A CLT oN THE SINR OF THE

DIAGONALLY LOADED CAPON/MVDR BEAMFORMER

Francisco Rubio!
joint work with Xavier Mestre! and Walid Hachem?

LCentre Tecnolégic de Telecomunicacions de Catalunya
2Télécom ParisTech and Centre National de la Recherche Scientifique

Workshop on Large Random Matrices and their Applications
Télécom ParisTech, 11-13 October, 2010

Francisco Rubio (CTTC) CLT on SINR of DL-MVDR beamformer Paris - October 13, 2010 1/17



OUTLINE

Capon/MVDR beamforming (or spatial filtering)

Characterization of output SINR performance

Asymptotic deterministic equivalents

A Central Limit Theorem

Conclusions

Francisco Rubio (CTTC) CLT on SINR of DL-MVDR beamformer Paris - October 13, 2010 2/17



CAPON/MVDR BEAMFORMING

SIGNAL MODEL

o Consider the following set of independent observations drawn from the general
Gauss-Markov linear model £ (y (n),z (n)s,R):

y(n)=z(n)s+nn)eC"”, n=1,...,N

where z (n) = signal waveform, s € C™ = spatial signature, n (n) € C¥ = i+n

e Typical scenario in sensor array signal processing applications:

OD S yi(n)
< y2(n) yi(n)
OD '\ y(n) = yg(n) n=1...N

o We are interested in linearly filtering the observed samples to estimate z (n)
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CAPON/MVDR BEAMFORMING

PROBLEM STATEMENT

o Optimal coefficients of Minumum Variance Distornionless Response filter:
. H . H
wmMmyvDr = arg min w Rw subjecttow s =1
weCM
R !s
sfR-1s
where R is the covariance matrix of interference-plus-noise random vectors

@ In practice, R is unknown and implementations rely on the Sample Covariance
Matrix or any other improved estimator based on regularization or shrinkage:

. 1 1

R- Ly (IN - —1N1§\,> Y7 foR,, Y =[y(1).....y(N)]
N N

where R, is a positive matrix and « > 0 is the diagonal loading or shrinkage

intensity parameter

o If a = 0 then R = Rscu and, under Gaussianity, Rscy = LR'2XTX"R!/?
where the entries of X are CA (0,1), and T models either sample weighting or
temporal correlation across samples
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CHARACTERIZATION OF THE OUTPUT SINR PERFORMANCE

DEFINITION

o The Signal-to-Interference-plus-Noise Ratio at the output of the MVDR filter is:

o |whs|?
SINR(W) = —iRw

with o2 = signal power
o The optimal SINR is SINR (wmvor) = s R™'s = ||u||”
For the MVDR filter implementation based on diagonal loading:

(5 (Rovar) 's)

sH (R+ aIM>_1 R (R+ aIM)_1 s

SINR (WmvpRr) =

o We are interested in the properties of SINR (Wmvpr)
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CHARACTERIZATION OF THE OUTPUT SINR PERFORMANCE

KNOWN PROPERTIES

o In the case R = Rscm (T = Iy and « = 0), the distribution of

SINR (Wumvor) (SHfi*lS)

SINR (wmvDR) SHR—lRR_lssHR—ls

is known in the array processing literature to have a density
[Reed-Mallet-Brennan, T.AES’74]

N! M—-2 N+1-M

o In particular, SINR (Wwmvor) /SINR (Wmvpr) ~ Beta (N 4+ 2 — M, M — 1) with

N+2-M
N+1

mean —

and
(M—-1)(N+2-M)

(N +1)> (N +2)

e What about the general case with arbitrary positive T and « ? [Rao-Edelman,
ASAP’05]

variance =

Francisco Rubio (CTTC) CLT on SINR of DL-MVDR beamformer Paris - October 13, 2010 6 /17



ASYMPTOTIC ANALY

AsymMpPTOTIC DETERMINISTIC EQUIVALENTS OF THE SINR

o First-order analysis:

(5 (Ro+ot) 's)

sH (RJr aIM)_l R (f{+ ozIM)_1 s

SINR (Wmvpr) =

H R+ aR,) 's)’ SINR (WmvbR)
(s" (rMR + aR,) ' s) = SINR (WwmvpR)

1 —sH (mMR—I—ozRo)*lR(a:MR—i—aRo)*ls
L=
such that
x :iTr[T(I +e T)_l] ZiTr ]:]]
M= N M =V
= T R (zMR +aR,) '] = iTﬁr[E]
M=N N

and v = % Tr [E2] and ¥ = %Tr []:]2]
o Asymptotics of SINR (Wmvpr) involve both the eigenvalues and also the
eigenvectors of the random matrix model
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ASYMPTOTIC ANALYSIS OF THE SINR

A RANDOM MATRIX THEORY RESULT

o If the entries of X have 8th-order moment and ||R|| and ||'T|| are bounded, as
N =N (M) — oo and 0 < liminf c¢ps < limsupey < 400 (e = M/N), a.s
[Rubio-Mestre, submitted SPL'10]

" (A + LRYV2XTXTRY? - zIM)_l v= v (@R + 2 (2) R — 21a) v
for each z € C —R™ and an arbitrary nonrandom, unit-norm v, where
z(z) = —Tr[ (IN+e(z)T)_1]
and e (z) is the unique solution in C — R* to

e(z) = %Tr [R(aRo + 2 (2) R — 2In) ']

o Define Qi (2) = (£XTX" + aR™" — 2I) " and note that
Qi (2) = 3@ {Qu (2)}],_, along with

(u”Qu (0) u)2

SINR (¥wvor) =~ ros—ory
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ASYMPTOTIC ANALYSIS OF THE SINR

CONSISTENT ESTIMATOR OF THE SINR

o We also have the following estimate not depending on the unknown R:
. -1 . /. -1
" (R+aR,) R(R+aR,) s

(sH (R + aRo) B 5)2

SINR (Wmvbr) < dar () X

where

@ The previous estimate can be used to find the optimal diagonal loading factor or
shrinkage intensity parameter for arbitrary shrinkage target R,

e What about the fluctuations of SINR (Wmvpr) ?

Francisco Rubio (CTTC) CLT on SINR of DL-MVDR beamformer Paris - October 13, 2010 9 /17



SECOND-ORDER ASYMPTOTIC ANALYSIS

A CENTRAL LiMIT THEC

o We analyze the variance J?M of SINR (Wwmvpr) and prove the Central Limit Theorem

0';41 (S|NR (WMVDR) — SlNR (WMVDR)) M £> N(O, 1)

,N—oo

by applying the Delta method to the random vector

—1

e sH(R—i—aIM) s
[ } st (R—i—aIM)ilR(R—l—aIM)ils

bmr

whose distribution is obtained by using the Cramér-Wold device after managing the
following computations...
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SECOND-ORDER ASYMPTOTIC ANALYSIS

ELEMENTS OF THE PROOF (1/2)

o Recall Qur (0) = Qur = (L XTX” + aR ™) ™" and |[uf|? = s"R's, and define
apm X apm = uHQMu
bar =< by = u”Q}u

@ We follow the approach by Hachem et al. in [H-K-L-N-P, T.IT'2008] and show that

Wy (w) — exp (—w20%4/2) M oo 0

where W (w) is the characteristic function of the random variable
A\/N(QM — C_LM) — B\/N (bM — l_)M)
o To identify the variance, we proceed as

%@M (w) =1 AVNE [(anr — anr) Car ()] +iBVNE [(bar — bar) o ()]
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SECOND-ORDER ASYMPTOTIC ANALYSIS

ELEMENTS OF THE PROOF 2/2)

o Asin [H-K-L-N-P, T.IT'2008], we make intensive use of the integration by parts
formula (Z = DXD, with D, D being diagonal)

E[Zi;T (Z)] = d;d,;B [OF(Z)}

and the Nash-Poincaré inequality

var (I' (Z2)) < Z Z diJjE

2 2

ar (z)
07,

ar (Z)
oz,

"

to compute the expectation and variance controls for the following quantities:

Tr [@wa]
- {@Q% XZ;VXH]

where £ =1,2,3,4 and ® = ab’ and ® = %Zg (a, b unit-norm and Z,,Z,
diagonal with bounded spectral norm)
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SECOND-ORDER ASYMPTOTIC ANALYSIS

DELTA METHOD

o Gathering terms together as

8%\111\4 (w) = —w (AQO'az + ABoupy + BAop, + BQsz) Uy (w)+ O (N_l)

along with E[am] = am + O (N_l) and E [bym] = by + O (N_l), we get

\/N[ b b } EN@E), T= [ a2 aba}

bM—bM Oab Op2

where =0 and 04p = Opa

o Since SINR (Wmvpr) = f (aar, bar) with f (z,y) = 2% /y and
Vf=1]2z/y —(x/y)® ] then it follows by the Delta method that

\/N(f (anr,bar) = f (Gnr, bar))
£> N (,U,Hv_f (C_LM, I_)M) ,Vf (C_LM, I_JM)H EVf (L_IMJ_)M))
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CENTRAL LIMIT THEOREM

GENERAL CASE

@ From the previous procedure we obtain
ot VN (SINR (Wwvor) — SINR (WMVDR)) £ N(0,1)
where

(uHE2 u) 2
(uf Eu)*

+4<ﬁ2%tr[E] %tr[ ]>V2+< Ntr[E‘l]—l—ny%tr[E‘l])
+ﬁ (&3 (%tr [E3]>2 - zw% tr [E®] %tr [E3] ++° (% tr [E3D2>

with
(uHEzu)2 - 4uHEgu N 1 W E*a N (UHE3U)2
(uf Eu)? ufEu = 2 \ ufE?u  (ufE?u)’

Ha3 Hya2
Vg:[u E'u u Eu}

%4:4:7(1_7’7)]71
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CENTRAL LIMIT THEOREM

SPECIAL CASE I:

@ In the case T =1y and a =0, then (¢ = cr)

VN

——————— (SINR (WmvDR) — —c ﬁ)N 7
P em =g IR (Fwvor) = (1-6) SN (01)

o This follows from the CLT-based Gaussian approximation of the Beta distribution
of SINR (WwmvpR) in the finite case by letting N = N (M) — oo
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HEOREM

SPECIAL I: TEMPORAL CORRELATION / SAMPLE WEIGHTING

@ In the case a = 0, then

VN

lul* oar

(SINR (Wwvor) — (1= = T [E?]) ) 5 W (0,1)

¢ (§ Tr [B%])° — 45 Tr [B7] & Tr [B%] + 2¢ (5 T [E°])°
(1- % T [E?])

and we have defined E = T (zpIn 4 ¢T) !
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CONCLUSIONS AND SOME FUTURE WORK

@ We have shown that the SINR of the diagonally loaded Capon/MVDR beamformer is
asymptotically Gaussian and have provided a closed-form expression for its variance

@ The same elements describe also the fluctuations of the MSE performance of this
filter, which can be written in terms of realized variance and bias, as well as of
other linear filters, such as the linear MMSE filter

o The results hold for Gaussian environments, but extensions based on a more general
integration by parts formula might be investigated for non-Gaussian observations

o Rather than on the covariance matrix estimation error, we could directly focused on
the performance of the objective by considering the structure of the problem

o A similar scheme can be applied to study the second-order behavior of alternative
error measures for covariance matrix estimation
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