Deterministic equivalents for Haar matrices

Romain Couillet^{1,2}, Jakob Hoydis¹, Mérouane Debbah¹

¹Alcatel-Lucent Chair on Flexible Radio, Supélec, Gif sur Yvette, FRANCE

²ST-Ericsson, Sophia-Antipolis, FRANCE

romain.couillet@supelec.fr

Random Matrix Theory Symposium

Outline

- Main Results
 - Deterministic Equivalent for a sum of independent Haar
 - Comparison with the i.i.d. case
- Sketch of Proof
 - First deterministic equivalent
 - Second deterministic equivalent
 - Uniqueness and convergence of the det. eq.
- Simulation plots
- 4 Haar matrix with correlated columns

Outline

- Main Results
 - Deterministic Equivalent for a sum of independent Haar
 - Comparison with the i.i.d. case
- Sketch of Proof
 - First deterministic equivalent
 - Second deterministic equivalent
 - Uniqueness and convergence of the det. eq
- 3 Simulation plots
- Haar matrix with correlated columns

We wish to characterize a deterministic equivalent for the following types of matrices

"sum of correlated Haar"

$$\mathbf{B}_{N} = \sum_{k=1}^{K} \mathbf{H}_{k} \mathbf{W}_{k} \mathbf{P}_{k} \mathbf{W}_{k}^{\mathsf{H}} \mathbf{H}_{k}^{\mathsf{H}}$$

with $\mathbf{H}_k \in \mathbb{C}^{N \times N_k}$ deterministic, $\mathbf{W}_k \in \mathbb{C}^{N_k \times n_k}$ unitary isometric, $\mathbf{P}_k \in \mathbb{C}^{n_k \times n_k}$ deterministic. Possible uses in wireless communications are

- multi-cell frequency selective CDMA/SDMA with a single user per ce
- single-cell downlink CDMA/SDMA with colored noise
- capacity and MMSE SINR
- "Haar matrices with a correlation profile"

$$\mathbf{B}_{N} = \mathbf{X}\mathbf{X}^{\mathsf{H}}$$

with $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{C}^{N \times n}$ and

$$\mathbf{x}_k = \mathbf{R}_k^{\frac{1}{2}} \mathbf{w}_k$$

- single/multi-cell frequency selective CDMA/SDMA uplink and downlink
- beamforming with unitary precoding in frequency selective channels
- capacity and MMSE SINR

Problem statement

We wish to characterize a deterministic equivalent for the following types of matrices

"sum of correlated Haar"

$$\mathbf{B}_{N} = \sum_{k=1}^{K} \mathbf{H}_{k} \mathbf{W}_{k} \mathbf{P}_{k} \mathbf{W}_{k}^{\mathsf{H}} \mathbf{H}_{k}^{\mathsf{H}}$$

with $\mathbf{H}_k \in \mathbb{C}^{N \times N_k}$ deterministic, $\mathbf{W}_k \in \mathbb{C}^{N_k \times n_k}$ unitary isometric, $\mathbf{P}_k \in \mathbb{C}^{n_k \times n_k}$ deterministic. Possible uses in wireless communications are

- multi-cell frequency selective CDMA/SDMA with a single user per cell
- single-cell downlink CDMA/SDMA with colored noise
- capacity and MMSE SINR
- "Haar matrices with a correlation profile"

$$\mathbf{B}_N = \mathbf{X}\mathbf{X}^\mathsf{H}$$

with $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{C}^{N \times n}$ and

$$\mathbf{x}_k = \mathbf{R}_k^{\frac{1}{2}} \mathbf{w}_k$$

- single/multi-cell frequency selective CDMA/SDMA uplink and downlink
- beamforming with unitary precoding in frequency selective channels
- capacity and MMSE SINR

Problem statement

We wish to characterize a deterministic equivalent for the following types of matrices

"sum of correlated Haar"

$$\mathbf{B}_N = \sum_{k=1}^K \mathbf{H}_k \mathbf{W}_k \mathbf{P}_k \mathbf{W}_k^{\mathsf{H}} \mathbf{H}_k^{\mathsf{H}}$$

with $\mathbf{H}_k \in \mathbb{C}^{N \times N_k}$ deterministic, $\mathbf{W}_k \in \mathbb{C}^{N_k \times n_k}$ unitary isometric, $\mathbf{P}_k \in \mathbb{C}^{n_k \times n_k}$ deterministic. Possible uses in wireless communications are

- multi-cell frequency selective CDMA/SDMA with a single user per cell
- single-cell downlink CDMA/SDMA with colored noise
- capacity and MMSE SINR
- "Haar matrices with a correlation profile"

$$\mathbf{B}_{N} = \mathbf{X}\mathbf{X}^{\mathsf{H}}$$

with
$$\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{C}^{N \times n}$$
 and

$$\mathbf{x}_k = \mathbf{R}_k^{\frac{1}{2}} \mathbf{w}_k$$

- single/multi-cell frequency selective CDMA/SDMA uplink and downlink
- beamforming with unitary precoding in frequency selective channels
- capacity and MMSE SINR

Problem statement

We wish to characterize a deterministic equivalent for the following types of matrices

"sum of correlated Haar"

$$\mathbf{B}_{N} = \sum_{k=1}^{K} \mathbf{H}_{k} \mathbf{W}_{k} \mathbf{P}_{k} \mathbf{W}_{k}^{\mathsf{H}} \mathbf{H}_{k}^{\mathsf{H}}$$

with $\mathbf{H}_k \in \mathbb{C}^{N \times N_k}$ deterministic, $\mathbf{W}_k \in \mathbb{C}^{N_k \times n_k}$ unitary isometric, $\mathbf{P}_k \in \mathbb{C}^{n_k \times n_k}$ deterministic. Possible uses in wireless communications are

- multi-cell frequency selective CDMA/SDMA with a single user per cell
- single-cell downlink CDMA/SDMA with colored noise
- capacity and MMSE SINR
- "Haar matrices with a correlation profile"

$$\mathbf{B}_{N} = \mathbf{X}\mathbf{X}^{\mathsf{H}}$$

with
$$\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{C}^{N \times n}$$
 and

$$\mathbf{x}_k = \mathbf{R}_k^{\frac{1}{2}} \mathbf{w}_k$$

- single/multi-cell frequency selective CDMA/SDMA uplink and downlink
- beamforming with unitary precoding in frequency selective channels
- capacity and MMSE SINR

Outline

- Main Results
 - Deterministic Equivalent for a sum of independent Haar
 - Comparison with the i.i.d. case
- Sketch of Proof
 - First deterministic equivalent
 - Second deterministic equivalent
 - Uniqueness and convergence of the det. eq
- 3 Simulation plots
- Haar matrix with correlated columns

Theorem (Theorem 1

Let $\mathbf{P}_i \in \mathbb{C}^{n_i \times n_i}$ and $\mathbf{R}_i \in \mathbb{C}^{N \times N}$ be Hermitian nonnegative matrices and $\bar{c}_1, \dots, \bar{c}_K$ be positive scalars. Then the following system of equations in $(\bar{e}_1, \dots, \bar{e}_K)$

$$\bar{\mathbf{e}}_{i} = \frac{1}{N} \operatorname{tr} \mathbf{P}_{i} \left(\mathbf{e}_{i} \mathbf{P}_{i} + [\bar{\mathbf{c}}_{i} - \mathbf{e}_{i} \bar{\mathbf{e}}_{i}] \mathbf{I}_{n_{i}} \right)^{-1}
\mathbf{e}_{i} = \frac{1}{N} \operatorname{tr} \mathbf{R}_{i} \left(\sum_{j=1}^{K} \bar{\mathbf{e}}_{j} \mathbf{R}_{j} - z \mathbf{I}_{N} \right)^{-1} .$$
(1)

has a unique functional solution $(\bar{e}_1(z), \dots, \bar{e}_K(z))$ with $z \mapsto e_i(z), \mathbb{C} \setminus \mathbb{R}^+ \to \mathbb{C}$, the Stieltjes transform of a distribution function with support on \mathbb{R}^+ .

Point-wise uniqueness

Theorem (Theorem 2)

For each z real negative, the system of equations (1) has a unique scalar-valued solution $(\bar{e}_1,\ldots,\bar{e}_K)$ with $\bar{e}_i=\lim_{t\to\infty}\bar{e}_i^{(t)}$, where $\bar{e}_i^{(t)}$ is the unique solution of

$$\bar{e}_{i}^{(t)} = \frac{1}{N} \operatorname{tr} \mathbf{P}_{i} \left(e_{i}^{(t)} \mathbf{P}_{i} + [\bar{c}_{i} - e_{i}^{(t)} \bar{\mathbf{e}}_{i}^{(t)}] \mathbf{I}_{n_{i}} \right)^{-1}$$
 (2)

within the interval $[0, c_i \bar{c}_i/e_i^{(t)})$, $e_i^{(0)}$ can take any positive value and $e_i^{(t)}$ is recursively defined by:

$$e_i^{(t+1)} = \frac{1}{N} \operatorname{tr} \mathbf{R}_i \left(\sum_{j=1}^K \overline{\mathbf{e}}_j^{(t)} \mathbf{R}_j - z \mathbf{I}_N \right)^{-1}.$$

The solution $\bar{e}_{i}^{(t)}$ of (2) is explicitly given by

$$\bar{e}_i^{(t)} = \lim_{k \to \infty} \bar{e}_i^{(t,k)},$$

with $\bar{\mathbf{e}}_i^{(t,0)} \in [0, c_i \bar{c}_i / \mathbf{e}_i^{(t)})$ and, for $k \geq 1$,

$$\boldsymbol{\bar{e}}_i^{(t,k)} = \frac{1}{N} \operatorname{tr} \boldsymbol{\mathsf{P}}_i \left(\boldsymbol{e}_i^{(t)} \boldsymbol{\mathsf{P}}_i + [\bar{\boldsymbol{c}}_i - \boldsymbol{e}_i^{(t)} \bar{\boldsymbol{e}}_i^{(t,k-1)}] \boldsymbol{\mathsf{I}}_{n_i} \right)^{-1}.$$

Theorem (Theorem 3)

Let $\mathbf{P}_i \in \mathbb{C}^{n_i \times n_i}$ be a Hermitian nonnegative matrix with spectral norm bounded uniformly along n_i and $\mathbf{W}_i \in \mathbb{C}^{N_i \times n_i}$ be the $n_i \leq N_i$ columns of a unitary Haar distributed random matrix. We also consider $\mathbf{H}_i \in \mathbb{C}^{N \times N_i}$ a random matrix such that $\mathbf{R}_i \triangleq \mathbf{H}_i \mathbf{H}_i^H \in \mathbb{C}^{N \times N}$ has uniformly bounded spectral norm along N, almost surely. Denote

$$\mathbf{B}_{N} = \sum_{i=1}^{K} \mathbf{H}_{i} \mathbf{W}_{i} \mathbf{P}_{i} \mathbf{W}_{i}^{\mathsf{H}} \mathbf{H}_{i}^{\mathsf{H}}.$$

Then, as N, $N_1, \ldots, N_K, n_1, \ldots, n_K$ grow to infinity with $\bar{c}_i \triangleq \frac{N_i}{N}$ satisfying $0 < \lim \inf \bar{c}_i \leq \lim \sup \bar{c}_i < \infty$ and $0 \leq \frac{n_i}{N_i} \triangleq c_i \leq 1$ for all i, we have

$$F^{\mathbf{B}_N} - F_N \Rightarrow 0$$

almost surely, where F_N is the distribution function with Stieltjes transform $m_N(z)$ defined by

$$m_N(z) = \frac{1}{N} \operatorname{tr} \left(\sum_{i=1}^K \bar{\mathbf{e}}_i(z) \mathbf{R}_i - z \mathbf{I}_N \right)^{-1}, \tag{3}$$

with $z \mapsto \bar{e}_i(z)$, $\mathbb{C} \setminus \mathbb{R}^+ \to \mathbb{C}$, defined in Theorem 1.

Deterministic equivalent of the Shannon transform

Let $\mathbf{B}_N \in \mathbb{C}^{N \times N}$ be defined as in Theorem 3 with z=-1/x for some x>0. Denoting $\mathcal{V}_{\mathbf{B}_N}(x)=\frac{1}{N}\log\det(x\mathbf{B}_N+\mathbf{I}_N)$ the Shannon-transform of $F^{\mathbf{B}_N}$, we have

$$\mathcal{V}_{\mathbf{B}_{N}}(x) - \mathcal{V}_{N}(x) \stackrel{\mathrm{a.s.}}{\longrightarrow} 0,$$
 (4)

as $N, N_1, \ldots, N_K, n_1, \ldots, n_K$ grow to infinity with $0 < \liminf \bar{c}_i \le \limsup \bar{c}_i < \infty$, where

$$\mathcal{V}_{N}(x) = \frac{1}{N} \log \det \left(\mathbf{I}_{N} + x \sum_{i=1}^{K} \bar{e}_{i} \mathbf{R}_{i} \right)
+ \sum_{i=1}^{K} \left[\frac{1}{N} \log \det \left([\bar{c}_{i} - e_{i} \bar{e}_{i}] \mathbf{I}_{n_{i}} + e_{i} \mathbf{P}_{i} \right) + (1 - c_{i}) \bar{c}_{i} \log(\bar{c}_{i} - e_{i} \bar{e}_{i}) - \bar{c}_{i} \log(\bar{c}_{i}) \right].$$
(5)

Deterministic equivalent of the MMSE SINR

Under the conditions of Theorem 3, we have

$$\boldsymbol{w}_{ij}^{H}\boldsymbol{H}_{i}^{H}\left(\boldsymbol{B}_{N}-\rho_{ij}\boldsymbol{H}_{i}\boldsymbol{w}_{ij}\boldsymbol{w}_{ij}^{H}\boldsymbol{H}_{i}^{H}-z\boldsymbol{I}_{N}\right)^{-1}\boldsymbol{H}_{i}\boldsymbol{w}_{ij}-\frac{\boldsymbol{e}_{i}}{\bar{\boldsymbol{c}}_{i}-\boldsymbol{e}_{i}\bar{\boldsymbol{e}}_{i}}\overset{\mathrm{a.s.}}{\longrightarrow}\boldsymbol{0},$$

with $\mathbf{w}_{ii} \in \mathbb{C}^{N_i}$ the j^{th} column of \mathbf{W}_i .

Outline

- Main Results
 - Deterministic Equivalent for a sum of independent Haar
 - Comparison with the i.i.d. case
- Sketch of Proof
 - First deterministic equivalent
 - Second deterministic equivalent
 - Uniqueness and convergence of the det. eq.
- 3 Simulation plots
- Haar matrix with correlated columns

Comparison with the i.i.d. case

Assume $\bar{c}_i = c_i = 1$ for every i. Then, • for \mathbf{W}_i Haar,

$$m_{N}(z) = \frac{1}{N} \operatorname{tr} \left(\sum_{j=1}^{K} \bar{\mathbf{e}}_{j} \mathbf{R}_{j} - z \mathbf{I}_{N} \right)^{-1}, \text{ with}$$

$$\bar{\mathbf{e}}_{i} = \frac{1}{N} \operatorname{tr} \mathbf{P}_{i} \left(\mathbf{e}_{i} \mathbf{P}_{i} + [1 - \mathbf{e}_{i} \bar{\mathbf{e}}_{i}] \mathbf{I}_{N} \right)^{-1}$$

$$\mathbf{e}_{i} = \frac{1}{N} \operatorname{tr} \mathbf{R}_{i} \left(\sum_{i=1}^{K} \bar{\mathbf{e}}_{j} \mathbf{R}_{j} - z \mathbf{I}_{N} \right)^{-1}.$$
(6)

o for W; i.i.d.,

$$m_{N}(z) = \frac{1}{N} \operatorname{tr} \left(\sum_{j=1}^{K} \bar{\mathbf{e}}_{j} \mathbf{R}_{j} - z \mathbf{I}_{N} \right)^{-1}, \text{ with}$$

$$\bar{\mathbf{e}}_{i} = \frac{1}{N} \operatorname{tr} \mathbf{P}_{i} \left(\mathbf{e}_{i} \mathbf{P}_{i} + \mathbf{I}_{N} \right)^{-1}$$

$$\mathbf{e}_{i} = \frac{1}{N} \operatorname{tr} \mathbf{R}_{i} \left(\sum_{j=1}^{K} \bar{\mathbf{e}}_{j} \mathbf{R}_{j} - z \mathbf{I}_{N} \right)^{-1}$$
(7)

¹R. Couillet, J. W. Silverstein, M. Debbah, "A deterministic equivalent for the analysis of MIMO multiple access channels" http://arxiv.org/abs/0906.3667v3, IEEE Trans. on Inf. Theory, to appear.

Comparison with the i.i.d. case

Assume $\bar{c}_i = c_i = 1$ for every i. Then,

for W_i Haar,

$$m_{N}(z) = \frac{1}{N} \operatorname{tr} \left(\sum_{j=1}^{K} \bar{\mathbf{e}}_{j} \mathbf{R}_{j} - z \mathbf{I}_{N} \right)^{-1}, \text{ with}$$

$$\bar{\mathbf{e}}_{i} = \frac{1}{N} \operatorname{tr} \mathbf{P}_{i} \left(\mathbf{e}_{i} \mathbf{P}_{i} + [1 - \mathbf{e}_{i} \bar{\mathbf{e}}_{i}] \mathbf{I}_{N} \right)^{-1}$$

$$\mathbf{e}_{i} = \frac{1}{N} \operatorname{tr} \mathbf{R}_{i} \left(\sum_{i=1}^{K} \bar{\mathbf{e}}_{j} \mathbf{R}_{j} - z \mathbf{I}_{N} \right)^{-1}.$$
(6)

for W_i i.i.d.,¹

$$m_{N}(z) = \frac{1}{N} \operatorname{tr} \left(\sum_{j=1}^{K} \bar{\mathbf{e}}_{j} \mathbf{R}_{j} - z \mathbf{I}_{N} \right)^{-1}, \text{ with}$$

$$\bar{\mathbf{e}}_{i} = \frac{1}{N} \operatorname{tr} \mathbf{P}_{i} \left(\mathbf{e}_{i} \mathbf{P}_{i} + \mathbf{I}_{N} \right)^{-1}$$

$$\mathbf{e}_{i} = \frac{1}{N} \operatorname{tr} \mathbf{R}_{i} \left(\sum_{j=1}^{K} \bar{\mathbf{e}}_{j} \mathbf{R}_{j} - z \mathbf{I}_{N} \right)^{-1}$$

$$(7)$$

¹R. Couillet, J. W. Silverstein, M. Debbah, "A deterministic equivalent for the analysis of MIMO multiple access channels", http://arxiv.org/abs/0906.3667v3, IEEE Trans. on Inf. Theory, to appear.

Outline

- Main Results
 - Deterministic Equivalent for a sum of independent Haar
 - Comparison with the i.i.d. case
- Sketch of Proof
 - First deterministic equivalent
 - Second deterministic equivalent
 - Uniqueness and convergence of the det. eq.
- 3 Simulation plots
- Haar matrix with correlated columns

Outline (First det. eq.)

• Denoting $\delta_i \triangleq \frac{1}{N_i - n_i} \operatorname{tr} \left(\mathbf{I}_{N_i} - \mathbf{W}_i \mathbf{W}_i^{\mathsf{H}} \right) \mathbf{H}_i^{\mathsf{H}} \left(\mathbf{B}_N - z \mathbf{I}_N \right)^{-1} \mathbf{H}_i \text{ and } f_i \triangleq \frac{1}{N} \operatorname{tr} \mathbf{R}_i \left(\mathbf{B}_N - z \mathbf{I}_N \right)^{-1}, \text{ we prove}$ $f_i - \frac{1}{N} \operatorname{tr} \mathbf{R}_i \left(\mathbf{G} - z \mathbf{I}_N \right)^{-1} \xrightarrow{\text{a.s.}} 0,$

with
$$\mathbf{G} = \sum_{i=1}^K \bar{\mathbf{g}}_i \mathbf{R}_i$$
 and

$$\bar{g}_i = \frac{1}{(1 - c_i)\bar{c}_i + \frac{1}{N} \sum_{l=1}^{n_i} \frac{1}{1 + p_{il}\delta_i}} \frac{1}{N} \sum_{l=1}^{n_i} \frac{p_{il}}{1 + p_{il}\delta_i},$$

where p_{il} denotes the l^{th} eigenvalue of \mathbf{P}_i , and δ_i is linked to f_i through

$$\mathbf{f}_i - \left((1 - c_i) \bar{c}_i \delta_i + \frac{1}{N} \sum_{l=1}^{n_i} \frac{\delta_i}{1 + p_{il} \delta_i} \right) \xrightarrow{\text{a.s.}} 0.$$

ullet $ar{g}_i$ is then shown to satisfy

$$\bar{g}_i - \frac{1}{N} \sum_{l=1}^{n_i} \frac{p_{il}}{\bar{c}_i + p_{il} f_i - f_i \bar{g}_i} = \bar{g}_i - \frac{1}{N} \operatorname{tr} \mathbf{P}_i \left(f_i \mathbf{P}_i + [\bar{c}_i - f_i \bar{g}_i] \mathbf{I}_{n_i} \right)^{-1} \xrightarrow{\text{a.s.}} 0,$$

which induces the 2K-equation system

$$\begin{split} & \mathbf{f}_i - \frac{1}{N} \operatorname{tr} \mathbf{R}_i \left(\sum_{j=1}^K \bar{g}_j \mathbf{R}_j - z \mathbf{I}_N \right)^{-1} \xrightarrow{\text{a.s.}} 0 \\ & \bar{g}_i - \frac{1}{N} \operatorname{tr} \mathbf{P}_i \left(\bar{g}_i \mathbf{P}_i + [\bar{c}_i - \mathbf{f}_i \bar{g}_i] \mathbf{I}_{n_i} \right)^{-1} \xrightarrow{\text{a.s.}} 0. \end{split}$$

• Introducing $\mathbf{F} = \sum_{i=1}^{K} \bar{t}_i \mathbf{R}_i$, we finally prove

$$\begin{split} & f_i - \frac{1}{N} \operatorname{tr} \mathbf{R}_i \left(\sum_{j=1}^K \overline{t}_j \mathbf{R}_j - z \mathbf{I}_N \right)^{-1} \xrightarrow{\text{a.s.}} 0 \\ & \overline{t}_i - \frac{1}{N} \operatorname{tr} \mathbf{P}_i \left(\overline{t}_i \mathbf{P}_i + [\overline{c}_i - t_i \overline{t}_j] \mathbf{I}_{n_i} \right)^{-1} = 0, \end{split}$$

where, for z < 0, \bar{f}_i lies in $[0, c_i \bar{c}_i/f_i)$ and is now uniquely determined by f_i .

ullet $ar{g}_i$ is then shown to satisfy

$$\bar{g}_i - \frac{1}{N} \sum_{l=1}^{n_i} \frac{p_{il}}{\bar{c}_i + p_{il} f_i - f_i \bar{g}_i} = \bar{g}_i - \frac{1}{N} \operatorname{tr} \mathbf{P}_i \left(f_i \mathbf{P}_i + [\bar{c}_i - f_i \bar{g}_i] \mathbf{I}_{n_i} \right)^{-1} \xrightarrow{\text{a.s.}} 0,$$

which induces the 2K-equation system

$$\begin{split} & \mathbf{f}_i - \frac{1}{N} \operatorname{tr} \mathbf{R}_i \left(\sum_{j=1}^K \bar{g}_j \mathbf{R}_j - z \mathbf{I}_N \right)^{-1} \xrightarrow{\text{a.s.}} 0 \\ & \bar{g}_i - \frac{1}{N} \operatorname{tr} \mathbf{P}_i \left(\bar{g}_i \mathbf{P}_i + [\bar{\mathbf{c}}_i - \mathbf{f}_i \bar{g}_i] \mathbf{I}_{n_i} \right)^{-1} \xrightarrow{\text{a.s.}} 0. \end{split}$$

• Introducing $\mathbf{F} = \sum_{i=1}^{K} \overline{f}_i \mathbf{R}_i$, we finally prove

$$\begin{split} & \mathbf{f}_i - \frac{1}{N} \operatorname{tr} \mathbf{R}_i \left(\sum_{j=1}^K \bar{f}_j \mathbf{R}_j - z \mathbf{I}_N \right)^{-1} \stackrel{\text{a.s.}}{\longrightarrow} 0 \\ & \bar{f}_i - \frac{1}{N} \operatorname{tr} \mathbf{P}_i \left(\bar{f}_i \mathbf{P}_i + [\bar{c}_i - \mathbf{f}_i \bar{f}_i] \mathbf{I}_{n_i} \right)^{-1} = 0, \end{split}$$

where, for z < 0, \bar{f}_i lies in $[0, c_i \bar{c}_i/f_i)$ and is now uniquely determined by f_i .

Outline

- Main Results
 - Deterministic Equivalent for a sum of independent Haar
 - Comparison with the i.i.d. case
- Sketch of Proof
 - First deterministic equivalent
 - Second deterministic equivalent
 - Uniqueness and convergence of the det. eg.
- 3 Simulation plots
- Haar matrix with correlated columns

Fundamental lemma

To perform classical det. eq. techniques, we need a **trace lemma**.

In the i.i.d. case, this is the classical

Theoren

Let $\mathbf{B}_N \in \mathbb{C}^{N \times N}$ have uniformly bounded spectral norm. Let $\mathbf{x}_N \in \mathbb{C}^N$ be random vectors of i.i.d. entries with zero mean, variance 1/N and finite eighth order moment, independent of \mathbf{B}_N . Then

$$E\left[\left|\mathbf{x}_{N}^{\mathsf{H}}\mathbf{B}_{N}\mathbf{x}_{N}-\frac{1}{N}\operatorname{tr}\mathbf{B}_{N}\right|^{4}\right]\leq\frac{C}{N^{2}},\tag{8}$$

as $N \to \infty$.

In the Haar case, this is

Theorem

Let $\mathbf W$ be n < N columns of an $N \times N$ Haar matrix and suppose $\mathbf w$ is a column of $\mathbf W$. Let $\mathbf B_N$ be an $N \times N$ random matrix, which is a function of all columns of $\mathbf W$ except $\mathbf w$ and $B = \sup_N \|\mathbf B_N\| < \infty$, then

$$\mathbb{E}\left[\left|\mathbf{w}^{\mathsf{H}}\mathbf{B}_{N}\mathbf{w}-\frac{1}{N-n}\operatorname{tr}(\mathbf{\Pi}\mathbf{B}_{N})\right|^{4}\right]\leq\frac{C}{N^{2}},$$

where $\Pi = I_N - WW^H + ww^H$ and C is a constant which depends only on B and $\frac{n}{N}$.

◆ロト ◆回 ト ◆ 差 ト ◆ 差 ◆) Q (*)

Fundamental lemma

To perform classical det. eq. techniques, we need a **trace lemma**.

In the i.i.d. case, this is the classical

Theoren

Let $\mathbf{B}_N \in \mathbb{C}^{N \times N}$ have uniformly bounded spectral norm. Let $\mathbf{x}_N \in \mathbb{C}^N$ be random vectors of i.i.d. entries with zero mean, variance 1/N and finite eighth order moment, independent of \mathbf{B}_N . Then

$$E\left[\left|\mathbf{x}_{N}^{\mathsf{H}}\mathbf{B}_{N}\mathbf{x}_{N}-\frac{1}{N}\operatorname{tr}\mathbf{B}_{N}\right|^{4}\right]\leq\frac{C}{N^{2}},\tag{8}$$

as $N \to \infty$.

In the Haar case, this is

Theorem

Let $\mathbf W$ be n < N columns of an $N \times N$ Haar matrix and suppose $\mathbf w$ is a column of $\mathbf W$. Let $\mathbf B_N$ be an $N \times N$ random matrix, which is a function of all columns of $\mathbf W$ except $\mathbf w$ and $B = \sup_N \|\mathbf B_N\| < \infty$, then

$$\mathbb{E}\left[\left|\mathbf{w}^{\mathsf{H}}\mathbf{B}_{N}\mathbf{w}-\frac{1}{N-n}\operatorname{tr}(\mathbf{\Pi}\mathbf{B}_{N})\right|^{4}\right]\leq\frac{C}{N^{2}},$$

where $\Pi = I_N - WW^H + ww^H$ and C is a constant which depends only on B and $\frac{n}{N}$.

◆ロト ◆部 ト ◆ 恵 ト ・ 恵 ・ 夕 (*)

To perform classical det. eq. techniques, we need a **trace lemma**.

In the i.i.d. case, this is the classical

Theorem

Let $\mathbf{B}_N \in \mathbb{C}^{N \times N}$ have uniformly bounded spectral norm. Let $\mathbf{x}_N \in \mathbb{C}^N$ be random vectors of i.i.d. entries with zero mean, variance 1/N and finite eighth order moment, independent of \mathbf{B}_N . Then

$$E\left[\left|\mathbf{x}_{N}^{\mathsf{H}}\mathbf{B}_{N}\mathbf{x}_{N}-\frac{1}{N}\operatorname{tr}\mathbf{B}_{N}\right|^{4}\right]\leq\frac{C}{N^{2}},\tag{8}$$

as $N \to \infty$.

In the Haar case, this is

Theorem

Let ${\bf W}$ be n < N columns of an $N \times N$ Haar matrix and suppose ${\bf w}$ is a column of ${\bf W}$. Let ${\bf B}_N$ be an $N \times N$ random matrix, which is a function of all columns of ${\bf W}$ except ${\bf w}$ and $B = \sup_N \|{\bf B}_N\| < \infty$, then

$$\mathbb{E}\left[\left|\mathbf{w}^{\mathsf{H}}\mathbf{B}_{N}\mathbf{w}-\frac{1}{N-n}\operatorname{tr}(\mathbf{\Pi}\mathbf{B}_{N})\right|^{4}\right]\leq\frac{C}{N^{2}},$$

where $\Pi = I_N - WW^H + ww^H$ and C is a constant which depends only on B and $\frac{n}{N}$.

- we first suppose $\limsup_N c_i < 1$ in order to apply the trace lemma.
- ullet as usual, denoting $\mathbf{G} = \sum_{i=1}^K \bar{g}_i \mathbf{R}_i$, we take the difference

$$\begin{split} &\frac{1}{N}\operatorname{tr}\mathbf{A}(\mathbf{B}_{N}-z\mathbf{I}_{N})^{-1}-\frac{1}{N}\operatorname{tr}\mathbf{A}(\mathbf{G}-z\mathbf{I}_{N})^{-1}\\ &=\frac{1}{N}\operatorname{tr}\left[\mathbf{A}(\mathbf{B}_{N}-z\mathbf{I}_{N})^{-1}\sum_{i=1}^{K}\mathbf{H}_{i}\left(-\mathbf{W}_{i}\mathbf{P}_{i}\mathbf{W}_{i}^{H}+\bar{g}_{i}\mathbf{I}_{N_{i}}\right)\mathbf{H}_{i}^{H}(\mathbf{G}-z\mathbf{I}_{N})^{-1}\right] \end{split}$$

$$\stackrel{\text{(a)}}{=} \sum_{i=1}^{K} \tilde{g}_i \frac{1}{N} \operatorname{tr} \mathbf{A} (\mathbf{B}_N - z \mathbf{I}_N)^{-1} \mathbf{R}_i (\mathbf{G} - z \mathbf{I}_N)^{-1} - \frac{1}{N} \sum_{i=1}^{K} \sum_{l=1}^{n_i} p_{il} \mathbf{w}_{il}^{\mathsf{H}} \mathbf{H}_i^{\mathsf{H}} (\mathbf{G} - z \mathbf{I}_N)^{-1} \mathbf{A} (\mathbf{B}_N - z \mathbf{I}_N)^{-1} \mathbf{H}_i \mathbf{w}_{il}$$

$$\stackrel{(b)}{=} \sum_{i=1}^{K} \bar{g}_{i} \bar{c}_{i} \frac{1}{N_{i}} \operatorname{tr} \mathbf{A} (\mathbf{B}_{N} - z \mathbf{I}_{N})^{-1} \mathbf{R}_{i} (\mathbf{G} - z \mathbf{I}_{N})^{-1} - \frac{1}{N} \sum_{i=1}^{K} \sum_{j=1}^{n_{i}} \frac{\rho_{ij} \mathbf{w}_{ij}^{H} \mathbf{H}_{i}^{H} (\mathbf{G} - z \mathbf{I}_{N})^{-1} \mathbf{A} (\mathbf{B}_{(i,i)} - z \mathbf{I}_{N})^{-1} \mathbf{H}_{i} \mathbf{w}_{ij}}{1 + \rho_{il} \mathbf{w}_{ij}^{H} \mathbf{H}_{i}^{H} (\mathbf{B}_{(i,i)} - z \mathbf{I}_{N})^{-1} \mathbf{H}_{i} \mathbf{w}_{ij}},$$

with $\mathbf{w}_{il} \in \mathbb{C}^{N_i}$ the l^{th} column of \mathbf{W}_i , p_{i1}, \dots, p_{in_i} the eigenvalues of \mathbf{P}_i and $\mathbf{B}_{(i,l)} = \mathbf{B}_N - p_{il}\mathbf{H}_i\mathbf{w}_{il}\mathbf{w}_{il}^H\mathbf{H}_i^H$.

- In the i.i.d. case, due to the trace lemma, we identify easily \bar{g}_i
- But things are not as simple in the Haar case!, since

$$\mathbf{w}_{ii}^{\mathsf{H}}\mathbf{H}_{i}^{\mathsf{H}}(\mathbf{G}-z\mathbf{I}_{N})^{-1}\mathbf{A}(\mathbf{B}_{(i,i)}-z\mathbf{I}_{N})^{-1}\mathbf{H}_{i}\mathbf{w}_{ii} \sim \frac{1}{N_{i}-n_{i}}\operatorname{tr}(\mathbf{I}_{N}-\mathbf{W}_{i}\mathbf{W}_{i}^{\mathsf{H}})\mathbf{H}_{i}^{\mathsf{H}}(\mathbf{G}-z\mathbf{I}_{N})^{-1}\mathbf{A}(\mathbf{B}_{N}-z\mathbf{I}_{N})^{-1}\mathbf{H}_{i}$$

- we first suppose $\limsup_N c_i < 1$ in order to apply the trace lemma.
- as usual, denoting $\mathbf{G} = \sum_{i=1}^K \bar{g}_i \mathbf{R}_i$, we take the difference

$$\begin{split} &\frac{1}{N}\operatorname{tr}\mathbf{A}(\mathbf{B}_{N}-z\mathbf{I}_{N})^{-1}-\frac{1}{N}\operatorname{tr}\mathbf{A}(\mathbf{G}-z\mathbf{I}_{N})^{-1}\\ &=\frac{1}{N}\operatorname{tr}\left[\mathbf{A}(\mathbf{B}_{N}-z\mathbf{I}_{N})^{-1}\sum_{i=1}^{K}\mathbf{H}_{i}\left(-\mathbf{W}_{i}\mathbf{P}_{i}\mathbf{W}_{i}^{H}+\bar{g}_{i}\mathbf{I}_{N_{i}}\right)\mathbf{H}_{i}^{H}(\mathbf{G}-z\mathbf{I}_{N})^{-1}\right] \end{split}$$

$$\stackrel{\text{(a)}}{=} \sum_{i=1}^{K} \bar{g}_{i} \frac{1}{N} \operatorname{tr} \mathbf{A} (\mathbf{B}_{N} - z \mathbf{I}_{N})^{-1} \mathbf{R}_{i} (\mathbf{G} - z \mathbf{I}_{N})^{-1} - \frac{1}{N} \sum_{i=1}^{K} \sum_{l=1}^{n_{i}} p_{il} \mathbf{w}_{il}^{\mathsf{H}} \mathbf{H}_{i}^{\mathsf{H}} (\mathbf{G} - z \mathbf{I}_{N})^{-1} \mathbf{A} (\mathbf{B}_{N} - z \mathbf{I}_{N})^{-1} \mathbf{H}_{i} \mathbf{w}_{il}$$

$$\stackrel{(\underline{b})}{=} \sum_{i=1}^K \bar{g}_i \bar{c}_i \frac{1}{N_i} \operatorname{tr} \mathbf{A} (\mathbf{B}_N - z \mathbf{I}_N)^{-1} \mathbf{R}_i (\mathbf{G} - z \mathbf{I}_N)^{-1} - \frac{1}{N} \sum_{i=1}^K \sum_{l=1}^{n_i} \frac{p_{il} \mathbf{w}_{il}^H \mathbf{H}_i^H (\mathbf{G} - z \mathbf{I}_N)^{-1} \mathbf{A} (\mathbf{B}_{(i,l)} - z \mathbf{I}_N)^{-1} \mathbf{H}_i \mathbf{w}_{il}}{1 + p_{il} \mathbf{w}_{il}^H \mathbf{H}_i^H (\mathbf{B}_{(i,l)} - z \mathbf{I}_N)^{-1} \mathbf{H}_i \mathbf{w}_{il}},$$

with $\mathbf{w}_{il} \in \mathbb{C}^{N_i}$ the l^{th} column of \mathbf{W}_i , p_{i1}, \dots, p_{in_i} the eigenvalues of \mathbf{P}_i and $\mathbf{B}_{(i,l)} = \mathbf{B}_N - p_{il}\mathbf{H}_i\mathbf{w}_{il}\mathbf{w}_{il}^H\mathbf{H}_i^H$.

- In the i.i.d. case, due to the trace lemma, we identify easily \bar{g}_i .
- But things are not as simple in the Haar case!, since

$$\mathbf{w}_{ii}^{\mathsf{H}}\mathbf{H}_{i}^{\mathsf{H}}(\mathbf{G}-z\mathbf{I}_{N})^{-1}\mathbf{A}(\mathbf{B}_{(i,l)}-z\mathbf{I}_{N})^{-1}\mathbf{H}_{i}\mathbf{w}_{il} \sim \frac{1}{N_{i}-n_{i}}\operatorname{tr}(\mathbf{I}_{N}-\mathbf{W}_{i}\mathbf{W}_{i}^{\mathsf{H}})\mathbf{H}_{i}^{\mathsf{H}}(\mathbf{G}-z\mathbf{I}_{N})^{-1}\mathbf{A}(\mathbf{B}_{N}-z\mathbf{I}_{N})^{-1}\mathbf{H}_{i}$$

The idea now is to express terms of the form $\frac{1}{N_i - n_i} \operatorname{tr}(\mathbf{I}_N - \mathbf{W}_i \mathbf{W}_i^{\mathsf{H}}) \mathbf{D}$ as a function of $\frac{1}{N} \operatorname{tr} \mathbf{D}$. In particular,

Denoting

$$\delta_{i} \triangleq \frac{1}{N_{i} - n_{i}} \operatorname{tr} \left(\mathbf{I}_{N_{i}} - \mathbf{W}_{i} \mathbf{W}_{i}^{\mathsf{H}} \right) \mathbf{H}_{i}^{\mathsf{H}} \left(\mathbf{B}_{N} - z \mathbf{I}_{N} \right)^{-1} \mathbf{H}_{i}$$
$$f_{i} \triangleq \frac{1}{N} \operatorname{tr} \mathbf{R}_{i} \left(\mathbf{B}_{N} - z \mathbf{I}_{N} \right)^{-1},$$

we have

$$(1 - c_i)\bar{c}_i \delta_i = f_i - \frac{1}{N} \sum_{l=1}^{n_i} \mathbf{w}_{il}^{\mathsf{H}} \mathbf{H}_i^{\mathsf{H}} (\mathbf{B}_N - z \mathbf{I}_N)^{-1} \mathbf{H}_i \mathbf{w}_{il}$$

$$= f_i - \frac{1}{N} \sum_{l=1}^{n_i} \frac{\mathbf{w}_{il}^{\mathsf{H}} \mathbf{H}_i^{\mathsf{H}} (\mathbf{B}_{(i,l)} - z \mathbf{I}_N)^{-1} \mathbf{H}_i \mathbf{w}_{il}}{1 + \rho_{il} \mathbf{w}_{il}^{\mathsf{H}} \mathbf{H}_i^{\mathsf{H}} (\mathbf{B}_{(i,l)} - z \mathbf{I}_N)^{-1} \mathbf{H}_i \mathbf{w}_{il}}$$

$$\simeq f_i - \frac{1}{N} \sum_{l=1}^{n_i} \frac{\delta_i}{1 + \rho_{il} \delta_i}.$$

Similarly, denoting

$$\beta_i \triangleq \frac{1}{N_i - n_i} \operatorname{tr} \left(\mathbf{I}_{N_i} - \mathbf{W}_i \mathbf{W}_i^{\mathsf{H}} \right) \mathbf{H}_i \left(\mathbf{G} - z \mathbf{I}_N \right)^{-1} \mathbf{A} \left(\mathbf{B}_N - z \mathbf{I}_N \right)^{-1} \mathbf{H}_i,$$

we have

$$\beta_i \left((1 - c_i) \overline{c}_i + \frac{1}{N} \sum_{l=1}^{n_i} \frac{1}{1 + \rho_{il} \delta_i} \right) \simeq \frac{1}{N} \operatorname{tr} \mathbf{H}_i^{\mathsf{H}} (\mathbf{G} - z \mathbf{I}_N)^{-1} \mathbf{A} (\mathbf{B}_N - z \mathbf{I}_N)^{-1} \mathbf{H}_i$$

or equivalently

$$\frac{\beta_i}{1+\rho_{il}\delta_i} \simeq \frac{\frac{1}{N}\operatorname{tr} \mathbf{H}_i^{\mathsf{H}} \left(\mathbf{G}-z\mathbf{I}_N\right)^{-1}\mathbf{A} \left(\mathbf{B}_N-z\mathbf{I}_N\right)^{-1}\mathbf{H}_i}{\left((1-c_i)\bar{c}_i + \frac{1}{N}\sum_{l=1}^{n_i}\frac{1}{1+\rho_{il}\delta_i}\right)(1+\rho_{il}\delta_i)}$$

Plugging pieces together

 $\frac{1}{N} \operatorname{tr} \mathbf{A} (\mathbf{B}_N - z \mathbf{I}_N)^{-1} - \frac{1}{N} \operatorname{tr} \mathbf{A} (\mathbf{G} - z \mathbf{I}_N)^{-1}$

Choosing

$$\bar{g}_i = \frac{1}{(1-c_i)\bar{c}_i + \frac{1}{N}\sum_{l=1}^{n_i}\frac{1}{1+\rho_{il}\delta_i}} \frac{1}{N}\sum_{l=1}^{n_i}\frac{\rho_{il}}{1+\rho_{il}\delta_i},$$

we then have

$$\begin{split} &= \sum_{i=1}^{K} \frac{1}{(1-c_{i})\bar{c}_{i}} + \frac{1}{N} \sum_{l=1}^{n_{i}} \frac{1}{1+\rho_{il}\delta_{i}} \frac{1}{N} \sum_{l=1}^{n_{i}} \frac{\rho_{il}}{1+\rho_{il}\delta_{i}} \frac{1}{N} \operatorname{tr} \mathbf{H}_{i}^{H} (\mathbf{G} - z\mathbf{I}_{N})^{-1} \mathbf{A} (\mathbf{B}_{N} - z\mathbf{I}_{N})^{-1} \mathbf{H}_{i} \\ &- \frac{1}{N} \sum_{i=1}^{K} \sum_{l=1}^{n_{i}} \frac{\rho_{il} \mathbf{w}_{il}^{H} \mathbf{H}_{i}^{H} (\mathbf{G} - z\mathbf{I}_{N})^{-1} \mathbf{A} (\mathbf{B}_{(i,l)} - z\mathbf{I}_{N})^{-1} \mathbf{H}_{i} \mathbf{w}_{il}}{1+\rho_{il} \mathbf{w}_{il}^{H} \mathbf{H}_{i}^{H} (\mathbf{B}_{(i,l)} - z\mathbf{I}_{N})^{-1} \mathbf{A} (\mathbf{B}_{N} - z\mathbf{I}_{N})^{-1} \mathbf{H}_{i} \mathbf{w}_{il}} \\ &= \sum_{i=1}^{K} \sum_{l=1}^{n_{i}} \frac{\rho_{il}}{N} \left[\frac{1}{N} \operatorname{tr} \mathbf{H}_{i}^{H} (\mathbf{G} - z\mathbf{I}_{N})^{-1} \mathbf{A} (\mathbf{B}_{N} - z\mathbf{I}_{N})^{-1} \mathbf{H}_{i}}{((1-c_{i})\bar{c}_{i} + \frac{1}{N} \sum_{l'=1}^{n_{i}} \frac{1}{1+\rho_{i,l}} \frac{1}{\sqrt{\delta}}}) (1+\rho_{il}\delta_{i})} - \frac{\mathbf{w}_{il}^{H} \mathbf{H}_{i}^{H} (\mathbf{G} - z\mathbf{I}_{N})^{-1} \mathbf{A} (\mathbf{B}_{(i,l)} - z\mathbf{I}_{N})^{-1} \mathbf{H}_{i} \mathbf{w}_{il}}{1+\rho_{il} \mathbf{w}_{il}^{H} \mathbf{H}_{i}^{H} (\mathbf{G} - z\mathbf{I}_{N})^{-1} \mathbf{H}_{i} \mathbf{w}_{il}} \right] \rightarrow 0. \end{split}$$

so that

$$\begin{aligned} f_{i} &= \frac{1}{N} \operatorname{tr} \mathbf{R}_{i} \left(\sum_{k=1}^{K} \frac{1}{(1 - c_{k}) \bar{c}_{k} + \frac{1}{N} \sum_{l=1}^{n_{k}} \frac{1}{1 + \rho_{kl} \delta_{k}}} \frac{1}{N} \sum_{l=1}^{n_{k}} \frac{\rho_{kl}}{1 + \rho_{kl} \delta_{k}} \mathbf{R}_{k} - z \mathbf{I}_{N} \right)^{-1} \to 0 \\ f_{i} &= \frac{1}{N} \sum_{l=1}^{n_{i}} \frac{\delta_{i}}{1 + \rho_{il} \delta_{i}} - (1 - c_{i}) \bar{c}_{i} \delta_{i} \to 0. \end{aligned}$$

- Main Results
 - Deterministic Equivalent for a sum of independent Haar
 - Comparison with the i.i.d. case
- Sketch of Proof
 - First deterministic equivalent
 - Second deterministic equivalent
 - Uniqueness and convergence of the det. eg.
- Simulation plots
- 4 Haar matrix with correlated columns

A detour to free probability theory

- The case K = 1, $c_1 = \bar{c}_1 = 1$ can be treated using free probability theory and in particular the R- and S-transform.
- The result is not the same as above. Instead we have

$$\begin{split} \bar{\mathbf{e}} &= \frac{1}{N} \operatorname{tr} \mathbf{P} (e \mathbf{P} + [1 - e \bar{\mathbf{e}}] \mathbf{I}_n)^{-1} \\ e &= \frac{1}{N} \operatorname{tr} \mathbf{R} (\bar{\mathbf{e}} \mathbf{R} - z \mathbf{I}_N)^{-1} \,. \end{split}$$

• the next step is to show that both expressions are consistent.

A detour to free probability theory

- The case K = 1, $c_1 = \bar{c}_1 = 1$ can be treated using free probability theory and in particular the B- and S-transform.
- The result is not the same as above. Instead we have²

$$\begin{split} \bar{\mathbf{e}} &= \frac{1}{N} \operatorname{tr} \mathbf{P} (\mathbf{e} \mathbf{P} + [1 - e \bar{\mathbf{e}}] \mathbf{I}_n)^{-1} \\ e &= \frac{1}{N} \operatorname{tr} \mathbf{R} (\bar{\mathbf{e}} \mathbf{R} - z \mathbf{I}_N)^{-1} \,. \end{split}$$

• the next step is to show that both expressions are consistent.

A detour to free probability theory

- The case K = 1, $c_1 = \bar{c}_1 = 1$ can be treated using free probability theory and in particular the B- and S-transform.
- The result is not the same as above. Instead we have²

$$\begin{split} \bar{\mathbf{e}} &= \frac{1}{N} \operatorname{tr} \mathbf{P} (\mathbf{e} \mathbf{P} + [1 - e \bar{\mathbf{e}}] \mathbf{I}_n)^{-1} \\ e &= \frac{1}{N} \operatorname{tr} \mathbf{R} (\bar{\mathbf{e}} \mathbf{R} - z \mathbf{I}_N)^{-1} \,. \end{split}$$

the next step is to show that both expressions are consistent.

$$\bar{g}_i = \frac{1}{N} \sum_{l=1}^{n_i} \frac{p_{il}}{\left((1 - c_i)\bar{c}_i + \frac{1}{N} \sum_{l=1}^{n_i} \frac{1}{1 + p_{il}\delta_i} \right) + p_{il}\delta_i \left((1 - c_i)\bar{c}_i + \frac{1}{N} \sum_{l=1}^{n_i} \frac{1}{1 + p_{il}\delta_i} \right)},$$

We first remind that

$$f_i \simeq \delta_i \left((1-c_i) \bar{c}_i + \frac{1}{N} \sum_{l=1}^{n_i} \frac{1}{1+p_{il}\delta_i} \right).$$

From

$$\bar{c}_i - \bar{g}_i \delta_i \left((1 - c_i) \bar{c}_i + \frac{1}{N} \sum_{l=1}^{n_i} \frac{1}{1 + p_{il} \delta_i} \right) = (1 - c_i) \bar{c}_i + \frac{1}{N} \sum_{l=1}^{n_i} \frac{1}{1 + p_{il} \delta_i},$$

we also find that

$$ar{c}_i - ar{g}_i f_i \simeq (1 - c_i) ar{c}_i + rac{1}{N} \sum_{l=1}^{n_i} rac{1}{1 +
ho_{il} \delta_i}$$

Together, this gives

$$\bar{g}_i \simeq \frac{1}{N} \sum_{l=1}^{n_i} \frac{p_{il}}{\bar{c}_i - f_i \bar{g}_i + p_{il} f_i} = \frac{1}{N} \operatorname{tr} \mathbf{P}_i \left(f_i \mathbf{P}_i + (\bar{c}_i - f_i \bar{g}_i) \mathbf{I}_{n_i} \right)$$

where δ_i no longer appears and \bar{g}_i is now related to itself

$$\bar{g}_i = \frac{1}{N} \sum_{l=1}^{n_i} \frac{p_{il}}{\left((1 - c_i)\bar{c}_i + \frac{1}{N} \sum_{l=1}^{n_i} \frac{1}{1 + p_{il}\delta_i} \right) + p_{il}\delta_i \left((1 - c_i)\bar{c}_i + \frac{1}{N} \sum_{l=1}^{n_i} \frac{1}{1 + p_{il}\delta_i} \right)},$$

We first remind that

$$f_i \simeq \delta_i \left((1-c_i)\bar{c}_i + \frac{1}{N} \sum_{l=1}^{n_i} \frac{1}{1+\rho_{il}\delta_i} \right).$$

From

$$\bar{c}_i - \bar{g}_i \delta_i \left((1 - c_i) \bar{c}_i + \frac{1}{N} \sum_{l=1}^{n_i} \frac{1}{1 + p_{il} \delta_i} \right) = (1 - c_i) \bar{c}_i + \frac{1}{N} \sum_{l=1}^{n_i} \frac{1}{1 + p_{il} \delta_i},$$

we also find that

$$\bar{c}_i - \bar{g}_i f_i \simeq (1 - c_i) \bar{c}_i + \frac{1}{N} \sum_{l=1}^{n_i} \frac{1}{1 + \rho_{il} \delta_i}$$

Together, this gives

$$\bar{g}_i \simeq \frac{1}{N} \sum_{l=1}^{n_i} \frac{p_{il}}{\bar{c}_i - f_i \bar{g}_i + p_{il} f_i} = \frac{1}{N} \operatorname{tr} \mathbf{P}_i \left(f_i \mathbf{P}_i + (\bar{c}_i - f_i \bar{g}_i) \mathbf{I}_{n_i} \right)$$

where δ_i no longer appears and \bar{g}_i is now related to itself

$$\bar{g}_i = \frac{1}{N} \sum_{l=1}^{n_i} \frac{p_{il}}{\left((1 - c_i)\bar{c}_i + \frac{1}{N} \sum_{l=1}^{n_i} \frac{1}{1 + p_{il}\delta_i} \right) + p_{il}\delta_i \left((1 - c_i)\bar{c}_i + \frac{1}{N} \sum_{l=1}^{n_i} \frac{1}{1 + p_{il}\delta_i} \right)},$$

We first remind that

$$f_i \simeq \delta_i \left((1-c_i)\bar{c}_i + \frac{1}{N} \sum_{l=1}^{n_i} \frac{1}{1+\rho_{il}\delta_i} \right).$$

From

$$\bar{c}_{i} - \bar{g}_{i}\delta_{i}\left((1 - c_{i})\bar{c}_{i} + \frac{1}{N}\sum_{l=1}^{n_{i}}\frac{1}{1 + p_{il}\delta_{i}}\right) = (1 - c_{i})\bar{c}_{i} + \frac{1}{N}\sum_{l=1}^{n_{i}}\frac{1}{1 + p_{il}\delta_{i}},$$

we also find that

$$\bar{c}_i - \bar{g}_i f_i \simeq (1 - c_i) \bar{c}_i + \frac{1}{N} \sum_{l=1}^{n_i} \frac{1}{1 + \rho_{il} \delta_i}$$

Together, this gives

$$\bar{g}_i \simeq \frac{1}{N} \sum_{l=1}^{n_i} \frac{p_{il}}{\bar{c}_i - f_i \bar{g}_i + p_{il} f_i} = \frac{1}{N} \operatorname{tr} \mathbf{P}_i \left(f_i \mathbf{P}_i + (\bar{c}_i - f_i \bar{g}_i) \mathbf{I}_{n_i} \right)$$

where δ_i no longer appears and \bar{g}_i is now related to itself.

Final convergence step

From the above, we finally have

$$\begin{split} & \mathbf{f}_i - \frac{1}{N} \operatorname{tr} \mathbf{R}_i \left(\sum_{j=1}^K \bar{g}_j \mathbf{R}_j - z \mathbf{I}_N \right)^{-1} \xrightarrow{\text{a.s.}} 0 \\ & \bar{g}_i - \frac{1}{N} \operatorname{tr} \mathbf{P}_i \left(\bar{g}_i \mathbf{P}_i + [\bar{c}_i - f_i \bar{g}_i] \mathbf{I}_{n_i} \right)^{-1} \xrightarrow{\text{a.s.}} 0. \end{split}$$

• We then take \bar{f}_i to be the unique solution within $[0, \bar{c}_i c_i/f_i)$ of the equation in x

$$x = \frac{1}{N} \sum_{l=1}^{n_i} \frac{p_{il}}{\bar{c}_i + p_{il} f_i - x f_i}$$

(uniqueness is easy to check) and show that $\bar{f}_i - \bar{g}_i \to 0$.

$$\left| \bar{g}_i - \bar{f}_i \right| \leq \left| \bar{g}_i - \frac{1}{N} \sum_{l=1}^{n_i} \frac{p_{il}}{\bar{c}_i - f_i \bar{g}_i + p_{il} f_i} \right| + \left| \bar{g}_i - \bar{f}_i \right| \cdot \left| \frac{1}{N} \sum_{l=1}^{n_i} \frac{p_{il} f_i}{(\bar{c}_i - f_i \bar{f}_i + p_{il} f_i)(\bar{c}_i - f_i \bar{g}_i + p_{il} f_i)} \right|$$

◆□▶◆圖▶◆臺▶◆臺▶ 臺

Final convergence step

From the above, we finally have

$$\frac{\mathbf{f}_{i} - \frac{1}{N} \operatorname{tr} \mathbf{R}_{i} \left(\sum_{j=1}^{K} \bar{g}_{j} \mathbf{R}_{j} - z \mathbf{I}_{N} \right)^{-1} \xrightarrow{\text{a.s.}} 0}{\bar{g}_{i} - \frac{1}{N} \operatorname{tr} \mathbf{P}_{i} \left(\bar{g}_{i} \mathbf{P}_{i} + \left[\bar{c}_{i} - \mathbf{f}_{i} \bar{g}_{i} \right] \mathbf{I}_{n_{i}} \right)^{-1} \xrightarrow{\text{a.s.}} 0}.$$

• We then take \bar{t}_i to be the unique solution within $[0, \bar{c}_i c_i/f_i)$ of the equation in x

$$x = \frac{1}{N} \sum_{l=1}^{n_i} \frac{p_{il}}{\bar{c}_i + p_{il} f_i - x f_i}$$

(uniqueness is easy to check) and show that $\bar{f}_i - \bar{g}_i \to 0$.

For this, notice that

$$\left| |\bar{g}_i - \bar{f}_i| \le \left| \bar{g}_i - \frac{1}{N} \sum_{l=1}^{n_i} \frac{p_{il}}{\bar{c}_i - f_i \bar{g}_i + p_{il} f_i} \right| + \left| \bar{g}_i - \bar{f}_i \right| \cdot \left| \frac{1}{N} \sum_{l=1}^{n_i} \frac{p_{il} f_i}{(\bar{c}_i - f_i \bar{f}_i + p_{il} f_i)(\bar{c}_i - f_i \bar{g}_i + p_{il} f_i)} \right|.$$

Since $\bar{f}_i \in [0, \bar{c}_i c_i / f_i)$, $\bar{c}_i - f_i \bar{f}_i + p_{il} f_i \ge (1 - c_i) \bar{c}_i$. For |z| large, $f_i \to 0$ and then the second RHS term is small. Since the first RHS term tends to zero, $\bar{f}_i - \bar{g}_i \to 0$.

◆ロ > ◆団 > ◆ 豆 > ◆ 豆 * り へ ○

We finally have

$$\begin{aligned} & \mathbf{f}_{i} - \frac{1}{N} \operatorname{tr} \mathbf{R}_{i} \left(\sum_{j=1}^{K} \overline{f}_{j} \mathbf{R}_{j} - z \mathbf{I}_{N} \right)^{-1} \xrightarrow{\text{a.s.}} 0 \\ & \overline{f}_{i} - \frac{1}{N} \operatorname{tr} \mathbf{P}_{i} \left(\overline{f}_{i} \mathbf{P}_{i} + [\overline{c}_{i} - \mathbf{f}_{i} \overline{f}_{i}] \mathbf{I}_{n_{i}} \right)^{-1} = 0 \end{aligned}$$

with $\bar{f}_i \in [0, \bar{c}_i c_i / f_i)$, unique.

- - Deterministic Equivalent for a sum of independent Haar
 - Comparison with the i.i.d. case
- Sketch of Proof
 - First deterministic equivalent
 - Second deterministic equivalent
 - Uniqueness and convergence of the det. eq.

Uniqueness of the fixed-point equation

Define

$$h_i: (\mathbf{x_1}, \dots, \mathbf{x_K}) \mapsto \frac{1}{N} \operatorname{tr} \mathbf{R}_i \left(\sum_{j=1}^K \bar{x}_j \mathbf{R}_j - z \mathbf{I}_N \right)^{-1}$$

with \bar{x}_i the unique solution of the equation in y

$$y = \frac{1}{N} \sum_{l=1}^{n_j} \frac{p_{jl}}{\bar{c}_j + x_j p_{jl} - x_j y}$$

such that $0 \le y < c_i \bar{c}_i / x_i$.

For uniqueness and convergence of the fixed-point algorithm, it is sufficient to prove that the vector $\mathbf{h} \triangleq (h_1, \dots, h_K)$ is a standard function,³ i.e. it satisfies the conditions

- Positivity: if $x_1, \ldots, x_K > 0$, then $h(x_1, \ldots, x_K) > 0$,
- Monotonicity: if $x_1 > x_1', \dots, x_K > x_K'$, then for all j, $h_j(x_1, \dots, x_K) > h_j(x_1', \dots, x_K')$,
- Scalability: for all $\alpha > 0$ and j, $\alpha h_j(\mathbf{x_1}, \dots, \mathbf{x_K}) > h_j(\alpha \mathbf{x_1}, \dots, \alpha \mathbf{x_K})$

The only non-trivial step is to show monotonicity.

³Theorem 2 of R. D. Yates, "A framework for uplink power control in cellular radio systems," IEEE J. Sel. Areas Commun., vol. 13, no. 7, pp. 1341-1347, 1995.

Uniqueness of the fixed-point equation

Define

$$h_i: (\mathbf{x}_1, \dots, \mathbf{x}_K) \mapsto \frac{1}{N} \operatorname{tr} \mathbf{R}_i \left(\sum_{j=1}^K \bar{\mathbf{x}}_j \mathbf{R}_j - z \mathbf{I}_N \right)^{-1}$$

with \bar{x}_i the unique solution of the equation in y

$$y = \frac{1}{N} \sum_{l=1}^{n_j} \frac{p_{jl}}{\bar{c}_j + x_j p_{jl} - x_j y}$$

such that $0 \le y < c_i \bar{c}_i / x_i$.

For uniqueness and convergence of the fixed-point algorithm, it is sufficient to prove that the vector $\mathbf{h} \triangleq (h_1, \dots, h_K)$ is a standard function,³ i.e. it satisfies the conditions

- Positivity: if $x_1, \ldots, x_K > 0$, then $h(x_1, \ldots, x_K) > 0$,
- Monotonicity: if $x_1 > x_1', \dots, x_K > x_K'$, then for all $j, h_j(x_1, \dots, x_K) > h_j(x_1', \dots, x_K')$,
- Scalability: for all $\alpha > 0$ and j, $\alpha h_j(\mathbf{x_1}, \dots, \mathbf{x_K}) > h_j(\alpha \mathbf{x_1}, \dots, \alpha \mathbf{x_K})$.

The only non-trivial step is to show monotonicity.

R. Couillet (Supelec)

³ Theorem 2 of R. D. Yates, "A framework for uplink power control in cellular radio systems," IEEE J. Sel. Areas Commun., vol. 13, no. 7, pp. 1341-1347, 1995.

• we introduce the auxiliary variables $\Delta_1, \ldots, \Delta_K$, with the properties

$$\mathbf{x}_{i} = \Delta_{i} \left((1 - c_{i}) \bar{c}_{i} + \frac{1}{N} \sum_{l=1}^{n_{i}} \frac{1}{1 + \rho_{il} \Delta_{i}} \right)$$
$$= \Delta_{i} \left(\bar{c}_{i} - \frac{1}{N} \sum_{l=1}^{n_{i}} \frac{\rho_{il} \Delta_{i}}{1 + \rho_{il} \Delta_{i}} \right).$$

and

$$\bar{c}_{i} - \mathbf{x}_{i}\bar{\mathbf{x}}_{i} = (1 - c_{i})\bar{c}_{i} + \frac{1}{N}\sum_{l=1}^{n_{i}} \frac{1}{1 + p_{il}\Delta_{i}}$$

$$= \bar{c}_{i} - \frac{1}{N}\sum_{l=1}^{n_{i}} \frac{p_{il}\Delta_{i}}{1 + p_{il}\Delta_{i}}.$$

It is not difficult to prove these Δ_i are uniquely defined.

- We show first that $\frac{d}{dx_i}\bar{x}_i < 0$
- This unfolds from

$$\frac{d}{d\Delta_{i}}\bar{\mathbf{x}}_{i} = \frac{1}{\Delta_{i}^{2}\left(\bar{\mathbf{c}}_{i} - \frac{1}{N}\sum_{l=1}^{n_{i}}\frac{\rho_{il}\Delta_{i}}{1+\rho_{il}\Delta_{i}}\right)^{2}}\left[\left(\frac{1}{N}\sum_{l=1}^{n_{i}}\frac{\rho_{il}\Delta_{i}}{1+\rho_{il}\Delta_{i}}\right)^{2} - \frac{\bar{\mathbf{c}}_{i}}{N}\sum_{l=1}^{n_{i}}\frac{(\rho_{il}\Delta_{i})^{2}}{(1+\rho_{il}\Delta_{i})^{2}}\right]$$

which is negative from Cauchy-Schwarz.

• From this, we have for two sets x_1, \ldots, x_K and x'_1, \ldots, x'_K of positive values such that $x_j > x'_j$

$$h_j(\mathbf{x}_1, \dots, \mathbf{x}_K) - h_j(\mathbf{x}_1', \dots, \mathbf{x}_K')$$

$$= \sum_{i=1}^K (\bar{\mathbf{x}}_i' - \bar{\mathbf{x}}_i) \frac{1}{N} \operatorname{tr} \mathbf{R}_j \left(\sum_{k=1}^K \bar{\mathbf{x}}_k \mathbf{R}_k - z \mathbf{I}_N \right)^{-1} \mathbf{R}_i \left(\sum_{k=1}^K \bar{\mathbf{x}}_k' \mathbf{R}_k - z \mathbf{I}_N \right)^{-1}$$

- We show first that $\frac{d}{dx_i}\bar{x}_i < 0$
- This unfolds from

$$\frac{d}{d\Delta_{i}}\bar{\mathbf{x}}_{i} = \frac{1}{\Delta_{i}^{2}\left(\bar{\mathbf{c}}_{i} - \frac{1}{N}\sum_{l=1}^{n_{i}}\frac{\rho_{il}\Delta_{i}}{1+\rho_{il}\Delta_{i}}\right)^{2}}\left[\left(\frac{1}{N}\sum_{l=1}^{n_{i}}\frac{\rho_{il}\Delta_{i}}{1+\rho_{il}\Delta_{i}}\right)^{2} - \frac{\bar{\mathbf{c}}_{i}}{N}\sum_{l=1}^{n_{i}}\frac{(\rho_{il}\Delta_{i})^{2}}{(1+\rho_{il}\Delta_{i})^{2}}\right]$$

which is negative from Cauchy-Schwarz.

• From this, we have for two sets x_1, \ldots, x_K and x'_1, \ldots, x'_K of positive values such that $x_j > x'_j$

$$h_{j}(\mathbf{x}_{1},\ldots,\mathbf{x}_{K}) - h_{j}(\mathbf{x}_{1}',\ldots,\mathbf{x}_{K}')$$

$$= \sum_{i=1}^{K} (\bar{\mathbf{x}}_{i}' - \bar{\mathbf{x}}_{i}) \frac{1}{N} \operatorname{tr} \mathbf{R}_{j} \left(\sum_{k=1}^{K} \bar{\mathbf{x}}_{k} \mathbf{R}_{k} - z \mathbf{I}_{N} \right)^{-1} \mathbf{R}_{i} \left(\sum_{k=1}^{K} \bar{\mathbf{x}}_{k}' \mathbf{R}_{k} - z \mathbf{I}_{N} \right)^{-1}$$

$$> 0.$$

Convergence of the det. eq.

 \bullet call e_i the solution of the fixed-point equation in x_i . The last step is to show that

$$f_i - e_i \stackrel{\text{a.s.}}{\longrightarrow} 0.$$

this unfolds from classical arguments by showing

$$|\mathbf{f}_{i} - \mathbf{e}_{i}| \leq \alpha |\mathbf{f}_{i} - \mathbf{e}_{i}| + \varepsilon$$

with ε $\stackrel{a.s.}{=}$ 0 when the dimension grows large and 0 < α < 1 for some |z| large enough. Vitali theorem completes the proof for all z.

• For the case c=1, we write

$$\begin{aligned} \left| \frac{1}{N} \operatorname{tr} \mathbf{R}_{i} \left(\mathbf{B}_{N} - z \mathbf{I}_{N} \right)^{-1} - \mathbf{e}_{i}(z) \right| &\leq \left| \frac{1}{N} \operatorname{tr} \mathbf{R}_{i} \left(\mathbf{B}_{N} - z \mathbf{I}_{N} \right)^{-1} - \frac{1}{N} \operatorname{tr} \mathbf{R}_{i} \left(\mathbf{B}_{N}^{(n)} - z \mathbf{I}_{N} \right)^{-1} \right| \\ &+ \left| \frac{1}{N} \operatorname{tr} \mathbf{R}_{i} \left(\mathbf{B}_{N}^{(n)} - z \mathbf{I}_{N} \right)^{-1} - \mathbf{e}_{i}^{(n)}(z) \right| + \left| \mathbf{e}_{i}^{(n)}(z) - \mathbf{e}_{i}(z) \right|, \end{aligned}$$

with $e_i^{(n)}$, $\mathbf{B}_N^{(n)}$ the values of e_i , \mathbf{B}_N if the \mathbf{P}_k are truncated into $n \times n$ matrices.

• We then show that the limsup of all terms are less than any $\varepsilon>0$ as $n,N\to\infty$ for some c<1.

Convergence of the det. eq.

 \bullet call e_i the solution of the fixed-point equation in x_i . The last step is to show that

$$f_i - e_i \stackrel{\text{a.s.}}{\longrightarrow} 0.$$

this unfolds from classical arguments by showing

$$|\mathbf{f}_{i} - \mathbf{e}_{i}| \leq \alpha |\mathbf{f}_{i} - \mathbf{e}_{i}| + \varepsilon$$

with ε $\stackrel{a.s.}{\longrightarrow} 0$ when the dimension grows large and $0 < \alpha < 1$ for some |z| large enough. Vitali theorem completes the proof for all z.

• For the case c = 1, we write

$$\begin{split} \left| \frac{1}{N} \operatorname{tr} \mathbf{R}_{i} \left(\mathbf{B}_{N} - z \mathbf{I}_{N} \right)^{-1} - e_{i}(z) \right| &\leq \left| \frac{1}{N} \operatorname{tr} \mathbf{R}_{i} \left(\mathbf{B}_{N} - z \mathbf{I}_{N} \right)^{-1} - \frac{1}{N} \operatorname{tr} \mathbf{R}_{i} \left(\mathbf{B}_{N}^{(n)} - z \mathbf{I}_{N} \right)^{-1} \right| \\ &+ \left| \frac{1}{N} \operatorname{tr} \mathbf{R}_{i} \left(\mathbf{B}_{N}^{(n)} - z \mathbf{I}_{N} \right)^{-1} - e_{i}^{(n)}(z) \right| + \left| e_{i}^{(n)}(z) - e_{i}(z) \right|, \end{split}$$

with $e_i^{(n)}$, $\mathbf{B}_N^{(n)}$ the values of e_i , \mathbf{B}_N if the \mathbf{P}_k are truncated into $n \times n$ matrices.

• We then show that the limsup of all terms are less than any $\varepsilon>0$ as $n,N\to\infty$ for some c<1.

Outline

- Main Results
 - Deterministic Equivalent for a sum of independent Haar
 - Comparison with the i.i.d. case
- Sketch of Proof
 - First deterministic equivalent
 - Second deterministic equivalent
 - Uniqueness and convergence of the det. eq.
- Simulation plots
- Haar matrix with correlated columns

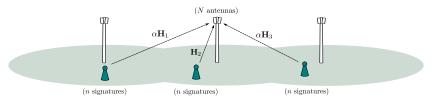


Figure: Three-cell example: BS₂ decodes the *n* streams from the UT in its own cell while treating the other signals as interference.

Deterministic equivalent of the Shannon transform

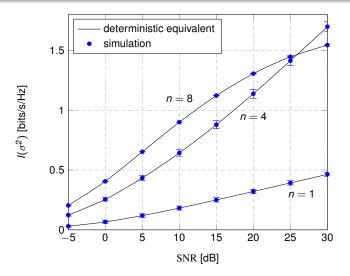


Figure: Mutual information $I(\sigma^2)$ versus SNR for different numbers of transmit signatures n, N=16, $N_i=8$, $\mathbf{P}_i=\mathbf{I}_n$, $\alpha=0.5$. Error bars represent one standard deviation on each side.

Deterministic equivalent of the MMSE SINR

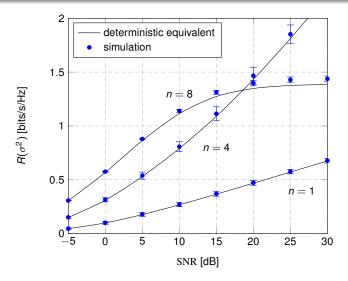


Figure: SUm rate $R(\sigma^2)$ at the output of the MMSE decoder for user 2 versus SNR for different numbers of transmit signatures n, N=16, $N_i=8$, $\mathbf{P}_i=\mathbf{I}_n$, $\alpha=0.5$. Error bars represent one standard deviation on each side.

Outline

- Main Results
 - Deterministic Equivalent for a sum of independent Haar
 - Comparison with the i.i.d. case
- Sketch of Proof
 - First deterministic equivalent
 - Second deterministic equivalent
 - Uniqueness and convergence of the det. eq.
- 3 Simulation plots
- 4 Haar matrix with correlated columns

We consider the model

$$\mathbf{B}_N = \sum_{k=1}^K \mathbf{R}_k \mathbf{w}_k \mathbf{w}_k^{\mathsf{H}} \mathbf{R}_k^{\mathsf{H}}$$

with $\mathbf{R}_K \in \mathbb{C}^{N \times N}$ deterministic with bounded spectral norm and $[\mathbf{w}_1, \dots, \mathbf{w}_K]$ the $K \leq N$ columns of a unitary Haar matrix.

• We have the following det. eq. for A with bounded spectral norm

Theorem

$$\frac{1}{N}\operatorname{tr}\mathbf{A}(\mathbf{B}_N-z\mathbf{I}_N)^{-1}-\frac{1}{N}\operatorname{tr}\mathbf{A}(\mathbf{Q}-z\mathbf{I}_N)^{-1}\overset{\mathrm{a.s.}}{\longrightarrow}0$$

with

$$\mathbf{Q} = \frac{1}{N} \sum_{k=1}^{K} \frac{\mathbf{R}_{k} \mathbf{R}_{k}^{H}}{(1 + e_{kk}) \left(1 - \frac{1}{N} \sum_{i=1}^{K} \frac{\bar{e}_{ki} e_{ik}}{(1 + e_{ii}) \bar{e}_{kk}}\right)}$$

where, for $1 \le k, l \le K$

$$e_{kl} = \frac{\frac{1}{N} \operatorname{tr} R_{l} R_{k}^{H} \left(\mathbf{Q} - z \mathbf{I}_{N} \right)^{-1}}{1 - \frac{1}{N} \sum_{i=1}^{K} \frac{e_{ki} e_{ij}}{(1 + e_{ij}) e_{kl}}} \quad and \quad \bar{e}_{kl} = \frac{\frac{1}{N} \operatorname{tr} R_{l} R_{k}^{H} \left(\mathbf{Q} - z \mathbf{I}_{N} \right)^{-2}}{1 - \frac{1}{N} \sum_{i=1}^{K} \frac{\bar{e}_{ki} e_{ij}}{(1 + e_{ij}) \bar{e}_{kl}}}.$$

- Thanks to the trace lemma for Haar matrices, it is possible to extend techniques for matrices with independent entries to Haar matrices.
- The technique is more involved than the free probability approach but is fully consistent
- We introduced results that are non convenient to treat within the free probability framework alone
- The trace lemma technique leads to a first impractical expression, which may be refined by some sort of "quess-work".
- Some open questions:
 - Can we apply this framework for more involved models based on Haar matrices?
 - Can we extend the technique to other matrix models (e.g., Euclidean, Vandermonde random matrices)?
 - Can we extend this study into moment formulas'

- Thanks to the trace lemma for Haar matrices, it is possible to extend techniques for matrices with independent entries to Haar matrices.
- The technique is more involved than the free probability approach but is fully consistent
- We introduced results that are non convenient to treat within the free probability framework alone
- The trace lemma technique leads to a first impractical expression, which may be refined by some sort of "quess-work".
- Some open questions:
 - Can we apply this framework for more involved models based on Haar matrices?
 - Can we extend the technique to other matrix models (e.g., Euclidean, Vandermonde random matrices)?
 - Can we extend this study into moment formulas?

- Thanks to the trace lemma for Haar matrices, it is possible to extend techniques for matrices with independent entries to Haar matrices.
- The technique is more involved than the free probability approach but is fully consistent
- We introduced results that are non convenient to treat within the free probability framework alone
- The trace lemma technique leads to a first impractical expression, which may be refined by some sort of "guess-work".
- Some open questions:
 - Can we apply this framework for more involved models based on Haar matrices?
 - Can we extend the technique to other matrix models (e.g., Euclidean, Vandermonde random matrices)?
 - Can we extend this study into moment formulas?

- Thanks to the trace lemma for Haar matrices, it is possible to extend techniques for matrices with independent entries to Haar matrices.
- The technique is more involved than the free probability approach but is fully consistent
- We introduced results that are non convenient to treat within the free probability framework alone
- The trace lemma technique leads to a first impractical expression, which may be refined by some sort of "guess-work".
- Some open questions:
 - Can we apply this framework for more involved models based on Haar matrices?
 - Can we extend the technique to other matrix models (e.g., Euclidean, Vandermonde random matrices)?
 - Can we extend this study into moment formulas?