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Motivation

Motivation

In computational biology, an important question is to measure the
similarity between two genomic (long) sequences. If the sequences
σ and τ are assumed to be random elements of Sn, the set of
permutations of [[n]], biologists are interested in

Op(σ, τ) = #{i ≤ p : σ ◦ τ−1(i) ≤ p} , p = 1, · · · , n .

More generally, G. Chapuy (2007) introduced the discrepancy
process

T n
p,q(σ) = #{i ≤ p : σ(i) ≤ q} , p, q = 1, · · · , n ,

and proved that the normalized ”discrepancy” process

n−1/2
(
T n
bnsc,bntc(σ)− stn

)
, s, t ∈ [0, 1]

converges in distribution to the tied down bivariate Brownian
bridge, of covariance (s ∧ s ′ − ss ′)(t ∧ t ′ − tt ′) .
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Motivation

If σ is represented by the matrix U(σ), the integer Y n
p,q(σ) is the

sum of all elements of the upper-left p × q submatrix of U(σ), i.e.

T n
p,q(σ) = TrD1U(σ)D2U(σ)∗

where D1 = Ip, D2 = Iq and Ik = diag(1, · · · , 1, 0, · · · , 0) (with k
times 1) .

Instead of picking randomly σ in the group Sn, we propose to pick
a random element U in the group U(n) and to study

T n
p,q = TrD1UD2U

∗ =
∑

i≤p,j≤q
|Uij |2 .
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Main result

Theorem (CDM,AR, 2010)

The process

W (n) =
{
T

(n)
bnsc,bntc − ET (n)

bnsc,bntc , s, t ∈ [0, 1]
}

converges in distribution in D([0, 1]2) to the bivariate tied down
Brownian bridge, i.e. the Gaussian process W (∞) with covariance

E
[
W (∞)(s, t)W (∞)(s ′, t ′)

]
= (s ∧ s ′ − ss ′)(t ∧ t ′ − tt ′) .

No normalization here !

If σ ∈ Sn, then |Uij |2(σ) = Uij(σ) and if σ is Haar distributed
Var(|Uij |2) = n−1(1− n−1)

If U is Haar distributed in U(n), then Var(|Uij |2) = n−2.
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Previous related results

If q is fixed, the vector (Ui ,q)ni=1 is uniformly distributed on
the n dimensional complex sphere. It is well known (Silverstein
1981) that the process

n1/2

bnsc∑
i=1

|Uiq|2 − s

 , s ∈ [0, 1]

converges in distribution to the Brownian bridge.

If p = q, Diaconis and d’Aristotile (99, 06) were interested by

partial traces and proved that {
∑bnsc

i=1 Uii , s ∈ [0, 1]}
converges without normalization to the Brownian motion.
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As usual, the proof is divided in two parts : convergence of the
fi.di. distributions of W (n) and tightness. The main tool is the
computation of cumulants and their asymptotics. We state a
formula for the cumulants of variables of the form
X = Tr(AUBU∗) for deterministic matrices A,B of size n, and we
apply it to the computation of the second and fourth cumulant of
Tp,q. This formula relies on the notion of second order freeness
introduced by Mingo, Sniady and Speicher (06-07). Roughly
speaking, whereas the freeness, introduced by Voiculescu, provides
the asymptotic behavior of expectation of traces of random
matrices, the second order freeness describes the leading order of
the fluctuations of these traces.
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Preliminary remarks

Preliminary remarks : Some moments

Elementary computations give

E|Uij |2k =
(n − 1)!k!

(n − 1 + k)!

E
(
|Ui ,j |2|Ui ,k |2

)
=

1

n(n + 1)
, E

(
|Ui ,j |2|Uk,`|2

)
=

1

n2 − 1
.

From these relations, we can compute the first moments of Tp,q.

ETp,q =
pq

n
, lim

n

1

n
ETp,q = st .

VarTp,q = pq
(n − p)(n − q)

n2
, lim

n
VarTp,q = st(1− s)(1− t) .
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Combinatorics of the unitary group

The expectations of products of entries of U can be described by a
special function, called the Weingarten function (see [5]) defined
as follows :

Wg(N, π) = E(U11 . . .UppŪ1π(1) . . . Ūpπ(p))

where π ∈ Sp. Then,

E(Ui ′1j
′
1
. . .Ui ′p j

′
p
Ūi1j1 . . . Ūip jp) (1)

=
∑

α,β∈Sp

δi1i ′α(1)
. . . δip i ′α(p)

δj1jβ(1) . . . δjp i ′β(p)
Wg(N, βα−1) .
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Combinatorics of the unitary group

The Weingarten functions for p = 1, 2 are given by :

Wg(n, (1)) =
1

n

Wg(n, (1)(2)) =
1

n2 − 1
, Wg(n, (12)) = − 1

n(n2 − 1)
(2)
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Combinatorics of the unitary group

Cumulants of random variables

κr (a1, · · · , ar ) =
∑

C∈P(r)

Möb(C , 1r )EC (a1, · · · , ar )

where

P(r) is the set of partitions of [[r ]]

If C = {C1, · · · ,Ck} is the decomposition of C in blocks, then

Möb(C , 1−r) = (−1)k−1(k−1)! , EC (a1, . . . ar ) =
k∏

i=1

E(
∏
j∈Ci

aj).
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Combinatorics of the unitary group

Cumulants of random matrices

If X1, . . .X2l are random matrices,
for π = π1 × · · · × πr ∈ S2l with πi = (πi ,1, . . . , πi ,`(i)) let

κπ(X1, . . . ,X2l) := κr

(
Tr(Xπ1,1 · · ·Xπ1,`(1)), . . . ,Tr(Xπr,1 · · ·Xπr,`(r))

)
For A = {A1, . . . ,Ak} a σ-invariant partition of [[2l ]] let

σi = σ|Ai
and

κσ,A(X1, . . . ,X2l) := κσ1(X1, . . . ,X2l) · · ·κσk (X1, . . . ,X2l) .

A sequence {B1, . . . ,Bs}n a of n× n deterministic matrices is said
to have a limit distribution if there exists a non commutative
probability space (A, ϕ) and b1, . . . bs ∈ A such that for any
polynomial p in s non commuting variables,

lim
n→∞

n−1 Tr(p(B1, . . . ,Bs)) = ϕp(b1, . . . , bs).
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Combinatorics of the unitary group

Proposition (From Mingo, Sniady, Speicher)

Let Un ∈ U(n) Haar distributed and {B1, . . . ,Bs}n a sequence with
a limit distribution. Let r > 1 and ε1, . . . ε2r ∈ {−1, 1} such that∑
εi = 0. Consider p1, . . . p2r polynomials in s non commuting

variables. Let

Di = pi (B1, . . . ,Bs) , Xj = Tr(D2j−1U
ε(2j−1)D2jU

ε(2j)) ,

(i ≤ 2r , 1 ≤ j ≤ r). Then,

κr (X1, . . . ,Xr ) =
∑
π∈S(ε)2r

∑
A,B

Cπ̃,Ã κγπ−1,B(D1, . . . ,D2r ) (3)

Moreover, for r ≥ 3,

lim
n→∞

κr (X1, . . . ,Xr ) = 0.
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Combinatorics of the unitary group

Above, the second sum is taken over pairs of partitions of [[2r ]]
such that A is π invariant, B is γπ−1 invariant and A ∨ B = 1[[2r ]]
the one block partition. γ is given by the product of transpositions∏

i≤r (2i − 1, 2i) and Cπ,A are relative cumulants :

Cπ,A =
∑

C∈[π,A],C={V1,...Vk}

Möb(C ,A) Wg(π|V1) . . .Wg(π|Vk
) (4)

for A π invariant. The other expressions are too complicated to be
exposed here.
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Fidi convergence

Fi.di. convergence

Let (ai )i≤k ∈ R, (si , ti )i≤k ∈ [0, 1]2. We must prove the

convergence in distribution of X (n) =
∑k

i=1 aiY
(n)
pi ,qi with

pi = bnsic, qi = bntic to a Gaussian distribution.
We have

X (n) =
k∑

i=1

ai [Tr(D2i−1UD2iU
?)− E(Tr(D2i−1UD2iU

?))]

where D2i−1 = Ipi , D2i = Iqi . Now, {D2i−1,D2i , i = 1, . . . k} are
commuting projectors with a limit distribution
{q2i−1, q2i , i = 1, . . . k} on a probability space (A, φ) with
φ(q2i−1) = si , φ(q2i ) = ti and qiqj = qi if ui ≤ uj (and = qj
otherwise) where ui = si for i odd and ui = ti for i even.
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Fidi convergence

Let r ≥ 3, then

κr (X (n), . . . ,X (n)) =
k∑

i1,...,ir=1

ai1 . . . airκr (Y
(n)
pi1 ,qi1

, . . . ,Y
(n)
pir ,qir )

=
k∑

i1,...,ir=1

ai1 . . . airκr (Xi1 , . . . ,Xir )

where Xip = Tr(D2ip−1UD2ipU
?). From Proposition 2.1

lim
n→∞

κr (Xir , . . . ,Xir ) = 0. (5)

Now, the second cumulant is given by

κ2(X (n),X (n)) =
k∑

i ,j=1

aiajκ2(Tr(D2i−1UD2iU
?),Tr(D2j−1UD2jU

?)).

κ2(Tr(D2i−1UD2iU
?),Tr(D2j−1UD2jU

?)) =

(pi ∧ pj)(qi ∧ qj)

n2 − 1
−

(pi ∧ pj)qiqj
n(n2 − 1)

−
pipj(qi ∧ qj)

n(n2 − 1)
+

pipjqiqj
n2(n2 − 1)

.
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Fidi convergence

In the limit, we get

lim
n
κ2(Tr(D2i−1UD2iU

?),Tr(D2j−1UD2jU
?))

= (si ∧ sj − si sj)(ti ∧ tj − ti tj).

Thus, we get the convergence of X (n) to a centered Gaussian
distribution with variance

k∑
i ,j=1

aiaj(si ∧ sj − si sj)(ti ∧ tj − ti tj).
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Tightness

Tightness

Let p ≤ p′ ≤ n and q ≤ q′ ≤ n

∆
(n)
p,q(p′, q′) = Y

(n)
p′,q′ − Y

(n)
p′,q − Y

(n)
p,q′ + Y

(n)
p,q

=
∑

p+1≤i≤p′

∑
q+1≤i≤q′

|Ui ,j |2 − E|Ui ,j |2

(d)
= Y

(n)
p′−p,q′−q .

A criterion adapted from Bickel and Wichura says that it is enough
to prove

E
[(

Y
(n)
p,q

)4]
= O(p2q2n−4) . (6)
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Tightness

We now give an estimate for κ4(Tp,q) which, helped by the above
estimates, will be sufficient. From (3),

κ4 =
∑
π∈S(ε)

8

∑
A,B

Cπ̃,Ã κγπ−1,B(D1, . . . ,D8)

where S(ε)8 is the subset of S8 which sends {1, 3, 5, 7} onto
{2, 4, 6, 8} and reversely, γ = (12)(34)(56)(78) ∈ S8, A and B are
partitions of [[8]] such that A is π-invariant, B is γπ−1-invariant,
A ∨ B = 1[[8]], and finally

D1 = D3 = D5 = D7 = Ip , D2 = D4 = D6 = D8 = Iq .



Introduction Sketch of the proof Complementary remarks

The marginals

Outline

1 Introduction
Motivation
Main result
Previous related results

2 Sketch of the proof
Preliminary remarks
Combinatorics of the unitary group
Fidi convergence
Tightness

3 Complementary remarks
The marginals
Orthogonal case (in progress)
Conjectured universality



Introduction Sketch of the proof Complementary remarks

The marginals

Asymptotics of the marginal

Let us recall the notation

Ap,q = D1UD2U
∗ = Vp,qV

∗
p,q

where Vp,q is the upper-left submatrix of U. As proved by Collins
(2005) Ap,q belongs to the Jacobi unitary ensemble (JUE) and

Tp,q = TrAp,q = p

∫
xdµ(p)(x) ,

where µ(p) is the empirical spectral distribution

µ(p) =
1

p

p∑
k=1

δ
λ
(p)
k

,

and the λ
(p)
k ’s are the eigenvalues of Ap,q.
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The marginals

For the JUE, the equilibrium measure is the Kesten-McKay
distribution of density

Cu−,u+

√
(x − u−)(u+ − x)

2π(4− x2)
1(u−,u+)(x) (7)

where −2 ≤ u− < u+ ≤ 2 (u± depending on s, t). By continuity,
we recover

lim
n

1

n
Tbnsc,bntc = s

∫
xπu−,u+(x)dx = st ,

in probability. It could also be possible to recover the fluctuation
result for the marginal distribution, i.e. Tbnsc,bntc − ETbnsc,bntc
converges in distribution to N (0, s(1− s)t(1− t)) from the known
results on the fluctuations of linear statistics of µ(p).
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Orthogonal case (in progress)

Orthogonal case (in progress)

U(n)→ O(n) Tp,q =
∑

i≤p,j≤q U
2
ij

In multivariate (real) analysis of variance, Tp,q is known as the
Bartlett-Nanda-Pillai statistics., used to test equalities of
covariances matrices from Gaussian populations. Asymptotic
studies :

1 p, q fixed, n→∞ (large sample framework),

2 q fixed, n, p →∞ and p/n→ s < 1 fixed (high-dimensional
framework, see Fujikoshi et al.).

3 p/n→ s, q/n→ t with s, t fixed. This case is considered in
the Bai and Silverstein’s book, and a CLT for Tp,q was proved
by Bai, Jiang, Yao, Zhang (2009).
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One conjecture of D. Chafai

If M is a n × n matrix with i.i.d. entries with the same four first
moments as the Gaussian standard then the matrix U of the
eigenvectors of MM∗ satisfy the same asymptotic result as in our
theorem.
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