt{N}}, \quad \mathbf{B}_N := \frac{\mathbf{AS}_N}{\sqrt{N}}, \quad \mathbf{W}_N := \frac{\mathbf{V}_N}{\sqrt{N}},$$

so that $\Sigma_N = \mathbf{B}_N + \mathbf{W}_N$ is the well-known gaussian information plus noise model.

Problem

Find a consistent estimator of the quadratic form $\mathbf{d}_N^*\mathbf{\Pi}_N\mathbf{d}_N$ in the case where

- $\sup_N \|\mathbf{B}_N\| < \infty$,
- $\sup_N \|\mathbf{d}_N\| < \infty$,
- \mathbf{W}_N gaussian i.i.d (zero mean and elements having variance σ^2/N),
- $M, N \rightarrow \infty$ while $c_N = M/N \rightarrow c \in (0, 1)$

For convenience of notations, we rewrite the main model

$$\Sigma_N := \frac{\mathbf{Y}_N}{\sqrt{N}}, \quad \mathbf{B}_N := \frac{\mathbf{AS}_N}{\sqrt{N}}, \quad \mathbf{W}_N := \frac{\mathbf{V}_N}{\sqrt{N}},$$

so that $\Sigma_N = \mathbf{B}_N + \mathbf{W}_N$ is the well-known gaussian information plus noise model.

Problem

Find a consistent estimator of the quadratic form $\mathbf{d}_N^* \mathbf{\Pi}_N \mathbf{d}_N$ in the case where

- $\sup_N \|\mathbf{B}_N\| < \infty$,
- $\sup_{N} \|\mathbf{d}_{N}\| < \infty$,
- \mathbf{W}_N gaussian i.i.d (zero mean and elements having variance σ^2/N),
- $M, N \rightarrow \infty$ while $c_N = M/N \rightarrow c \in (0, 1)$.

- Mestre (2008) derived an estimator of the previous quadratic form, in the case where the source signals matrix \mathbf{S}_N is gaussian i.i.d. In this case, $\mathbf{\Sigma}_N$ has the same distribution as $(\mathbf{A}\mathbf{A}^* + \sigma^2 \mathbf{I}_M)\mathbf{X}_N$ with \mathbf{X}_N gaussian i.i.d.
- Couillet et al. (2010) extend this work to the case where S_N is i.i.d but not necessarily gaussian.
- For the remainder of the talk, we define some shortcuts
 - $N \to \infty$ stands for the previous regime of convergence $M, N \to \infty$ while $c_N = M/N \to c \in (0, 1)$.
 - For two sequences of r.v (X_N) , (Y_N) , $X_N \simeq Y_N$ for $X_N Y_N \to 0$ a.s as $N \to \infty$

- Mestre (2008) derived an estimator of the previous quadratic form, in the case where the source signals matrix \mathbf{S}_N is gaussian i.i.d. In this case, $\mathbf{\Sigma}_N$ has the same distribution as $(\mathbf{A}\mathbf{A}^* + \sigma^2\mathbf{I}_M)\mathbf{X}_N$ with \mathbf{X}_N gaussian i.i.d.
- Couillet et al. (2010) extend this work to the case where S_N is i.i.d but not necessarily gaussian.
- For the remainder of the talk, we define some shortcuts
 - $N \to \infty$ stands for the previous regime of convergence $M, N \to \infty$ while $c_N = M/N \to c \in (0, 1)$.
 - For two sequences of r.v (X_N) , (Y_N) , $X_N \simeq Y_N$ for $X_N Y_N \to 0$ a.s as $N \to \infty$

- Mestre (2008) derived an estimator of the previous quadratic form, in the case where the source signals matrix \mathbf{S}_N is gaussian i.i.d. In this case, $\mathbf{\Sigma}_N$ has the same distribution as $(\mathbf{A}\mathbf{A}^* + \sigma^2\mathbf{I}_M)\mathbf{X}_N$ with \mathbf{X}_N gaussian i.i.d.
- Couillet et al. (2010) extend this work to the case where S_N is i.i.d but not necessarily gaussian.
- For the remainder of the talk, we define some shortcuts
 - $N \to \infty$ stands for the previous regime of convergence $M, N \to \infty$ while $c_N = M/N \to c \in (0, 1)$.
 - For two sequences of r.v (X_N) , (Y_N) , $X_N \simeq Y_N$ for $X_N Y_N \to 0$ a.s as $N \to \infty$

- Mestre (2008) derived an estimator of the previous quadratic form, in the case where the source signals matrix \mathbf{S}_N is gaussian i.i.d. In this case, $\mathbf{\Sigma}_N$ has the same distribution as $(\mathbf{A}\mathbf{A}^* + \sigma^2\mathbf{I}_M)\mathbf{X}_N$ with \mathbf{X}_N gaussian i.i.d.
- Couillet et al. (2010) extend this work to the case where S_N is i.i.d but not necessarily gaussian.
- For the remainder of the talk, we define some shortcuts
 - $N \to \infty$ stands for the previous regime of convergence $M, N \to \infty$ while $c_N = M/N \to c \in (0, 1)$.
 - For two sequences of r.v (X_N) , (Y_N) , $X_N \simeq Y_N$ for $X_N Y_N \to 0$ a.s as $N \to \infty$

- Mestre (2008) derived an estimator of the previous quadratic form, in the case where the source signals matrix \mathbf{S}_N is gaussian i.i.d. In this case, $\mathbf{\Sigma}_N$ has the same distribution as $(\mathbf{A}\mathbf{A}^* + \sigma^2 \mathbf{I}_M)\mathbf{X}_N$ with \mathbf{X}_N gaussian i.i.d.
- Couillet et al. (2010) extend this work to the case where S_N is i.i.d but not necessarily gaussian.
- For the remainder of the talk, we define some shortcuts
 - $N \to \infty$ stands for the previous regime of convergence $M, N \to \infty$ while $c_N = M/N \to c \in (0, 1)$.
 - For two sequences of r.v (X_N) , (Y_N) , $X_N \simeq Y_N$ for $X_N Y_N \to 0$ a.s as $N \to \infty$

Table of Contents

- Introduction
- 2 Random matrix theory results
- 3 Consistent estimation of eigenspace
- Mumerical evaluations

• Let $\hat{\mu}_N = \frac{1}{M} \sum_{k=1}^M \delta_{\hat{\lambda}_{k,N}}$ the e.s.d of $\Sigma_N \Sigma_N^*$, and its Stieltjes transform

$$\hat{m}_N(z) := \int_{\mathbb{R}^+} \frac{\mathrm{d}\hat{\mu}_N(\lambda)}{\lambda - z} := \frac{1}{M} \mathrm{Tr}(\mathbf{\Sigma}_N \mathbf{\Sigma}_N^* - z\mathbf{I}_M)^{-1} \text{ for } z \in \mathbb{C} \backslash \mathbb{R}^+.$$

Theorem (Dozier-Silverstein (2007)

As $N \to \infty$, $\hat{m}_N(z) \approx m_N(z)$ with $m_N(z)$ the Stieltjes transform of a deterministic distribution μ_N , and unique solution to the equation $m_N(z) := \frac{1}{M} \operatorname{Tr} \mathbf{T}_N(z)$ with

$$\mathbf{T}_{N}(z) := \left(\frac{\mathbf{B}_{N} \mathbf{B}_{N}^{*}}{1 + \sigma^{2} c_{N} m_{N}(z)} - z(1 + \sigma^{2} c_{N} m_{N}(z)) \mathbf{I}_{M} + \sigma^{2} (1 - c_{N}) \mathbf{I}_{M}\right)^{-1}.$$

• The same result holds for quadratic form of the resolvent (Hachem et al.(2010)), for \mathbf{d}_N uniformly bounded in N,

$$\mathbf{d}_N^*(\mathbf{\Sigma}_N\mathbf{\Sigma}_N^*-z\mathbf{I}_M)^{-1}\mathbf{d}_N \asymp \mathbf{d}_N^*\mathbf{T}_N(z)\mathbf{d}_N.$$

• Let $\hat{\mu}_N = \frac{1}{M} \sum_{k=1}^M \delta_{\hat{\lambda}_{k,N}}$ the e.s.d of $\Sigma_N \Sigma_N^*$, and its Stieltjes transform

$$\hat{m}_N(z) := \int_{\mathbb{R}^+} \frac{\mathrm{d}\hat{\mu}_N(\lambda)}{\lambda - z} := \frac{1}{M} \mathrm{Tr}(\boldsymbol{\Sigma}_N \boldsymbol{\Sigma}_N^* - z \mathbf{I}_M)^{-1} \text{ for } z \in \mathbb{C} \backslash \mathbb{R}^+.$$

Theorem (Dozier-Silverstein (2007))

As $N \to \infty$, $\hat{m}_N(z) \approx m_N(z)$ with $m_N(z)$ the Stieltjes transform of a deterministic distribution μ_N , and unique solution to the equation $m_N(z) := \frac{1}{M} \operatorname{Tr} \mathbf{T}_N(z)$ with

$$\mathbf{T}_{N}(z) := \left(\frac{\mathbf{B}_{N} \mathbf{B}_{N}^{*}}{1 + \sigma^{2} c_{N} m_{N}(z)} - z(1 + \sigma^{2} c_{N} m_{N}(z)) \mathbf{I}_{M} + \sigma^{2} (1 - c_{N}) \mathbf{I}_{M}\right)^{-1}.$$

• The same result holds for quadratic form of the resolvent (Hachem et al.(2010)), for \mathbf{d}_N uniformly bounded in N,

$$\mathbf{d}_N^*(\mathbf{\Sigma}_N\mathbf{\Sigma}_N^*-z\mathbf{I}_M)^{-1}\mathbf{d}_N \asymp \mathbf{d}_N^*\mathbf{T}_N(z)\mathbf{d}_N.$$

• Let $\hat{\mu}_N = \frac{1}{M} \sum_{k=1}^M \delta_{\hat{\lambda}_{k,N}}$ the e.s.d of $\Sigma_N \Sigma_N^*$, and its Stieltjes transform

$$\hat{m}_N(z) := \int_{\mathbb{R}^+} \frac{\mathrm{d}\hat{\mu}_N(\lambda)}{\lambda - z} := \frac{1}{M} \mathrm{Tr}(\boldsymbol{\Sigma}_N \boldsymbol{\Sigma}_N^* - z \mathbf{I}_M)^{-1} \text{ for } z \in \mathbb{C} \backslash \mathbb{R}^+.$$

Theorem (Dozier-Silverstein (2007))

As $N \to \infty$, $\hat{m}_N(z) \approx m_N(z)$ with $m_N(z)$ the Stieltjes transform of a deterministic distribution μ_N , and unique solution to the equation $m_N(z) := \frac{1}{M} \operatorname{Tr} \mathbf{T}_N(z)$ with

$$\mathbf{T}_{N}(z) := \left(\frac{\mathbf{B}_{N} \mathbf{B}_{N}^{*}}{1 + \sigma^{2} c_{N} m_{N}(z)} - z(1 + \sigma^{2} c_{N} m_{N}(z)) \mathbf{I}_{M} + \sigma^{2} (1 - c_{N}) \mathbf{I}_{M}\right)^{-1}.$$

• The same result holds for quadratic form of the resolvent (Hachem et al.(2010)), for \mathbf{d}_N uniformly bounded in N,

$$\mathbf{d}_N^* (\mathbf{\Sigma}_N \mathbf{\Sigma}_N^* - z \mathbf{I}_M)^{-1} \mathbf{d}_N \simeq \mathbf{d}_N^* \mathbf{T}_N(z) \mathbf{d}_N.$$

- The following result is a rephrasing of the result of Dozier-Silverstein (2007) about the support of μ_N .
- Let $f_N(w) = \frac{1}{M} \operatorname{Tr}(\mathbf{B}_N \mathbf{B}_N^* w \mathbf{I}_M)^{-1}$ and

$$\phi_N(w) = w(1 - \sigma^2 c_N f_N(w))^2 + \sigma^2 (1 - c)(1 - \sigma^2 c_N f_N(w))$$

Theorem

The support supp (μ_N) is the union of $1 \le Q \le K+1$ compact intervals

supp
$$(\mu_N) = \bigcup_{q=1}^{Q} [x_{q,N}^-, x_{q,N}^+]$$

with $\{x_{q,N}^-, x_{q,N}^+\}_{q=1,\dots,Q}$ the positive local extrema of ϕ_N and $x_{1,N}^- > 0$.

- The following result is a rephrasing of the result of Dozier-Silverstein (2007) about the support of μ_N .
- Let $f_N(w) = \frac{1}{M} \operatorname{Tr}(\mathbf{B}_N \mathbf{B}_N^* w \mathbf{I}_M)^{-1}$ and

$$\phi_N(w) = w (1 - \sigma^2 c_N f_N(w))^2 + \sigma^2 (1 - c) (1 - \sigma^2 c_N f_N(w)).$$

Theorem

The support supp (μ_N) is the union of $1 \le Q \le K+1$ compact intervals

$$\mathrm{supp}(\mu_N) = \bigcup_{q=1}^{Q} [x_{q,N}^-, x_{q,N}^+],$$

with $\{x_{q,N}^-, x_{q,N}^+\}_{q=1,\dots,Q}$ the positive local extrema of ϕ_N and $x_{1,N}^- > 0$.

- The following result is a rephrasing of the result of Dozier-Silverstein (2007) about the support of μ_N .
- Let $f_N(w) = \frac{1}{M} \operatorname{Tr}(\mathbf{B}_N \mathbf{B}_N^* w \mathbf{I}_M)^{-1}$ and

$$\phi_N(w) = w(1 - \sigma^2 c_N f_N(w))^2 + \sigma^2 (1 - c) (1 - \sigma^2 c_N f_N(w)).$$

Theorem

The support supp (μ_N) is the union of $1 \le Q \le K + 1$ compact intervals

$$supp(\mu_N) = \bigcup_{q=1}^{Q} [x_{q,N}^-, x_{q,N}^+],$$

with $\{x_{q,N}^-, x_{q,N}^+\}_{q=1,\dots,Q}$ the positive local extrema of ϕ_N and $x_{1,N}^- > 0$.

- Each eigenvalue $0, \lambda_{1,N}, ..., \lambda_{M,N}$ of $\mathbf{B}_N \mathbf{B}_N^*$ belongs to an interval $]w_{a,N}^-, w_{a,N}^+[$.
- An eigenvalue $\lambda_{k,N}$ of $\mathbf{B}_N \mathbf{B}_N^*$ is said to be associated to the cluster $[x_{q,N}^-, x_{q,N}^+]$ if $\lambda_{k,N} \in]w_{q,N}^-, w_{q,N}^+[$.
- Two eigenvalues of $\mathbf{B}_N \mathbf{B}_N^*$ are "separated" if they are associated with two different clusters.
- If the eigenvalues of $\mathbf{B}_N \mathbf{B}_N^*$ are sufficiently spaced, σ and/or c_N are small enough, all the eigenvalues of $\mathbf{B}_N \mathbf{B}_N^*$ are separated, i.e we have exactly Q = K + 1 disjoint compact intervals in the support of μ_N .

- Each eigenvalue $0, \lambda_{1,N}, ..., \lambda_{M,N}$ of $\mathbf{B}_N \mathbf{B}_N^*$ belongs to an interval $]w_{a,N}^-, w_{a,N}^+[$.
- An eigenvalue $\lambda_{k,N}$ of $\mathbf{B}_N \mathbf{B}_N^*$ is said to be associated to the cluster $[x_{q,N}^-, x_{q,N}^+]$ if $\lambda_{k,N} \in]w_{q,N}^-, w_{q,N}^+[$.
- Two eigenvalues of $\mathbf{B}_N \mathbf{B}_N^*$ are "separated" if they are associated with two different clusters.
- If the eigenvalues of $\mathbf{B}_N \mathbf{B}_N^*$ are sufficiently spaced, σ and/or c_N are small enough, all the eigenvalues of $\mathbf{B}_N \mathbf{B}_N^*$ are separated, i.e we have exactly Q = K + 1 disjoint compact intervals in the support of μ_N .

- Each eigenvalue $0, \lambda_{1,N}, ..., \lambda_{M,N}$ of $\mathbf{B}_N \mathbf{B}_N^*$ belongs to an interval $]w_{a,N}^-, w_{a,N}^+[$.
- An eigenvalue $\lambda_{k,N}$ of $\mathbf{B}_N \mathbf{B}_N^*$ is said to be associated to the cluster $[x_{q,N}^-, x_{q,N}^+]$ if $\lambda_{k,N} \in]w_{q,N}^-, w_{q,N}^+[$.
- Two eigenvalues of $\mathbf{B}_N \mathbf{B}_N^*$ are "separated" if they are associated with two different clusters.
- If the eigenvalues of $\mathbf{B}_N \mathbf{B}_N^*$ are sufficiently spaced, σ and/or c_N are small enough, all the eigenvalues of $\mathbf{B}_N \mathbf{B}_N^*$ are separated, i.e we have exactly Q = K + 1 disjoint compact intervals in the support of μ_N .

- Each eigenvalue $0, \lambda_{1,N}, ..., \lambda_{M,N}$ of $\mathbf{B}_N \mathbf{B}_N^*$ belongs to an interval $w_{a,N}^-, w_{a,N}^+$.
- An eigenvalue $\lambda_{k,N}$ of $\mathbf{B}_N \mathbf{B}_N^*$ is said to be associated to the cluster $[x_{q,N}^-, x_{q,N}^+]$ if $\lambda_{k,N} \in]w_{q,N}^-, w_{q,N}^+[$.
- Two eigenvalues of $\mathbf{B}_N \mathbf{B}_N^*$ are "separated" if they are associated with two different clusters.
- If the eigenvalues of $\mathbf{B}_N \mathbf{B}_N^*$ are sufficiently spaced, σ and/or c_N are small enough, all the eigenvalues of $\mathbf{B}_N \mathbf{B}_N^*$ are separated, i.e we have exactly Q = K + 1 disjoint compact intervals in the support of μ_N .

Theorem

Assume

- 0 is separated from the other eigenvalues, i.e 0 is the unique eigenvalue associated with $[x_{1N}^-, x_{1N}^+]$,
- $\exists t_1^-, t_1^+, t_2^-$ independent of N s.t $0 < t_1^- < \inf_N x_{1,N}^-$ and $t_2^- > t_1^+ > \sup_N x_{1,N}^+$,

then, for all large N, w.p.1,

$$\hat{\lambda}_{1,N}, \dots, \hat{\lambda}_{M-K,N} \in]t_1^-, t_1^+[$$
 and $\hat{\lambda}_{M-K+1,N} > t_2^-$

Theorem

Assume

- 0 is separated from the other eigenvalues, i.e 0 is the unique eigenvalue associated with $[x_{1N}^-, x_{1N}^+]$,
- $\exists t_1^-, t_1^+, t_2^-$ independent of $N \ s.t \ 0 < t_1^- < \inf_N x_{1,N}^-$ and $t_2^- > t_1^+ > \sup_N x_{1,N}^+,$

then, for all large N, w.p.1,

$$\hat{\lambda}_{1,N}, \dots, \hat{\lambda}_{M-K,N} \in]t_1^-, t_1^+[$$
 and $\hat{\lambda}_{M-K+1,N} > t_2^-.$

Theorem

Assume

- 0 is separated from the other eigenvalues, i.e 0 is the unique eigenvalue associated with $[x_{1N}^-, x_{1N}^+]$,
- $\exists t_1^-, t_1^+, t_2^-$ independent of $N \ s.t \ 0 < t_1^- < \inf_N x_{1,N}^-$ and $t_2^- > t_1^+ > \sup_N x_{1,N}^+,$

then, for all large N, w.p.1,

$$\hat{\lambda}_{1,N},...,\hat{\lambda}_{M-K,N} \in]t_1^-,t_1^+[and \hat{\lambda}_{M-K+1,N} > t_2^-.$$

Table of Contents

- Introduction
- 2 Random matrix theory results
- 3 Consistent estimation of eigenspace
- Mumerical evaluations

- We want to estimate the quadratic form $\eta_N := \mathbf{d}_N^* \mathbf{\Pi}_N \mathbf{d}_N$ of the noise subspace projector, **under the assumption that** 0 **is the unique eigenvalue associated to** $[x_{1,N}^-, x_{1,N}^+]$ **for all large** N.
- No assumption is made on the number of sources K which may scale-up with N or stay constant.
- From residues theorem, we get

$$\eta_N = \frac{1}{2\pi \mathbf{i}} \oint_{\mathscr{C}^-} \mathbf{d}_N^* (\mathbf{B}_N \mathbf{B}_N^* - \lambda \mathbf{I}_M)^{-1} \mathbf{d}_N d\lambda,$$

with \mathscr{C}^- a clockwise oriented closed path enclosing 0 and no other eigenvalue of $\mathbf{B}_N \mathbf{B}_N^*$.

• The fundamental point is that we can find such a path which can be parametrized by a function of m_N , the Stieltjes transform of μ_N .

- We want to estimate the quadratic form $\eta_N := \mathbf{d}_N^* \mathbf{\Pi}_N \mathbf{d}_N$ of the noise subspace projector, under the assumption that 0 is the unique eigenvalue associated to $[x_{1,N}^-, x_{1,N}^+]$ for all large N.
- No assumption is made on the number of sources K which may scale-up with N or stay constant.
- From residues theorem, we get

$$\eta_N = \frac{1}{2\pi \mathbf{i}} \oint_{\mathscr{C}^-} \mathbf{d}_N^* (\mathbf{B}_N \mathbf{B}_N^* - \lambda \mathbf{I}_M)^{-1} \mathbf{d}_N d\lambda,$$

- with \mathscr{C}^- a clockwise oriented closed path enclosing 0 and no other eigenvalue of $\mathbf{B}_N \mathbf{B}_N^*$.
- The fundamental point is that we can find such a path which can be parametrized by a function of m_N , the Stieltjes transform of μ_N .

- We want to estimate the quadratic form $\eta_N := \mathbf{d}_N^* \mathbf{\Pi}_N \mathbf{d}_N$ of the noise subspace projector, under the assumption that 0 is the unique eigenvalue associated to $[x_{1,N}^-, x_{1,N}^+]$ for all large N.
- No assumption is made on the number of sources K which may scale-up with N or stay constant.
- From residues theorem, we get

$$\eta_N = \frac{1}{2\pi \mathbf{i}} \oint_{\mathscr{C}^-} \mathbf{d}_N^* (\mathbf{B}_N \mathbf{B}_N^* - \lambda \mathbf{I}_M)^{-1} \, \mathbf{d}_N \mathrm{d}\lambda,$$

with \mathscr{C}^- a clockwise oriented closed path enclosing 0 and no other eigenvalue of $\mathbf{B}_N \mathbf{B}_N^*$.

• The fundamental point is that we can find such a path which can be parametrized by a function of m_N , the Stieltjes transform of μ_N .

- We want to estimate the quadratic form $\eta_N := \mathbf{d}_N^* \mathbf{\Pi}_N \mathbf{d}_N$ of the noise subspace projector, under the assumption that 0 is the unique eigenvalue associated to $[x_{1,N}^-, x_{1,N}^+]$ for all large N.
- No assumption is made on the number of sources K which may scale-up with N or stay constant.
- From residues theorem, we get

$$\eta_N = \frac{1}{2\pi \mathbf{i}} \oint_{\mathscr{C}^-} \mathbf{d}_N^* (\mathbf{B}_N \mathbf{B}_N^* - \lambda \mathbf{I}_M)^{-1} \, \mathbf{d}_N \mathrm{d}\lambda,$$

with \mathscr{C}^- a clockwise oriented closed path enclosing 0 and no other eigenvalue of $\mathbf{B}_N \mathbf{B}_N^*$.

• The fundamental point is that we can find such a path which can be parametrized by a function of m_N , the Stieltjes transform of μ_N .

Consider the function

$$w_N(z) = z(1+\sigma^2c_Nm_N(z))^2 - \sigma^2c_N(1+\sigma^2c_Nm_N(z)) \quad z \in \mathbb{C} \backslash \mathbb{R}^+.$$

• The following limit exists (Dozier-Silverstein (2007)), for $x \in \mathbb{R}$,

$$w_N(x) := \lim_{\substack{z \to x \\ \text{Im}\{z\} > 0}} w_N(z).$$

• We consider $\mathcal{C} = \{w_N(x) : x \in [t_1^-, t_1^+]\} \cup \{w_N(x)^* : x \in [t_1^-, t_1^+]\}.$

Consider the function

$$w_N(z) = z(1+\sigma^2c_Nm_N(z))^2 - \sigma^2c_N(1+\sigma^2c_Nm_N(z)) \quad z \in \mathbb{C} \backslash \mathbb{R}^+.$$

• The following limit exists (Dozier-Silverstein (2007)), for $x \in \mathbb{R}$,

$$w_N(x) := \lim_{\substack{z \to x \\ \text{Im}\{z\} > 0}} w_N(z).$$

• We consider $\mathcal{C} = \{ w_N(x) : x \in [t_1^-, t_1^+] \} \cup \{ w_N(x)^* : x \in [t_1^-, t_1^+] \}.$

Consider the function

$$w_N(z) = z(1+\sigma^2c_Nm_N(z))^2 - \sigma^2c_N(1+\sigma^2c_Nm_N(z)) \quad z \in \mathbb{C}\backslash \mathbb{R}^+.$$

• The following limit exists (Dozier-Silverstein (2007)), for $x \in \mathbb{R}$,

$$w_N(x) := \lim_{\substack{z \to x \\ \text{Im}\{z\} > 0}} w_N(z).$$

• We consider $\mathcal{C} = \{ w_N(x) : x \in [t_1^-, t_1^+] \} \cup \{ w_N(x)^* : x \in [t_1^-, t_1^+] \}.$

This allows to rewrite the previous integral as

$$\eta_N = \frac{1}{\pi} \operatorname{Im} \left\{ \int_{t_1^-}^{t_1^+} \mathbf{d}_N^* \left(\mathbf{B}_N \mathbf{B}_N^* - w_N(x) \mathbf{I}_M \right)^{-1} \mathbf{d}_N w_N'(x) \mathrm{d}x \right\}.$$

Dominated convergence can be applied to obtain

$$\eta_{N} = \frac{1}{\pi} \lim_{y \downarrow 0} \operatorname{Im} \left\{ \int_{t_{1}^{-}}^{t_{1}^{+}} \mathbf{d}_{N}^{*} \left(\mathbf{B}_{N} \mathbf{B}_{N}^{*} - w_{N}(x + \mathbf{i}y) \mathbf{I}_{M} \right)^{-1} \mathbf{d}_{N} w_{N}'(x + \mathbf{i}y) dx \right\}$$

$$= \lim_{y \downarrow 0} \frac{1}{2\pi \mathbf{i}} \oint_{\partial \mathcal{R}_{y}^{-}} \mathbf{d}_{N}^{*} \left(\mathbf{B}_{N} \mathbf{B}_{N}^{*} - w_{N}(z) \mathbf{I}_{M} \right)^{-1} \mathbf{d}_{N} w_{N}'(z) dz,$$

with, for y > 0, $\partial \mathcal{R}_{y}^{-}$ the boundary of the rectangle

$$\mathcal{R}_{y} = \left\{ u + \mathbf{i}v : u \in [t_{1}^{-}, t_{1}^{+}], v \in [-y, y] \right\}$$

• The previous limit can be dropped, due to the holomorphy of $\mathbf{d}_N^* (\mathbf{B}_N \mathbf{B}_N^* - w_N(z) \mathbf{I}_M)^{-1} \mathbf{d}_N w_N'(z)$ on $\mathbb{C} \setminus \text{supp}(\mu_N)$.

This allows to rewrite the previous integral as

$$\eta_N = \frac{1}{\pi} \operatorname{Im} \left\{ \int_{t_1^-}^{t_1^+} \mathbf{d}_N^* \left(\mathbf{B}_N \mathbf{B}_N^* - w_N(x) \mathbf{I}_M \right)^{-1} \mathbf{d}_N w_N'(x) \mathrm{d}x \right\}.$$

Dominated convergence can be applied to obtain

$$\eta_{N} = \frac{1}{\pi} \lim_{y \downarrow 0} \operatorname{Im} \left\{ \int_{t_{1}^{-}}^{t_{1}^{+}} \mathbf{d}_{N}^{*} \left(\mathbf{B}_{N} \mathbf{B}_{N}^{*} - w_{N}(x + \mathbf{i}y) \mathbf{I}_{M} \right)^{-1} \mathbf{d}_{N} w_{N}'(x + \mathbf{i}y) dx \right\}$$

$$= \lim_{y \downarrow 0} \frac{1}{2\pi \mathbf{i}} \oint_{\partial \mathcal{R}_{y}^{-}} \mathbf{d}_{N}^{*} \left(\mathbf{B}_{N} \mathbf{B}_{N}^{*} - w_{N}(z) \mathbf{I}_{M} \right)^{-1} \mathbf{d}_{N} w_{N}'(z) dz,$$

with, for y > 0, $\partial \mathcal{R}_{y}^{-}$ the boundary of the rectangle

$$\mathcal{R}_y = \{ u + \mathbf{i}v : u \in [t_1^-, t_1^+], v \in [-y, y] \}.$$

• The previous limit can be dropped, due to the holomorphy of $\mathbf{d}_N^* (\mathbf{B}_N \mathbf{B}_N^* - w_N(z) \mathbf{I}_M)^{-1} \mathbf{d}_N w_N'(z)$ on $\mathbb{C} \setminus \text{supp}(\mu_N)$.

This allows to rewrite the previous integral as

$$\eta_N = \frac{1}{\pi} \operatorname{Im} \left\{ \int_{t_1^-}^{t_1^+} \mathbf{d}_N^* \left(\mathbf{B}_N \mathbf{B}_N^* - w_N(x) \mathbf{I}_M \right)^{-1} \mathbf{d}_N w_N'(x) dx \right\}.$$

Dominated convergence can be applied to obtain

$$\eta_{N} = \frac{1}{\pi} \lim_{y \downarrow 0} \operatorname{Im} \left\{ \int_{t_{1}^{-}}^{t_{1}^{+}} \mathbf{d}_{N}^{*} \left(\mathbf{B}_{N} \mathbf{B}_{N}^{*} - w_{N}(x + \mathbf{i}y) \mathbf{I}_{M} \right)^{-1} \mathbf{d}_{N} w_{N}'(x + \mathbf{i}y) dx \right\}$$

$$= \lim_{y \downarrow 0} \frac{1}{2\pi \mathbf{i}} \oint_{\partial \mathcal{R}_{y}^{-}} \mathbf{d}_{N}^{*} \left(\mathbf{B}_{N} \mathbf{B}_{N}^{*} - w_{N}(z) \mathbf{I}_{M} \right)^{-1} \mathbf{d}_{N} w_{N}'(z) dz,$$

with, for y > 0, $\partial \mathcal{R}_{y}^{-}$ the boundary of the rectangle

$$\mathcal{R}_{y} = \{ u + \mathbf{i}v : u \in [t_{1}^{-}, t_{1}^{+}], v \in [-y, y] \}.$$

• The previous limit can be dropped, due to the holomorphy of $\mathbf{d}_N^* (\mathbf{B}_N \mathbf{B}_N^* - w_N(z) \mathbf{I}_M)^{-1} \mathbf{d}_N w_N'(z)$ on $\mathbb{C} \setminus \text{supp}(\mu_N)$.

The previous integrand can be written as

$$\begin{split} g_N(z) &:= \mathbf{d}_N^* \left(\mathbf{B}_N \mathbf{B}_N^* - w_N(z) \mathbf{I}_M \right)^{-1} \mathbf{d}_N w_N'(z) \\ &= \mathbf{d}_N^* \mathbf{T}_N(z) \mathbf{d}_N \frac{w_N'(z)}{1 + \sigma^2 c_N m_N(z)}. \end{split}$$

• From the previous result, we have the following convergence

$$m_N(z) \approx \hat{m}_N(z) = \frac{1}{M} \operatorname{Tr} \mathbf{Q}_N(z)$$
 and $\mathbf{d}_N^* \mathbf{T}_N(z) \mathbf{d}_N \approx \mathbf{d}_N^* \mathbf{Q}_N(z) \mathbf{d}_N$, with $\mathbf{Q}_N(z) = (\mathbf{\Sigma}_N \mathbf{\Sigma}_N^* - z \mathbf{I}_M)^{-1}$.

• Let $\hat{g}_N(z) := \mathbf{d}_N^* \mathbf{Q}_N(z) \mathbf{d}_N \frac{\hat{u}_N'(z)}{1 + \sigma^2 c_N \hat{m}_N(z)}$. We can show that

$$\left|\frac{1}{2\pi \mathbf{i}}\oint_{\partial \mathcal{R}_y^-} \left(g_N(z) - \hat{g}_N(z)\right) dz\right| \approx 0,$$

with
$$\hat{w}_N(z) = z(1 + \sigma^2 c_N \hat{m}_N(z))^2 - \sigma^2 c_N (1 + \sigma^2 c_N \hat{m}_N(z))^2$$

The previous integrand can be written as

$$g_N(z) := \mathbf{d}_N^* \left(\mathbf{B}_N \mathbf{B}_N^* - w_N(z) \mathbf{I}_M \right)^{-1} \mathbf{d}_N w_N'(z)$$
$$= \mathbf{d}_N^* \mathbf{T}_N(z) \mathbf{d}_N \frac{w_N'(z)}{1 + \sigma^2 c_N m_N(z)}.$$

From the previous result, we have the following convergence

$$m_N(z) \simeq \hat{m}_N(z) = \frac{1}{M} \operatorname{Tr} \mathbf{Q}_N(z)$$
 and $\mathbf{d}_N^* \mathbf{T}_N(z) \mathbf{d}_N \simeq \mathbf{d}_N^* \mathbf{Q}_N(z) \mathbf{d}_N$, with $\mathbf{Q}_N(z) = (\mathbf{\Sigma}_N \mathbf{\Sigma}_N^* - z \mathbf{I}_M)^{-1}$.

• Let $\hat{g}_N(z) := \mathbf{d}_N^* \mathbf{Q}_N(z) \mathbf{d}_N \frac{\hat{u}_N'(z)}{1 + \sigma^2 c_N \hat{m}_N(z)}$. We can show that

$$\left|\frac{1}{2\pi \mathbf{i}}\oint_{\partial\mathcal{R}_{y}^{-}}\left(g_{N}(z)-\hat{g}_{N}(z)\right)\mathrm{d}z\right|\approx0,$$

with
$$\hat{w}_N(z) = z(1 + \sigma^2 c_N \hat{m}_N(z))^2 - \sigma^2 c_N (1 + \sigma^2 c_N \hat{m}_N(z))$$

The previous integrand can be written as

$$g_N(z) := \mathbf{d}_N^* \left(\mathbf{B}_N \mathbf{B}_N^* - w_N(z) \mathbf{I}_M \right)^{-1} \mathbf{d}_N w_N'(z)$$
$$= \mathbf{d}_N^* \mathbf{T}_N(z) \mathbf{d}_N \frac{w_N'(z)}{1 + \sigma^2 c_N m_N(z)}.$$

From the previous result, we have the following convergence

$$m_N(z) \approx \hat{m}_N(z) = \frac{1}{M} \operatorname{Tr} \mathbf{Q}_N(z)$$
 and $\mathbf{d}_N^* \mathbf{T}_N(z) \mathbf{d}_N \approx \mathbf{d}_N^* \mathbf{Q}_N(z) \mathbf{d}_N$, with $\mathbf{Q}_N(z) = (\mathbf{\Sigma}_N \mathbf{\Sigma}_N^* - z \mathbf{I}_M)^{-1}$.

• Let $\hat{g}_N(z) := \mathbf{d}_N^* \mathbf{Q}_N(z) \mathbf{d}_N \frac{\hat{u}_N'(z)}{1 + \sigma^2 c_N \hat{m}_N(z)}$. We can show that

$$\left| \frac{1}{2\pi \mathbf{i}} \oint_{\partial \mathcal{R}_{y}^{-}} \left(g_{N}(z) - \hat{g}_{N}(z) \right) dz \right| \approx 0,$$

with
$$\hat{w}_N(z) = z(1 + \sigma^2 c_N \hat{m}_N(z))^2 - \sigma^2 c_N (1 + \sigma^2 c_N \hat{m}_N(z))$$
.

- The new estimator is thus given by $\hat{\eta}_{new} = \frac{1}{2\pi \mathbf{i}} \oint_{\partial \mathcal{R}_y^-} \hat{g}_N(z) dz$. This integral can be solved using residues theorem.
- Since 0 is separated by assumption, we deduce from the separation property that for *N* large enough, w.p.1

$$\hat{\lambda}_{1,N}, \dots, \hat{\lambda}_{M-K,N} \in \mathcal{R}_y$$
 and $\hat{\lambda}_{M-K+1,N}, \dots, \hat{\lambda}_{M,N} \not\in \mathcal{R}_y$.

$$\hat{\omega}_{1,N}, \dots, \hat{\omega}_{M-K,N} \in \mathcal{R}_{y}$$
 and $\hat{\omega}_{M-K+1,N}, \dots, \hat{\omega}_{M,N} \not\in \mathcal{R}_{y}$,

with $\hat{\omega}_{1,N} \le ... \le \hat{\omega}_{M,N}$ the solutions of the equation $1 + \sigma^2 c_N \hat{m}_N(x) = 0$.

- The new estimator is thus given by $\hat{\eta}_{new} = \frac{1}{2\pi i} \oint_{\partial \mathscr{R}_y^-} \hat{g}_N(z) dz$. This integral can be solved using residues theorem.
- Since 0 is separated by assumption, we deduce from the separation property that for *N* large enough, w.p.1

$$\hat{\lambda}_{1,N},...,\hat{\lambda}_{M-K,N} \in \mathcal{R}_y$$
 and $\hat{\lambda}_{M-K+1,N},...,\hat{\lambda}_{M,N} \notin \mathcal{R}_y$.

$$\hat{\omega}_{1,N},\ldots,\hat{\omega}_{M-K,N}\in\mathcal{R}_y$$
 and $\hat{\omega}_{M-K+1,N},\ldots,\hat{\omega}_{M,N}\not\in\mathcal{R}_y$,

with $\hat{\omega}_{1,N} \le ... \le \hat{\omega}_{M,N}$ the solutions of the equation $1 + \sigma^2 c_N \hat{m}_N(x) = 0$.

- The new estimator is thus given by $\hat{\eta}_{new} = \frac{1}{2\pi i} \oint_{\partial \mathscr{R}_y^-} \hat{g}_N(z) dz$. This integral can be solved using residues theorem.
- Since 0 is separated by assumption, we deduce from the separation property that for *N* large enough, w.p.1

$$\hat{\lambda}_{1,N},...,\hat{\lambda}_{M-K,N} \in \mathcal{R}_y$$
 and $\hat{\lambda}_{M-K+1,N},...,\hat{\lambda}_{M,N} \notin \mathcal{R}_y$.

$$\hat{\omega}_{1,N},\ldots,\hat{\omega}_{M-K,N}\in\mathcal{R}_y$$
 and $\hat{\omega}_{M-K+1,N},\ldots,\hat{\omega}_{M,N}\not\in\mathcal{R}_y$, with $\hat{\omega}_{1,N}\leq\ldots\leq\hat{\omega}_{M,N}$ the solutions of the equation $1+\sigma^2c_N\hat{m}_N(x)=0$.

- The new estimator is thus given by $\hat{\eta}_{new} = \frac{1}{2\pi \mathbf{i}} \oint_{\partial \mathscr{R}_y^-} \hat{g}_N(z) dz$. This integral can be solved using residues theorem.
- Since 0 is separated by assumption, we deduce from the separation property that for *N* large enough, w.p.1

$$\hat{\lambda}_{1,N},...,\hat{\lambda}_{M-K,N} \in \mathcal{R}_y$$
 and $\hat{\lambda}_{M-K+1,N},...,\hat{\lambda}_{M,N} \notin \mathcal{R}_y$.

$$\hat{\omega}_{1,N},\ldots,\hat{\omega}_{M-K,N}\in\mathcal{R}_y\quad\text{and}\quad\hat{\omega}_{M-K+1,N},\ldots,\hat{\omega}_{M,N}\not\in\mathcal{R}_y,$$

with $\hat{\omega}_{1,N} \le ... \le \hat{\omega}_{M,N}$ the solutions of the equation $1 + \sigma^2 c_N \hat{m}_N(x) = 0$.

Table of Contents

- Introduction
- 2 Random matrix theory results
- 3 Consistent estimation of eigenspace
- Mumerical evaluations

• We evaluate the estimator in the following context:

- $\mathbf{a}(\theta) = \frac{1}{\sqrt{M}} [1, e^{i\pi \sin(\theta)}, \dots, e^{i(M-1)\pi \sin(\theta)}],$
- source signals are AR(1) processes with correlation coefficient of 0.9,
- M = 20, N = 40,
- K = 2 and $\theta_1 = 16^{\circ}$, $\theta_2 = 18^{\circ}$.

• We evaluate the estimator in the following context:

- $\mathbf{a}(\theta) = \frac{1}{\sqrt{M}}[1, e^{\mathbf{i}\pi\sin(\theta)}, \dots, e^{\mathbf{i}(M-1)\pi\sin(\theta)}],$
- source signals are AR(1) processes with correlation coefficient of 0.9,
- M = 20, N = 40,
- K = 2 and $\theta_1 = 16^{\circ}$, $\theta_2 = 18^{\circ}$.

- We evaluate the estimator in the following context:
 - $\mathbf{a}(\theta) = \frac{1}{\sqrt{M}}[1, e^{\mathbf{i}\pi\sin(\theta)}, \dots, e^{\mathbf{i}(M-1)\pi\sin(\theta)}],$
 - source signals are AR(1) processes with correlation coefficient of 0.9,
 - M = 20, N = 40,
 - K = 2 and $\theta_1 = 16^{\circ}$, $\theta_2 = 18^{\circ}$.

- We evaluate the estimator in the following context:
 - $\mathbf{a}(\theta) = \frac{1}{\sqrt{M}}[1, e^{\mathbf{i}\pi\sin(\theta)}, \dots, e^{\mathbf{i}(M-1)\pi\sin(\theta)}],$
 - source signals are AR(1) processes with correlation coefficient of 0.9,
 - M = 20, N = 40,
 - K = 2 and $\theta_1 = 16^{\circ}$, $\theta_2 = 18^{\circ}$.

Figure: Mean of the MSE of $\hat{\theta}_1$ and $\hat{\theta}_2$ versus SNR = $10\log(\frac{1}{\sigma^2})$

Introduction Random matrix theory results Consistent estimation of eigenspace Numerical evaluations

Thank you for your attention.