

# On Demmel Condition Number Distributions with Applications in Telecommunications

Lu Wei and Olav Tirkkonen

Aalto University, Finland Joint work with Matthew R. McKay, HKUST, Hong Kong

12.Oct.2010

### **Outline**

#### **Demmel Condition Number**

Definition

Existing results

#### **Derivations for DCN Distributions**

General framework

Exact distribution

Asymptotic distribution

### Applications in Wireless Communications

Adaptive transmission

Adaptive detection

### **Definition**

- ▶ Define a K × N dimension matrix X with independent and identically distributed (i.i.d) complex Gaussian entries, each with zero mean and unit variance.
- ► The K × K Hermitian matrix R = XX<sup>†</sup> follows a complex Wishart distribution with N degree of freedom (d.o.f).
- ▶ We denote the ordered eigenvalues of **R** as  $\lambda_1 > \lambda_2 > ... > \lambda_K > 0$ , and the trace of **R** as  $T = \text{tr}\{\mathbf{R}\} = ||\mathbf{X}||_F^2 = \sum_{i=1}^K \lambda_i$ , where  $||\cdot||_F$  is the Frobenius norm.

### **Definition**

- ▶ Define a K × N dimension matrix X with independent and identically distributed (i.i.d) complex Gaussian entries, each with zero mean and unit variance.
- ► The K × K Hermitian matrix R = XX<sup>†</sup> follows a complex Wishart distribution with N degree of freedom (d.o.f).
- ▶ We denote the ordered eigenvalues of **R** as  $\lambda_1 > \lambda_2 > ... > \lambda_K > 0$ , and the trace of **R** as  $T = \text{tr}\{\mathbf{R}\} = ||\mathbf{X}||_F^2 = \sum_{i=1}^K \lambda_i$ , where  $||\cdot||_F$  is the Frobenius norm.
- The Demmel Condition Number (DCN) of R is defined as the ratio of its trace to its smallest eigenvalue λ<sub>K</sub>,

$$X := \frac{\sum_{i=1}^{K} \lambda_i}{\lambda_K} = \frac{T}{\lambda_K},\tag{1}$$

where  $x \in [K, \infty]$ .



### **Existing results**

- Limited results on the DCN distribution exist in the literature.
- A. Edelman, "On the distribution of a scaled condition number," Math. Comp., vol. 58, pp. 185-190, 1992.
  - Exact DCN distributions for the special case K = N (both real and complex cases).
  - Mainly based on the fact that  $\lambda_K$  has tractable expressions when K = N (e.g. exponentially distributed in complex case).
  - ▶ Using an equality (A. W. Davis, 1972) between Laplace transforms of PDFs of X and  $\lambda_K$ .

# **Existing results**

- M. Matthaiou, M. R. McKay, P. J. Smith, and J. A. Nossek, "On the condition number distribution of complex Wishart matrices," *IEEE Tran. Commun.*, vol. 58, no. 6, pp. 1705-1711, Jun. 2010.
  - Exact DCN distributions for K = 2 with arbitrary N.
  - Established through standard condition number distribution  $(\frac{\lambda_1 + \lambda_2}{\lambda_2} = 1 + \frac{\lambda_1}{\lambda_2})$ .
- Above two results are exact. No asymptotic results w.r.t. matrix dimension are available.

### **Existing results**

- M. Matthaiou, M. R. McKay, P. J. Smith, and J. A. Nossek, "On the condition number distribution of complex Wishart matrices," *IEEE Tran. Commun.*, vol. 58, no. 6, pp. 1705-1711, Jun. 2010.
  - Exact DCN distributions for K = 2 with arbitrary N.
  - Established through standard condition number distribution  $(\frac{\lambda_1 + \lambda_2}{\lambda_2} = 1 + \frac{\lambda_1}{\lambda_2})$ .
- Above two results are exact. No asymptotic results w.r.t. matrix dimension are available.
- In this work, both exact and asymptotic DCN distributions for arbitrary K and N are derived.

▶ Intractable correlation between T and  $\lambda_K$  exists.

- ▶ Intractable correlation between T and  $\lambda_K$  exists.
- ▶ But, it can be verified (O. Besson, 2006) that  $Y := \lambda_K / T$  and T are independent.

- ▶ Intractable correlation between T and  $\lambda_K$  exists.
- ▶ But, it can be verified (O. Besson, 2006) that  $Y := \lambda_K / T$  and T are independent.
- ▶ Thus,  $\lambda_K$  equals the product of the independent r.v Y and T. Define f(x), g(x) and h(x) as the PDFs of  $\lambda_K$ , T and Y respectively.

- ▶ Intractable correlation between T and  $\lambda_K$  exists.
- ▶ But, it can be verified (O. Besson, 2006) that  $Y := \lambda_K / T$  and T are independent.
- ▶ Thus,  $\lambda_K$  equals the product of the independent r.v Y and T. Define f(x), g(x) and h(x) as the PDFs of  $\lambda_K$ , T and Y respectively.
- By this independence, it holds that

$$M_{z}[f(x)] = M_{z}[g(x)]M_{z}[h(x)],$$
 (2)

where  $M_z[\cdot]$  denotes Mellin transform.

By Mellin inversion integral, the distribution of h(x) can be uniquely determined by

$$h(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} x^{-z} \frac{M_z[f(x)]}{M_z[g(x)]} dz.$$
 (3)

▶ A transform from Y to 1/Y yields the desired DCN PDF.

By Mellin inversion integral, the distribution of h(x) can be uniquely determined by

$$h(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} x^{-z} \frac{M_z[f(x)]}{M_z[g(x)]} dz.$$
 (3)

- ▶ A transform from Y to 1/Y yields the desired DCN PDF.
- Merits of this framework:
  - Correlation between  $\lambda_K$  and T is implicitly taken into account by the product of Mellin transforms (2).
  - Mellin inversion integral (3) can be easily evaluated by the residue theorem.

By Mellin inversion integral, the distribution of h(x) can be uniquely determined by

$$h(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} x^{-z} \frac{M_z[f(x)]}{M_z[g(x)]} dz.$$
 (3)

- ▶ A transform from Y to 1/Y yields the desired DCN PDF.
- Merits of this framework:
  - Correlation between  $\lambda_K$  and T is implicitly taken into account by the product of Mellin transforms (2).
  - Mellin inversion integral (3) can be easily evaluated by the residue theorem.
- This framework provides the possibility to obtain both exact and asymptotic DCN distributions.

- C. S. Park and K. B. Lee "Statistical multimode transmit antenna selection for limited feedback MIMO systems," IEEE Tran. Wireless Commun., vol. 7, no. 11, pp. 4432-4438, Nov. 2008.
  - PDF of λ<sub>K</sub> represented as a weighted sum of polynomials as

$$f(x) = e^{-Kx} \sum_{n=N-K}^{(N-K)K} c_n^{(N,K)} x^n.$$
 (4)

Coefficients  $c_n^{(N,K)}$  is determined by the symmetry of the integral representation of  $\lambda_K$  (A. Edelman, 1989).

Define

$$I_n(m) := \sum_{k=0}^{n} \binom{n}{k} (m+n-k)! x^k.$$
 (5)

▶ K = 2, PDF of  $\lambda_K$  is

$$c_2 e^{-2x} x^{N-2} I_{N-2}(2).$$
 (6)

Define

$$I_n(m) := \sum_{k=0}^{n} \binom{n}{k} (m+n-k)! x^k.$$
 (5)

ightharpoonup K = 2, PDF of  $\lambda_K$  is

$$c_2 e^{-2x} x^{N-2} I_{N-2}(2).$$
 (6)

▶ K = 3, PDF of  $\lambda_K$  is

$$c_3 e^{-3x} x^{N-3} [I_{N-3}(4)I_{N-3}(2) - (I_{N-3}(3))^2].$$
 (7)

Define

$$I_n(m) := \sum_{k=0}^{n} \binom{n}{k} (m+n-k)! x^k.$$
 (5)

ightharpoonup K = 2, PDF of  $\lambda_K$  is

$$c_2 e^{-2x} x^{N-2} I_{N-2}(2).$$
 (6)

▶ K = 3, PDF of  $\lambda_K$  is

$$c_3 e^{-3x} x^{N-3} [I_{N-3}(4)I_{N-3}(2) - (I_{N-3}(3))^2].$$
 (7)

▶ K = 4, PDF of  $\lambda_K$  is

$$c_4 e^{-4x} x^{N-4} [I_{N-4}(6)I_{N-4}(4)I_{N-4}(2) - I_{N-4}(6)(I_{N-4}(3))^2 (8) +2I_{N-4}(5)I_{N-4}(4)I_{N-4}(3) - (I_{N-4}(5))^2 I_{N-4}(2) - (I_{N-4}(4))^2].$$

▶ K = 4, PDF of  $\lambda_K$  is

$$c_4 e^{-4x} x^{N-4} [I_{N-4}(6)I_{N-4}(4)I_{N-4}(2) - I_{N-4}(6)(I_{N-4}(3))^2 (8) +2I_{N-4}(5)I_{N-4}(4)I_{N-4}(3) - (I_{N-4}(5))^2 I_{N-4}(2) - (I_{N-4}(4))^2].$$

- Note:
  - After some basic manipulations, the expressions for coefficients of x can be obtained.
  - Although tedious, coefficients for arbitrary K can be similarly calculated.

▶ Using the closed-form expression for PDF of  $\lambda_K$ , the developed framework can be applied.

- Using the closed-form expression for PDF of λ<sub>K</sub>, the developed framework can be applied.
- We first calculate,

$$M_{z}[f(x)] = \sum_{n=N-K}^{(N-K)K} c_{n}^{(N,K)} \frac{\Gamma(z+n)}{K^{z+n}},$$
  
 $M_{z}[g(x)] = \frac{1}{\Gamma(m/2)} \Gamma(z+\frac{m}{2}-1), \quad (m=2KN).$ 

- ▶ Using the closed-form expression for PDF of  $\lambda_K$ , the developed framework can be applied.
- We first calculate,

$$M_{z}[f(x)] = \sum_{n=N-K}^{(N-K)K} c_{n}^{(N,K)} \frac{\Gamma(z+n)}{K^{z+n}},$$
  
 $M_{z}[g(x)] = \frac{1}{\Gamma(m/2)} \Gamma(z+\frac{m}{2}-1), \quad (m=2KN).$ 

▶ Using the residue theorem, h(x) is uniquely determined to be

$$h(x) = \frac{\Gamma(m/2)}{(1 - Kx)^{2 - m/2}} \sum_{n = N - K}^{(N - K)K} \frac{c_n^{(N,K)}}{\Gamma(m/2 - n - 1)} \left(\frac{x}{1 - Kx}\right)^n.$$
(9)

By a simple transform, PDF of DCN is obtained as,

$$d(x) = \frac{\Gamma(m/2)x^{-m/2}}{(x-K)^{2-m/2}} \sum_{n=N-K}^{(N-K)K} \frac{c_n^{(N,K)}}{\Gamma(m/2-n-1)} (x-K)^{-n}.$$
(10)

By a simple transform, PDF of DCN is obtained as,

$$d(x) = \frac{\Gamma(m/2)x^{-m/2}}{(x-K)^{2-m/2}} \sum_{n=N-K}^{(N-K)K} \frac{c_n^{(N,K)}}{\Gamma(m/2-n-1)} (x-K)^{-n}.$$
(10)

Then CDF of DCN is calculated to be,

$$D(y) = \Gamma(\frac{m}{2}) \sum_{n=N-K}^{(N-K)K} \frac{K^{-n-1}c_n^{(N,K)}}{\Gamma(m/2-n-1)} (B(a,b) - B_{\frac{K}{y}}(a,b))$$
(11)

 $B_x(a,b)$  and B(a,b) are incomplete and complete Beta function respectively and a=n+1,  $b=\frac{m}{2}-n-1$ .

# **Special cases**

► Here we check the derived result with some known special cases.

### Special cases

- Here we check the derived result with some known special cases.
- ► K = N (A. Edelman, 1992)
  - ▶ The only coefficient left is  $c_0^{(K,K)} = K$ .
  - Inserting this coefficient into the derived PDF, d(x) simplifies to

$$d(x) = K(K^2 - 1)x^{-K^2}(x - K)^{K^2 - 2}.$$
 (12)

Agrees with the known result.

# Special cases

- K = 2, with arbitrary N (M. Matthaiou, 2010)
  - The coefficient in this case is

$$c_n^{(N,2)} = \frac{\Gamma(2N - n - 1)}{\Gamma(N)\Gamma(n - N + 3)\Gamma(2N - n - 3)}.$$
 (13)

▶ Inserting  $c_n^{(N,2)}$  into the derived PDF, d(x) simplifies to

$$d(x) = \frac{\Gamma(2N)}{\Gamma(N)\Gamma(N-1)}(x-2)^2 x^{-2N}(x-1)^{N-2}.$$
 (14)

In agreement with the known result.

# One numerical example

- ► K = 4, N = 5.
- $\triangleright$  d(x) is calculated to be

$$3420(x-4)^{14}(x^3+5x^2-20x+4)x^{-20}. (15)$$

D(y) is calculated to be

$$1 - 213.75B_{\frac{4}{y}}(2,18) - 908.438B_{\frac{4}{y}}(3,17) -908.438B_{\frac{4}{y}}(4,16) - 227.109B_{\frac{4}{y}}(5,15).$$
 (16)

# One numerical example: K = 4, N = 5



# **Asymptotic distribution**

#### Motivation:

- Determining the coefficients may appear a problem for large dimensional matrices.
- ▶ We would like to gain insight into the behavior of DCN distribution when the dimension *K*, *N* are large.

# **Asymptotic distribution**

#### Motivation:

- Determining the coefficients may appear a problem for large dimensional matrices.
- We would like to gain insight into the behavior of DCN distribution when the dimension K, N are large.
- We derive a closed-form asymptotic DCN distribution, which circumvents the need to calculate the coefficients.
- The asymptotic result falls in the developed Mellin transform framework as well.

# An asymptotic result on $\lambda_k$ distribution

► For  $\lambda_k$ , there exists sequences a(K, N) and b(K, N) such that the distribution of the random variable

$$\Lambda_{K} = \frac{\lambda_{K} - a(K, N)}{b(K, N)}$$
 (17)

converges to the Tracy-Widom distribution of order two (O. N. Feldheim, 2010), denoted as  $F_{TW2}$ .

This result provides an approximation to λ<sub>k</sub> for large K and N,

$$F(x) \approx F_{\text{TW2}}\left(\frac{x - a(K, N)}{b(K, N)}\right).$$
 (18)

# An asymptotic result on $\lambda_k$ distribution

► For  $\lambda_k$ , there exists sequences a(K, N) and b(K, N) such that the distribution of the random variable

$$\Lambda_{K} = \frac{\lambda_{K} - a(K, N)}{b(K, N)}$$
 (17)

converges to the Tracy-Widom distribution of order two (O. N. Feldheim, 2010), denoted as  $F_{TW2}$ .

This result provides an approximation to λ<sub>k</sub> for large K and N,

$$F(x) \approx F_{\text{TW2}}\left(\frac{x - a(K, N)}{b(K, N)}\right).$$
 (18)

Numerical burden to calculate  $F_{TW2}(\cdot)$ , simpler closed-form approximation is more desirable.

# Gamma approximation to $\lambda_k$ distribution

▶ It was stated in (A. Edelman, 2005) that  $\lambda_k$  can be well approximated by a Gamma distribution.

### Gamma approximation to $\lambda_k$ distribution

- It was stated in (A. Edelman, 2005) that  $\lambda_k$  can be well approximated by a Gamma distribution.
- Motivated by this, we propose a Gamma approximation by calculating the first two asymptotic moments via Tracy-Widom distribution.
  - $E[\lambda_K] = a(K, N) + b(K, N)E[\Lambda_K].$
  - $V[\lambda_K] = (b(K, N))^2 V[\Lambda_K].$
- Convergence in distribution implies

$$E[\Lambda_K] \to E[x_{TW2}] = -1.7711,$$
 (19)

$$V[\Lambda_K] \rightarrow V[x_{TW2}] = 0.8132.$$
 (20)



# Gamma approximation to $\lambda_k$ distribution

For a Gamma distribution with parameters  $\theta$  and k, by matching the two moments of  $\lambda_k$ ,  $\theta$  and k is obtained as

$$k = \frac{(a(K,N) + b(K,N)E[x_{TW2}])^2}{(b(K,N))^2 V[x_{TW2}]},$$
 (21)

$$\theta = \frac{(b(K,N))^2 V[x_{TW2}]}{a(K,N) + b(K,N)E[x_{TW2}]}.$$
 (22)

# **Asymptotic distribution**

▶ Using the closed-form asymptotic  $\lambda_K$  distribution, the developed framework can be applied.

# **Asymptotic distribution**

- Using the closed-form asymptotic λ<sub>K</sub> distribution, the developed framework can be applied.
- We first calculate

$$M_{z}[f(x)] = \frac{\theta^{z-1}}{\Gamma(k)}\Gamma(z+k-1). \tag{23}$$

# **Asymptotic distribution**

- ▶ Using the closed-form asymptotic  $\lambda_K$  distribution, the developed framework can be applied.
- We first calculate

$$M_{z}[f(x)] = \frac{\theta^{z-1}}{\Gamma(k)}\Gamma(z+k-1). \tag{23}$$

By the residue theorem and a variable transform, the PDF of asymptotic DCN is calculated as

$$d(x) = c_1 x^{-m/2} (\theta x - 1)^{m/2 - k - 1}.$$
 (24)

Then, CDF of asymptotic DCN is calculated as

$$D(y) = c_2(C(K) - C(y)), \qquad (25)$$

$$C(x) = {}_{2}F_{1}(k, 1 + k - \frac{m}{2}; k + 1; \frac{1}{\theta x})x^{-k}.$$



#### **Numerical results**



► The K × N dimension matrix X models the MIMO communication channels.

- ► The K × N dimension matrix X models the MIMO communication channels.
- Performance analysis and design of MIMO techniques relies on the statistical properties of the random MIMO channels.

- The K × N dimension matrix X models the MIMO communication channels.
- Performance analysis and design of MIMO techniques relies on the statistical properties of the random MIMO channels.
- DCN reflects the eigenvalue spread of the random MIMO channel – indicates multipath richness for a given channel realization.

- ► The K × N dimension matrix X models the MIMO communication channels.
- Performance analysis and design of MIMO techniques relies on the statistical properties of the random MIMO channels.
- DCN reflects the eigenvalue spread of the random MIMO channel – indicates multipath richness for a given channel realization.
- Using this fact, several MIMO transmit and receive schemes can be proposed.



Adaptive transmission can be achieved based on the Demmel condition number.

- Adaptive transmission can be achieved based on the Demmel condition number.
- Transmission rate and reliability trade-off:
  - Spatial multiplexing: high data rate, no diversity.
  - Transmit diversity: lower data rate, possibility to achieve full diversity.

- Adaptive transmission can be achieved based on the Demmel condition number.
- Transmission rate and reliability trade-off:
  - Spatial multiplexing: high data rate, no diversity.
  - Transmit diversity: lower data rate, possibility to achieve full diversity.
- Transmitter needs feedback information from receiver.

- Adaptive transmission can be achieved based on the Demmel condition number.
- Transmission rate and reliability trade-off:
  - Spatial multiplexing: high data rate, no diversity.
  - Transmit diversity: lower data rate, possibility to achieve full diversity.
- Transmitter needs feedback information from receiver.
- Adaptive transmission switches between the two schemes depending on the instantaneous DCN.

- Adaptive transmission can be achieved based on the Demmel condition number.
- Transmission rate and reliability trade-off:
  - Spatial multiplexing: high data rate, no diversity.
  - Transmit diversity: lower data rate, possibility to achieve full diversity.
- Transmitter needs feedback information from receiver.
- Adaptive transmission switches between the two schemes depending on the instantaneous DCN.
- Combining the benefits of the two transmission methods, switching is based hard decision.

Adaptive detection is possible using the Demmel condition number.

- Adaptive detection is possible using the Demmel condition number.
- Detection performance and complexity trade-off:
  - Maximum likelihood detection: optimum with high complexity.
  - Zero forcing detection: sub-optimum with low complexity.

- Adaptive detection is possible using the Demmel condition number.
- Detection performance and complexity trade-off:
  - Maximum likelihood detection: optimum with high complexity.
  - Zero forcing detection: sub-optimum with low complexity.
- Adaptive detector switches between these two detection algorithms depending on the instantaneous DCN.

- Adaptive detection is possible using the Demmel condition number.
- Detection performance and complexity trade-off:
  - Maximum likelihood detection: optimum with high complexity.
  - Zero forcing detection: sub-optimum with low complexity.
- Adaptive detector switches between these two detection algorithms depending on the instantaneous DCN.
- Combining the benefits of both detectors, switching is based hard decision.

# Thank you!