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Main Results
Problem statement
We wish to characterize a deterministic equivalent for the following types of matrices
@ “sum of correlated Haar”

k=1

HpgH
By = E H WP, W/ H
Possible uses in wireless communications are

with H, € CN*Ni deterministic, W, € CNe* unitary isometric, Px € C™ %" deterministic
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Main Results
Problem statement
We wish to characterize a deterministic equivalent for the following types of matrices
@ “sum of correlated Haar”
K
By =Y HcW,P,WHHY
k=1
with H, € CN*Ni deterministic, W, € CNe* unitary isometric, Px € C™ %" deterministic
Possible uses in wireless communications are
o multi-cell frequency selective COMA/SDMA with a single user per cell
o single-cell downlink CDMA/SDMA with colored noise
o capacity and MMSE SINR
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Main Results
Problem statement
We wish to characterize a deterministic equivalent for the following types of matrices
@ “sum of correlated Haar”

k=1

HpgH
By = E H WP, W/ H
Possible uses in wireless communications are

with H, € CN*Ni deterministic, W, € CNe* unitary isometric, Px € C™ %" deterministic
o multi-cell frequency selective COMA/SDMA with a single user per cell

o single-cell downlink CDMA/SDMA with colored noise

o capacity and MMSE SINR

@ “Haar matrices with a correlation profile”

with X = [x4,

By = XxH
.y Xp] € CNX" and

1
Xk = RE Wy

with Ry deterministic and W = [wy,

communications are

., Wp] € CV*" isometric. Possible uses in wireless
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K

Main Results
Problem statement
We wish to characterize a deterministic equivalent for the following types of matrices
@ “sum of correlated Haar”

k=1

HpgH
By = E H WP, W/ H
Possible uses in wireless communications are

with H, € CN*Ni deterministic, W, € CNe* unitary isometric, Px € C™ %" deterministic
o single-cell downlink COMA/SDMA with colored noise

o multi-cell frequency selective COMA/SDMA with a single user per cell
o capacity and MMSE SINR
@ “Haar matrices with a correlation profile”

with X = [x1,

By = XxH
.y Xp] € CNX" and

with R, deterministic and W = [wy,
communications are

1
Xk = REWK

., Wp] € CV*" isometric. Possible uses in wireless
o single/multi-cell frequency selective CDMA/SDMA uplink and downlink
o beamforming with unitary precoding in frequency selective channels
o capacity and MMSE SINR
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Main Results

Fundamental equations

Theorem (Theorem 1)

LetP; € C"i*ni and R; € CN*N be Hermitian nonnegative matrices and ¢,
scalars. Then the following system of equations in (€1, ..., €x)

_ 1 _ _ _
e = N tr P; (e,-P,- aF [C,' = 9,‘9,']';7,-)

_ —trR (Zej —zIN>_1.

has a unique functional solution (&1(z), ..
transform of a distribution function with support on R*.

Deterministic Equivalent for a sum of independent Haar

., ex(2)) with z — ei(z), C \ Rt — C, the Stielties

., Ck be positive
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Main Results Deterministic Equivalent for a sum of independent Haar

Point-wise uniqueness

Theorem (Theorem 2)

For each z real negative, the system of equations (1) has a unique scalar-valued solution
(&1,...,6ex) witheg; = lim;_, o é( ), where e(’) is the unique solution of

_ 1 _ - —1
&0 = S P (P + [ — "8l ) @)
within the interval [0, ¢;C;/ eft)), efo) can take any positive value and e}') is recursively defined by:

—1
K
e — trR (Z ’)Rj—le> .

The solution e e ) of (2) is explicitly given by

8 — jim & k)
' k— o0

with 89 ¢ [0, ¢;5;/e") and, fork > 1,

_ 1 1
eft’k):ntrP,-( &P, + [& — &1y, )

— [ = AT

R. Couillet (Supélec) Deterministic equivalents for Haar matrices 13/10/2010 7/38



Main Results Deterministic Equivalent for a sum of independent Haar

Convergence in distribution

Theorem (Theorem 3)

LetP; € C"i*"Ni be a Hermitian nonnegative matrix with spectral norm bounded uniformly along n;
and W; € CNixni pe the n; < N; columns of a unitary Haar distributed random matrix. We also
consider H; € CN*Ni a random matrix such that R; & HH € CN*N has uniformly bounded
spectral norm along N, almost surely. Denote

K
By = > HWP,W/'H.

i=1

Then, as N, Ny, ..., Nk, nq, ..., ng grow to infinity with ¢; % satisfying

0 < liminf¢; <limsup¢; < oo and0 < ﬁL £ ¢; < 1 forall i, we have
1

FBv _Fy=0

almost surely, where Fy, is the distribution function with Stieltjes transform my(z) defined by

p —1
my(2) = %,tr (Z éi(2)R; — ZlN) ; ®)
i=1

with z — &;(z), C\ Rt — C, defined in Theorem 1.

= L = AN

R. Couillet (Supélec) Deterministic equivalents for Haar matrices 13/10/2010 8/38



Main Results
Deterministic equivalent of the Shannon transform

Deterministic Equivalent for a sum of independent Haar

Theorem (Theorem 4)
LetBy € CN *N pe defined as in Theorem 3 with z = —1/x for some x > 0. Denoting
Ve, (X) = Iog det(xBy + ly) the Shannon-transform of FBN, we have
asN, Ny,...,

VB, (X) — Vn(x) =20, (4)

Nk, nq, ..., ng grow to infinity with 0 < liminf¢; < limsup ¢; < co, where
K
Vy(x) = Iog det [ Iv+x>_ &R;
i=1
K
+2
i=1

[ log det [CI —eiélln, + ¢ 1) + (1 —¢j)cilog(C; — ;&) — ¢ilog(c;)

(%)
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Deterministic equivalent of the MMSE SINR

Deterministic Equivalent for a sum of independent Haar

Theorem (Theorem 5)

Under the conditions of Theorem 3, we have

WZ'H:-' (BN = p,'jl'l,‘W,‘jWZ'|'|='-| = ZIN)
withwj; € CNi the j1 column of W;.

(i
H,‘W,‘j =

— — 0,
Ci — ejej

R. Couillet (Supélec)
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: : - Main Results
Comparison with the i.i.d. case
Assume C; = ¢

Comparison with the i.i.d. case

o for W; Haar,

1 for every i. Then

my(z) =

—1
(Ze, -—zIN> , with
N

—1trP; (&P; + [1 — & ]Iy) ™"

(6)
1
-:—tr (Ze, —zIN> .
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Main Results Comparison with the i.i.d. case

Comparison with the i.i.d. case

Assume ¢; = ¢; = 1 for every i. Then,
—1

o for W; Haar,
my(z) = Z gR; — zly , with
- 1 — _1
=N P;(eP; +[1 — ei&]ln) (6)
K —1
6 =— tr Z — zly
o for W, i.i.d.,’
K —1
my(z) = —tr Z —zly , with
- 1 _1
& = - trPi(eP; +1y) @)
N
—1
6 =— trR Z &R,
R. Couillet, J. W. Silverstein, M. Debbah, “A deterministic equivalent for the analysis of MIMO multiple aceess ¢ channels
http://arxiv.org/abs/0906.3667v3, IEEE Trans. on Inf. Theory, to appear. =] Il = = 9aQQ
Deterministic equivalents for Haar matrices 13/10/2010 12/38
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Outline (First det. eq.)

Sketch of Proof

o Denoting §; =
prove

(INI — W,W,_‘) Hr‘ (BN — ZlN)

Hiand f; 2 LtrR; (By — zly) ™"
fi— NtrR,-(G—zIN)" %0,
with G = -1, g;R; and

G = 1 1 pi
' (1 — c,-)E,- N 1_1 1+l17/5 N 1 +pll5l
where p; denotes the /" eigenvalue of P;, and §; is linked to f; through

1. 3§
fi— <(1 EILUEEDY

i a.s.
—0
71 +Pi/5i>
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Outline (Second det. eq.)

Sketch of Proof
@ g;is then shown to satisfy
1 & p 1
- il - - a.s.
i— — = trP fiPi+[C; — 1 — 0,

Gi N,Zc‘:,-+p,-,f,'—ﬁg, g - (fPi + [& — figilln;)

which induces the 2K-equation system
—1
trR (Zg, —zIN) %0
9 — Kl trP; (GiP; + [6 — fGlln) ' 25 0.

R. Couillet (Supélec)
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Outline (Second det. eq.)

Sketch of Proof
@ g;is then shown to satisfy
1 & P
— il -
gi— — _ ! =g —
' N,Z Ci + pufi — 1igi
which induces the 2K-equation system

trR (Zg,

9 — Kl trP; (9;P;

+ 1[G -
o Introducing F

S K, Ry, we finally prove

—1
f-——trR (Zm —zIN> 25
i

A P; (P + [ — fif]ln,)

where, for z < 0, f; lies in [0, ¢;C;/f;) and is now uniquely determined by f;
R. Couillet (Supélec)
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Sketch of Proof
Fundamental lemma

First deterministic equivalent

To perform classical det. eq. techniques, we need a trace lemma.

& = £ DA
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Sketch of Proof
Fundamental lemma

First deterministic equivalent

To perform classical det. eq. techniques, we need a trace lemma.
o Inthe i.i.d. case, this is the classical

Let By € CN*N have uniformly bounded spectral norm. Let xy € CN be random vectors of i.i.d.

entries with zero mean, variance 1/N and finite eighth order moment, independent of By. Then

4
(o
E < —
[ ]_Nz’
as N — co.

1
anNxN — —trBy

8)

(= = =
R. Couillet (Supélec) Deterministic equivalents for Haar matrices
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Sketch of Proof First deterministic equivalent

Fundamental lemma

To perform classical det. eq. techniques, we need a trace lemma.
o Inthei.i.d. case, this is the classical

Theorem

Let By € CN*N have uniformly bounded spectral norm. Let xy € CN be random vectors of i.i.d.
entries with zero mean, variance 1/N and finite eighth order moment, independent of By. Then

d

1
anNxN — Kl trBy

& €

as N — co.

o In the Haar case, this is

LetW be n < N columns of an N x N Haar matrix and suppose w is a column of W. Let By be an
N x N random matrix, which is a function of all columns of W exceptw and B = supy, ||By|| < oo,

then .
— N2 b

where II = Iy — WW" + wwH and C is a constant which depends only on B and ;.

tr(TIBy)

1
E | (whByw —
U N N—n

=} = = = = DA
R. Couillet (Supélec) Deterministic equivalents for Haar matrices 13/10/2010 17/38



Sketch of Proof
Inference step

First deterministic equivalent

o we first suppose limsupy, ¢; < 1 in order to apply the trace lemma

as usual, denoting G Z,-K:1 giR;, we take the difference
1 _ 1 _
 ABy — 2In) -  [FAG — zIn)

—1tr
N

Ay — 2ln) " D H; (—w,-P,-w,?| + g,-lN) HY (G — zIy)

=

—1
i=1 :|
LS
=Zgﬁ
=1
(b) X
R

i=1 I=1

ga N TABY — ) R(G — ) - Z Z
with wj; € CNi the /% column of W;, piq,

By =

rA(By — zly) 'Ri(G — zly) " — — Z Zp,,w,,H (G — zly) " 'A(By — zIy) " "Hw;
=1 I=1
By — pyHiw;wi;H

p,/W;lHF(G — ZlN) A(B(,‘J) — Zl/\l)71 Hiw;
14 pywtHI(By; ) — zIn) ~"Hwj
, Pin. the eigenvalues of P; and

)

R. Couillet (Supélec)
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Sketch of Proof First deterministic equivalent

Inference step

o we first suppose limsupy, ¢; < 1 in order to apply the trace lemma.
o as usual, denoting G = Z,’; giR;, we take the difference

1 1 _
 ABy — 2In) -  [FAG — zIn) !

i=1

1 < _ _
=Nt [A(BN — 2" ST H (—W,-P,-W}" + g,-INI.) H(G — zlv) 1]

K
1 _ - _
@Zgn rA(By — zly) " 'Ri(G — zly) ——ZZp,,w,,H (G — zIy) "'A(By — zlv) "' Hiw;
i=1 i=1 I=1
K HigH —1 —1
WHHA (G — z1y) TTA(B; ) — ZIn) T 'Hiw;
O 5 0 wABy — ) R — 2 =y 3 30 PO ) A o) T
i=1

== 1+ piwiHY (B ) — zIn)~THiw; '
with wj; € CNi the /! column of W;, pi1, . .., pin, the eigenvalues of P; and
B,y = By — pyHiw;w!HH.

o Inthei.i.d. case, due to the trace lemma, we identify easily g;.

@ But things are not as simple in the Haar case!, since

_ _ 1 _ _
whH (G — zIy) T'A(B( ) — zIn) T HWy ~ Nl — WWHHN G — z1y) T'ABy — 2Iy) T'H;
1 i

o = = = = 9Dac

R. Couillet (Supélec) Deterministic equivalents for Haar matrices 13/10/2010 18/38



Sketch of Proof

Using auxiliary variables (1)

First deterministic equivalent

The idea now is to express terms of the form 5 tr(ly

N — W;WH)D as a function of f; trD.
In particular,
@ Denoting
1 H) yH -1
bt (I, = WWH) HE By — 2In) " H,
F2 iR (By — 2ly)
we have

(1—c)cio; = f; - NZW HY (By — zIy) ™" Hiw;
18 HY (B — zIv) ~ Hiw;

= i
N = 1 +p’/wHHH (B(,”/) — ZIN) 1 HjWi[

= N§:1+m5

o 5 = = = DA
R. Couillet (Supélec)
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Sketch of Proof

Using auxiliary variables (2)

First deterministic equivalent

o Similarly, denoting

Bi &

1
N; — n;
we have

tr (IN — W,Wr) H,' (G — ZlN)_1 A(BN ZlN)

SO 1 1
((1 c)Gi + - Z ] +p,/5,> ~ = trH (G —zly)” A(By —zly)” ' H;
or equivalently

Bi trHY (G — zly) " A(By — zly) "' H;
1+pidi

1H.
((1 — GG %127;1 ﬁ) (14 pidy)

R. Couillet (Supélec)
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: : Sketch of Proof First deterministic equivalent
Plugging pieces together
Choosing
n;
. 1 1 - Pir
GECCE 2

N 1+p,/6 N =1+ pidi”
we then have

%ItrA(BN —zy) - %ItrA(G —zly)~"
K nj
1 1 Pi H 1
= - - tI’H (G - Z|N) A(BN - ZlN)
; (=& + 4 0, T N IZ; T+pio N

1y g PG — 2) ! A(By — 2 H
N = = 1+ pyw!HE(By; ) — zIn) ~THw;

_

B XK: Tpi | GUH(G - zlv) T ABY — 2In) T H,

~ WH(G — zIn) " TABy ) — 2Iv) T THiw; o
N (1 —a)Ti+ 4, W)u + pid;) 1+ pyw!HE(By; ) — zIn) ~THw;
so that
fi — —trR; — R — zly —0
N o (-t + 4 K ‘+Pk/5k N e +Pk/5k
n
1 < 5
i 1 —¢)cid; — 0.
' N 21: 14 pidi - i)6ior =
o = = =
R. Couillet (Supélec)
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Sketch of Proof
A detour to free probability theory

Second deterministic equivalent

the R- and S-transform.

o The case K = 1, ¢y = ¢y = 1 can be treated using free probability theory and in particular
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Sketch of Proof
A detour to free probability theory

Second deterministic equivalent

the R- and S-transform.

o The case K = 1, ¢y = ¢y = 1 can be treated using free probability theory and in particular
@ The result is not the same as above. Instead we have?

&= UP(eP+[1- eell,) !
1 - 1

= —trR(8R—zly)~".

e Ntr (eR — zly)

2see the note from W. Hachem, “An expression for I/ log(t/o? + 1)p B i(dt)”
R. Couillet (Supélec)
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Sketch of Proof
A detour to free probability theory

Second deterministic equivalent

the R- and S-transform.

o The case K = 1, ¢y = ¢y = 1 can be treated using free probability theory and in particular
@ The result is not the same as above. Instead we have?

5= %ItrP(eP 41— el

1 - —1
= —trR(eR -zl .
e=y ( 2ly)

o the next step is to show that both expressions are consistent.

2see the note from W. Hachem, “An expression for I/ log(t/o? + 1)p B i(dt)”
R. Couillet (Supélec)
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Sketch of Proof Second deterministic equivalent
Simplifying gx
1
gi= N

Pir
(1= e+ & Sy i) + i (€
o We first remind that

f’-N

¢+ § iy 1+p,,6 )
ol (T—e)ei+ Z

1+ pl/5/
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> Sketch of Proof Second deterministic equivalent
Simplifying gx
1
gi= N

Pir
(1= e+ & Sy i) + i (€
o We first remind that

¢+ § iy 1+p,,6 )
<(1 —G)Gi + Z
o From

1 +pl/5/>
al - gi‘si ((1 - CI)CI N

13 i
Nos + — R, —
> i) =
we also find that

R 1
) N§1+pﬂ§i
1 &

gifi~(1—¢)c+

gifi ~ ( i)Ci + N/11+p1/6

R. Couillet (Supélec)
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> Sketch of Proof Second deterministic equivalent
Simplifying gk
1
gi= N

Pir
(1= e+ & Sy i) + i (€
o We first remind that

ci)%i+ 1L 1+p,,6 )
1¢h 1
fi = §j ((1 —Ci)5i+NZ
o From

=1 +Pi/5i> '
al - gi‘si ((1 - CI)CI N

13 i
Nos + — R —
; 1 +Pi/5'> (
we also find that

Sl 1
L N§1+pil5i
1 &
—gifi~(1-¢)C+

N/ 7 1+p,/6
o Together, this gives
g pil
9= N,g: - Igl+pllf

'[I' P; (f P;+ (¢ — lgl)ln,)
where §; no longer appears and g; is now related to itself
R. Couillet (Supélec)
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Sketch of Proof Second deterministic equivalent
Final convergence step

o From the above, we finally have

-0

K —1
f—— tr R; (Z - zIN> L3
5~ P @R+ (6~ falla) ' 250

o We then take f; to be the unique solution within [0, ¢;c;/f;) of the equation in x

1A
X

Pil
N -

7 Ci + pify — Xf,
(uniqueness is easy to check) and show that f; — gi — 0

R. Couillet (Supélec)
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Sketch of Proof Second deterministic equivalent

Final convergence step

o From the above, we finally have

—1
K
fi— —trR, (Z —zIN> 250

- = - = —1
9 — Kl trP; (GiP; + [Ci — figilln) " == 0.
o We then take 7 to be the unique solution within [0, T;c;/f;) of the equation in x

n;
X:l L
N = C + pifi — xf;

(uniqueness is easy to check) and show that . — g; — 0.

o For this, notice that

nj

1 p'/f'
NZ _ _ it i

(& — il + pf) (G — G + paf) |

S e » -
|gi—fi|§gi_nz¢+|gi_fi|'
1=

7 Ci — 1igi + pif;

Since f; € [0, Gici/f), & — fif; + pufi > (1 — ¢;);. For |z large, fi — 0 and then the second
RHS term is small. Since the first RHS term tends to zero, f, — g; — 0

=} 5 = = = DA
R. Couillet (Supélec) Deterministic equivalents for Haar matrices 13/10/2010 25/38



. Sketch of Proof
Final formula

Second deterministic equivalent

o We finally have

—1
K
] a.s.
fi— KItrR,- ;fjnj—zl,\, %0
-1 - I
fi— 1Py (P + (& — flln) ' =0
with %; € [0, G;c;/f), unique.

R. Couillet (Supélec)
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- Sketch of Proof
Outline

Uniqueness and convergence of the det. eq.

Deterministic Equivalent for a sum of independent Haar
Comparison with the i.i.d. case
0 Sketch of Proof

First deterministic equivalent
Second deterministic equivalent

@ Unigueness and convergence of the det. eq.
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Sketch of Proof
Uniqueness of the fixed-point equation

Uniqueness and convergence of the det. eq

Define

—1
hi s (1, xK)»—>—trR (Zx, -—zIN)
with x; the unique solution of the equation in y

Pji
N ; G + XPir = Xy
suchthat 0 < y < ¢iGj/x

R. Couillet (Supélec)
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Sketch of Proof Uniqueness and convergence of the det. eq.

Uniqueness of the fixed-point equation

Define
hi s (X1, .., XK) — —trR Zx,  — zZly
with x; the unique solution of the equation in y

I P
N = G+ xpi — %y
such that 0 < y < ¢;Gj/x;.

For uniqueness and convergence of the fixed-point algorithm, it is sufficient to prove that the vector
h £ (hy,..., hk) is a standard function,® i.e. it satisfies the conditions

o Positivity: if x1,...,xx > 0, then h(xy,...,xx) >0,
@ Monotonicity: it x; > x{,...,xx > X, thenfor all j, hj(x1, ..., xx) > hi(x{, ..., x),
o Scalability: for all « > 0 and j, ahj(xq, ..., xk) > hj(axy, ..., axk).

The only non-trivial step is to show monotonicity.

3Theorem 2 of R. D. Yates, “A framework for uplink power control in cellular radio systems,” IEEE J. Sel. Areas Commun vol.
13, no. 7, pp. 1341-1347, 1995. =} 5 = = DA
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Monotonicity

Sketch of Proof

Uniqueness and convergence of the det. eq.

@ we introduce the auxiliary variables A,

., Ak, with the properties

o 1T piA;
n
I LA
_ Ai (Ci _ Pir
and

A+ Pl
o ltis not difficult to prove these A, are uniquely defined.

R. Couillet (Supélec)
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Monotonicity (2)

Sketch of Proof

Uniqueness and convergence of the det. eq

@ We show first that -=-x; < 0
@ This unfolds from

1
— X =
dA;

(li P )
1 A N
A (c, N 211 1+p,,A) !

— 1+ Pl
which is negative from Cauchy-Schwarz

(pIIA)
Z i

+ pllA )2
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Monotonicity (2)

Sketch of Proof

Uniqueness and convergence of the det. eq

o We show first that -2-X; < 0
@ This unfolds from

d _ 1 1T oh il (i)
d_AiXi - AR 1l (K/ Z 1+ piA; Z (14 pulri)?
(c, N 2-i=1 Tipya, ) =1
which is negative from Cauchy-Schwarz
@ From this, we have for two sets Xy, ..., Xk and x;, x;, of positive values such that x; > x
hj(X1,. .. ,XK) — hj(X{, e ,X;()
1 K -1 K -1
= Z(_;—)_(i)NtI'R/ Z)_(kRk—ZlN R; Z_}I(Rk_ZIN
i=1 k=1 k=1
> 0.

R. Couillet (Supélec)
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Sketch of Proof

Convergence of the det. eq.

Uniqueness and convergence of the det. eq.

o call e; the solution of the fixed-point equation in x;. The last step is to show that

f,' — €& 2) 0.
o this unfolds from classical arguments by showing

Ifi— el <alfi— el +¢
with ¢ 2% 0 when the dimension grows large and 0 < « < 1 for some |z| large enough. Vitali
theorem completes the proof for all z.
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Sketch of Proof

Convergence of the det. eq.

Uniqueness and convergence of the det. eq.

o call e; the solution of the fixed-point equation in x;. The last step is to show that

f,' — €& 2) 0.
o this unfolds from classical arguments by showing

Ifi— el <alfi— el +¢

with ¢ 2% 0 when the dimension grows large and 0 < « < 1 for some |z| large enough. Vitali
theorem completes the proof for all z.
o For the case ¢ = 1, we write

—tr R[ (BN — ZlN)_1 — e,-(z)

1 P -

< ‘NtrR,»(BN — ) - N R (ij") —le) ‘
1 1

+ 'N R (BY —zln) - el (2)

+e"(2) - ei(2)|
with e,("), B%’) the values of g;, By if the Py are truncated into n x n matrices.
c<1.

@ We then show that the limsup of all terms are less than any € > 0 as n, N — oo for some
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. Simulation plots
Outline
1

Deterministic Equivalent for a sum of independent Haar
Comparison with the i.i.d. case

M)

First deterministic equivalent
Second deterministic equivalent

Uniqueness and convergence of the det. eq.

@ simulation plots
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Simulation plots

(N antennas)

—
/
i

aH;

(n signatures) (n signatures)
signals as interference.

(n signatures)
Figure: Three-cell example: BS, decodes the n streams from the UT in its own cell while treating the other
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Simulation plots

Deterministic equivalent of the Shannon transform

T T T T
deterministic equivalent
e simulation

1.5 H

I(2) [bits/s/Hz]

SNR [dB]

Figure: Mutual information /(o2) versus SNR for different numbers of transmit signatures n, N = 16, N; = 8,
P; =15, o = 0.5. Error bars represent one standard deviation on each side.

o 5 = = = DA
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Simulation plots
Deterministic equivalent of the MMSE SINR

2 I I I I
\
—— deterministic equivalent ;
e simulation ;
5
b
N
<
@
9
- N |
3 4
@ } 3
0.5 B
| n= 1
S : | | |
| | | | |
L | | | | |
« \ | | | | |
-5 0 5 10 15 20 25 30

SNR [dB]

Figure: SUm rate R(c?) at the output of the MMSE decoder for user 2 versus SNR for different numbers of

transmit signatures n, N = 16, N; = 8, P; = |, a = 0.5. Error bars represent one standard deviation on each
side.
o & = = E 9Dae
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Haar matrix with correlated columns
Outline
1

Deterministic Equivalent for a sum of independent Haar
Comparison with the i.i.d. case

M)

First deterministic equivalent
Second deterministic equivalent

Uniqueness and convergence of the det. eq.

‘ Haar matrix with correlated columns
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Main result

.. so far!

Haar matrix with correlated columns

o We consider the model

K

H
By = E Rw,w, R/
columns of a unitary Haar matrix

H
k=1
with R, € CN*N deterministic with bounded spectral norm and [wy, ..., wk] the K < N
@ We have the following det. eq. for A with bounded spectral norm
%ItrA(BN —zly) ' = %ItrA(Q —zy)" " 250
with
-3

—1

where, for1 < k,| < K

RkRH

Bl

(1 + ekk) ( Z’ 1 (T+eq) ekk)
LRRE(@—zly) ™! _ LwRRY(Q-zly) 2
W=y 1T SK e and &g = 1_ 1K Ee

N i=1 (T+ej)eq N i=1 (T+ej)ey
o = = = =
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Haar matrix ww}h correlated columns
Comments and Conclusions

@ Thanks to the trace lemma for Haar matrices, it is possible to extend techniques for matrices
with independent entries to Haar matrices.
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Haar matrix wi}h correlated columns
Comments and Conclusions

@ Thanks to the trace lemma for Haar matrices, it is possible to extend techniques for matrices
with independent entries to Haar matrices.

o The technique is more involved than the free probability approach but is fully consistent
alone

o We introduced results that are non convenient to treat within the free probability framework
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Haar matrix w‘\fh correlated columns
Comments and Conclusions

@ Thanks to the trace lemma for Haar matrices, it is possible to extend techniques for matrices
with independent entries to Haar matrices.

o The technique is more involved than the free probability approach but is fully consistent

o We introduced results that are non convenient to treat within the free probability framework
alone

o The trace lemma technique leads to a first impractical expression, which may be refined by
some sort of “guess-work”.
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Haar matrix wifh correlated columns
Comments and Conclusions

@ Thanks to the trace lemma for Haar matrices, it is possible to extend techniques for matrices
with independent entries to Haar matrices.

o The technique is more involved than the free probability approach but is fully consistent

o We introduced results that are non convenient to treat within the free probability framework
alone

o The trace lemma technique leads to a first impractical expression, which may be refined by
some sort of “guess-work”.

@ Some open questions:

o Can we apply this framework for more involved models based on Haar matrices?

o Can we extend the technique to other matrix models (e.g., Euclidean, Vandermonde random
matrices)?

o Can we extend this study into moment formulas?

o = = = = 9Dac
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