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Outline

We present a new approach of estimating the parameters
describing the mean structure in the Growth Curve model when
the number of variables, p, compared with the number of
observations, n, is large.

What can be performed?

• Test hypothesis (one-dimensional quantity)

• Estimate functions of parameters (including subsets)

(spectral density, Wigner’s semicircle law, random matrix
theory, free probability, functional data analysis)
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Background: Multivariate Linear Models

MANOVA:

X ∼ Np,n(µC,Σ, I) (independent columns)

X : p × n, µ : p × q, C : q × n, Σ : p × p

Growth Curve model:

X ∼ Np,n(ABC,Σ, I)

X : p × n, A : p × q, B : q × k C : q × n, Σ : p × p

Fixed size of mean parameter space.
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Background: Growth Curve model

Sufficient statistics for the Growth Curve model are

S = X(I − C ′(CC ′)−C)X ′, XC ′(CC ′)−C.

Due to the normality assumption, i.e. since the distribution is
symmetric around the mean, in order to estimate the mean
parameters it is natural to consider

1
ptr{Σ−1(X − ABC)(X − ABC)′}

= 1
ptr{Σ−1(XC ′(CC ′)−C − ABC)(XC ′(CC ′)−C − ABC)′}

+1
ptr{Σ−1S}.

The factor 1/p is used to handle the increase in size of tr(•)
when p → ∞, i.e. the trace functions have been averaged.
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Background: Growth Curve model

L(B,Σ) ≈ |Σ|−n/2 exp(Σ−1(X − ABC)(X − ABC)′)

A′
Σ

−1(X − ABC)C ′ = 0

nΣ = (X − ABC)(X − ABC)′

MANOVA

Σ
−1(X − BC)C ′ = 0

nΣ = (X − BC)(X − BC)′
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Background: X = ABC + E

Estimators in the Growth Curve model (MANOVA)

• Known Σ, p.d.:

AB̂C = A(A′
Σ

−1A)−A′
Σ

−1XC ′(CC ′)−C

(B̂C = XC ′(CC ′)−C)

• Unknown Σ, p.d.:

AB̂C = A(A′S−1A)−A′S−1XC ′(CC ′)−C,

(B̂C = XC ′(CC ′)−C)

where
S = X(I − C ′(CC ′)−C)X ′.
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Background: X = ABC + E

nΣ = S + (I − A(A′S−1A)−A′S−1)XC ′(CC ′)−1C

×X ′(I − S−1A(A′S−1A)−A′)

MANOVA

nΣ = S

Extended Growth Curve model

X =

m∑

i

AiBiCi + E, C(C ′
m) ⊆ C(C ′

m−1) ⊆ · · · ⊆ C(C ′
1)
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Asymptotics p/n → c

T 1 = 1
ptr{Σ−1S}

T 2 = 1
ptr{Σ−1(XC ′(CC ′)−C − ABC)(XC ′(CC ′)−C − ABC)′},

In high-dimensional analysis, one often considers 1
ptr(S) or

1
ptr(S2) (e.g. see Ledoit & Wolf, 2002 or Srivastava, 2005) but in
this case the asymptotics depends on Σ.
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Asymptotics p/n → c

T 1 is chi-square distributed with n′ degrees of freedom. Hence,
the characteristic function ϕT 1

(t) equals

ϕT 1
(t) = (1 − i t2

p)−pn′/2,

where i is the imaginary unit. If taking the logarithm of the
characteristic function and expanding it as a power series in p
and n, it follows that

lnϕT 1
(t) = −pn′/2 ln(1 − i t2

p) =
pn′

2

∞∑

j=1

(
2
p

)j
1
j ik tj

= i tn′ − n′p

2

22

p2

1

2
t2 +

n′p

2

23

p3
i3

1

3
t3 + · · ·

≈ i tn′ − n′p

2

22

p2

1

2
t2.
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Asymptotics p/n → c

This implies that under p
n -asymptotics

1
p tr{Σ−1S} − n′

√
n′

p

a∼ N(0, 2),

where a∼ means ”asymptotically distributed as”.
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Asymptotics p/n → c

Represent T 2 as T 2 = 1
p tr{Σ−1V V ′}, where

V = XC ′(CC ′)−C − ABC

with V V ′ ∼ Wp(Σ, r), r = r(C). In this case the number of
degrees of freedom of the distribution is fixed.
The logarithm of the characteristic function of

√
pT 2 equals

ln ϕ√
p T 2

(t) = − rp
2 ln(1 − i t 2√

p).
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Asymptotics p/n → c

Thus,

ln ϕ√
p T 2

(t) = − rp
2 ln(1 − i t 2√

p) = rp
2

∞∑

j=1

p−
j

2 2j 1
j ij tj

= i tr
√

p − rt2 + i3 t3rp−
1

2
1
3 + · · ·

and

1√
p tr{Σ−1V V ′} − r

√
p

√
r

a∼ N(0, 2).
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Asymptotics p/n → c

The following results which will serve as a starting point have
been verified:

Under p
n -asymptotics T1 converges to N(0, 2),

and for any n and p → ∞,
√

p T2 also converges to N(0, 2).

Since S and XC ′(CC ′)−C are sufficient statistics, we may note
that T 1 and T 2 include the relevant information for estimating the
mean parameters of the Growth Curve model. Thus, based on
T 1 and T 2 an asymptotic likelihood approach may be presented.
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Estimation

From the previous section, it follows that an asymptotic
likelihood based on T 1 and T 2 is proportional to

exp{−1
4(pn′( 1

pn′
tr{Σ−1S} − 1)2)}exp{−1

4(pr( 1
pr tr{Σ−1V V ′} − 1)2)}.

Following the likelihood principle this function needs to be
maximized. Since Σ is assumed to be of full rank and
unstructured, and S may be singular if p

n → c > 1 it is impossible
to get appropriate estimators for all elements of Σ and B.
However, we are only interested in the estimation of B and its
variance. Therefore, we will investigate the two terms separately,
and suggest an approach similar to the restricted maximum
likelihood method.
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Estimation

Let us start with the first term, i.e.

( 1
pn′

tr{Σ−1S} − 1)2.

By choosing

Σ̂
−1 = max(p, n′)S−

the above expression equals 0, where S− denotes an arbitrary
g-inverse of S.
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Estimation

The main drawback with this estimator is that it is not unique.
However, since we are dealing with estimation it is natural to
suppose that C(S−) = C(S) which implies that r(S−) = r(S).
The latter condition implies that S− is a reflexive g-inverse,
i.e. S−SS− = S− holds besides the defining condition
SS−S = S. If S− is not a reflexive g-inverse, then r(S) < r(S−)

and therefore we can estimate more elements in Σ
−1 than in Σ

which does not make sense. Furthermore, if C(S−) = C(S) then,
r(S−S − SS−) = r(S(S−S − SS−)S) = 0. Thus, C(S−) = C(S)

implies that S− is the unique Moore-Penrose g-inverse which
will be denoted S+.
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Estimation

In the next we replace Σ
−1 by max(p, n′)S+ in the second

exponent and thus have to minimize

(max(p,n′)
pr tr{S+V V ′} − 1)2.

Differentiating this expression with respect to B we get the
equation

(max(p,n′)
pr trS+V V ′ − 1)A′S+(XC ′(CC ′)−C − ABC)C ′ = 0.

With probability 1, the expression (n′

pr trS+V V ′ − 1) differs from
0, and thus the following linear equation in B emerges:

A′S+(XC ′(CC ′)−C − ABC)C ′ = 0.
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Estimation

This equation is consistent if the column space relation
C(A′S+) = C(A′S+A) holds, which is true since S+ is p.s.d.
Hence,

B̂ = (A′S+A)−A′S+XC ′(CC ′)− + (A′S+A)oZ1 + A′S+AZ2C
o′

,

where Z1 and Z2 are arbitrary matrices, and (A′S+A)o and Co

are any arbitrary matrices spanning the orthogonal complement
to C(A′S+A) and C(C), respectively.
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Estimation

From here we obtain the following result:
The estimator B̂, given above, is unique and with probability 1
equals

B̂ = (A′S+A)−1A′S+XC ′(CC ′)−1,

if and only if r(A) = q < min(p, n′), r(C) = k and
C(A) ∩ C(S)⊥ = {0}.
If S is of full rank, i.e. (p ≤ n′), B̂ is identical to the maximum
likelihood estimator.
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Properties

Since XC ′ and S are independently distributed

E[B̂] = E[(A′S+A)−1A′S+]E[XC ′(CC ′)−1]

= E[(A′S+A)−1A′S+]AB = B.

The dispersion matrix

D[B̂] = E[vec(B̂ − B)vec′(B̂ − B)],

where vec(·) is the usual vec-operator, is much more
complicated to obtain.
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Properties

Since D[X] = I ⊗Σ,

D[B̂] = (CC ′)−1 ⊗ E[(A′S+A)−1A′S+
ΣS+A(A′S+A)−1]

has to be considered. If p > n′, it follows that if the denominator
in the next expression is larger than 0, then

D[B̂] = (CC ′)−1 ⊗ (A′
Σ

−1A)−1 (p−q−1)(p−1)
(n′−q−1)(p−n′+q−1) .

Note that if (CC ′)−1 → 0 then D[B̂] → 0, and if (n′ − q − 1) or

(p− n′ + q − 1) are small, D[B̂] is large. It also follows that if n is
much smaller than p, the dispersion D[B̂] will be large if not
(A′

Σ
−1A)−1 is small.
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Properties

It follows that an unbiased estimator of D[B̂] is given by

̂
D[B̂] = (CC ′)−1 ⊗ (A′S+A)−1 (p−1)

(p−n′+q)(p−n′+q−1) .

If p ≤ n′,

D[B̂] = (CC ′)−1 ⊗ (A′
Σ

−1A)−1 n′−1
n′−p+q−1 ,

̂
D[B̂] = (CC ′)−1 ⊗ (A′S−1A)−1 (n′−1)

(n′−p+q)(n′−p+q−1) .

If p = n′ both variances are equal.
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E[(A′S+A)−1A′S+
ΣS+A(A′S+A)−1]

E[(A′S+A)−1A′S+
ΣS+A(A′S+A)−1]

is obtained. First the expectation is presented in a canonical
form. There exist always an orthogonal matrix Γ and a
non-singular matrix L such that

A′ = L(Iq : 0)ΓΣ
1
2 .

Moreover, let

U = ΓΣ
−1

2 SΣ
−1

2Γ
′ ∼ Wp(Ip, n

′),

and thus
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E[(A′S+A)−1A′S+
ΣS+A(A′S+A)−1]

E[(A′S+A)−1A′S+
ΣS+A(A′S+A)−1]

= (L′)−1E[
(
(Iq : 0)U+

(
Iq

0

))−1
(Iq : 0)U+U+

(
Iq

0

)

×
(
(Iq : 0)U+

(
Iq

0

))−1
]L−1.
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E[(A′S+A)−1A′S+
ΣS+A(A′S+A)−1]

Suppose now that p > n′. We need to know the following
partitioned Moore-Penrose:

U+ =

(
U 11 U12

U 21 U22

)+

,

(
n′ × n′ n′ × (p − n′)

(p − n′) × n′ (p − n′) × (p − n′)

)
.

However, because of Wishartness, U = Y Y ′, Y = (Y ′
1 : Y ′

2)
′,

Y ∼ Np,n′(0, Ip, In′) and Y 1 ∼ Nn′,n′(0, In′ , In′), where it is
assumed that r(Y 1) = n′. Then,

U+ =
(

Y 1

Y 2

)
(Y ′

1Y 1 + Y ′
2Y 2)

−1(Y ′
1Y 1 + Y ′

2Y 2)
−1(Y ′

1 Y ′
2).
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E[(A′S+A)−1A′S+
ΣS+A(A′S+A)−1]

Put

H = Y ′
1Y 1 + Y ′

2Y 2 ∼ Wn′(In′ , p).

Thus,

(L′)−1E

[(
(Iq : 0)Y 1H

−1/2H−1H−1/2Y ′
1(Iq : 0)′

)−1

×(Iq : 0)Y 1H
−1/2H−1H−1H−1/2Y ′

1(Iq : 0)′

×
(
(Iq : 0)Y 1H

−1/2H−1H−1/2Y ′
1(Iq : 0)′

)−1
]
L−1.
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E[(A′S+A)−1A′S+
ΣS+A(A′S+A)−1]

One can show (e.g. see the proof of Theorem 2.4.10 in Kollo &
von Rosen, 2005) that Y 1H

−1/2 is independent of H .
Furthermore, there exist a non-singular L1 and an orthogonal
matrix Γ1 such that

(Iq : 0)Y
1/2
1 H−1/2 = L1(Iq : 0)Γ1

and partition H (H−1) as

H =

(
H11 H12

H21 H22

)
, H−1 =

(
H11 H12

H21 H22

)
,

(
q × q q × (n′ − q)

(n′ − q) × q (n′ − q) × (n′ − q)

)
.
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E[(A′S+A)−1A′S+
ΣS+A(A′S+A)−1]

Therefore,

(L′)−1E[(L′
1)

−1E[(H11)−1(H11 : H12)(H11 : H12)′(H11)−1]L−1
1 ]L−1

= (L′)−1E[(L′
1)

−1(I + E[H12H
−1
22 H−1

22 H21])(L1)
−1](L)−1.

However, since H is Wishart distributed (see e.g. Kollo & von
Rosen, 2005; p. 413)

I + E[H12H
−1
22 H−1

22 H21] =
p − 1

p − n′ + q − 1
I.
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E[(A′S+A)−1A′S+
ΣS+A(A′S+A)−1]

Furthermore, put

G = Y 11(Y
′
11Y 11 + W )−1Y ′

11,

where Y 1 = (Y ′
11 : Y ′

12)
′, and

W = Y ′
12Y 12 + Y ′

2Y 2 ∼ Wn′(I, p − q), Y 11 ∼ Nq,n′(0, Iq, In′).
Then,

(L1L
′
1)

−1 = G−1
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E[(A′S+A)−1A′S+
ΣS+A(A′S+A)−1]

It follows (Kollo & von Rosen, 2005; Theorem 2.4.10) that the
density of G equals

fG(G) = c0|G|
n′−q−1

2 |In′ − G|
p−q−n′−1

2 ,

where c0 is a known constant. The aim is to derive E[G−1]. Let
d

dG
be the matrix derivative defined in Kollo & von Rosen (2005,

formula (1.4.48). Then, among others, dG

dG
= 1

2(I + Kn,n) where
Kn,n is the commutation matrix.
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E[(A′S+A)−1A′S+
ΣS+A(A′S+A)−1]

The basic trick when obtaining E[G−1] is to use the multivariate
integration by parts formula

0 =

∫

G>0

d

dG
(c|G|

n′−q−1
2 |In′ − G|

p−q−n′−1
2 )dG

which is equivalent to

0 = 1
2(n′ − q − 1)

dG

dG
E[vecG−1] − 1

2(p − q − n′ − 1)
dG

dG
E[vec(In′ − G)−1].

Thus,

E[G−1] = E[(I − G)−1]
p − q − n′ − 1

n′ − q − 1
.
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E[(A′S+A)−1A′S+
ΣS+A(A′S+A)−1]

However,

E[(I − G)−1] = Iq + E[Y 11W
−1Y ′

11] = Iq
p − q − 1

p − q − n′ − 1

and hence

E[G−1] = Iq
p − q − 1

n′ − q − 1
.
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Properties

It can be shows that B̂ is asymptotically equivalent to

B̃ = (A′
Σ

−1A)−1A′
Σ

−1XC ′(CC ′)−1,

i.e. is asymptotic normally distributed. Consider the following
difference

B̂ − B̃ = (A′S+A)−1A′S+(I − A(A′
Σ

−1A)−1A′
Σ

−1)XC ′(CC ′)−1.

It follows that E[B̂ − B̃] = 0, and it can be shown that
D[B̂ − B̃] → 0 when n, p → ∞.

Paris, October 2010 – p. 33/44



Properties

The results show that if n → ∞ or the p
n -asymptotics holds the

estimator of the mean parameter, proposed by the approach of
this paper, behaves in the same way, i.e the large number of
dispersion parameters does not seriously influence the
estimator of B. The critical point is when p

n → 1.
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Simulation

In order to illustrate the derived results a small simulation study
has been performed. Data was generated according to
X = ABC + E, where (1a is a vector of a ones) the matrix C

has the following structure

C =

(
1
′
n1

0

0 1
′
n2

)
,

which corresponds to two different treatment groups. Moreover,
let a′

1 = (1, 2, . . . , p) ∗ 0.7, a′
2 = (1, 22, . . . , p2) ∗ 0.01 and

A = (1p,a1,a2). Thus, B: 3 × 2. The matrix Σ = QQ′ is
generated via standard normal elements in Q and E is
generated by Np,n(0,Σ, In).
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Simulation

In the simulation it was either supposed that
p = 250 and (n1, n2) equals (20, 40), (30, 60), (40, 80), (50, 100),
(60, 120), (70, 140), (80, 160),
or
(n1, n2) = (10, 20) and p = 50, 100, 150, 200, 250, 350. The results
of the simulations are reported in the next tables.
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Simulation

Table 1. Based on 100 simulations averaged estimates of
B = (bij) are presented, where N = n1 + n2.

b11 b12 b21 b22 b31 b32

True values 1 3 2 2 7 2
N p Estimates

60 250 0.91 3.00 2.01 1.88 7.03 1.99
90 250 1.13 2.93 2.04 1.97 6.99 2.02

120 250 0.99 3.02 1.99 2.02 7.00 2.00
150 250 0.91 3.05 1.97 1.99 7.01 1.99
180 250 1.02 3.01 1.99 1.98 7.00 2.01
210 250 0.98 3.01 2.00 2.00 7.00 2.00
240 250 0.99 3.01 2.00 2.03 6.99 2.01
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Simulation

Table 1 cont.. Based on 100 simulations averaged estimates of
B = (bij) are presented, where N = n1 + n2.

b11 b12 b21 b22 b31 b32

True values 1 3 2 2 7 2
N p Estimates

30 50 0.90 3.33 0.95 2.17 6.59 3.08
30 100 1.01 2.81 2.34 1.92 7.07 1.98
30 150 1.12 2.87 2.14 1.94 6.96 2.05
30 200 1.07 2.95 2.03 2.21 6.82 2.12
30 250 0.94 2.99 2.01 2.07 7.00 1.98
30 350 1.04 2.93 2.03 1.82 7.06 1.98
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Simulation

From Table 1 we see that except the case N = 30, p = 50 the
estimators work excellent. In the next we present the estimated
standard deviation (squared root of the estimated variance) for
B̂.
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Simulation

Table 2. Based on 100 simulations averaged square roots sij of

the variance estimates for B̂ = (b̂ij) in Table 1 are presented.

N p s11 s12 s21 s22 s31 s32

60 250 0.75 0.39 0.22 0.53 0.27 0.15
90 250 0.48 0.25 0.14 0.34 0.18 0.10
120 250 0.36 0.19 0.10 0.25 0.13 0.07
150 250 0.28 0.15 0.08 0.19 0.11 0.06
180 250 0.23 0.13 0.07 0.16 0.09 0.05
210 250 0.19 0.11 0.06 0.14 0.07 0.04
240 250 0.16 0.08 0.04 0.11 0.06 0.03
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Simulation

Table 2. Based on 100 simulations averaged square roots sij of

the variance estimates for B̂ = (b̂ij) in Table 1 are presented.

N p s11 s12 s21 s22 s31 s32

30 50 0.50 1.34 3.69 0.70 1.90 5.22
30 100 0.99 1.27 1.78 0.70 0.90 1.26
30 150 1.23 1.12 1.04 0.87 0.79 0.74
30 200 1.41 0.94 0.64 0.99 0.66 0.45
30 250 1.58 0.82 0.46 1.11 0.58 0.32
30 350 1.66 0.71 0.32 1.17 0.50 0.23
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Simulation

From Table 2 one may observe that for small N the variance
estimator as expected is rather poor.
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Concluding remarks

In this paper we have tried to systemize estimation in a
multivariate linear model belonging to the curved exponential
family when many nuisance parameters exist. In order to
evaluate the estimators there are four quantities involved:
(CC ′)−1, (A′S+A)−1, p and n′. Now we know how to estimate
B as well as obtain its variance irrespective if p > n′ or p ≤ n′. In
particular, one should be careful when p/n is close to 1 but the
performance of the estimators are heavily connected to C and
A. In earlier approaches in high-dimensional analysis Σ

−1 has
also been replaced by S+ but in this paper it is the first time
moment calculations stating the effect of S+ are explicitly given.
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Concluding remarks

Indeed, our starting point could have been

B̂ = (A′S+A)−1A′S+XC ′(CC ′)−1

considering this estimator as a plug-in estimator. However, we
prefer to use the likelihood approach via the asymptotics of the
sufficient statistics T 1 and T 2 presented in Section 2.
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