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Capon/MVDR beamforming
Signal model

Consider the following set of independent observations drawn from the general
Gauss-Markov linear model L (y (n) ; x (n) s;R):

y (n) = x (n) s+ n (n) 2 CM ; n = 1; : : : ; N

where x (n) � signal waveform, s 2 CM � spatial signature, n (n) 2 CK � i+n
Typical scenario in sensor array signal processing applications:

We are interested in linearly �ltering the observed samples to estimate x (n)
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Capon/MVDR beamforming
Problem statement

Optimal coe¢ cients of Minumum Variance Distornionless Response �lter:

wMVDR = arg min
w2CM

wHRw subject towHs = 1

=
R�1s

sHR�1s

where R is the covariance matrix of interference-plus-noise random vectors

In practice, R is unknown and implementations rely on the Sample Covariance
Matrix or any other improved estimator based on regularization or shrinkage:

R̂ =
1

N
Y

�
IN �

1

N
1N1

0
N

�
YH + �Ro, Y = [y (1) ; : : : ;y (N)]

where Ro is a positive matrix and � > 0 is the diagonal loading or shrinkage
intensity parameter

If � = 0 then R̂ = R̂SCM and, under Gaussianity, R̂SCM
L
= 1

N
R1=2XTXHR1=2

where the entries of X are CN (0; 1), and T models either sample weighting or
temporal correlation across samples
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Characterization of the output SINR performance
Definition

The Signal-to-Interference-plus-Noise Ratio at the output of the MVDR �lter is:

SINR (w) =
�2x
��wHs

��2
wHRw

with �2x � signal power

The optimal SINR is SINR (wMVDR) = s
HR�1s � kuk2

For the MVDR �lter implementation based on diagonal loading:

SINR (ŵMVDR) =

�
sH
�
R̂+ �IM

��1
s

�2
sH
�
R̂+ �IM

��1
R
�
R̂+ �IM

��1
s

We are interested in the properties of SINR (ŵMVDR)
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Characterization of the output SINR performance
Known properties

In the case R̂ = R̂SCM (T = IN and � = 0), the distribution of

SINR (ŵMVDR)

SINR (wMVDR)
=

�
sHR̂�1s

�2
sHR̂�1RR̂

�1
ssHR�1s

is known in the array processing literature to have a density
[Reed-Mallet-Brennan,T.AES�74]

f� (�) =
N !

(M � 2)! (N + 1�M)! (1� �)
M�2 �N+1�M

In particular, SINR (ŵMVDR) =SINR (wMVDR) � Beta (N + 2�M;M � 1) with

mean =
N + 2�M
N + 1

and

variance =
(M � 1) (N + 2�M)
(N + 1)2 (N + 2)

What about the general case with arbitrary positive T and � ? [Rao-Edelman,
ASAP�05]
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Asymptotic analysis of the SINR
Asymptotic Deterministic Equivalents of the SINR

First-order analysis:

SINR (ŵMVDR) =

�
sH
�
R̂+ �IM

��1
s

�2
sH
�
R̂+ �IM

��1
R
�
R̂+ �IM

��1
s

�
�
sH (xMR+ �Ro)

�1 s
�2

1

1� 
~
 s
H (xMR+ �Ro)

�1R (xMR+ �Ro)
�1 s

= SINR (ŵMVDR)

such that

xM =
1

N
Tr
�
T (IN + eMT)

�1� � 1

N
Tr
h
~E
i

eM =
1

N
Tr
�
R (xMR+ �Ro)

�1� � 1

N
Tr [E]

and 
 = 1
N
Tr
�
E2
�
and ~
 = 1

N
Tr
h
~E2
i

Asymptotics of SINR (ŵMVDR) involve both the eigenvalues and also the
eigenvectors of the random matrix model
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Asymptotic analysis of the SINR
A Random Matrix Theory result

If the entries of X have 8th-order moment and kRk and kTk are bounded, as
N = N (M)!1 and 0 � lim inf cM � lim sup cM < +1 (cM =M=N), a.s.,
[Rubio-Mestre, submitted SPL�10]

�H
�
A+ 1

N
R1=2XTXHR1=2 � zIM

��1
� � �H (�Ro + x (z)R� zIM )�1 �

for each z 2 C� R+ and an arbitrary nonrandom, unit-norm �, where

x (z) =
1

N
Tr
�
T (IN + e (z)T)

�1�
and e (z) is the unique solution in C� R+ to

e (z) =
1

N
Tr
�
R (�Ro + x (z)R� zIM )�1

�
De�ne QM (z) =

�
1
N
XTXH + �R�1 � zIM

��1
and note that

Q2
M (z) = @

@z
fQM (z)gjz=0 along with

SINR (ŵMVDR) =

�
uHQM (0)u

�2
uHQ2

M (0)u
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Asymptotic analysis of the SINR
Consistent estimator of the SINR

We also have the following estimate not depending on the unknown R:

SINR (ŵMVDR) � �M (�)�
sH
�
R̂+ �Ro

��1
R̂
�
R̂+ �Ro

��1
s�

sH
�
R̂+ �Ro

��1
s

�2
where

�M (�) =
1

1� 1
N
Tr

�
R̂
�
R̂+ �Ro

��1�

The previous estimate can be used to �nd the optimal diagonal loading factor or
shrinkage intensity parameter for arbitrary shrinkage target Ro

What about the �uctuations of SINR (ŵMVDR) ?
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Second-order asymptotic analysis
A Central Limit Theorem

We analyze the variance �2M of SINR (ŵMVDR) and prove the Central Limit Theorem

��1M

�
SINR (ŵMVDR)� SINR (ŵMVDR)

�
L!

M;N!1
N (0; 1)

by applying the Delta method to the random vector

�
aM
bM

�
=

24 sH
�
R̂+ �IM

��1
s

sH
�
R̂+ �IM

��1
R
�
R̂+ �IM

��1
s

35
whose distribution is obtained by using the Cramér-Wold device after managing the
following computations...
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Second-order asymptotic analysis
Elements of the proof (1/2)

Recall QM (0) = QM =
�
1
N
XTXH + �R�1��1 and kuk2 = sHR�1s, and de�ne

�aM � aM = uHQMu

�bM � bM = uHQ2
Mu

We follow the approach by Hachem et al. in [H-K-L-N-P, T.IT�2008] and show that

	M (!)� exp
�
�!2�2M=2

�
!

M;N!1
0

where 	M (!) is the characteristic function of the random variable

A
p
N (aM � �aM )�B

p
N
�
bM � �bM

�
To identify the variance, we proceed as

@

@!
	M (!) = iA

p
NE [(aM � �aM )	M (!)] + iB

p
NE

��
bM � �bM

�
	M (!)

�
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Second-order asymptotic analysis
Elements of the proof (2/2)

As in [H-K-L-N-P, T.IT�2008], we make intensive use of the integration by parts
formula (Z = DX~D, with D; ~D being diagonal)

E [Zij� (Z)] = di ~djE
�
@� (Z)

@Z�ij

�
and the Nash-Poincaré inequality

var (� (Z)) �
MX
i=1

NX
j=1

di ~djE

"����@� (Z)@Z�ij

����2 + ����@� (Z)@Z�ij

����2
#

to compute the expectation and variance controls for the following quantities:

Tr
h
�Qk

M

i
Tr

�
�Qk

M

XZ1X
H

N

�
where k = 1; 2; 3; 4 and � = abH and � = 1

N
Z2 (a;b unit-norm and Z1;Z2

diagonal with bounded spectral norm)
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Second-order asymptotic analysis
Delta method

Gathering terms together as

@

@!
	M (!) = �!

�
A2�a2 +AB�ab +BA�ba +B

2�b2
�
	M (!) +O

�
N�1�

along with E [aM ] = �aM +O
�
N�1� and E [bM ] = �bM +O

�
N�1�, we get

p
N

�
aM � �aM
bM � �bM

�
L! N (�;�) , � =

�
�a2 �ba
�ab �b2

�
where � = 0 and �ab = �ba

Since SINR (ŵMVDR) = f (aM ; bM ) with f (x; y) = x2=y and
rf =

�
2x=y � (x=y)2

�
, then it follows by the Delta method that

p
N
�
f (aM ; bM )� f

�
�aM ;�bM

��
L! N

�
�Hrf

�
�aM ;�bM

�
;rf

�
�aM ;�bM

�H
�rf

�
�aM ;�bM

��
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Central Limit Theorem
General case

From the previous procedure we obtain

��1M
p
N
�
SINR (ŵMVDR)� SINR (ŵMVDR)

�
L! N (0; 1)

where�
uHE2u

�2
(uHEu)4

�2M = 4~
 (1� 
~
)V1

+ 4

�
~
2
1

N
tr
�
E3
�
� 
 1

N
tr
h
~E3
i�
V2 +

�
~
2
1

N
tr
�
E4
�
+ 
2

1

N
tr
h
~E4
i�

+
2

(1� 
~
)

 
~
3
�
1

N
tr
�
E3
��2

� 2
~
 1
N
tr
�
E3
� 1
N
tr
h
~E3
i
+ 
3

�
1

N
tr
h
~E3
i�2!

with

V1 =
"�
uHE2u

�2
(uHEu)2

� 4u
HE3u

uHEu
+
1

2

 
uHE4u

uHE2u
+

�
uHE3u

�2
(uHE2u)2

!#

V2 =
�
uHE3u

uHE2u
� uHE2u

uHEu

�
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Central Limit Theorem
Special case I: SCM

In the case T = IN and � = 0, then (c = cM )
p
N

kuk2
p
c (1� c)

(SINR (ŵMVDR)� (1� c)) L! N (0; 1)

This follows from the CLT-based Gaussian approximation of the Beta distribution
of SINR (ŵMVDR) in the �nite case by letting N = N (M)!1
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Central Limit Theorem
Special case I: temporal correlation / sample weighting

In the case � = 0, then
p
N

kuk2 �M

�
SINR (ŵMVDR)�

�
1� c

N
Tr
�
�E2
��� L! N (0; 1)

where

�2M =
c2

N
Tr
�
�E4
�
+

c
�
1
N
Tr
�
�E2
��2�

1� c
N
Tr
�
�E2
��

+
c2
�
1
N
Tr
�
�E2
��3 � 4 c

N
Tr
�
�E2
�
c
N
Tr
�
�E3
�
+ 2c

�
c
N
Tr
�
�E3
��2�

1� c
N
Tr
�
�E2
��

and we have de�ned �E = T (xMIN + cT)
�1
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Conclusions and some future work

We have shown that the SINR of the diagonally loaded Capon/MVDR beamformer is
asymptotically Gaussian and have provided a closed-form expression for its variance

The same elements describe also the �uctuations of the MSE performance of this
�lter, which can be written in terms of realized variance and bias, as well as of
other linear �lters, such as the linear MMSE �lter

The results hold for Gaussian environments, but extensions based on a more general
integration by parts formula might be investigated for non-Gaussian observations

Rather than on the covariance matrix estimation error, we could directly focused on
the performance of the objective by considering the structure of the problem

A similar scheme can be applied to study the second-order behavior of alternative
error measures for covariance matrix estimation
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