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Definition
I Define a K × N dimension matrix X with independent and

identically distributed (i.i.d) complex Gaussian entries,
each with zero mean and unit variance.

I The K × K Hermitian matrix R = XX† follows a complex
Wishart distribution with N degree of freedom (d.o.f).

I We denote the ordered eigenvalues of R as
λ1 > λ2 > ... > λK > 0, and the trace of R as
T = tr{R} = ||X||2F =

∑K
i=1 λi , where || · ||F is the Frobenius

norm.

I The Demmel Condition Number (DCN) of R is defined as
the ratio of its trace to its smallest eigenvalue λK ,

X :=

∑K
i=1 λi

λK
=

T
λK

, (1)

where x ∈ [K ,∞].
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Existing results

I Limited results on the DCN distribution exist in the
literature.

I A. Edelman, “On the distribution of a scaled condition
number,” Math. Comp., vol. 58, pp. 185-190, 1992.

I Exact DCN distributions for the special case K = N (both
real and complex cases).

I Mainly based on the fact that λK has tractable expressions
when K = N (e.g. exponentially distributed in complex
case).

I Using an equality (A. W. Davis, 1972) between Laplace
transforms of PDFs of X and λK .



Existing results

I M. Matthaiou, M. R. McKay, P. J. Smith, and J. A. Nossek,
“On the condition number distribution of complex Wishart
matrices,” IEEE Tran. Commun., vol. 58, no. 6, pp.
1705-1711, Jun. 2010.

I Exact DCN distributions for K = 2 with arbitrary N.
I Established through standard condition number distribution

(λ1+λ2
λ2

= 1 + λ1
λ2

).
I Above two results are exact. No asymptotic results w.r.t.

matrix dimension are available.

I In this work, both exact and asymptotic DCN distributions
for arbitrary K and N are derived.
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General framework

I Intractable correlation between T and λK exists.

I But, it can be verified (O. Besson, 2006) that Y := λK/T
and T are independent.

I Thus, λK equals the product of the independent r.v Y and
T . Define f (x), g(x) and h(x) as the PDFs of λK , T and Y
respectively.

I By this independence, it holds that

Mz [f (x)] = Mz [g(x)]Mz [h(x)], (2)

where Mz [·] denotes Mellin transform.
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General framework

I By Mellin inversion integral, the distribution of h(x) can be
uniquely determined by

h(x) =
1

2πi

∫ c+i∞

c−i∞
x−z Mz [f (x)]

Mz [g(x)]
dz. (3)

I A transform from Y to 1/Y yields the desired DCN PDF.

I Merits of this framework:
I Correlation between λK and T is implicitly taken into

account by the product of Mellin transforms (2).
I Mellin inversion integral (3) can be easily evaluated by the

residue theorem.

I This framework provides the possibility to obtain both exact
and asymptotic DCN distributions.
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Exact distribution

I C. S. Park and K. B. Lee “Statistical multimode transmit
antenna selection for limited feedback MIMO systems,”
IEEE Tran. Wireless Commun., vol. 7, no. 11, pp.
4432-4438, Nov. 2008.

I PDF of λK represented as a weighted sum of polynomials
as

f (x) = e−Kx
(N−K )K∑
n=N−K

c(N,K )
n xn. (4)

I Coefficients c(N,K )
n is determined by the symmetry of the

integral representation of λK (A. Edelman, 1989).



Determining the coefficients c(N,K )
n

I Define

In(m) :=
n∑

k=0

(
n
k

)
(m + n − k)!xk . (5)

I K = 2, PDF of λK is

c2e−2xxN−2IN−2(2). (6)

I K = 3, PDF of λK is

c3e−3xxN−3[IN−3(4)IN−3(2)− (IN−3(3))2]. (7)
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Determining the coefficients c(N,K )
n

I K = 4, PDF of λK is

c4e−4xxN−4[IN−4(6)IN−4(4)IN−4(2)− IN−4(6)(IN−4(3))2 (8)
+2IN−4(5)IN−4(4)IN−4(3)− (IN−4(5))2IN−4(2)− (IN−4(4))2].

I Note:
I After some basic manipulations, the expressions for

coefficients of x can be obtained.
I Although tedious, coefficients for arbitrary K can be

similarly calculated.
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Exact distribution
I Using the closed-form expression for PDF of λK , the

developed framework can be applied.

I We first calculate,

Mz [f (x)] =

(N−K )K∑
n=N−K

c(N,K )
n

Γ(z + n)

K z+n ,

Mz [g(x)] =
1

Γ(m/2)
Γ(z +

m
2
− 1), (m = 2KN).

I Using the residue theorem, h(x) is uniquely determined to
be

h(x) =
Γ(m/2)

(1− Kx)2−m/2

(N−K )K∑
n=N−K

c(N,K )
n

Γ(m/2− n − 1)

( x
1− Kx

)n
.

(9)
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Exact distribution

I By a simple transform, PDF of DCN is obtained as,

d(x) =
Γ(m/2)x−m/2

(x − K )2−m/2

(N−K )K∑
n=N−K

c(N,K )
n

Γ(m/2− n − 1)
(x − K )−n.

(10)

I Then CDF of DCN is calculated to be,

D(y) = Γ(
m
2

)

(N−K )K∑
n=N−K

K−n−1c(N,K )
n

Γ(m/2− n − 1)

(
B(a,b)− B K

y
(a,b)

)
(11)

Bx (a,b) and B(a,b) are incomplete and complete Beta
function respectively and a = n + 1, b = m

2 − n − 1.
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Special cases

I Here we check the derived result with some known special
cases.

I K = N (A. Edelman, 1992)
I The only coefficient left is c(K ,K )

0 = K .
I Inserting this coefficient into the derived PDF, d(x)

simplifies to

d(x) = K (K 2 − 1)x−K 2
(x − K )K 2−2. (12)

I Agrees with the known result.
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Special cases

I K = 2, with arbitrary N (M. Matthaiou, 2010)
I The coefficient in this case is

c(N,2)
n =

Γ(2N − n − 1)

Γ(N)Γ(n − N + 3)Γ(2N − n − 3)
. (13)

I Inserting c(N,2)
n into the derived PDF, d(x) simplifies to

d(x) =
Γ(2N)

Γ(N)Γ(N − 1)
(x − 2)2x−2N(x − 1)N−2. (14)

I In agreement with the known result.



One numerical example

I K = 4, N = 5.
I d(x) is calculated to be

3420(x − 4)14(x3 + 5x2 − 20x + 4)x−20. (15)

I D(y) is calculated to be

1− 213.75B 4
y

(2,18)− 908.438B 4
y

(3,17)

−908.438B 4
y

(4,16)− 227.109B 4
y

(5,15). (16)



One numerical example: K = 4, N = 5



Asymptotic distribution

I Motivation:
I Determining the coefficients may appear a problem for

large dimensional matrices.
I We would like to gain insight into the behavior of DCN

distribution when the dimension K , N are large.

I We derive a closed-form asymptotic DCN distribution,
which circumvents the need to calculate the coefficients.

I The asymptotic result falls in the developed Mellin
transform framework as well.
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An asymptotic result on λk distribution
I For λk , there exists sequences a(K ,N) and b(K ,N) such

that the distribution of the random variable

ΛK =
λK − a(K ,N)

b(K ,N)
(17)

converges to the Tracy-Widom distribution of order two (O.
N. Feldheim, 2010), denoted as FTW2.

I This result provides an approximation to λk for large K and
N,

F (x) ≈ FTW2

(
x − a(K ,N)

b(K ,N)

)
. (18)

I Numerical burden to calculate FTW2(·), simpler closed-form
approximation is more desirable.
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Gamma approximation to λk distribution

I It was stated in (A. Edelman, 2005) that λk can be well
approximated by a Gamma distribution.

I Motivated by this, we propose a Gamma approximation by
calculating the first two asymptotic moments via
Tracy-Widom distribution.

I E [λK ] = a(K ,N) + b(K ,N)E [ΛK ].
I V [λK ] =

(
b(K ,N)

)2V [ΛK ].
I Convergence in distribution implies

E [ΛK ]→ E [xTW2] = −1.7711, (19)
V [ΛK ]→ V [xTW2] = 0.8132. (20)
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Gamma approximation to λk distribution

I For a Gamma distribution with parameters θ and k , by
matching the two moments of λk , θ and k is obtained as

k =

(
a(K ,N) + b(K ,N)E [xTW2]

)2(
b(K ,N)

)2V [xTW2]
, (21)

θ =

(
b(K ,N)

)2V [xTW2]

a(K ,N) + b(K ,N)E [xTW2]
. (22)



Asymptotic distribution
I Using the closed-form asymptotic λK distribution, the

developed framework can be applied.

I We first calculate

Mz [f (x)] =
θz−1

Γ(k)
Γ(z + k − 1). (23)

I By the residue theorem and a variable transform, the PDF
of asymptotic DCN is calculated as

d(x) = c1x−m/2(θx − 1)m/2−k−1. (24)

I Then, CDF of asymptotic DCN is calculated as

D(y) = c2
(
C(K )− C(y)

)
, (25)

C(x) = 2F1(k ,1 + k − m
2 ; k + 1; 1

θx )x−k .
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Numerical results



Application

I The K × N dimension matrix X models the MIMO
communication channels.

I Performance analysis and design of MIMO techniques
relies on the statistical properties of the random MIMO
channels.

I DCN reflects the eigenvalue spread of the random MIMO
channel – indicates multipath richness for a given channel
realization.

I Using this fact, several MIMO transmit and receive
schemes can be proposed.
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Application: adaptive transmission

I Adaptive transmission can be achieved based on the
Demmel condition number.

I Transmission rate and reliability trade-off:
I Spatial multiplexing: high data rate, no diversity.
I Transmit diversity: lower data rate, possibility to achieve full

diversity.

I Transmitter needs feedback information from receiver.
I Adaptive transmission switches between the two schemes

depending on the instantaneous DCN.
I Combining the benefits of the two transmission methods,

switching is based hard decision.
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Application: adaptive detection

I Adaptive detection is possible using the Demmel condition
number.

I Detection performance and complexity trade-off:
I Maximum likelihood detection: optimum with high

complexity.
I Zero forcing detection: sub-optimum with low complexity.

I Adaptive detector switches between these two detection
algorithms depending on the instantaneous DCN.

I Combining the benefits of both detectors, switching is
based hard decision.
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Thank you!
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