
High SNR approximations of the capacity of MIMO
correlated Rician channels: a large system approach.

Julien Dumont
FranceTelecom Recherche et Développement
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Abstract— This paper studies high SNR approximations of the
ergodic mutual information of block fading MIMO correlated
Rician channels. The exact expression of the mutual information
of such channels is quite complicated, and difficult to use to
obtain convenient high SNR approximations. In this paper, it
is replaced by an accurate large system approximant obtained
in the case where the number of transmit and receive antennas
t and r converge to +∞ at the same rate. The large system
approximant is studied at high SNR, and it is shown that 3
different behaviours are possible depending onr

t
, the rank of the

line of sight component and the Rician factor. The accuracy of the
high SNR approximant is shown to be connected to the support
of the deterministic large system approximant of the eigenvalue
distribution of the Gram matrix of the channel. This allows to
infer that the approximant is accurate for realistic values of r

and t if r 6= t or if r = t, the line of sight component is invertible
and the Rician factor is greater than a certain threshold.

I. I NTRODUCTION

The ergodic capacity of a block fading MIMO correlated
Rician channelH is defined as the maximum of a complicated
function defined on the set of positive Hermitian matrices
whose normalized traces are equal to 1. It is in particular not
given by a closed form expression, and is thus difficult to
analyse. Therefore, it can be useful to evaluate the capacity
in certain asymptotic regimes for which it reduces to simpler
terms. This paper is focused on the evaluation of the capacity
when the signal to noise ratio (SNR) converges to+∞.
In this context, it is well established that it is optimum to
transmit equal power independent symbols on the various
transmit antennas. The capacity is thus reduced to the ergodic
mutual informationI of the channel that we propose to study
in the high SNR regime. For this, an obvious approach would
be to use an exact expression ofI, and then to evaluate its
limit when the SNR goes to+∞. However, this is a difficult
task because the above expressions are quite complicated; see
e.g. [5] in which particular Rician channels are considered.
In order to obtain interpretable results, we therefore propose
to replaceI by its large system approximant, denotedI,

obtained if the number of transmit and receive antennast

and r converge to+∞ in such a way thatrt → c where
0 < c < +∞. An almost closed-form expression ofI
is established in [4] using random matrix methods. More
precisely, it is shown that the eigenvalue distribution of matrix
HHH can be approximated by a deterministic probability
measure whose Stieltjes transform is characterized in [4].I

is obtained by using thatI is the mathematical expectation
of a particular functional of the eigenvalue distribution of the
Gram matrix of the channel. Note thatI has been obtained
independently in [7] using the useful but non rigorous replica
method. In this paper, we study the behaviour ofI for fixed
values of r and t when theSNR goes to+∞. We show
that the high SNR approximant ofI has, depending on the
context, three possible different expressions. It is of course
important to verify if the high SNR approximant ofI is a
reliable estimate ofI for realistic values ofr, t, and SNR.
This important question is not completely theoretically solved
in this paper. However, we provide some arguments which
strongly suggest that the approximant is reliable if0 does not
belong to the support of the deterministic equivalent of the
eigenvalue distribution ofHHH (if r ≥ t, otherwiseHHH

has to be considered). This allows to identify the contexts
in which the approximant is relevant. We finally provide
numerical experiments that sustain our claims. Engineering
implications of our results will be discussed elsewhere dueto
the lack of space.

II. CHANNEL MODEL

We consider a wireless MIMO link witht transmit antennas
andr receive antennas. In our analysis the channel matrix can
possibly vary from symbol vector (or space-time codeword) to
symbol vector (or space-time codeword). The channel matrix
is assumed to be perfectly known at the receiver whereas the
transmitter has only access to the statistics of the channel. The
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received signal can be written as

y(τ) = H(τ)x(τ) + z(τ) , (1)

where x(τ) is the vector of transmitted symbols at timeτ ,
H(τ) is the channel matrix andz(τ) is a complex white
Gaussian noise distributed asN(0, σ2Ir). For simplicity we
will omit the time indexτ from our notations. The channel
input is subject to a power constraintTr

[

E(xxH)
]

= t. The
r × t channel matrixH has the following structure

H =

√

K

K + 1
A +

1√
K + 1

V . (2)

The matrixA is deterministic and satisfies1r Tr(AAH) = 1.
V is a random matrix given by

V =
1√
t
C1/2WC̃1/2 , (3)

where W is a zero mean independent and identically dis-
tributed complex Gaussian matrix in the sense that the real
and imaginary parts of its entries are independent and have
the same variance12 . The matricesC̃ > 0 and C > 0
account for the transmit and receive antenna correlation effects
respectively, and satisfy1t Tr(C̃) = 1 and 1

r Tr(C) = 1
respectively. This correlation structure is often referred to as
a separable or Kronecker correlation model.K ≥ 0 is the
so-called Rician factor which expresses the relative strength
of the direct and scattered components of the received signal.
Due to the above various normalization constraints, the signal
to noise ratio is equal to1

σ2 .
The ergordic mutual information (EMI) at noise levelσ2 is

defined by:

I(σ2) = EH

[

log det

(

It +
1

σ2
HHH

)]

. (4)

It is possible to obtain the analytical expression ofI(σ2) (see
e.g. [5] in the i.i.d. Rayleigh part case). However, it is quite
complicated, and in practice very difficult to use. It is therefore
useful to studyI(σ2) in certain asymptotic regimes. From now
on, we studyI(σ2) asσ2 → 0, and assume without restrictions
that r ≥ t. It is reasonnable to conjecture that

I(σ2) = t log
1

σ2
+ EH

[

log det(HHH)
]

+ ǫ(σ2) , (5)

whereǫ(σ2) converges to0 if σ2 → 0. It is again possible to
evaluateEH

[

log det(HHH)
]

in closed form, but the corre-
sponding expression remains complicated except in particular
cases. This is the reason for which we propose to replace in
the following I(σ2) be its large system approximant obtained
whenr and t converge to+∞ at the same rate.

III. B ACKGROUND ON THE LARGE SYSTEM BEHAVIOR OF

THE ERGODIC MUTUAL INFORMATION.

In this section, we review some of the results of [4] and
specify the convergence rate of the approximant ofI(σ2). In
this section, parameterσ2 is fixed andr → +∞, t → +∞ in
such a way thatrt → c. In the following, t → +∞ should be

understood asr → +∞, t → +∞, r
t → c in order to shorten

the notations.
Theorem 3.1: Assume thatsupt ‖A‖ < +∞, supt ‖C‖ <

+∞ and supt ‖C̃‖ < +∞ where‖.‖ stands for the spectral
norm. Then, for eachσ2 > 0, there exist two unique strictly
positive termsδ(σ2) and δ̃(σ2) satisfying

δ(σ2) = 1
t TrCT(σ2)

δ̃(σ2) = 1
t TrC̃T̃(σ2)

(6)

whereT(σ2) and T̃(σ2) depend onδ(σ2) and δ̃(σ2), and are
defined by

T(σ2) =
[

σ2(I + δ̃(σ2)
K+1 C) + K

K+1A(I + δ(σ2)
K+1 C̃)−1AH

]

−1

T̃(σ2) =
[

σ2(I + δ(σ2)
K+1 C̃) + K

K+1A
H(I + δ̃(σ2)

K+1 C)−1A
]

−1 .

(7)
Function σ2 → 1

t TrT̃(σ2) is the Stieltjes transforms of a
probability measurẽµ carried byR

+, i.e.

1

t
TrT̃(σ2) =

∫

R+

1

λ + σ2
dµ̃(σ2) (8)

and µ̃ satisfies:

1

t

t
∑

j=1

φ(λj) −
∫

R+

φ(λ)dµ̃(λ) → 0 (9)

when t → +∞, where the convergence is the almost sure
convergence. Here,(λj)j=1,...,t represent the (random) eigen-
values of the positive Gram matrixHHH, and φ is any
lower bounded continuous function1. Moreover, functions
σ2 → t

r δ(σ2) and σ2 → δ̃(σ2) are also Stieltjes transforms
of positive measures carried byR+. Finally, whent → +∞

I(σ2) = I(σ2) + O(
1

t
) (10)

where the asymptotic approximantI(σ2) is given by

I(σ2) = log det

[

It + δ(σ2)
K+1 C̃ + 1

σ2

K
K+1A

H
(

Ir + δ̃(σ2)
K+1 C

)

−1

A

]

+ log det
[

Ir + δ̃(σ2)
K+1 C

]

− t σ2 1
K+1 δ(σ2) δ̃(σ2)

.

(11)
Measureµ̃ is called in the following the deterministic equiv-
alent of the eigenvalue distribution of matrixHHH. Remark
that bothI(σ2) and I(σ2) increase linearly witht. (10) thus
implies that the relative errorI(σ2)−I(σ2)

I(σ2) = O( 1
t2 ). This very

fast convergence rate tends to explain why the asymptotic
evaluations of the ergodic mutual information are reliableeven
for quite moderate numbers of antennas. Similar results have
also been obtained in more restrictive contexts by using the
replica method. We finally note that the termO( 1

t ) in (10)
depends onσ2, and that it may converge to+∞ whenσ2 → 0.
This is the reason for which it is not obvious thatI(σ2)
remains a reliable approximant for moderate values oft and
r at high SNR. See the discussion below.

1In principle, (9) should be valid for bounded continuous function. AsH

is Gaussian, it can be shown that the largest eigenvalue ofH
H

H is almost
surely uniformly upper bounded; the behavior ofφ when λ → +∞ has
therefore no impact.
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IV. B EHAVIOUR OF I(σ2) IF σ2 → 0.

We now studyI at high SNRσ2 → 0. r and t are fixed in
this section. We define functionL(σ2) by

L(σ2) = I(σ2) − t log
1

σ2
(12)

and show below thatL(σ2) is defined atσ2 = 0, and that

L(σ2) = L(0) + ǫ(σ2) (13)

where ǫ(σ2) converges towards 0 whenσ2 → 0. We now
evaluateL(0). Various cases have to be considered, and we
first consider the caser = t.

A. The caser = t.

If matrix A is invertible, we defineKc as

Kc =
1

t
Tr
(

CA−HC̃A−1
)

. (14)

Proposition 4.1: If A is invertible andK > Kc, then
limσ2

→0 δ(σ2) = δ∗ and limσ2
→0 δ̃(σ2) = δ̃∗ are both finite.

Moreover,L(σ2) can be written as (13) where

L(0) = log det
K

K + 1
AAH . (15)

If A is not invertible, or ifA is invertible andK < Kc, then
limσ2

→+∞
σδ(σ2) = ξ∗ and limσ2

→+∞
σδ̃(σ2) = ξ̃∗ exist

and are finite. The productv∗ = ξ∗ξ̃∗ is the unique solution
of the equation

1

t
Tr

[

v

K + 1
+ KAHC−1AC̃−1

]

−1

= 1 , (16)

andL(σ2) is given by (13) where

L(0) = log detC + log detC̃ − t v∗
K+1 +

log det
[

v∗
(K+1)2 I + K

K+1C̃
−1/2AHC−1AC̃−1/2

] .

(17)
Sketch of proof. We first consider the caseA invertible and
K > Kc. Equation (13) and (15) are a matter of routine as
soon as it is established thatδ and δ̃ converge to finite limits
whenσ2 → 0. We therefore only justify this point.δ(σ2) and
δ̃(σ2) are the unique strictly positive solutions of the system
of equations

{

δ − f(δ, δ̃, σ2) = 0

δ̃ − f̃(δ, δ̃, σ2) = 0
, (18)

where the definition of functionsf andf̃ follows from (6) and
(7). It is easy to check that conditionK > Kc implies that
(18) has unique strictly positive solutions(δ∗, δ̃∗) for σ2 = 0.
Indeed, settingσ2 = 0 in the first equation of (18) yields:

δ∗ =
δ∗

K

1

t
Tr
(

A−HC̃A−1C
)

+
K + 1

K

1

t
Tr(AAH)−1 .

As K > Kc = 1
t Tr

(

A−HC̃A−1C
)

, this equation has a
unique positive solutionδ∗. The study of the second equation
gives a similar result concerning̃δ∗. We now establish that
δ∗ and δ̃∗ coincide with the limits ofδ(σ2) and δ̃(σ2) when

σ2 → 0. It is easy to check that functionsf and f̃ can be
extended in a neighbourhood of(δ∗, δ̃∗, 0) to an holomorphic
function of(δ, δ̃, z) (i.e. the positive variables(δ, δ̃, σ2) can be
replaced by complex variables) The last step of the proof is
based on a complex version of the local inversion theorem (see
e.g. [2], Proposition 6.1, p. 138). We denote byJ(δ∗, δ̃∗, 0) the
2 × 2 Jacobian matrix of system (18) at point(δ∗, δ̃∗, 0):

J(δ∗, δ̃∗, 0) =

(

1 − (∂f
∂δ )(δ∗,δ̃∗,0) (∂f

∂δ̃
)(δ∗,δ̃∗,0)

(∂f̃
∂δ )(δ∗,δ̃∗,0) 1 − (∂f̃

∂δ̃
)(δ∗,δ̃∗,0)

)

(19)
It is a matter of routine to check thatdetJ(δ∗, δ̃∗, 0) 6= 0.
Therefore, there exist unique holomorphic functions of
variable z, denoted(δ(z), δ̃(z)), defined in a neighborhood
of 0, and satisfying (18). Forz = σ2 > 0, functionsδ and δ̃

coincide with the solutions of (18) due to unicity (see Theorem
3.1). This in particular implies thatlimσ2

→0 δ(σ2) = δ∗ and
limσ2

→0 δ̃(σ2) = δ̃∗.

We now consider the caseA non invertible orA invertible
and K < Kc, and only check the statement related to the
behavior ofδ and δ̃ around0. We denote byξ(σ) and ξ̃(σ)
the functionsξ(σ) = σδ(σ2) and ξ̃(σ) = σδ̃(σ2). It is easy to
check thatξ(σ) and ξ̃(σ) are the unique positive solutions of
the equations

{

g(ξ, ξ̃, σ) = 1

g̃(ξ, ξ̃, σ) = 1
, (20)

where the expression of functionsg and g̃ are easy to obtain.
Denote byφ(v) the function

φ(v) =
1

t
Tr

[

v

K + 1
+ KAHC−1AC̃−1

]

−1

.

One can easily check thatg(ξ, ξ̃, 0) = g̃(ξ, ξ̃, 0) = φ(ξξ̃). In
contrast with the contextK > Kc, the equations (20) reduce
to the single equationφ(ξξ̃) = 1 at σ = 0. Therefore, more
work is needed to prove the Proposition. It is easy to check
that it exist functionsh(ξ, ξ̃, σ) and h̃(ξ, ξ̃, σ) such that

{

g(ξ, ξ̃, σ) = φ(ξξ̃) + σh(ξ, ξ̃, σ)

g̃(ξ, ξ̃, σ) = φ(ξξ̃) + σh̃(ξ, ξ̃, σ)
. (21)

We omit to give the (cumbersome) analytical expression ofh

and h̃. Eq. (20) can thus be written as
{

φ(ξξ̃) + σh(ξ, ξ̃, σ) = 1

h(ξ, ξ̃, σ) − h̃(ξ, ξ̃, σ) = 0
. (22)

This time, it can be shown that atσ = 0, equations (22)
have a unique pair of strictly positive solutions(ξ∗, ξ̃∗) and
that the corresponding Jacobian matrix at(ξ∗, ξ̃∗, 0) is invert-
ible. Using again the local inversion theorem, we show that
limσ2

→0 ξ(σ) = ξ∗ and limσ2
→0 ξ̃(σ) = ξ̃∗.

B. The caser > t.

We consider now the caser > t, and omit the proof of the
following result.
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Proposition 4.2:γ∗ = limσ2
→0 σ2δ(σ2) is strictly positive

and δ̃∗ = limσ2
→0 δ̃(σ2) is finite. Moreover,(γ∗, δ∗) are the

unique strictly positive solutions of the equations

γ∗ = 1
t Tr

[

C
(

I + δ̃∗
K+1C + K

γ∗
AC̃−1AH

)

−1
]

δ̃∗ = 1
t Tr

[

C̃
(

γ∗
K+1C̃ + K

K+1A
H(I + δ̃∗

K+1C)−1A
)

−1
]

(23)
andL(σ2) is given by (13) where

L(0) = log det(I + δ̃∗
K+1C) − tγ∗δ̃∗

K+1 +

log det
(

γ∗
K+1C̃ + K

K+1A
H(I + δ̃∗

K+1C)−1A
) .

(24)

V. D ISCUSSION ON THE ACCURACY OF THE HIGHSNR
APPROXIMANT.

These results suggest to approximateI(σ2) at high SNR by
I0(σ

2) given by

I0(σ
2) = t log

1

σ2
+ L(0) , (25)

where L(0) is given by one of the expressions (15), (17),
(24). It is of course important to verify thatI0(σ

2) is an
accurate approximation ofI(σ2) for realistic values ofr and
t at high SNR. In order to discuss on this point, we introduce
the functionL(σ2) defined by

L(σ2) = I(σ2) − t log 1
σ2

= EH

[

log det
(

σ2It + HHH
)]

.
(26)

In particular,L(0) = EH(log detHHH). The errorI(σ2) −
I0(σ

2) can be written as

I(σ2) − I0(σ
2) = L(σ2) − L(0) + L(0) − L(0) . (27)

This shows that the approximation error is due from one hand
to L(σ2) − L(0), and the other hand onL(0) − L(0). We
first discuss on the parameters that influenceL(0)−L(0). We
remark that Theorem 3.1 implies that

L(σ2) − L(σ2) = ǫ(t, σ2) , (28)

where for eachσ2 > 0, ǫ(t, σ2) converges towards 0 at rate1t
(i.e. |tǫ(t, σ2)| is upperbounded by a function depending only
on σ2). Although (28) holds for eachσ2 > 0, it is not obvious
that L(0) − L(0) still converges to0 at rate 1

t . It is even not
clear whether1t

(

L(0) − L(0)
)

converges towards 0. Indeed,

1

t

(

L(0) − L(0)
)

=
1

t

t
∑

j=1

log λj −
∫

R+

log λ dµ̃(λ) . (29)

Functionφ(λ) = log λ is not lower bounded onR+. Therefore,
(9) cannot be used without care. We also note that to establish
Theorem 3.1, one uses very frequently that the norm of random
matrix (HHH + σ2It)

−1 is upper bounded by1
σ2 , a bound

that is non-random and independent oft and r. This simple
fact plays actually a very important role. Ifσ2 = 0, this bound
is equal to+∞, thus showing that extending (28) toσ2 = 0
needs the use of different technics and assumptions. This has

been done in [1] devoted to the caseA = 0 and C̃ = 0. It is
shown there that if the functionφ is analytic in a neighbourood
of the support of measurẽµ, then, (9) holds, and

EH





t
∑

j=1

φ(λj) − t

∫

R+

φ(λ) dµ̃(λ)



 = o(1) .

Note thato(1) can be replaced byO( 1
t ) with some efforts.

An important ingredient of [1] is that the probability that an
eigenvalue ofHHH lies outside the support of̃µ decreases
to 0 faster than any term1

tp for each integerp. This means
intuitively that it is possible to assume that the eigenvalues
of HHH remain in the support of̃µ. φ(λ) = log λ satisfies
the above assumption if the support ofµ̃ is included into an
interval (ǫ,+∞) where ǫ > 0. It is reasonable to conjecture
that this kind of result can be extended to our context, and that
L(0) − L(0) = O( 1

t ) if the support ofµ̃ is included into an
interval (ǫ,+∞). It is therefore important to study the support
of µ̃.

Proposition 5.1: If r > t or r = t and K > Kc and A

invertible, the support of̃µ is included in an interval(ǫ,+∞)
whereǫ > 0. Otherwise,0 belongs to the support of̃µ.
Sketch of proof. Due to the lack of space, we just show
that if r = t andA non invertible orA invertible, K < Kc,
0 belongs to the support of̃µ. For this, we remark thatδ
and δ̃ are not analytic at the origin (see Proposition 4.1).
Therefore,T̃ and 1

t TrT̃ are not analytic as well. As1t TrT̃ is
the Stieltjes transform of̃µ, 0 certainly belongs to the support
of µ̃; otherwise, it would be defined atσ2 = 0.

Proposition 5.1 and the above discussion suggests
L(0)−L(0) = O( 1

t ) if r 6= t or r = t, K > Kc, A invertible,
while its behaviour should be less favorable ifr = t and
A non invertible orA invertible, K < Kc. In order to get
some understanding of what can be expected in this last
context, we consider a simple example for which explicit
calculations can be done. Assume thatr = t, and H is a
zero mean i.i.d. matrix, i.e. thatC = C̃ = It and K = 0.
L(0) = E(HHH) can be evaluated using the classical results
of [3], and after some calculations it follows thatL(0) = −t

and thatL(0) − L(0) remains bounded whent → +∞, but
does not converge to 0. This calculation suggests that for
r = t and A non invertible orA invertible andK < Kc,
then L(σ2) − L(σ2) behaves quite differently according to
whetherσ2 6= 0 or σ2 = 0. In practice, this means that for a
fixed value oft, thenL(σ2)−L(σ2) should increase whenσ2

decreases. Figure 1 represents the relative errorL(σ2)−L(σ2)
L(σ2) in

terms oft for SNR = +∞, 30, 20, 10dB. In this experiment,
r = t, K < Kc, the columns ofA are normalized versions of
directional vectorsa(θj) = (1, eiθj , . . . , e(t−1)θj )T where the
(θj)j=1,...,t are chosen uniformly on[0, 2π] (A is invertible),
while both transmit and receive antennas have exponential
correlations with parameterρt = ρr = 0.5. Such a line of
sight component is a reasonable model in the downlink of
systems using macro diversity. The numerical evaluations
confirm the above discussion. Figure 2 corresponds to the
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same experiments, but this time,K > Kc. As expected, the
behaviour ofL(σ2) − L(σ2) does not depend onσ2, and for
eachσ2, L(σ2) appears to be a more accurate approximant
of L(σ2) than if K < Kc.

We now briefly discuss onL(σ2) − L(0). Intuitively, the
accuracy of the approximationL(σ2) ≃ L(0) depends on the
distance betweenσ2 and the smallest eigenvalues ofHHH.
Therefore, better results are expected if0 does not belong
to the support of the deterministic equivalent of eigenvalue
distribution ofHHH.

Figure 3 represents this time the relative errorI(σ2)−I0(σ
2)

I(σ2)

in terms of 1
σ2 . The parameters of the experiments are

the same as below. 3 curves are represented:r = t = 4
and K < Kc, r = t = 4 and K > Kc, and r = 6 and
t = 4. As expected, the relative error does not seem to
converge to0 in the first case. The convergence is very
fast for r = t = 4 and K > Kc, but slower if r = 1.5t,
probably because the support ofµ̃ is closer from 0 in this case.

To conclude, the high SNR approximantI0(σ
2) appears

to be reliable for realistic values ofr and t if r = t, A

invertible K > Kc, and if r 6= t. It is however less accurate
for r = t and A non invertible or r = t, A invertible,
K < Kc. Due to the lack of space, we do not discuss the
engineering implications of these results. We just mention
that if r = t, A invertible andK > Kc, then I(σ2) is very
close to the capacity of the deterministic part of the channel.
In particular, the Rayleigh component has no influence
on the mutual information, otherwise stated, we obtain
the mutual information of the purely deterministic channel

H =
√

K
K+1A, which is a surprising result.
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Fig. 1. Absolute value of the relative error forr = t and K < Kc (A
invertible)
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Fig. 2. Absolute value of the relative error forr = t and K > Kc (A
invertible)
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Fig. 3. Relevance of the high SNR approximations
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