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Free deconvolution for signal processing
applications
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Abstract— Situations in many fields of research, such as digital
communications, nuclear physics and mathematical finance, can
be modelled with random matrices. When the matrices get large,
free probability theory is an invaluable tool for describing the
asymptotic behaviour of many systems. It will be shown how free
probability can be used to aid in source detection for certain
systems. Sample covariance matrices for systems with noise are
the starting point in our source detection problem. Multiplicative
free deconvolution is shown to be a method which can aid in
expressing limit eigenvalue distributions for sample covariance
matrices, and to simplify estimators for eigenvalue distributions
of covariance matrices.

Index Terms— Free Probability Theory, Random Matrices, de-
convolution, limiting eigenvalue distribution, MIMO, G-analysis.

I. INTRODUCTION

Random matrices, and in particular limit distributions of
sample covariance matrices, have proved to be a useful tool
for modelling systems, for instance in digital communications
[11, [2], [3], [4], nuclear physics [5], [6] and mathemati-
cal finance [7], [8]. A typical random matrix model is the
information-plus-noise model,

1
N
R, and X, are assumed independent random matrices of
dimension n x N throughout the paper, where X,, contains
ii.d. standard (i.e. mean 0, variance 1) complex Gaussian
entries. (1) can be thought of as the sample covariance matrices
of random vectors r,, +oX,. I, can be interpreted as a vector
containing the system characteristics (direction of arrival for
instance in radar applications or impulse response in channel
estimation applications). X,, represents additive noise, with o
a measure of the strength of the noise. Throughout the paper,
n and N will be increased so that

im — =¢, )

n—oo

W, = —(R, +0X,)(R, +0X,)". (1)

i.e. the number of observations is increased at the same rate
as the number of parameters of the system. This is typical of
many situations arising in signal processing applications where
one can gather only a limited number of observations during
which the characteristics of the signal do not change.
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The situation motivating our problem is the following:
Assume that N observations are taken by n sensors. Observed
values at each sensor may be the result of an unknown number
of sources with unknown origins. In addition, each sensor is
under the influence of noise. The sensors thus form a random
vector r,, +0X,,, and the observed values form a realization of
the sample covariance matrix W,. Based on the fact that W,
is known, one is interested in inferring as much as possible
about the random vector r,, and hence on the system (1).
Within this setting, one would like to connect the following
quantities:

1) the eigenvalue distribution of W,

2) the eigenvalue distribution of I'), = %Ran s

3) the eigenvalue distribution of the covariance matrix

®,=F (rnrf )

In [9], Dozier and Silverstein explain how one can use 2) to
estimate 1) by solving a given equation. However, no algorithm
for solving it was provided. In fact, many applications are
interested in going from 1) to 2) when attempting to retrieve
information about the system. Unfortunately, [9] does not
provide any hint on this direction. Recently, in [10], we show
that the framework of [9] is an interpretation of the concept
of multiplicative free convolution. Moreover, [10] introduces
the concept of free deconvolution and provides an estimate of
2) from 1) in a similar way as estimating 1) from 2).

3) can be adressed by the Gs-estimator [11], which provides
a consistent estimator for the Stieltjes transform of covariance
matrices, the basis for the estimation being the Stieltjes
transform of sample covariance matrices. G-estimators have
already shown their usefulness in many applications [12] but
still lack intuitive interpretations. In [10], we also show that
the (Gs-estimator can be derived within the framework of
multiplicative free convolution. This provides a computational
algorithm for finding 2). Note that 3) can be found directly,
without finding 2) as demonstrated in [13]. However, the
latter does not provide a unified framework for computing the
complete eigenvalue distribution but only a set of moments.

Beside the mathematical framework, we also address im-
plementation issues of free deconvolution. Interestingly, mul-
tiplicative free deconvolution admits a convenient implemen-
tation, which will be described and demonstrated in this
paper. Such an implementation will be used to address several
problems related to signal processing. For communication
systems, estimation of the rank of the signal subspace, noise
variance and channel capacity will be addressed.

This paper is organized as follows. Section II presents the
basic concepts needed on free probability, including mul-
tiplicative and additive free convolution and deconvolution.
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Section III states the results for systems of type (1). In
particular, finding quantities 2) and 3) from quantity 1) will
be addressed here. Section IV presents implementation issues
of these concepts. Section V will explain through examples
and simulations the importance of the system (1) for digital
communications. In the following, upper (lower boldface)
symbols will be used for matrices (column vectors) whereas
lower symbols will represent scalar values, (.)7 will denote
transpose operator, (.)* conjugation and ()7 = (()T)*
hermitian transpose. I will represent the identity matrix.

II. FRAMEWORK FOR FREE CONVOLUTION

Free probability [14] theory has grown into an entire field
of research through the pioneering work of Voiculescu in
the 1980’s [15] [16] [17] [18]. The basic definitions of free
probability are quite abstract, as the aim was to introduce
an analogy to independence in classical probability that can
be used for non-commutative random variables like matrices.
These more general random variables are elements in what
is called a noncommutative probability space. This can be
defined by a pair (A, ¢), where A is a unital *-algebra with
unit /, and ¢ is a normalized (i.e. ¢(I) = 1) linear functional
on A. The elements of A are called random variables. In all
our examples, A will consist of n x n matrices or random
matrices. For matrices, ¢ will be the normalized trace tr,,
defined by (for any a € A)

fTr

E Qs

while for random matrices, ¢ will be the linear functional 7,
defined by

trp(a) =

E(try(a)).

CL“ =

3\*—‘

5%

The unit in these x-algebras is the n x n identity matrix I,,.
The noncommutative probability spaces considered will all be
tracial, i.e. ¢ satisfies the trace property ¢(ab) = ¢(ba). The
analogy to independence is called freeness:

Definition 1: A family of unital %-subalgebras (A;);c; will
be called a free family if

a; GAij
i1 # gy ig # g, yino1 Fin o = dlag---a,) = 0.
) = dlaz) = -+ = Plan) = 0 3)

A family of random variables a; is called a free family if the
algebras they generate form a free family.

One can note that the condition i; # i, is not included in
the definition of freeness. This may seem strange since if ¢
is a trace and i; = i,, we can rearrange the terms so that
two consecutive terms in (3) come from the same algebra. If
this rearranged term does not evaluate to zero through the
definition of freeness, the definition of freeness would be
inconsistent. It is not hard to show that this small issue does
not cause an inconsistency problem. To see this, assume that
(3) is satisfied for all indices where the circularity condition

i1 # iy is satisfied. We need to show that (3) also holds for
indices where 7; = i,,. By writing

¢(ana1)1)+¢(anal)l = b1+¢(ana1)17 “4)

we can express ¢(ay - a,) = ¢(anaias - a,—1) as a sum
of the two terms ¢(biag - - - an—1) and ¢(anar)P(as - - an—1).
The first term is 0 by assumption, since ¢(b;) =0, by € A,
and i, # i,-1. The second term ¢(a,aq)p(as---an—1)
contributes with zero when i, # 4,1 by assumption. If
1o = in—1, We use the same splitting as in (4) again, but this
time on ¢(as - an—1) = ¢(an—1a2as3 - an_2), to conclude
that ¢(ag---a,—1) evaluates to zero unless i3 = i,_o.
Continuing in this way, we will eventually arrive at the term
(205 /241) if 1 is even, or the term ¢(a(,11y/2) if n is
odd. The first of these is 0 since 4,, /o # iy, /241, and the second
is 0 by assumption.

Definition 2: We will say that a sequence of random vari-
ables a1, ana, ... in probability spaces (A, ¢,) converge in
distribution if, for any my, .. mr €Z, ki, kr€{1,2,...},
we have that the limit ¢, (a,}! ---a;} ) exists as n — oc.
If these limits can be written as ¢(a;' ---a;'") for some
noncommutative probability space (A, ¢) and free random
variables a1, as, ... € (A, ¢), we will say that the a1, ana, ...
are asymptotically free.

Asymptotic freeness is a very useful concept for our pur-
poses, since many types of random matrices exhibit asymptotic
freeness when their sizes get large. For instance, consider
random matrices —=A 1, iAng, ..., where the A,,; are nxn
with all entries 1n&q)endent and standard Gaussian (i. e mean 0
and variance 1). Then it is well-known [14] that the Am are
asymptotically free. The limit distribution of the Am in this
case is called circular, due to the asymptotic dlstrlbutlon of
the eigenvalues of inAm-: When n — oo, these get uniformly
distributed inside the unit circle of the complex plane [19],
[20].

(3) enables us to calculate the mixed moments of free
random variables a; and ay. In particular, the moments of
a1 + as and ajas can be calculated. In order to calculate
#((ay + az)*), multiply out (a; + az)?, and use linearity and
(3) to calculate all ¢(a;, ai,a4,a4,) (i; = 1, 2). For example,
to calculate ¢(ajazaias), write it as

o(((a1 = @(ar)l) + ¢(a1)l) (a2 — ¢(az)l) + ¢(az)l)
((a1 = ¢(ar)I) + d(ar)I) ((az — ¢(az)I) + d(az)1)),
and multiply it out as 16 terms. The term
¢((a1 — ¢(ar)I)(az — ¢(az)I)
(a1 — ¢(a1)I)(az2 — ¢(az)l))
is zero by (3). The term

ana1 = (ana;—

¢((ar — ¢(ar)I)p(az)I(ar — ¢(ar)I)(az — ¢(az)I))
= ¢(az)o((a1 — ¢(ar)I)(a1 — ¢(ar)I)(az — ¢(az)l))
can be calculated by writing

b= (a1 — ¢(a1)I)(ar — p(ar))

(which also is in the algebra generated by a;), setting

b= (b—¢(B)I) + SO,
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and using (3) again. The same procedure can be followed for
any mixed moments.

When the sequences of moments uniquely identify proba-
bility measures (which is the case for compactly supported
probability measures), the distributions of a; + as and ajas
give us two new probability measures, which depend only
on the probability measures associated with the moments of
a1, as. Therefore we can define two operations on the set of
probability measures: Additive free convolution

w1 B o o)

for the sum of free random variables, and multiplicative free
convolution

pa X g (6)

for the product of free random variables. These operations
can be used to predict the spectrum of sums or products of
asymptotically free random matrices. For instance, if a1, has
an eigenvalue distribution which approaches w1 and ao, has
an eigenvalue distribution which approaches po, one has that
the eigenvalue distribution of a1, +as, approaches p1 Hpus, so
that 11 B po can be used as an eigenvalue predictor for large
matrices. Eigenvalue prediction for combinations of matrices
is in general not possible, unless we have some assumption on
the eigenvector structures. Such an assumption which makes
random matrices fit into a free probability setting (and make
therefore the random matrices free), is that of wuniformly
distributed eigenvector structure (i.e. the eigenvectors point
in some sense in all directions with equal probability).

We will also find it useful to introduce the concepts of
additive and multiplicative free deconvolution:

Definition 3: Given probability measures p and po. When
there is a unique probability measure pq such that

wo=p1 B pe, = p1 X us respectively,

we will write

w1 = B pe, pp = pRpo respectively.

We say that p is the additive free deconvolution (respectively
multiplicative free deconvolution) of p with ps.

It is noted that the symbols presented here for additive and
multiplicative free deconvolution have not been introduced in
the literature previously. With additive free deconvolution, one
can show that there always is a unique p; such that y =
w1 B po. For multiplicative free deconvolution, a unique g
exists as long as we assume non-vanishing first moments of
the measures. This will always be the case for the measures
we consider.

Some probability measures appear as limits for large ran-
dom matrices in many situations. One important measure is the
Marchenko Pastur law g ([21] page 9), also known as the free
Poisson distribution in free probability. It is characterized by
the density

x—a)t(b—x)t

V(G R
ey

where (2)* = max(0, 2), a = (1—+/¢)? and b = (1++/¢)%. In

figure 1, . is plotted for some values of c. It is known that

7 () = (1= 2)*6(x) +

16
c=0.5
AN - - -c=0.2
1.4+ / \ c=0.1 4

- —-¢=0.05

Density

Fig. 1.

Different Marchenko Pastur laws pic.

1. describes asymptotic eigenvalue distributions of Wishart
matrices. Wishart matrices have the form RR¥, where R
is an n x N random matrix with independent standard Gaussian
entries. y. appears as limits of such when £+ — ¢ when n —
00, Note that the Marchenko Pastur law can also hold in the
limit for non-gaussian entries.

We would like to describe free convolution in terms of
the probability densities of the involved measures, since this
provides us with the eigenvalue distributions. An important
tool in this setting is the Stieltjes transform ([21] page 38).
For a probability measure u, this is the analytic function on
C*t ={z€ C:Imz > 0} defined by

m(e) = [ dFr O, ®

—Zz

where F'* is the cumulative distribution function of u. All
1 we will consider have support on the positive part of the
real line. For such p, m,, can be analytically continued to the
negative real line, where the values of m,, are real. If u has
compact support, we can expand m,(z) in a Laurent series,
where the coefficient are the moments p of u:
1 oo
my(z) = — % )
k=0
A convenient inversion formula for the Stieltjes transform also
exists: We have

() = lim lIm [mu, (A + jw)].

w—0t T

(10)

III. INFORMATION PLUS NOISE MODEL

In this section we will indicate how the quantities 2) and 3)
can be found. The connection between the information plus
noise model and free convolution will be made.

A. Estimation of the sample covariance matrix 2)

In [10], the following result was shown.
Theorem 1: Assume that I',, = %Ran converge in
distribution almost surely to a compactly supported probability
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measure yr. Then we have that W,, also converge in dis-
tribution almost surely to a compactly supported probability
measure pyy uniquely identified by

Hw N e = (MFSNC)EEMUZP (11)
Theorem 1 addresses the relationship from 2) to 1), since
(11) can be “deconvolved” to the following form:

pw = ((pr 8 pe) B pozr) X pe. (12)

It also addresses the relationship from 1) to 2), which is of
interest here, through deconvolution in the following form:

pr = ((pw Spe) B pg2r) B pe. (13)

B. Estimation of the covariance matrix 3)

General statistical analysis of observations, also called G-
analysis [22] [12] is a mathematical theory studying complex
systems, where the number of parameters of the considered
mathematical model can increase together with the growth of
the number of observations of the system. The mathematical
models which in some sense approach the system are called
G-estimators, and the main difficulty in G-analysis is to
find consistent G-estimators. We use N for the number of
observations of the system, and n for the number of parameters
of the mathematical model. The condition used in G-analysis
expressing the growth of the number of observations vs. the
number of parameters in the mathematical model, is called
the G-condition. The G-condition used throughout this paper
is (2).

We restrict our analysis to systems where a number of
independent random vector observations are taken, and where
the random vectors have identical distributions. If a random
vector has length n, we will use the notation ®,, to denote the
covariance. Girko calls an estimator for the Stieltjes transform
of covariance matrices a Go-estimator. In chapter 2.1 of [11]
he introduces the following expression as candidate for a G'a-

estimator: R
0(2)

Gon(2) = ——my,. (0(2)), (14)

. . —1
where the term my,. (6(z)) = n~'Tr {I‘n - G(Z)In} . The

function 6(z) is the solution to the equation.

A 0(z)

0(z)emy,., (0(2)) — (1—c)+ —-=0 (15)

Girko claims that a function G2 (%) satisfying (15) and (14)
is a good approximation for the Stieltjes transform of the in-
volved covariance matrices my,, (z) = 17 {©, — 2L,
He shows that, for certain values of z, G2 ,(z) gets close to
My, (2) when n — oo.

In [10], the following connection between the Go-estimator
and multiplicative free convolution is made:

Theorem 2: For the Gs-estimator given by (14), (15), the
following holds for a nonempty open set in C*:

Gan(2) = Myr, Npe (16)
Theorem 2 shows that multiplicative free convolution can
be used to estimate the covariance of systems. This addresses

10 10
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Fig. 2.  Histograms of eigenvalues of sample covariance matrices. The

covariance matrix has rank K = 8. We choose different number of sensors
N, and choose ¢ = 0.5 (so that L = 2N observations are taken).

the problem of estimating quantity 3). Hence, the estimation
of quantity 2) and 3) can be combined, since (13) can be
rewritten to

prpe = (pw Spe) B oz a7

Therefore, the following procedure needs to take place to
estimate quantity 3)

1 - perform multiplicative free deconvolution of the mea-
sure associated with W,, and the marchenko pastur law
using the Ga-estimator.

2 - perform additive free deconvolution with y,27. In other
words, perform a shift of the spectrum.

In section V-B, these steps are performed in the setting of
channel correlation estimation. The combinatorial implemen-
tation of free deconvolution from section IV-A.l is used to
compute the G2-estimator.

We plot in figure 2 histograms of eigenvalues for various
sample covariance matrices when the rank is K = 8. As one
can see, if the number of sensors (/V) are chosen much larger
than the number of signals K, the eigenvalues corresponding
to the signals only make up a small portion of the entire
set of eigenvalues. If one has information on the number
of impinging signals, it can therefore be wise to choose the
appropriate number of sensors.

In this paper, the difference between a probability measure,
u, and an estimate of it, v, will be measured in terms of the
Mean Square Error of the moments (MSE). If the moments
of [2*du(z), [ 2*dv(z) are denoted by sy, vy, respectively,
the MSE is defined by

> Ik — vl

k<n

(18)

for some number n. In our estimation problems, the measure
v we test which gives the minimum MSE (MMSE) will be
chosen.

The measure p can either be given explicitly in terms of
the distribution of matrices R, (for which the measure is
discrete and the moments are given by v}, = tr,(RF)), or
random matrices, or it can be given in terms of just the
moments. In a free probability setting, giving just the moments
is often convenient, since free convolution can be viewed as
operating on the moments. Since the G2-estimator uses free
deconvolution, it will be subject to a Mean Square Error of
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Fig. 3. MMSE of the first moments of the covariance matrices, and the
first moments of the G2 estimator of the sample covariance matrices. The
covariance matrices all have distribution %60 + %61. Different matrix sizes
N are tried. The value ¢ = 0.5 is used.

moments analysis. We will compute the MSE for different
number of moments, depending on the availability of the
moments.

In figure 3, a covariance matrix with density %50 + %51
has been estimated with the the Ga-estimator. Sample co-
variance matrices of various sizes are formed, and method
A in section IV-A.1 was used for the free deconvolution in
the G3-estimator. Finally, MSE of the first 4 and 8 moments
were computed. It is seen that the MSE decreases with the
matrix sizes, which confirms the accuracy of the G-estimator.
Also, the MSE is much higher when more moments are
included. This is as expected, when we compare known exact
expressions for moments of Gaussian random matrices [23],
with the limits these converge to.

Since the MSE is typically higher in the higher moments,
we will in the simulations in this paper minimize a weighted

MSE:
Zwkmc — %,
k

instead of the MSE in (18). Higher moments should have
smaller weights wyg, since errors in random matrix models
are typically larger in the higher moments. There may not

be optimal weights which work for all cases. For the cases
2k
in this paper, the weights are wor, = | k

19)

and wog4+1 = 0,

whick coincide with the Catalan numbers Cy. These weights
are motivated from formulas for moments of Gaussian random
matrices in the way explained below, and are used in this paper
since the models we consider often involve Gaussian matrices.
Moment 2k of a standard selfadjoint Gaussian matrix X,

of size n x n satisfies [14] [24]

lim Tn(Xik) = (.

n—oo
Also, exact formulas for 7,,(X2) (4.1.19 in [14]) exist, where
the proof uses combinatorics and noncrossing partitions (see
section IV-A.1), with emphasis on the quantity C} being
the number of noncrossing partitions of {1,...,2k} where
all blocks have cardinality two. From the exact formula for
the moment of 7, (X2*), one can also see the difference
between the limit as n — oo. This difference is approximately
n~! x card(S), where S is another set of partitions. Although
this set of partitions is not the same as the noncrossing
partitions, it can in some sense be thought of as partitions

where limited crossings may be allowed”. The choice of C}
as weight is merely motivated from the belief that .S’ possibly
has similar properties as the noncrossing partitions, and that
possibly the cardinality has a similar expression.

In summary, figure 3 shows that for large matrices, the Ga-
estimator gets close to the actual covariance matrices although
several sources can give contribution to errors:

1) The sample covariance matrix itself is estimated,

2) the estimator itself contributes to the error,

3) the implementation of free deconvolution also con-
tributes to the error.

IV. COMPUTATION OF FREE CONVOLUTION

One of the challenges in free probability theory is the
practical computation of free convolution. Usual results exhibit
asymptotic convergence of product and sum of measures, but
do not explicitly provide a framework for computing the result.
In this section, given two compactly supported probability
measures, we will sketch how their free (de)convolved coun-
terparts can be computed. In the cases we are interested (signal
impaired with noise), the MarChenko Pastur law . will be one
of the operand measures, while the other will be a discrete
measure, i.e. with density

n
@) = pidx, (@), (20)
i=1
where p; is the mass at \;, and >, p; = 1. All \; > 0,
since only measures with support on the positive real line
are considered (n X n sample covariance matrices have such
eigenvalue distributions). This would be the distribution we
observe in a practical scenario: Since a finite number of
samples are taken, we only observe a discrete estimate of the
sample covariance matrix.

The Stieltjes transform m,, g, can be found exactly for z
on the negative real line by solving function equations [10],
but one has to perform analytical continuation to the upper
half of the complex plane prior to using the Stieltjes inversion
formula. Indeed, note that since the power series (9) is only
known to converge for z outside a disk with radius equal to
the spectral radius, partial sums of (9) can not necessarily be
used to approach the limit in (10). However, one can show
that values of m,(z) for z on the negative real line can be
approximated by analytically continuing partial sums of (9).

When p is discrete, one can show that solving the function
equations boils down to finding the roots of real polynomials
(see section IV-B), which then must be analytically continued.
We will sketch a particular case where this can be performed
exactly. We will also sketch two other methods for computing
free convolution numerically. One method uses a combina-
torial description, which easily admits an efficient recursive
implementation. The other method is based on results on
asymptotic freeness of large random matrices.

A. Numerical Methods

1) Method A: Combinatorial computation of free convolu-
tion: The concept we need for computation of free convolution
presented in this section is that of noncrossing partitions [24]:
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Definition 4: A partition 7 is called noncrossing if when-
ever we have i < j < k <[ with i ~ k, j ~ | (~ meaning
belonging to the same block), we also have ¢ ~ j ~ k ~ [
(i.e. ¢, 7, k,l are all in the same block). The set of noncrossing
partitions of {1,,,.,n} is denoted NC(n).

We will write 7 = {Bjy, ..., B,.} for the blocks of a partition.
| B;| will mean the cardinality of the block B;.

Additive free convolution.

A convenient way of implementing additive free convolution
comes through the moment-cumulant formula, which expresses
a relationship between the moments of the measure and the
associated R-transform ([21] page 48). The R-transform has
domain of definition C" and can be defined in terms of the
Stieltjes transform as

1 1

Ru(z) = my(—2) - .

21

The importance of the R-transform comes from the additivity
property in additive free convolution,

R,UJEH‘Z (Z) = RHI (Z) + :le (2)

Slightly different versions of the R-transform are encountered
in the literature. The definition (21) is from [21]. In connection
with free combinatorics, another definition is used, namely
R, (2) = 2R, (2). Write R,,(2) =), a,z". The coefficients
a, are called cumulants. The moment-cumulant formula says

that i
> [Tz

w={B1, ,Br}eNC(n)i=1

(22)

From (23) it follows that the first n cumulants can be com-
puted from the first n moments, and vice versa. Noncrossing
partitions have a structure which makes them easy to iterate
over in an implementation. One can show that (23) can be
rewritten to the following form suitable for implementation:

L = Z acoefn_k ((1 + 2+ oz 4 )k) . (24
k<n

Here coef, means the coefficient of z*. Computing the

coefficients of (1 + 1z + p22% + -+ )F can be implemented
in terms of a k-fold discrete (classical) convolution, so that
the connection between free and classical convolution can be
seen both in terms of concept and implementation. (24) can
be implemented in such a way that the p, are calculated
from «,,, or, the other way around, the «, are calculated
from the p,,. When computing higher moments, (24) is quite
time-consuming, since many (classical) convolutions of long
sequences have to be performed. A recursive implementation
of (24) was made for this paper [25], and is briefly described
in appendix I. The paper [26] goes through implementation
issues of free convolution in more detail.

Additive free convolution in terms of moments of the
involved measures can therefore beimplemented through the
following steps: Evaluate cumulants using (24) for the two
measures, add these, and finally evaluate moments using (24)
also.

Multiplicative free convolution.

The combinatorial transform we need for multiplicative free
convolution is that of boxed convolution [24] (denoted by ),
which can be thought of as a convolution operation on formal
power series. The definition uses noncrossing partitions and
will not be stated here. One power series will be of particular
importance to us. The Zeta-series is intimately connected to
w1 in that it appears as it’s R-transform. It is defined by

Zeta(z) = Z 2t

Zeta(z) has an inverse under boxed convolution,

Moeb(z) = Z(—l)”_lc’n,lz",
n=1
also called the Mobius series. Here (C),)22 ; is the sequence

of Catalan numbers (which are known to be related to the
even moments of Wigner matrices). Define the moment series
of a measure p by

> 11
M=) = 3 ek = = my(0) 1.
k=1
One can show that (23) is equivalent to M (u) = R(u)*|Zeta.
One can in fact show that boxed convolution on power
series is the combinatorial perspective of multiplicative free
convolution on measures. Also,

1) boxed convolution with the power series c"~!Zeta
represents convolution with the measure .,

2) boxed convolution with the power series c”~'Moeb
represents deconvolution with the measure (..

This is formalized as

M

Ry, = #(c"_1 Zeta),

and can also be rewritten to

cM g, = Zetdx|(cM,,), (25)

It can be shown that this is nothing but the moment-cumulant
formula, with cumulants replaced by the coefficients of cM,,,
and moments replaced by the coefficients cM,,x,, . Therefore,
the same computational procedure can be used for passing
between moments and cumulants, as for passing between the
moments series of X p. and that of u, the only difference
being the additional scaling of the moments by c:

1) multiply all input moments by c prior to execution of
(24),

2) divide all output moments by c after execution of (24).
The situation for other compactly supported measures than p.
follows the same lines, but with ¢*~!Zeta and ¢~ Moeb
replaced with other power series. Convolution and deconvolu-
tion with other measures than p. may be harder to implement,
due to the particularly simple structure of the Zeta series.

In addition to computing (24) and performing step 1) and
2) above, we need first to obtain the moments of p in some
way. For p as in (20) the moments can be calculated by
incrementally computing the numbers (A", ..., A), adding
these together and normalizing. At the end, we may also need
to retrieve the probability density from the computed moments.
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If a density corresponds to the eigenvalue distribution of some
matrix, the Newton-Girard Formulas [27] can be used to re-
trieve the eigenvalues from the moments. These formulas state
a relationship between the elementary symmetric polynomials

AL A) = Y A, (26)
i< <i;<n
and the sums of the powers of their variables
Sp(Ay s ) = > AL, 27)
1<i<n

through the recurrence relation

(=D)™mlIL, (A1, ...y An)
=+ Zz;l(—l)k+7"5k(/\1, ey )\n)Hm—k()\la ey /\n) = 028
(28)

If Sp(A1, ..., Ap) are known for 1 < p < n, (28) can be used
repeatedly to compute 1L, (A1, ..., An), 1 < m < n.
Coefficient n — k in the characteristic polynomial

()‘_)\1)()‘_)‘71)

is (—1)*Mg(A1,...,\y), and these can be computed from
Sk(A1, ..., An) using (28). Since Sk (A1, ..., An) = nmy, (with
my, being the kth moment), the entire characteristic polynomial
can be computed from the moments. Hence, the eigenvalues
can be found also.

In general, the density can not be written as the eigenvalue
distribution of a matrix, but the sketched procedure can still
provide us with an estimate based on the moments. Intuitively,
the approximation should work better when more moments
are involved. The simulations in this paper use the sketched
procedure only for a low number of moments, since mostly
discrete measures with few atoms are estimated. We have thus
also avoided issues for solving higher degree characteristic
equations with high precision.

2) Method B: Computation of free convolution based on
asymptotic freeness results: As mentioned, the Marchenko
Pastur law can be approximated by random matrices of the
form T';, = 4R, R, where R, is n x N with i.i.d. standard
Gaussian entries. It is also known that the product of such a I,
with a (deterministic) matrix with eigenvalue distribution y has
an eigenvalue distribution which approximates that of p. X p.
This is formulated in free probability as a result on asymptotic
freeness of certain random matrices with deterministic matri-
ces [14]. Therefore, one can approximate multiplicative free
convolution by taking a sample from a random matrix I';,
multiply it with a deterministic diagonal matrix with eigen-
value distribution p, and calculating the eigenvalue distribution
of this product. The deterministic matrix need not be diagonal.
Additive free convolution can be estimated in the same way by
adding I',, and the deterministic matrix instead of multiplying
them.

In figure 4, method B is demonstrated for various matrix
sizes to obtain approximations of (3o + 361) Xy for ¢ =
0.5. The moments of the approximations are compared with
the exact moments, which are obtained with method A. The
Mean Square Error of the moments is used to measure the
difference. As in figure 3, it is seen that the MSE decreases

50 50
40 40
w 30 ww 30
[%] [%]
= =
= = 20
10 10
o Ot e b ittt
1007200 300400 500 100 200 300 400 500

(a) 4 moments (b) 8 moments

Fig. 4. MMSE of the first moments of (%60 + %51) X pc, and the same
moments computed approximately with method B using different matrix sizes
N. The value ¢ = 0.5 is used.
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(a) ¢ =0.2. L = 7680 observations (b) ¢ = 0.05. L = 30720 observa-

tions

Fig. 5. Approximated densities of (%(51 (z) + %53 (z) + %64(33)) X with
method B for various values of ¢

with the matrix sizes, and that the MSE is much higher when
more moments are included.

Another interesting phenomenon occurs when we let ¢ go
to 0, demonstrated in figure 5 for the measure p with

1 1 1
fH(x) = 551(1’) + gég(x) + §54(az). (29)

It is seen that for small ¢, the support of X u. seems to
split into disjoint components centered at the dirac locations.
This is compatible with results from [28]. There it is just
noted that, for a given type of systems, the support splits into
TWO different components, and the relative mass between
these components is used to estimate the numbers of signals
present in the systems they consider. In figure 5, a matrix of
dimension N x N with N = 1536 and eigenvalue distribution
w is taken. This matrix is multiplied with a Wishart matrix
+XX*, where X has dimension N x L with ¥ = ¢ with
decreasing values of c. It is seen that the dirac at 1 is split from
the rest of the support in both plots, with the split more visible
for the lower value of c. The splitting of the two other diracs
from each other it not very visible for these values of c. Also,
the peaks in the density of p X p,. occur slightly to the left
of the dirac points, which is as expected from the comments
succeeding theorem 3.

A partial explanation for the fact that p X p. in some
sense converges to p when ¢ — 0 is given by combining
the following facts:

o The sample covariance matrix converges to the true
covariance matrix when the number of observations tend
to oo (i.e. ¢ — 0).
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o The Gs-estimator for the covariance matrices is given by

multiplicative free deconvolution with ..

In summary, the differences between method A and B are
the following:

1) Method B needs to compute the full eigenvalue distribu-
tion of the operand matrices. Method A works entirely
on the moments.

2) With method B, the results are only approximate. If the
eigenvalues are needed also, method A needs to per-
form computationally expensive tasks in approximating
eigenvalues from moments, for instance as described in
section IV-A.1.

3) Method B is computationally more expensive, in that
computations with large matrices are needed in order to
obtain accurate results. Method A is scalable in the sense
that performance scales with the number of moments
computed. The lower moments are the same regardless
on how many higher moments are computed.

The two methods should really be used together: While
method A easily can get exact moments, method B can tell us
the accuracy of random matrix approximations by comparison
with these exact moments.

The simulations in this paper will use method A, since
deconvolution is a primary component, and since we in
many cases can get the results with an MSE of moments
analysis. Deconvolution with method B should correspond to
multiplication with the inverse of a Wishart matrix, but initial
tests do not suggest that this strategy works very well when
predicting the deconvolved eigenvalues.

The way method A and method B have been described here,
they have in common that they only work for free convolution
and deconvolution with Marchenko Pastur laws. Method A
worked since (24) held for such laws, while method B worked
since these laws have a convenient asymptotic random matrix
model in terms of Gaussian random matrices.

B. Non-numerical methods: Exact calculations of multiplica-
tive free convolution

Computation of free convolution in general has to be
performed numerically, for instance through the methods in
section IV-A.1 and IV-A.2. In some cases, the computation can
be performed exactly, i.e. the density of the (de)convolutions
can be found exactly. Consider the specific case of (20) where

f*(x) = (1 = p)do(x) + pox(z), (30)

where p < 1, A > 0. Such measures were considered in [13],
where deconvolution was implemented by finding a pair (p, \)
minimizing the difference between the moments of u X .,
and the moments of observed sample covariance matrices.
Exact expressions for the density of p X u. were not used,
all calculations were performed in terms of moments.

(30) contains one dirac (i.e. p = 1) as a special case. It is
clear that multiplicative free convolution with §, has an exact
expression, since we simply multiply the spectrum with A (the
spectrum is scaled). As it turns out, all x of the form (30) give
an exact expression for p X p.. In appendix II, the following
is shown:
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(¢) ¢ =0.5. L = 1024 observations (d) ¢ = 0.25. L = 2048 observations

Fig. 6. Densities of (%60 + %61) X e (upper row), and corresponding
histogram of eigenvalues for the sample covariance matrices for different
number of observations (lower row)

Theorem 3: The density of u X . is 0 outside the interval

Diep = A1+ cp) — 2X0/cp, A(1 + cp) + 2X/ep],  (31)
while the density on I ., is given by
K (2) K (x)
e — 1 2 32
e (@) = V2 SO, (32)
where
Ki(z) = x—A1+cp)+2X/cp
Ky(x) = XM1+cp)+2X\/cp—z.
The density has a unique maximum at x = )\(llj_cfp)g, with
value W%.

The importance of theorem 3 is apparent: The mass of pM .
is seen to be centered on A(1 + ¢p), with support width of
4\\/cp. If we let ¢ go to zero, the center of mass approaches A
and the support width approaches zero. We note that the center
of the support of u X u. is slighly perturbed to the right of
A, while the density maximum occurs slightly to the left of A.
It is easily checked that the support width and the maximum
density uniquely identifies a pair (p, ). This means that, if
we have an estimate of the density of p X u. (for instance in
the form of a realization of a sample covariance matrix) for
a measure p of the form (30), the maximum density and the
support width give us a good candidate for the (p, \) defining
w. Figure 6 shows densities of some realizations of pX . for
p = % and A = 1, together with corresponding realizations
of covariances matrices. Values ¢ = 0.25 and ¢ = 0.5 were
used, with L = 1024 and L = 2048 observations respectively.
Covariance matrices of size 512 x 512 were used.

A similar result to theorem 3 characterizing yS . is proved
in appendix III:
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Theorem 4: The density of uNu,. is 0 outside the interval

Iep = M1 —2¢cp) —2Xy/ep(1l —cp)

A(1 = 2cp) + 2X\/ep(1 — cp)), 53
while the density on J) ., is given by
it (z) = 7¢W (34)
where
Li(x) = z—M1-2cp)+2\/ep(l —cp)
Lo(z) = A1 —2cp)+2X\\/ep(1 — cp) — .

The support in this case is centered on A\(1 — 2¢p), which
is slightly to the left of A, contrary to the case of convolution.
The support width is 4\4/cp(1 — ¢p). Also in this case it is
easily seen that the support narrows and gets centered on A, as
c goes to 0. The densities in (32) and (34) are seen to resemble
the density of . in (7). One difference is that u. is centered
on 1, while the densities in (32) and (34) need not be.

The proofs of theorem 3 and 4 build on an analytical
machinery for computing free convolution, where several
transforms play a role. Besides the Stieltjes transform m, (2),
one has the n-transform, defined for real z > 0

n(z) = /jo 1_:ZAdFV()\).

It is easy to verify that m, can be analytically continued to
the negative part of the real line, and that

_mu(=3)

N (2) (35)

for z > 0. The n-transform has some nice properties, it is for
instance strictly monotone decreasing, so that it has an inverse.
In [10] it was shown that

) =

Ticter (30)

The proof of this involved some more transforms, like the S-
transform, and the actual value of these transforms for .. The
following forms will be more useful to us than (36), and can
be deduced easily from it:

Um (Z(l —c+ CW&LC(Z))) = NuRp. (2) (37
and
z
e (1_C+C77/LEIMC(Z)) = My (2): %)
N, (z) for p as in (30) is easily calculated:
nu(z)zlprrle)\. (39)

1 X p. with unconnected support components centered at
the dirac locations of p may very well happen for discrete
measures with more than two atoms also, but we do not
address this question here. The more general case, even when
there are two dirac’s away from 0, does not admit a closed-
form solution, since higher degree equations in general can
not be solved using algebraic methods. However, one can still

solve those equations numerically: For 1 on the more general
form (20), the n-transform is

Pi

i=1

Putting this into (37), we see that we can solve

n

P

e 1—c+enump. (2

)) = Ny, (2)

to find 7,,x,,. (2). Collecting terms, we see that this is a higher
order equation in 7,x,,. (). m,(z) and hence the density of
w can then be found from (35).

V. APPLICATIONS TO SIGNAL PROCESSING

In this section, we provide several applications of free
deconvolution and show how the framework can be used in
this paper.

A. Estimation of power and the number of users

In communication applications, one needs to determine the
number of users in a cell in a CDMA type network as well the
power with which they are received (linked to the path loss).
Denoting by n the spreading length, the received vector at the
base station in an uplink CDMA system is given by:

y; = WP2s, + b; (40)

where y;, W, P, s; and b; are respectively the n x 1
received vector, the n X N spreading matrix with i.i.d zero
mean, % variance entries, the N x N diagonal power matrix,
the IV x 1 i.i.d gaussian unit variance modulation signals and
the n x 1 additive white zero mean Gaussian noise.

Usual methods determine the power of the users by finding
the eigenvalues of covariance matrix of y; when the signatures

(matrix W) and the noise variance are known.

O =E (yiyf) = WPW¥ + 51 (41)

However, in practice, one has only access to an estimate
of the covariance matrix and does not know the signatures of
the users. One can solely assume the noise variance known.
In fact, usual methods compute the sample covariance matrix
(based on L samples) given by:

6- Ly yyn
—ZZYiyi

i=1

(42)

and determine the number of users (and not the powers)
in the cell by the non zero-eigenvalues (or up to an ad-hoc
threshold for the noise variance) of:

SR | (43)

This method, referred here as classical method, is quite
inadequate when L is in the same range as n. Moreover, it
does not provide a method for the estimation of the power of
the users.

The free deconvolution framework introduced in this paper
is well suited for this case and enables to determine the power
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of the users without knowing their specific code structure.
Indeed, the sample covariance matrix is related to the true
covariance matrix © = E (yiyiH ) by:

6= 0e:Xx70: (44)

with

0 = WPW + 521 (45)

and X is a n x L i.i.d Gaussian zero mean matrix.

Combining (44), (45), with the fact that WHW, %XXH
are Wishart matrices with distributions approaching u N, fn
respectively, and using that

N N
pwpwH = —pwewp + | 1 — — | do,
n n

we get due to asymptotic freeness the equation

N N
((TL(MQI ﬁﬂp) —+ (1 — ’I’L) 50) Eﬂ,”’zﬂ[) &/1,% = ug

(46)
If one knows the noise variance, one can use this equation in
simulations in two ways:

1) Through additive and multiplicative free deconvolution,
use (46) where the power distribution of the users (and
de facto the number of users) is expressed in terms of
the sample covariance matrices.

2) Determine the numbers of users N through a best-match
procedure: Try all values of NV with 1 < N < n, and
choose the N which gives a best match between the left
and right hand side in (46).

To solve (46), method A was used to compute the moments.
In order to solve (13), we also need to compute additive free
deconvolution with a scalar. This was addressed in section I'V-
A.1, but can also be computed in a simpler way, since

J .
olla—a*1y) = (-1 (k) ool
k=0
In (46) we also scale a measure with %, and add an atom at
0. Both of these cases are easily implemented.

In the following simulations, a spreading length of n = 256
and noise variance 02 = 0.1 have been used.

1) Estimation of power: We use a 36 x 36 (N = 36)
diagonal matrix as our power matrix P, and use three sets
of values, at 0.5, 1 and 1.5 with equal probability, so that

1 1 1
L NI N 47
ue 30‘54—31-&-31.5 (47)

There are no existing methods for estimating such a up from
the sample covariance matrices: to our knowledge, existing
methods estimate the power with non-zero eigenvalues of the
sample covariance matrix up to o2. In our case, the powers
are all above o2.

In figure 7, the CDF of up was estimated by solving
(46), using method A with three moments. The resulting
moments from method A were used to compute estimates of
the eigenvalues through the Newton-Girard formula, and the
CDF was computed by averaging these eigenvalues for 100
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Fig. 7. CDF of powers estimated from multiplicative free deconvolution
from sample covariance matrices with different number of observations.
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Fig. 8. Distribution of the powers estimated from multiplicative free
deconvolution from sample covariance matrices with L = 2048.

runs for each number of observations. An alternative strategy
would be to use higher moments, and less runs for each
observation. As one can see, when L increases, we get a CDF
closer to that of (47). The best result is obtained for L = 2048.
The corresponding histogram of the eigenvalues in this case
is shown in figure 8.

2) Estimation of the number of users: We use a 36 x 36
(N = 36) diagonal matrix as our power matrix P with pup =
d1. In this case, a common method that try to find just the
rank exists. This method determines the number of eigenvalues
greater than o2. Some threshold is used in this process. We
will set the threshold at 1.502, so that only eigenvalues larger
that 1.502 are counted. There are no general known rules for
where the threshold should be set, so some guessing is inherent
in this method. Also, choosing a wrong threshold can lead to
a need for a very high number of observations for the method
to be precise.

We will compare this classical method with a free convolu-
tion method for estimating the rank, following the procedure
sketched in step 2). The method is tested with varying number
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Fig. 9. Estimation of the number of users with a classical method, and free
convolution L = 1024 observations have been used.

of observations, from L = 1 to L = 4000, and the N which
gives the best match with the moments of the SCM in (46)
is chosen. Only the four first moments are considered. In
figure 9, it is seen that when L increases, we get a prediction
of N which is closer to the actual value 36. The classical
method starts to predict values close to the right one only for
a number of observations close to 4000. The method using
free probability predicts values close to the right one for a
less greater number of realizations.

B. Estimation of Channel correlation

In channel modelling, the modeler would like to infer on the
correlation between the different degrees of the channel. These
typical cases are represented by a received signal (assuming
that a unit training sequence has been sent) which is given by

yi=w;+Db; (48)

where y;, w; and b; are respectively the n x 1 received
vector, the n x 1 zero Gaussian impulse response and n x 1
additive white zero mean Gaussian noise with variance o. The
cases of interest can be:

o Ultra-wide band applications [29], [30], [31], [32] where
one measures in the frequency domain the wide-band
nature of the frequency signature w;

« Multiple antenna applications [1], [33] with one transmit
and n receiving antennas where w; is the spatial channel
signature at time instant <.

Usual methods compute the sample covariance matrix given
by:

.1 &
R:Z;yiyf[

The sample covariance matrix is related to the true covari-
ance matrix of w; by:

R=0:XX"0: (49)

1 1
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Fig. 10. CDF of eigenvalues estimated from multiplicative free deconvolution
from sample covariance matrices with different number of observations.

with

® =R+ (50)

and X is an NV x n i.i.d Gaussian zero mean matrix.

Hence, if one knows the noise variance (measured without
any signal sent), one can determine the eigenvalue distribution
of the true covariance matrix following:

pr = (pgHpz) B pger. (51)

According to theorem 2, computing p1z Nz is the same as
computing the Ga-estimator for covariance matrices. Additive
free deconvolution with p,2; is the same as performing a shift
of the spectrum to the left.

We use a rank K covariance matrix of the form R =
diag[1,1,..,1,0,..,0], and variance o? = 0.1, so that o ~
0.3162. For simulation purposes, L vectors w; with covariance
R have been generated with n = 256 and K = 128. We would
like to observe the p.d.f.

S0t 2 (5)
in our simulations.

In figure 10, (51) has been solved, using L = 128 and
L = 512 observations, respectively. The same strategy as in
section V-A was used, i.e. the CDF was produced by averaging
eigenvalues from 100 runs. 4 moments were computed. Both
cases suggest a p.d.f. close to that of (52). It is seen that the
number of observations need not be higher than the dimensions
of the systems in order for free deconvolution to work.

The second case corresponds to ¢ = 0.5, so that when there
is no noise (¢ = 0), the sample covariance is approximately
(300 + 261) X1, which is shown in figure 6 a). If it is known
that the covariance has the density (1 — p)do + pdy, theorem 3
can be used, so that we only need to read the maximum density
and the location parameter in order to find p and A.

It may also be that the true covariance matrix is known,
and that we would like to estimate the noise variance through
a limited number of observations. In figure 11, L = 128 and
L = 512 observations have been taken. In accordance with
(51), we compute (ur B p,27)Xpn for a set of noise variance
candidates n2, and an MSE of the four first moments of this
with the moments of the observed sample covariance matrix is
computed. Values of 7 in (¢ —0.1,040.1) ~ (0.2162,0.4162)
have been tested, with a spacing of 0.001. It is seen that the
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MMSE occurs close to the value ¢ = v/0.1 = 0.3162, even
if the number of observations is smaller than the rank. The
MMSE occurs closer to o for L = 512 than for L = 128,
so the estimate of sigma improves slightly with L. It is also
seen that the MSE curve for L = 512 lies lower than the
MSE curve for L = 128. An explanation for this lies in the
free convolution with pon: As L — oo, this has the effect of

concentrating all energy at 1.

VI. FURTHER WORK

In this work, we have only touched upon a fraction of the
potential of free deconvolution in the field of signal processing.
The framework is well adapted for any problem where one
needs to infer on one of the mixing matrices. Moreover,
tools were developed to practically deconvolve the measures
numerically and where shown to be simple to implement.
Interestingly, although the results are valid in the asymptotic
case, the work presented in this paper shows that it is well
suited for sizes of interest for signal processing applications.
The examples draw upon some basic wireless communications
problems but can be extended to other cases. In particular,
classical blind methods [34], [35], [36] which assume an
infinite number of observations or noisyless problems can be
revisited in light of the results of this paper. The work can
also be extended in several directions and should bring new
insights on the potential of free deconvolution.

A. Other applications to signal processing

There are many other examples that could be considered
in this paper. Due to limitations, we have detailed only two.
For example, another case of interest can be the estimation of
channel capacity. In usual measurement methods, one validates
models [37], [38], [39], [40] by determining how the model
fits with actual capacity measurements. In this setting, one has
to be extremely cautious about the measurement noise.

Indeed, the MIMO measured channel is given by:

H, (53)

vn

where H;, H and X; are respectively the n X n measured
MIMO matrix (n is the number of receiving and transmitting
antennas), the n x n MIMO channel and the n X n noise
matrix with ii.d zero mean unit variance Gaussian entries.
We suppose that the channel stays constant (block fading
assumption) during L blocks. In this case, the observed model

becomes:

N 1
H — (H —X 54
1...L ~ < 1..L + NG 1...L) 54
with
Hio = [ B (59)
H, , — — [H,H,... H] (56)
1...L — \/Z ) PREEY)
Xio=[X1,Xs,...,X1] (57

The capacity of a channel with channel matrix H and signal
L is given by

to noise ratio p = =

1 1
= log det (I + 2HHH> . (58)
n no

1 — 1
_ 1 1 N
- l; og(1+ — ) (59)

where )\; are the eigenvalues of %HHH . The problem
consists therefore of estimating the eigenvalues of %HHH
based on few observations of ﬂi. For a single observation,
This can be done through the approximation

iy St = (o pe Sy ) B o (60)
If we have many observations, we have that:
pra, g, S = (b S ) Bp. @D

B. Other types of sample matrices

One topic of interest is the use of free deconvolution with
other types of matrices than the sample covariance matrix. In
fact, based on a given set of observations, one can construct
higher sample moment matrices than the sample covariance
matrix (third product matrix for example). These matrices
contain useful information that could be used in the problem.
The main difficult issue here is to prove freeness of the
convolved measures. The free deconvolution framework could
also be applied to tensor problems [41] and this has not been
considered yet to our knowledge.
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C. Colored Noise

In this work, the noise considered was supposed to be
temporally and spatially white with standard Gaussian entries.
This yields the Marchenko pastur law as the operand measure.
However, the analysis can be extended, with the assumption
that freeness is proved, to other type of noises: the case for
example of an additive noise with a given correlation. In this
case, the operand measure is not the Marchenko pastur law
but depends on the limiting distribution of the sample noise
covariance matrix. Although the mathematical formulation
turns out to be identical, in terms of implementation, the
problem is more complicated as one has to use more involved
power series than the Zeta-series for example.

D. Parametrized distribution

In the previous example (signal impaired with noise), the
Marchenko Pastur law p. was one of the operand measures,
while the other was either estimated or considered to be a
discrete measure, i.e. with density

@) = piox, (@). (62)
=1

It turns out that one can find also the parameterized distri-
bution (best fit by adjusting the parameter) that deconvolves
up to certain minimum mean square error. For example, one
could approximate the measure of interest with two diracs
(instead of the set of n diracs) and find the best set of
diracs that minimizes the mean square error. One can also
approximate the measure with the Marchenko pastur law for
which the parameter ¢ needs to be optimized. In both cases,
the interesting point is that the expressions can be derived
explicitly.

VII. CONCLUSION

In this paper, we have shown that free probability provides
a neat framework for estimation problems when the number
of observations is of the same order as the dimensions of the
problem. In particular, we have introduced a free deconvo-
lution framework (both additive and multiplicative) which is
very appealing from a mathematical point of view and provides
an intuitive understanding of some G-estimators provided by
Girko [11]. Moreover, implementation aspects were discussed
and proved to be adapted, through simulations, to classical
signal processing applications without the need of infinite
dimensions.

APPENDIX [
ALGORITHM FOR COMPUTING FREE CONVOLUTION

The files momcum.m and cummom. m in [25] are implemen-
tations of (24) in MATLAB. The first calculates cumulants
from moments, the second moments from cumulants. Both
programs are rather short, and both take a series of moments
(41, ..., pbry) as input. The algorithm for computing cumulants
from moments goes the following way:

1) Form the vector m = (1, pq, ..., tin,) of length n+1, and
compute and store recursively the n vectors

My =m, My =mxm,..., M, = *,m,

where x,, stands for n-fold (classical) convolution with
itself. The later steps in the algorithm use only the
n + 1 first elements of the vectors My, Ms,...,.M,,.
Consequently, the full M} vectors are not needed for
all k: We can truncate M), to the first n + 1 elements
after each convolution, so that the implementation can
be made quite efficient.

2) Calculate the cumulants recursively. If the first n — 1
cumulants, i.e. the first o; in (24), have been found by
solving the n — 1 first equations in (24), «,, can then
be found through the nth equation in (24), by using
the vectors computed in step 1). More precisely ,the
connection between the vectors in 1) and the value we
use in (24) is

coefn_k ((1 + iz + pez? + )k) = My(n — k),

where n — k denotes the index in the vector (starting
from 0). Finding the k’th cumulant oy by solving the
kth equation in (24) is the same as

Ml(n + 1) - Z1gr§k71 arMT(k; - 7‘)
M (0)

aE =

The program for computing moments from cumulants is
slightly more complex, since we can’t start out by computing
the vectors Mj,...,M,, separately at the beginning, since the
moments are used to form them (these are not known yet).
Instead, elements in Mj,...,M,, are added each time a new
moment has been computed.

APPENDIX II
THE PROOF OF THEOREM 3

Set 7(z) = nux,.. From (37) we see that we must solve
the equation

M (2(1 = e+ en(z))) = n(2).

Substituting (39), multiplying and collecting terms, we get that
7(z) must be a zero for the equation

ez n(2)?+ (14 2A(1 = 2¢ + ep))) n(z) — (1—p)(1—c)zA—1.
The analytical continuation of m(z) = m,gy, (
1

n(2)

o .

we get that

) to the neg-

ative part of the real line satisfies 7(z) =
this and also substituting u = — 2

20

Subsituting

—chzm(2)? 4+ (A1 —2¢c+cp) —2)m(z) + 1)\(1 —p)(1—c)—1

’ (63)
equals 0 for z which are real and negative. It is clear that
any analytical continuation of m(z) to the upper half of the
complex plane also must satisfy (63). We use the formula for
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the solution of the second degree equation and get that m(z)
equals

(A(1 = 2c+ cp) — 2)*
+4eA?(1 — p)(1 — ¢) — dehz
—2cAz
22 —2\(1 + cp)z
+4cA?(1 —¢)(1 —p)
+A2(1 — 2¢ + cp)?
2cAz

—A(1—2c+cp)+2zt

(64)
(AM1—2c+cp)+2F

The zeroes of the discriminant here are

2()\(1+cp)i\//\24(1+cp)2716c)\2(1fc)(17p)74)\2(172c+cp)2

= M1l+cp) ’

4(1 + cp)? — 16¢(1 — ¢)(1 — p)

—4(1+ ¢p)? — 16¢? + 16¢(1 + cp)

= AMl+cep) £ %)\\/16c(l+cp—c— (1-c)(1-p)
= M1 +cp) £2)\/cp,

This means that we can rewrite m(z) to

1
+1)

(z = A(1 +cp) + 2\/cp)
(= = A1+ cp) — 2Ay2p)
2cAz

A1 —=2c+cp)+2zF

Thus, for z real, m(z) is complex if and only if z lies in
the interval I ., of (31). Outside I ., the density of uX
1 is zero. Taking the imaginary part and using the Stieltjes
inversion formula, we get that the density in I} ., is given by
the formula (32).

Setting the derivative of (32) w.r.t. z equal to z gives us
a first degree equation which yields a unique maximum at

2
z = )\(11::3 . After some more calculations, we get that the
density at this extremal point is a‘r)\(%' This finishes the
P)

proof. |

APPENDIX III
THE PROOF OF THEOREM 4

Set 7(z) = 1Ny~ pu., we see from (38) that we must solve
the equation

(=i ) =1

Substituting (39), multiplying and collecting terms, we get that
n(z) must be a zero for the equation

en(2)?* + (1 —2¢+ 22)n(z) — (1 —¢) — 2A(1 — p).

Using the formula for the solution of the second degree
equation, one can see that the positive square root must be

chosen whenever ¢ < 1, since 7 assumes positive positive

27
_1

values whenever z > 0. Substituting n(z) = % and also

u = —% as in the case for convolution, we get that

c2®m(2)? + (A — z(1 — 2¢))m(2) + %)\(1 —-p)—(1—-¢)

equals O for z which are real and negative. We get that m(z)
equals

—A+z(1-2¢)+ (/\ - ’22(117 20))2
e (N1 —p) — (1—
2 (1= =(-0)
= A2(1-20)E£4 /222X (1—2cp)2+A?

2cz?

The zeroes of the discriminant are
2A(1—2cp)£ /422 (1—2cp)? —4X2
2
A(L = 2¢p) £ 51/4N2(4c?p? — dep)?
A1 = 2¢p) £ 22\/ep(1 — ep).

Following the same reasoning as for convolution, we see that
the density is 0 outside the interval J) ., of (33), and that the
density in Jy . p is given by (34). This finishes the proof. g
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