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obtained if the number of transmit and receive antenhas
and r converge to+oo in such a way that; — ¢ where
0 < ¢ < +oco. An almost closed-form expression df
is established in [4] using random matrix methods. More
precisely, it is shown that the eigenvalue distribution @ftrix
HY”H can be approximated by a deterministic probability
measure whose Stieltjes transform is characterized in I[4].
is obtained by using thaf is the mathematical expectation
of a particular functional of the eigenvalue distributiohtloe
Gram matrix of the channel. Note thdthas been obtained
independently in [7] using the useful but non rigorous regli
method. In this paper, we study the behaviourIdbr fixed
values ofr andt when the SNR goes to+oco. We show
that the high SNR approximant df has, depending on the
context, three possible different expressions. It is ofrseu
l. INTRODUCTION important to verify if the high SNR approximant df is a

The ergodic capacity of a block fading MIMO correlatedeliable estimate off for realistic values ofr, ¢, and SNR.
Rician channeH is defined as the maximum of a complicated his important question is not completely theoreticalljved
function defined on the set of positive Hermitian matrice® this paper. However, we provide some arguments which
whose normalized traces are equal to 1. It is in particuldr nstrongly suggest that the approximant is reliablé does not
given by a closed form expression, and is thus difficult tbelong to the support of the deterministic equivalent of the
analyse. Therefore, it can be useful to evaluate the capaaigenvalue distribution oH”H (if » > ¢, otherwiseHH"
in certain asymptotic regimes for which it reduces to simpldas to be considered). This allows to identify the contexts
terms. This paper is focused on the evaluation of the capadih which the approximant is relevant. We finally provide
when the signal to noise ratio (SNR) convergesfec. numerical experiments that sustain our claims. Engingerin
In this context, it is well established that it is optimum tamplications of our results will be discussed elsewhere @ue
transmit equal power independent symbols on the variothe lack of space.
transmit antennas. The capacity is thus reduced to the iergod
mutual information/ of the channel that we propose to study
in the high SNR regime. For this, an obvious approach would
be to use an exact expression Qfand then to evaluate its We consider a wireless MIMO link with transmit antennas
limit when the SNR goes tg-co. However, this is a difficult andr receive antennas. In our analysis the channel matrix can
task because the above expressions are quite complicad;mssibly vary from symbol vector (or space-time codewoad) t
e.g. [5] in which particular Rician channels are consideredymbol vector (or space-time codeword). The channel matrix
In order to obtain interpretable results, we therefore pegp is assumed to be perfectly known at the receiver whereas the
to replacel by its large system approximant, denotéd transmitter has only access to the statistics of the chaifihel

Abstract— This paper studies high SNR approximations of the
ergodic mutual information of block fading MIMO correlated
Rician channels. The exact expression of the mutual information
of such channels is quite complicated, and difficult to use to
obtain convenient high SNR approximations. In this paper, it
is replaced by an accurate large system approximant obtained
in the case where the number of transmit and receive antennas
t and r converge to +oco at the same rate. The large system
approximant is studied at high SNR, and it is shown that 3
different behaviours are possible depending orf, the rank of the
line of sight component and the Rician factor. The accuracy of the
high SNR approximant is shown to be connected to the support
of the deterministic large system approximant of the eigenvalue
distribution of the Gram matrix of the channel. This allows to
infer that the approximant is accurate for realistic values of r
and t if r # t or if r = ¢, the line of sight component is invertible
and the Rician factor is greater than a certain threshold.

II. CHANNEL MODEL
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received signal can be written as understood ag — +oo, t — +o0, 7 — c in order to shorten
_H 1 the notations.
y(r) =H(r)x(r) +2(7) , (M Theorem 3.1: Assume thatip, A < +oo, sup, |C|| <

where x(r) is the vector of transmitted symbols at time +o0 andsup, |C|| < +00 where||.| stands for the spectral
H(r) is the channel matrix and(r) is a complex white norm. Then, for gachr > 02: there exist two unique strictly
Gaussian noise distributed 2§(0, 02I,). For simplicity we Positive termsi(c<) and §(c*) satisfying
will omit the time indexr from our notations. The channel 5(0?) = 1TrCT(0?)
input is subject to a power constraifit: [E(xx /)] = ¢. The 50?) = ITCT(o?) (6)
r x t channel matrixH has the following structure ~ -

= . whereT(0?) and T(0?) depend or¥(c?) and §(o?), and are

A+ V. 2y defined by
K+1 T UK+1 @

N 2 2y ~ -1
_ _ o T(o2) = 2(1 5(0)0 _K A(T §(U)C_1AH

The matrix A is deterministic and satisfiesTr(AA) = 1. (%) [U (I+ K+21 )+ Al Kjrlz ) L
V is a random matrix given by T(c?) = {02(1 +5)C) + ZLATI+ 2 C) A
(7

L ~1/2varén /2 ~

V= %C PWCH () Function 0 — 1TrT(c?) is the Stielties transforms of a
robability measurg: carried by R, i.e.

where W is a zero mean independent and identically dig— y % y

tributed complex Gaussian matrix in the sense that the real lTI‘T(UQ) :/ #dﬂ((ﬁ) (8)
and imaginary parts of its entries are independent and have t R+ A+ 07

the same variance}. The matricesC > 0 and C > 0 and i satisfies:

account for the transmit and receive antenna correlatifacest :

respectively, and satisfit Tr(C) = 1 and 1Tr(C) = 1 EZQZ)(AJ.)_/ d(Ndi(\) — 0 (9)
respectively. This correlation structure is often refdrte as t =1 R+

i >0 .
a separable or Kronecker correlation modal. > 0 is the whent — +o0, where the convergence is the almost sure

so-called Rician factor which expresses the relative gtien convergence. Heré)\),_. _, represent the (random) eigen-
of the direct and scattered components of the received ISign\?aIues of the positij\/é_éfé{m matrili?H, and ¢ is any
Due to the above various normalization constraints, theasig lower bounded continuous functioh Mor,eover functions

to noise ratio is equal tel;. 2 ts(.2 2, 5.2 ialti
. .o . . . 0° — 26(0%) ando? — §(c?) are also Stieltjes transforms
T_he ergordic mutual information (EMI) at noise level is of positive measures carried ly*. Finally, whent — +oc
defined by: )
1 I(0%) =1(0%) + O(3) (10)
I(c®) =Eg {logdet(It + 2HHHH . (4) ot
g where the asymptotic approximahto?) is given by
It is possible to obtain the analytical expression/¢6§2) (see 5(0?) & L K 5(o?) ) !
e.g. [5] in the i.i.d. Rayleigh part case). However, it istqui 1(0?) = logdet [It + %2 C+ gAY (Ir + &1 C) A}
complicated, and in practice very difficult to use. It is #fere 3(0) s 1 o\ 5/ 9
useful to studyl (¢2) in certain asymptotic regimes. From now + logdet {IT T & C} — 10" gr9(07)0(0%)

on, we studyl (o) aso? — 0, and assume without restrictions = _ . @
thatr > t. It is reasonnable to conjecture that Measurej; is called in the following the deterministic equiv-

alent of the eigenvalue distribution of matf” H. Remark
I(0?) = tlog% +Eg [logdet(HH)| + ¢(¢%), (5) that bothI(s%) and I(o?) increase linearly witht. (10) thus
g implies that the relative errof% = O(5%). This very
wheree(o?) converges td) if % — 0. It is again possible to fast convergence rate tends to explain why the asymptotic
evaluateE g [log det(HH)] in closed form, but the corre- evaluations of the ergodic mutual information are reliabten
sponding expression remains complicated except in péaticufor quite moderate numbers of antennas. Similar resulte hav
cases. This is the reason for which we propose to replacealzo been obtained in more restrictive contexts by using the
the following I(o?) be its large system approximant obtainegeplica method. We finally note that the ter(1) in (10)
whenr andt converge totoo at the same rate. depends ow?, and that it may converge teco wheno? — 0.
This is the reason for which it is not obvious thato?)
remains a reliable approximant for moderate values ahd
r at high SNR. See the discussion below.
In this section, we review some of the results of [4] and
specify the convergence rate of the approximanf(@ﬁ). In 1n principle, (9) should be valid for bounded continuousdiion. As H

hi . 2 is fixed d . is Gaussian, it can be shown that the largest eigenvaldd/$H is almost
this section, parameter- Is fixed andr — 400, t — +00 I gy uniformly upper bounded; the behavior éfwhen A — oo has

such a way that — c. In the following,# — +oo should be therefore no impact.

Il1. BACKGROUND ON THE LARGE SYSTEM BEHAVIOR OF
THE ERGODIC MUTUAL INFORMATION.
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IV. BEHAVIOUR OF I(02) IF 02 — 0. o2 — 0. It is easy to check that function$ and f can be
We now study7 at high SNRo2 — 0. r andt are fixed in €xtended in a neighbourhood @f,, 6., 0) to an holomorphic
this section. We define functioh(o2) by function of (4, 6, z) (i.e. the positive variable§), §,02) can be
replaced by complex variables) The last step of the proof is
L(0?) =1(c%) —tlog % (12) based on a complex version of the local inversion theorem (se

e.g. [2], Proposition 6.1, p. 138). We denoteby., 4., 0) the
and show below thak(c?) is defined a? = 0, and that 2 x 2 Jacobian matrix of system (18) at poif,, 4., 0):

L(0%) = I(0) + €(?) A9 50— ( 1= (5650 (De.d.0 )
where ¢(0?) converges towards 0 when? — 0. We now Y (%)(a*,a* 0) 1- (%)(5* 5.,0)
evaluateL(0). Various cases have to be considered, and we _ . (19)
first consider the case — . It is a matter of routine to check thatet J(¢.,d.,0) # 0.
Therefore, there exist unique holomorphic functions of
A. The case = t. variable z, denoted(d(z),0(z)), defined in a neighborhood
If matrix A is invertible, we definek, as of 0, and satisfying (18). Fot = ¢2 > 0, functionsé andé
1 ~ coincide with the solutions of (18) due to unicity (see Theor
K. = ;Tr (CA*HCA*) . (14) 3.1). This in particular implies thatm,-_, 3(c?) = 6. and

" . . limg2_06(0?) = J,.
Proposition 4.1:1f A is invertible and KX > K, then

limy2_,o8(c2) = 6, andlim,2_,6(c2) = 4, are both finite.

g ¢ We now consider the cask non invertible orA invertible
Moreover, L(0?) can be written as (13) where

and K < K., and only check the statement related to the
behavior of§ and s around0. We denote by (o) and{(o)

the functionst (o) = 06(0?) andé(o) = od(a?). It is easy to
check that¢(c) and&(o) are the unique positive solutions of
the equations

AAT (15)

— K
L(0) = logdetK 1
If A is not invertible, or ifA is invertible andK < K., then
limy2_, oo 00(0?) = &, andlim,z_ 4 06(0?) = &, exist -
and are finite. The produat, = &.£, is the unique solution { g(&fj o) = 1 , (20)
of the equation §(§.&§0) = 1

1 ) ot x Aot -1 where the expression of functiogsand g are easy to obtain.
T Tr {K 1t KA"CAC™ } =1, (16) Denote byg(v) the function

-1

and L(o?) is given by (13) where $(v) = 1Tr { Y KAHCIAG!

_ _ Tt | K+1
L(0) = log detC + logdetC — iz + ~ R ~
log det [ v. T4 K G-12AHCIAG-1/2| - One can easily check tha(¢,£,0) = §(£,£,0) = ¢(&£). In
(K+1) K (17) contrast with the contexi > K.., the equations (20) reduce
to the single equatiog(¢¢) = 1 at o = 0. Therefore, more

Sketch of proof. We first consider the casaA invertible and ork is needed to prove the Proposition. It is easy to check
K > K.. Equati 13 d (15 tter of routi o X ~ o
- quation (13) and (15) are a matter of routine at\%at it exist functionsh (&, &, 0) andh(€, &, o) such that

soon as it is established thétand é converge to finite limits
wheno? — 0. We therefore only justify this pointi(¢?) and g6, & 0) = &) +ah(&E o)
d(o?) are the unique strictly positive solutions of the system { g(¢ £0) = ¢(€€") +oh(,€, o)

of equations
- We omit to give the (cumbersome) analytical expressioh of
;(5,@,0 ) = 0 (18) and h. Eg. (20) can thus be written as

o —
{ o — f(5,8,0?) 0’ 3 3
- _ . 6(€8) + oh(&,€0) = 1 -
where the definition of functiong and f follows from (6) and WEE o) —h(E o) = 0 (22)

(7). It is easy to check that conditioR’ > K. implies that o _ _
(18) has unique strictly positive solutioié,,d,) for ¢2 = 0. This time, it can be shown that at = 0, equations (22)

Indeed, settings2 = 0 in the first equation of (18) yields: ~ have a unique pair of strictly positive solutiors,, {.) and
5.1 K+l that the corresponding Jacobian matrix(&t, &, 0) is invert-

6, =—-—Tr (A—HCA‘lc) + ———-Tr(AAf)~1 . ible. Using again the local inversion theorem, we show that
Kt Kt lim,s o &(0) = & andlimys o E(0) = &..
As K > K, = 1Tr A" CA-1C), this equation has a
. o . . B. The case" > t.
unique positive solution... The study of the second equation . _
gives a similar result conceming,. We now establish that \We consider now the case> ¢, and omit the proof of the
8, andé, coincide with the limits of5(c2) and d(o2) when following result.

(21)
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Proposition 4.2: v, = lim,z_o o%5(a?) is strictly positive been done in [1] devoted to the case= 0 andC = 0. Itis
andd, = lim,2_d(o?) is finite. Moreover,(v., d,) are the shown there that if the function is analytic in a neighbourood

unique strictly positive solutions of the equations of the support of measurg, then, (9) holds, and
1 t
_ 1 K 1AH
o= {C (14 @ C+ FaGTAT) } Ea | > o(\) —t [ ¢\ di(\)| =o(1) .
. . -1 = R+
5, = 1T {C (K+1 ELATI+ 20 1A) |
23) Note thato(1) can be replaced by)(1) with some efforts.

An important ingredient of [1] is that the probability that a

dL(c?) is gi by (13) wh
andL(o~) is given by (13) where eigenvalue ofH”H lies outside the support gi decreases

L) = log det(I + Ifjrlc) fKJfl + to O faster than any terrd; for each integep. This means
lo 'det( K AT 45 C) A intuitively that it is possible to assume that the eigenealu
8 R K+ 24) of H”H remain in the support ofi. ¢(\) = log \ satisfies

the above assumption if the support jofis included into an
V. DISCUSSION ON THE ACCURACY OF THE HIGHSNR interval (e, +00) wheree > 0. It is reasonable to conjecture

APPROXIMANT. that this kind of result can be extended to our context, aat th
_ These results suggest to approximate?) at high SNR by L(0) — L(0) = O(f) if the support ofjz is included into an
To(0?) given by |r}te~rval(e,+oo). It is therefore important to study the support
or p.
To(0?) = tlog% +I(0) , (25) Proposition 5.1:1f » > t orr = t and K > K. and A
g

invertible, the support of: is included in an intervale, +00)
where L(0) is given by one of the expressions (15), (17)\wheree > 0. Otherwise,0 belongs to the support gf.
(24). It is of course important to verify thak(c?) is an Sketch of proof. Due to the lack of space, we just show
accurate approximation af(c?) for realistic values ofr and that if » = ¢ and A non invertible orA invertible, K < K.,
¢ at high SNR. In order to discuss on this point, we introdudé belongs to the support of. For this, we remark thad
the functionL(o?) defined by and § are not analyt|c at the origin (see Proposition 4.1).
L(o?) = I(02) — tlog 2 Therefore, T and ! TrT are not analytic as well. AéTrT is
— Eg [logdet(o?1, + ﬁHH)] ' (26) the Stieltjes transform ofi, 0 certainly belongs to the support

of fi; otherwise, it would be defined at® = 0.
In part|cular L(0) = Eg(logdetI’H). The errorl(o?) —
To(0?) can be written as Proposition 5.1 and the above discussion suggests

o = ) _ L(0)—L(0)=0(})if r #torr =t, K > K, A invertible,
1(0%) = To(0?) = L(0®) — L(0) + L(0) = Z(0) . (27) \while its behaviour should be less favorablerif= ¢ and

This shows that the approximation error is due from one haft Non invertible orA invertible, K < K.. In order to get
to L(c2) — L(0), and the other hand ofi(0) — L(0). We SOome understanding of what can be expected in this last

first discuss on the parameters that influefi¢e) — L(0). We ~CONtext, we consider a simple example for which explicit

remark that Theorem 3.1 implies that calculations can be done. Assume that= ¢, andH is a
o = o ) zero mean i.i.d. matrix, i.e. thab = C = I, and K = 0.
L(o®) — L(0") = €(t,07) , (28) L(0) = E(H”H) can be evaluated using the classical results

where for eachr? > 0, (£, %) converges towards 0 at rafe ©f [3]; and after some calculations it follows that0) = —

(i.e. |te(t,0?)| is upperbounded by a function depending onl nd thatLZ(0) — L(0) remams'bounded yvhen—> +o0, but
on ¢?). Although (28) holds for each? > 0, it is not obvious 0es not converge to 0 This cglcula_tlon suggests that for
that L(0) — L( ) still converges td) at rate— ltis evennot " = ¢ and A non invertible orA invertible andK < K.,

then L(c?) — L(o ) behaves quite differently according to
[ heth —L [
clear whet er ( 0) (0)) converges towards 0. Indeed, whethero? # 0 or 02 = 0. In pract|ce this means that for a

1 _ 1 5 fixed value oft, thenL(0?) — L(0?) should increase whemn?
7 (£(0) = L(0)) = n Zlog Aj — /R+ log A dfu(A) - (29)  gecreases. Figure 1 represents the relative éﬁfé[)((f)& in
=1 terms oft for SN R = +00, 30,20, 10dB. In this experiment,

Functiong()\) = log A is not lower bounded oR ™. Therefore, r =t, K < K., the columns ofA are normalized versions of
(9) cannot be used without care. We also note that to establdirectional vectors:(6;) = (1,¢% ... e*=1%)T where the
Theorem 3.1, one uses very frequently that the norm of randd#y ) ;—1,... ; are chosen uniformly o0, 2] (A is invertible),
matrix (H?H + o2I;)~! is upper bounded byﬂ%, a bound while both transmit and receive antennas have exponential
that is non-random and independenttofnd r. This simple correlations with parametes; = p,. = 0.5. Such a line of
fact plays actually a very important role.df = 0, this bound sight component is a reasonable model in the downlink of
is equal to+oo, thus showing that extending (28) ¢ = 0 systems using macro diversity. The numerical evaluations
needs the use of different technics and assumptions. This banfirm the above discussion. Figure 2 corresponds to the
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same experiments, but this tim&; > K.. As expected, the
behaviour ofL(c?) — L(0?) does not depend om?, and for
eacho?, L(0?) appears to be a more accurate approximant
of L(c?) than if K < K...

We now briefly discuss or(0?) — L(0). Intuitively, the
accuracy of the approximatioh(o?) ~ L(0) depends on the
distance between? and the smallest eigenvalues Hi H.
Therefore, better results are expecteddifdoes not belong
to the support of the deterministic equivalent of eigengalu
distribution of HZ H.

Figure 3 represents this time the relative erfé‘fw
in terms of 4. The parameters of the experiments are
the same as below. 3 curves are represented: ¢t = 4
and K < K,,r =t =4and K > K., andr = 6 and

t = 4. As expected, the relative error does not seem to

Relative Error in percent

25

- g?=0

~¥~ SNR = 10dB

) ~— SNR =20dB b
\ —5- SNR = 30dB

T~e—a—_
_ e P S L I

[¢] 15 20 25
Number of antennas

converge to0 in the first case. The convergence is veryig. 1. Absolute value of the relative error for= ¢ and K' < K. (A

fast forr = t = 4 and K > K,, but slower ifr = 1.5¢, "ertile)
probably because the supportiofs closer from 0 in this case.

To conclude, the high SNR approximang(c?) appears b o |
to be reliable for realistic values of andt if » = ¢, A | 7 SNR=10d8

invertible K > K., and if r # t. It is however less accurate
for r = ¢t and A non invertible orr = ¢, A invertible,

K < K.. Due to the lack of space, we do not discuss the
engineering implications of these results. We just mention
that if » = ¢, A invertible andK > K., thenI(c?) is very
close to the capacity of the deterministic part of the channe
In particular, the Rayleigh component has no influence
on the mutual information, otherwise stated, we obtain
the mutual information of the purely deterministic channel

H = /55 A, which is a surprising result.
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Fig. 3. Relevance of the high SNR approximations



