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Abstract—In this paper, we survey recent mathematical have been developed by Chuah et al. in [2], relying on results
results devoted to the study of the mutual information of MIMO  from Girko [6]. Relying on replica methods, Moustakas et
channels in the case where transmit and receive antennas 5 [11] have been able to compute an equivalent of the

converge tooco at the same rate. ) Hn
We express the different results in a unified framework and ~Mean of 5 log det (I + (the variance has also been

the emphasis is put on non-asymptotic deterministic approx- computed but second- order computations are out of the scope
imations of the mutual information, asymptotic limits (when  of the present survey).

existing) and Ricean correlated channels. We shall survey all this line of results and present recent

results [10] where an equivalent of the mutual information

is computed in the case where the covariancéigfis of a
It is well-known that the mutual information of a MIMO general form

channel is given by

I. INTRODUCTION
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C(s?) = Elog det (IJr 5
S

ij>

) cov(H;;, Hjjy) =

and in the case wherH,, is no longer centered, i.¢{,, =
wherec? is the variance of an additive corrupting noise and’,, + B,, where B,, is deterministic andt(Z,,) = 0. Such
the N x n matrix H,, = (HJ}) represents (up to a factefn) a case is known as the Ricean channel and has led to
the complex gain between transmit and receive antennas.gartial studies under different sets of assumptions: See [3],
his seminal paper [13], Telatar has proved that in the ca$&2] (using the replica method in the uncorrelated case), [5]
where the entries of the matrlx are i.i.d. centered Gaussidreceive correlated Ricean channels).

random variables with varlanc%L the mutual information In the sequel, we deal with the following model of non-

properly normalized, i.eC), (s ) C(g ) converges toward a centered random matrices with a variance profile:
deterministic quantity involving Maenko Pastur probability
distribution in the case Wheré[ — ¢ > 0. Telatar relied
ggnhggﬁe&k;trizssturgf 'I[rr:]eorem from t:e ftheo?]/ otharge hereX,,,Y, and A,, are N x n random matrices. Matrix
portance is the fact that the m has a variance profile, i.e. the entries ¥f = (V)
tual information of the channel grows proportionally to the ™ e *
number of transmit antennas (or receive ones since their ratiave the formY;? = % = X%, the X7} being independent
is assumed to be constant). and identically distrlbutedo 1) complex circular gaussian
The question soon arised to extend these results to mdaenotedC N (0, 1)) random variables. Matrid,, is assumed
realistic models, especially to those models where the ete be deterministic. Otherwise statdgly,, = 0 andEX,, =
tries of the matrix are no longer independent and have 4,. Particular attention will be devoted to the case of a

En = Y;L + An

covariance function of the form: Ricean channel, i.e4,, # 0.
N VY In Section I, we survey mutual informations results in
S a(i —i)b(j — j’) : o
cov(H, Hj ) = the case wher&, is centered, that is in the case where

n
= 0. Non- asymptotlc formulas are given for a general

A,
wheref andg are two given functions. Such results, based OOanance prof|Iea and asymptotic formulas are provided
an extensive use of the Stieltjes transfafrof a probability i, the case where the variance profile is the sampling of a
Measureu: LA continuous function, i.eof?) =o(i/N,j/n).
f(z) = / He ), In Section Ill, the general non-centered case is addressed.
Rt A2 Non-asymptotic formulas for the mutual information are
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Y, = FnZ,F; where F), = (F} ; )o<j,.j»<p IS thep x p  This equation admits a unique solution in the class of

Fourier matrix: functionsk such that
B = 1 exp 2ir J1j2 ) 1) z — k(u, ) is the Stieltjes transform of a probability
J1s NGz D measure,
. . 2) [0,1] 3 u +— k(u, 2) is continuous.
is fully explained. ,
We denotek (u) = k(u, —<2). The following convergence
[I. THE CENTERED CASE holds true:
In this section, we takel,, = 0 that isX,, = Y,. As a Cn(s?) —— C*(s?)

n—oo

major consequence of this assumptlon the normalized mu- . o .
converges toward whereC*(s?) is given by the following formula

a deterministic limit in the case where the variance profile v oy 11 2 d
is the sampling of a continuous function (see Assumption ()=~ o 0g(s ks () dz
(A-1) and Theorem 2.3). 1 [ 1
We introduce the following notations: — —/ log dx
¢ Jo 1+ cf o?(u, z)ke(u)du
D; = diag (07;, 1 <i < N), T =diag(T;, 1<i<N), 0
D; = diag (o2, 1<j<n), T =dag(T;, 1<j<n) _ / kel g
~ _ _ (0,12 1+ cfo o2(u,y)ke(u)du
where bothI" andT are defined by the following system of ) ) ) )
N + n equations. Mathematical details are provided in [9] and [10].
Theorem 2.1 (see [10])Consider the following system lIl. THE RICEAN CASE

of N equations: .
tned . In the general case, that is whet, # 0 one cannot

Ti(z) = —— , 1<i<N, expect the convergence of the empirical distribution of the
2(1+ ~TrD;T(z)) eigenvalues of2,, > in the case wherel,, # 0. Only very
Tj(z) _ -1 1 <j<n specific cases can be studied ([4], [9]) in a fully asymptotic

perspective. However, one can still compute a deterministic

) i . o approximation as in Theorem 2.2.
then this system admits a unique soluti@n 7') among the Assumption A-2\We assume that th x n matrix 4,, —

cla_lss_ of diagonal matrices sy_ch tHBl(z) and T;(z) are (A7) whose columnga’); <<, and rows(a});<,<y sat-
Stieltjes transforms of probability measures. isfies - -

Theorem 2.2 (see [10])Denote byC,,(s2) the quantity

2(14 1TrD;T(2))’

supmka;x(llakl\ a7 1l) < +o0 @)
N n
Cn(s?) = S Z]og Ti(—¢%) — 1 Zlog $?T;(—<?) where| - || stands for the Euclidean norm.
N i=1 N j=1 Assumption (A-2) is very relevant in the context of digital
c2 ) - ) communication and encompasses usual line of sight compo-
~Nn Z o Ti(=<7)T5(=<7) nents models for instance .
o Theorem 3.1 (see [10], see also [7JAssume that (A-2)

holds and letA4,, be a N x n deterministic matrix. The

Assume that the variance profile is bounded: deterministic system o + n equations:

sup O’Ej) < Omax- -1
i,4,n vi(z) = — for 1<i<N, (4
Then the following holds true: z (1 +Tr DiT(Z))
* ~ -1
DY ~ . - ;
—Elogdet (IN + ) - Cn(§2) — 0. Yi(z) = 2 (1 n %TrDjT(z)) for1<j<n, (5
Of mterest is the case Where the convergenc€pfs?)  where
occurs. This is the aim of next assumption and next theorem. ) ‘
Assumption A-1:The variance profile is the sampling of V(z) = diag(¥i(2),1 <i<N), (6)
a continuous function: U(z) = diag(¢,(2),1<j<n), )]
. . - -1
oy = (52) @ e e I
whereo (z,y) is continuous. T(z) = (ﬁfl(z) — zA*'l/(z)A) . (9)
Theorem 2.3:Assume now that (A-1) holds and consider . _ . N N
the following functional equation: admits a unique solutioriyy, ..., YN, ¥1,...,%,) in the

class of the functions which are Stieltjes transforms.
1) . In the sequel, we denote by, = ¥(—¢?) and by ¥, =
Z+f0 1+cj0 02 z,t)k(x,z)d mdt lII(_§2)'

1

k(u,z) =




Theorem 3.2:Denote byC,,(s?) the quantity V. FROM INDEPENDENCE TO STATIONARITY THE CASE
OF GAUSSIAN MATRICES

- 1 -1 .
Cn(s?) = Nlogdet [ ;2 + AU A } We now turn to the relation between random matrices
o based on a Gaussian stationary field and matrices with
+ 1 log det —5 independent entries and a variance profile.
) N < Assumption A-4:Consider theV x n matrix whose entries
¢ . i
-~ Z o T ¢2) j(—g2) (10) are given by
i=1: Z n 1 ) )
o o Zj14a =/ D Ak ka)U G = ki o — ko),
Assume that the variance profile is bounded. Then the (k1,ko)€Z?

following holds true: . L
whereh is a deterministic complex summable sequence (over

1 DI - 7Z2) and(U (41, 52); (ji, j2) € Z?)is a sequence &N (0, 1
NElogdet (IN t 2 ) = Cn(<?) n—so00 0- rarzolom(va(rjiftlbjlz)s.(J1 ) ! | U
Such a matrix is a good model for a Gaussian stationary
field since every entryZ? , is complex gaussian, centered
Mathematical details are provided in [10]. and

COV(Z” n ) _ K‘(jl _jiva _jé)

IV. THE RICEAN CASE (REVISITED) Jriz> Ziids) T n
In this section, we assume that the variance proffg@ where
is separable: o _ .
Assumption A-3The variance profiler” is assumed to K(de) = Y Bk ka)h* (k= g1, k2 — j2)
be separable, i.e.: (k1,k2)€Z?
o =did;; 1<i<N, 1<j<n. Consider on the other hand théxn matrixY;, = (Y ;)
As we shall see, Assumption (A-3) induces major simpliwhere W
fication over the system oV + n equations of Theorem noo_ @ (ﬁla f)X. A (14)
3.1 since the system reduces to 2 equations in this case (in 1.2 vn Iz

accordance with [11] for instance). Denote b
with [11] I ) y where the(Xj;, ;,) are i.i.d.CN(0, 1) random variables and

D = diag(d;, 1<i<N) Smi(1 1 —Eata)
~ ~ — 1 -
D = dlag(dj, 1 S] < n) @(thtg) = E h(ﬁl,ﬂz)e 1hLThata (15)
(01,42)€Z?
Theorem 4.1 (see [10])Assume that (A-3) holds and

consider the following system of equations The similar asymptotic behavior of the spectral measure of

Z,Zy and Y)Y are part of the folklore in the MIMO
capacity literature. We give here a formal justification to
this fact, based on [8], and extend Theorem 3.2 to the case
of matrices with Gaussian stationary entries. The following
holds true:

Theorem 5.1 (see [8])Let H,, = Z, + B, where B,

Then this system admits a unique solution in the class Sptisfies (A-2) andzZ,, satisfies (A-4). Then the conclusions

S i - of Theorems 3.1 and 3.2 remain valid with the following
Stieltjes transforms of positive measuresand i such that sliaht modifications:
p(RT) = LTrD andy(RT) = LTrD. 9 :

T n

§(z) = LTr {D (—z(I +D&) + A(I + Dé)*lAT) _1}

3(z) = LTr {D (_Z(I + Ds) + AT(I + DS)—lA) 1}

Z\:ﬁj Ejags?ow define properly the related quantities”, ¥ D; = diag {|‘I>|2 (;7, il) S 1<i< N};
V() = _(IJFSZD)_I, \if(z):_(ILZb)_l(n) D, = diag{|c1>|2 (;vi) 1§j§n};
T(-z) = (—z(l +46D) + A(I + 5[7)*114*)‘1 (12) A = F}BF,.
T(-z) = (—Z(l +0D) + A(I + SD)_lA*) -1 (13) \(,jv:f(ianrgj ibsyg(i\f)a.nl\k/)lzrgos\aeind:N andF,, are Fourier matrices

and accordingly their evaluations at the point -2 v, 1 HH* I

., T, andT.. ~Elog det (I—i— @ ) = Cn($7) — 0,
Theorem 4.2:The statement of Theorem 3.2 remains valid

with 7,7, ¥ and ¥ given by (11), (12) and (13). whereC,,(¢?) is given by (10).




Elements of proof

The proof of Theorem 5.1 relies on two main component

1) A periodization scheme popular in signal processing.
We introduce the matri¥,, = (7} ;,) where

= 2

1
\/ﬁ (k1,k2)€Z2
x U ((j1 — k1) mod N, (j2 — k2) mod n),

7n
Zjljz

h(k1, k2)

andmod denotes modulo. The main interest of matrix (1
7, comes from the fact that it can be fully decorrelated
by Fourier multiplication:

) (2]
3
whereY,, is defined by (14). 8
2) The second element is an inequality due to Bai [1]
involving the Lévy distancel between distribution
functions:
(5]
£4(FAA*’FBB*)
< 2 Ty(A— B)(A— B)*Te(AA* + BB"), [6]

S No
where F44" denotes the empirical distribution func- [7]
tion of the eigenvalues of the matriAA*. This in-
equality turns out to be perfectly suited to evaluatejg
the difference between the spectrum of matrizggs’,,
(resp.(Zn + Byn)(Zn + By)*) and 2, Z}; (resp.(Z, + (9]
Bn)(Zn + Bn)*)

Mathematical details are provided in [8].

10
VI. CONCLUSION (ol
In this survey, we have presented up-to-date mathematiGai,
results related to the study of the normalized mutual infor-
mation of a MIMO channel:

1 D)
= NElogdet <I+ 2 )
in the case where the number of receive and transmiit’]
antennas go teo, their ratio being constant. The modelji4]
under study is¥ = Y + A whereY is a random matrix
with a variance profile andl is a deterministic matrix. 15]

In the case wher&Y = A = 0, we provide both asymp-
totic and non-asymptotic results while in the case of a Ricean
channel EX = A # 0), the mutual informationC,, (¢2)
might not converge, however we provide non-asymptotic
results.

We show how the variance profihq(f) of Y'’s entries has
an impact on the complexity of the results. In particular, if
the variance profile is separable, i@(;l) = diczj the non-
asymptotic deterministic equivalent of the mutual informa-
tion relies on a system of 2 equations insteadNof+ n
equations.

Finally, we describe precisely the links between Gaussian
random matrices with a variance profile and stationary Gaus-
sian random matrices. This enables us to study the mutual

_ 12
Cn (§2) (2l

information of general stationary Gaussian models where the
dnatrix H has the form

H=7+B

where Z is random andB, deterministic and wherd{’s
entries have the following correlation structure:

k(i =, — §)
n n _ ?
cov(Hij, i,j,) = - .
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