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Abstract— In this paper, we survey recent mathematical
results devoted to the study of the mutual information of MIMO
channels in the case where transmit and receive antennas
converge to∞ at the same rate.

We express the different results in a unified framework and
the emphasis is put on non-asymptotic deterministic approx-
imations of the mutual information, asymptotic limits (when
existing) and Ricean correlated channels.

I. I NTRODUCTION

It is well-known that the mutual information of a MIMO
channel is given by

C(ς2) = E log det
(
I +

HnH
∗
n

ς2

)
whereς2 is the variance of an additive corrupting noise and
theN×n matrixHn = (Hn

ij) represents (up to a factor
√
n)

the complex gain between transmit and receive antennas. In
his seminal paper [13], Telatar has proved that in the case
where the entries of the matrix are i.i.d. centered Gaussian
random variables with varianceσ

2

n , the mutual information

properly normalized, i.e.Cn(ς2) = C(ς2)
N converges toward a

deterministic quantity involving Mařcenko-Pastur probability
distribution in the case whereNn → c > 0. Telatar relied
on Mařcenko-Pastur’s theorem from the theory of Large
Random Matrices. Of importance is the fact that the mu-
tual information of the channel grows proportionally to the
number of transmit antennas (or receive ones since their ratio
is assumed to be constant).

The question soon arised to extend these results to more
realistic models, especially to those models where the en-
tries of the matrix are no longer independent and have a
covariance function of the form:

cov(Hn
ij ,H

n
i′j′) =

a(i− i′)b(j − j′)
n

wheref andg are two given functions. Such results, based on
an extensive use of the Stieltjes transformf of a probability
measureµ:

f(z) =
∫

R+

µ(dλ)
λ− z

,
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have been developed by Chuah et al. in [2], relying on results
from Girko [6]. Relying on replica methods, Moustakas et
al. [11] have been able to compute an equivalent of the
mean of 1

N log det
(
I + HnH∗

n

ς2

)
(the variance has also been

computed but second-order computations are out of the scope
of the present survey).

We shall survey all this line of results and present recent
results [10] where an equivalent of the mutual information
is computed in the case where the covariance ofHn is of a
general form

cov(Hn
ij ,H

n
i′j′) =

κ(i− i′, j − j′)
n

.

and in the case whereHn is no longer centered, i.e.Hn =
Zn + Bn whereBn is deterministic andE(Zn) = 0. Such
a case is known as the Ricean channel and has led to
partial studies under different sets of assumptions: See [3],
[12] (using the replica method in the uncorrelated case), [5]
(receive correlated Ricean channels).

In the sequel, we deal with the following model of non-
centered random matrices with a variance profile:

Σn = Yn +An

whereΣn, Yn andAn areN × n random matrices. Matrix
Yn has a variance profile, i.e. the entries ofYn = (Y n

ij )

have the formY n
ij =

σ
(n)
ij√
n
Xn

ij , the Xn
ij being independent

and identically distributed(0, 1) complex circular gaussian
(denotedCN(0, 1)) random variables. MatrixAn is assumed
to be deterministic. Otherwise stated,EYn = 0 andEΣn =
An. Particular attention will be devoted to the case of a
Ricean channel, i.e.An 6= 0.

In Section II, we survey mutual informations results in
the case whereΣn is centered, that is in the case where
An = 0. Non-asymptotic formulas are given for a general
variance profileσ(n)

ij and asymptotic formulas are provided
in the case where the variance profile is the sampling of a
continuous function, i.e.σ(n)

ij = σ(i/N, j/n).
In Section III, the general non-centered case is addressed.

Non-asymptotic formulas for the mutual information are
provided.

In Section IV, we revisit the general case when the
variance profile is separable, that is whenσ(n)

ij = did̃j . This
assumption induces major simplifications in the computation
of the deterministic equivalent of the mutual information.

As will be shown in Section V, the case of a Gaussian
matrixZn with correlated entries is very close to the case of
a matrixYn with a variance profile. The intuitive equivalence



Yn ≈ FNZnF
∗
n whereFp = (F p

j1,j2
)0≤j1,j2<p is the p × p

Fourier matrix:

F p
j1,j2

=
1
√
p

exp 2iπ
(
j1j2
p

)
(1)

is fully explained.

II. T HE CENTERED CASE

In this section, we takeAn = 0 that is Σn = Yn. As a
major consequence of this assumption, the normalized mu-
tual information 1

N E log det
(
IN + ΣΣ∗

ς2

)
converges toward

a deterministic limit in the case where the variance profile
is the sampling of a continuous function (see Assumption
(A-1) and Theorem 2.3).

We introduce the following notations:

Dj = diag
(
σ2

ij , 1 ≤ i ≤ N
)
, T = diag(Ti, 1 ≤ i ≤ N),

D̃i = diag
(
σ2

ij , 1 ≤ j ≤ n
)
, T̃ = diag(T̃j , 1 ≤ j ≤ n)

where bothT and T̃ are defined by the following system of
N + n equations.

Theorem 2.1 (see [10]):Consider the following system
of N + n equations:

Ti(z) =
−1

z(1 + 1
nTrD̃iT̃ (z))

, 1 ≤ i ≤ N,

T̃j(z) =
−1

z(1 + 1
nTrDjT (z))

, 1 ≤ j ≤ n

then this system admits a unique solution(T, T̃ ) among the
class of diagonal matrices such thatTi(z) and T̃j(z) are
Stieltjes transforms of probability measures.

Theorem 2.2 (see [10]):Denote byC̄n(ς2) the quantity

C̄n(ς2) = − 1
N

N∑
i=1

log ς2Ti(−ς2)−
1
N

n∑
j=1

log ς2T̃j(−ς2)

− ς2

Nn

∑
i = 1 : N
j = 1 : n

σ2
ijTi(−ς2)T̃j(−ς2)

Assume that the variance profile is bounded:

sup
i,j,n

σ
(n)
ij ≤ σmax.

Then the following holds true:

1
N

E log det
(
IN +

ΣΣ∗

ς2

)
− C̄n(ς2) −−−−→

n→∞
0.

Of interest is the case where the convergence ofC̄n(ς2)
occurs. This is the aim of next assumption and next theorem.

Assumption A-1:The variance profile is the sampling of
a continuous function:

σ
(n)
ij = σ

(
i

N
,
j

n

)
(2)

whereσ(x, y) is continuous.
Theorem 2.3:Assume now that (A-1) holds and consider

the following functional equation:

k(u, z) =
1

−z +
∫ 1

0
σ2(u,t)

1+c
∫ 1
0 σ2(x,t)k(x,z)dx

dt
.

This equation admits a unique solution in the class of
functionsk such that

1) z 7→ k(u, z) is the Stieltjes transform of a probability
measure,

2) [0, 1] 3 u 7→ k(u, z) is continuous.
We denotekς(u) = k(u,−ς2). The following convergence
holds true:

C̄n(ς2) −−−−→
n→∞

C∗(ς2)

whereC∗(ς2) is given by the following formula

C∗(ς2) = −
∫ 1

0

log(ς2kς(x)) dx

− 1
c

∫ 1

0

log

(
1

1 + c
∫ 1

0
σ2(u, x)kς(u)du

)
dx

−
∫

[0,1]2

σ2(x, y)kς(x)

1 + c
∫ 1

0
σ2(u, y)kς(u)du

dx dy

Mathematical details are provided in [9] and [10].

III. T HE RICEAN CASE

In the general case, that is whenAn 6= 0 one cannot
expect the convergence of the empirical distribution of the
eigenvalues ofΣnΣ∗n in the case whereAn 6= 0. Only very
specific cases can be studied ([4], [9]) in a fully asymptotic
perspective. However, one can still compute a deterministic
approximation as in Theorem 2.2.

Assumption A-2:We assume that theN ×n matrixAn =
(An

ij) whose columns(an
k )1≤k≤n and rows(ãn

` )1≤`≤N sat-
isfies

sup
n≥1

max
k,`

(‖an
k‖, ‖ãn

` ‖) < +∞ (3)

where‖ · ‖ stands for the Euclidean norm.
Assumption (A-2) is very relevant in the context of digital

communication and encompasses usual line of sight compo-
nents models for instance .

Theorem 3.1 (see [10], see also [7]):Assume that (A-2)
holds and letAn be a N × n deterministic matrix. The
deterministic system ofN + n equations:

ψi(z) =
−1

z
(
1 + 1

nTr D̃iT̃ (z)
) for 1 ≤ i ≤ N, (4)

ψ̃j(z) =
−1

z
(
1 + 1

nTrDjT (z)
) for 1 ≤ j ≤ n, (5)

where

Ψ(z) = diag(ψi(z), 1 ≤ i ≤ N), (6)

Ψ̃(z) = diag(ψ̃j(z), 1 ≤ j ≤ n), (7)

T (z) =
(
Ψ−1(z)− zAΨ̃(z)A∗

)−1

, (8)

T̃ (z) =
(
Ψ̃−1(z)− zA∗Ψ(z)A

)−1

. (9)

admits a unique solution(ψ1, . . . , ψN , ψ̃1, . . . , ψ̃n) in the
class of the functions which are Stieltjes transforms.
In the sequel, we denote byΨς = Ψ(−ς2) and by Ψ̃ς =
Ψ̃(−ς2).



Theorem 3.2:Denote byC̄n(ς2) the quantity

C̄n(ς2) =
1
N

log det
[
Ψ−1

ς

ς2
+AΨ̃ςA

∗
]

+
1
N

log det
Ψ̃−1

ς

ς2

− ς2

Nn

∑
i = 1 : N
j = 1 : n

σ2
ijTi(−ς2)T̃j(−ς2) (10)

Assume that the variance profile is bounded. Then the
following holds true:

1
N

E log det
(
IN +

ΣΣ∗

ς2

)
− C̄n(ς2) −−−−→

n→∞
0.

Mathematical details are provided in [10].

IV. T HE RICEAN CASE (REVISITED)

In this section, we assume that the variance profileσ
(n)
ij

is separable:
Assumption A-3:The variance profileσ(n)

ij is assumed to
be separable, i.e.:

σ
(n)
ij = did̃j ; 1 ≤ i ≤ N, 1 ≤ j ≤ n.

As we shall see, Assumption (A-3) induces major simpli-
fication over the system ofN + n equations of Theorem
3.1 since the system reduces to 2 equations in this case (in
accordance with [11] for instance). Denote by

D = diag(di, 1 ≤ i ≤ N)
D̃ = diag(d̃j , 1 ≤ j ≤ n)

Theorem 4.1 (see [10]):Assume that (A-3) holds and
consider the following system of equations

δ(z) = 1
nTr

[
D
(
−z(I +Dδ̃) +A(I + D̃δ)−1AT

)−1
]

δ̃(z) = 1
nTr

[
D̃
(
−z(I + D̃δ) +AT (I +Dδ̃)−1A

)−1
] .

Then this system admits a unique solution in the class of
Stieltjes transforms of positive measuresµ and µ̃ such that
µ(R+) = 1

nTrD and µ̃(R+) = 1
nTrD̃.

We can now define properly the related quantitiesT, T̃ ,Ψ
and Ψ̃ as:

Ψ(z) = − (I + δ̃D)−1

z
, Ψ̃(z) = − (I + δD̃)−1

z
(11)

T (−z) =
(
−z(1 + δ̃D) +A(I + δD̃)−1A∗

)−1

(12)

T̃ (−z) =
(
−z(1 + δD̃) +A(I + δ̃D)−1A∗

)−1

(13)

and accordingly their evaluations at the pointz = −ς2: Ψς ,
Ψ̃ς , Tς and T̃ς .

Theorem 4.2:The statement of Theorem 3.2 remains valid
with T, T̃ ,Ψ and Ψ̃ given by (11), (12) and (13).

V. FROM INDEPENDENCE TO STATIONARITY: THE CASE

OF GAUSSIAN MATRICES

We now turn to the relation between random matrices
based on a Gaussian stationary field and matrices with
independent entries and a variance profile.

Assumption A-4:Consider theN×n matrix whose entries
are given by

Zn
j1j2 =

1√
n

∑
(k1,k2)∈Z2

h(k1, k2)U(j1 − k1, j2 − k2),

whereh is a deterministic complex summable sequence (over
Z2) and(U(j1, j2); (j1, j2) ∈ Z2) is a sequence ofCN(0, 1)
random variables.

Such a matrix is a good model for a Gaussian stationary
field since every entryZn

j1j2
is complex gaussian, centered

and

cov(Zn
j1j2 , Z

n
j′1j′2

) =
κ(j1 − j′1, j2 − j′2)

n

where

κ(j1, j2) =
∑

(k1,k2)∈Z2

h(k1, k2)h∗(k1 − j1, k2 − j2)

Consider on the other hand theN×n matrixYn = (Y n
j1,j2

)
where

Y n
j1,j2 =

Φ
(

j1
N ,

j2
n

)
√
n

Xj1,j2 (14)

where the(Xj1,j2) are i.i.d.CN(0, 1) random variables and

Φ(t1, t2) =
∑

(`1,`2)∈Z2

h(`1, `2)e2πi(`1t1−`2t2) (15)

The similar asymptotic behavior of the spectral measure of
ZnZ

∗
n and YnY

∗
n are part of the folklore in the MIMO

capacity literature. We give here a formal justification to
this fact, based on [8], and extend Theorem 3.2 to the case
of matrices with Gaussian stationary entries. The following
holds true:

Theorem 5.1 (see [8]):Let Hn = Zn + Bn whereBn

satisfies (A-2) andZn satisfies (A-4). Then the conclusions
of Theorems 3.1 and 3.2 remain valid with the following
slight modifications:

Dj = diag
{
|Φ|2

(
i

N
,
j

n

)
; 1 ≤ i ≤ N

}
;

D̃i = diag
{
|Φ|2

(
i

N
,
j

n

)
; 1 ≤ j ≤ n

}
;

A = F ∗NBFn.

whereΦ is given by (15) andFN andFn are Fourier matrices
defined by (1). Moreover,

1
N

E log det
(
I +

HH∗

ς2

)
− C̄n(ς2) −−−−→

n→∞
0,

whereC̄n(ς2) is given by (10).



Elements of proof

The proof of Theorem 5.1 relies on two main components.

1) A periodization scheme popular in signal processing.
We introduce the matrix̃Zn = (Z̃n

j1j2
) where

Z̃n
j1j2 =

1√
n

∑
(k1,k2)∈Z2

h(k1, k2)

× U ((j1 − k1) mod N, (j2 − k2) mod n) ,

andmod denotes modulo. The main interest of matrix
Z̃n comes from the fact that it can be fully decorrelated
by Fourier multiplication:

F ∗N Z̃nFn = Yn,

whereYn is defined by (14).
2) The second element is an inequality due to Bai [1]

involving the Ĺevy distanceL between distribution
functions:

L4(FAA∗
, FBB∗

)

≤ 2
N2

Tr(A−B)(A−B)∗Tr(AA∗ +BB∗),

whereFAA∗
denotes the empirical distribution func-

tion of the eigenvalues of the matrixAA∗. This in-
equality turns out to be perfectly suited to evaluate
the difference between the spectrum of matricesZnZ

∗
n

(resp.(Zn +Bn)(Zn +Bn)∗) andZ̃nZ̃
∗
n (resp.(Z̃n +

Bn)(Z̃n +Bn)∗)
Mathematical details are provided in [8].

VI. CONCLUSION

In this survey, we have presented up-to-date mathematical
results related to the study of the normalized mutual infor-
mation of a MIMO channel:

C̄n(ς2) =
1
N

E log det
(
I +

ΣΣ∗

ς2

)
in the case where the number of receive and transmit
antennas go to∞, their ratio being constant. The model
under study isΣ = Y + A whereY is a random matrix
with a variance profile andA is a deterministic matrix.

In the case whereEΣ = A = 0, we provide both asymp-
totic and non-asymptotic results while in the case of a Ricean
channel (EΣ = A 6= 0), the mutual informationC̄n(ς2)
might not converge, however we provide non-asymptotic
results.

We show how the variance profileσ(n)
ij of Y ’s entries has

an impact on the complexity of the results. In particular, if
the variance profile is separable, i.e.σ(n)

ij = did̃j the non-
asymptotic deterministic equivalent of the mutual informa-
tion relies on a system of 2 equations instead ofN + n
equations.

Finally, we describe precisely the links between Gaussian
random matrices with a variance profile and stationary Gaus-
sian random matrices. This enables us to study the mutual

information of general stationary Gaussian models where the
matrix H has the form

H = Z +B

where Z is random andB, deterministic and whereH ’s
entries have the following correlation structure:

cov(Hn
ij ,H

n
i′j′) =

κ(i− i′, j − j′)
n

.
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