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MIMO System Model 2

MIMO Representation

Tx Rx

y(t) =

√
ρ

ntx

∫
Hnrx×ntx

(τ )x(t − τ )dτ + n(t)

and

y(f) =

√
ρ

ntx

Hnrx×ntx
(f)x(f) + n(f)
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A Useful Metric: Mutual Information 3

A useful metric: Mutual Information

• Mesasurements have shown that:

lim
ntx→∞,

nrx
ntx

=β
log2det

(
Intx

+
ρ

ntx

HHH

)
− ntxµ → N(0, σ2)

• The distribution of the mutual information (M = log2det
(
Intx

+ ρ
ntx

HHH
)

in

b/s/Hz) is very useful for quality of service optimization.

• For example, if we impose the outage probability q = 0.01, then one can easily find
the corresponding rate R:

q = CDF(R) = P (M ≤ R) =

∫ R

−∞

1√
2πσ

e
−(u−ntxµ)2

2σ2 du.

• The Cumulative Density function (CDF) is also used as a channel modelling metric.

• Explicit expressions of the mutual information ease the optimization of the ”water-
filling”’ formula (To be explained in next meeting) .
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Do Real Channels have a Gaussian behavior?
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Are the measured mutual information Gaussian?

Measured
Gaussian approximation

Urban Open Place 

Indoor 

Atrium 

Urban Low Antenna 

• The Gaussian behavior of the mutual information appears already for 8 × 8 MIMO
systems.
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How far is asymptotic? 5

How far is asymptotic?
• Results have engineering applications (some results of the mutual information distri-
bution at ρ = 10):

• With 6 antennas, we are at 0.02% of the asymptotic mean value while the
variance is only at 1% of the asymptotic variance value!

• With 3 antennas, we are at 0.6% of the asymptotic mean value while the variance
is only at 4% of the asymptotic variance value!

• Remark: This speed of convergence does not hold for other metrics such as Signal
to Interference plus Noise Ratio (SINR).

• D.N.C Tse and O. Zeitouni, ”Linear Multiuser Receivers in Random Environ-
ments”, IEEE Trans. on Information Theory, pp.171-188, Jan. 200.
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State of the art

• H zero mean i.i.d Gaussian:

• Represents a very rich scaterring environment. Overestimates measured mutual
information.

• Problem solved for the mutual information distribution:

– Z.D. Bai and J. W. Silverstein, ”CLT of Linear Spectral Statistics of Large
Dimensional Sample Covariance Matrices”, Annals of Probability 32(1A)
(2004), pp. 553-605.

µ = βln(1 + ρ − ρα) + ln(1 + ρβ − ρα) − α

σ2 = −ln[1 − α2

β
]

α =
1

2
[1 + β +

1

ρ
−

√
(1 + β +

1

ρ
)2 − 4β]
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State of the Art 7

State of the art

• H zero mean Gaussian Uncorrelated non-identically distributed entries:

• Represents a very rich scaterring environment with different receiving powers on
each antenna.

• Overestimates measured mutual information.

• Problem solved for the mean only:

– V. L. Girko, ”Theory of Random Determinants”’, Kluwer Academic Publish-
ers, Dordrecht, The Netherlands, 1990.

– Applied by Tulino and Verdu (See monograph).

• Distribution: open issue.
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State of the art

• H zero mean Gaussian with correlation on one side (Θ zero mean i.i.d Gaussian):

• Correlation at the transmitter: H = R
1
2 txΘ.

• Correlation at the receiver: H = ΘR
1
2rx.

• In both cases (Rtx and Rrx are hermitian matrices), the model underestimates
measured mutual information.

• Problem solved for the mutual information distribution with explicit expressions of µ
and σ

• Z.D. Bai and J. W. Silverstein, ”CLT of Linear Spectral Statistics of Large
Dimensional Sample Covariance Matrices”, Annals of Probability 32(1A) (2004),
pp. 553-605.
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State of the Art 9

State of the art

• H=R
1
2 txΘR

1
2rx, with Θ zero mean i.i.d Gaussian:

• Represents correlation at both end.

• Seperable correlation is not always fulfilled in reality.

• mean mutual information: Tulino, Verdu (see monograph): in fact, an applica-
tion of Girko.

• variance (Sengupta and Mitra using replica method):

– A. Sengupta and P. Mitra, ”Capacity of Mutlivariante Channels with Multi-
plicative Noise: Random Matrix Techniques and Large-N Expansion for Full
Transfer Matrices”, LANL Archive Physics, oct. 2000

– A. Moustakas, S. Simon and A. Sengupta, ”MIMO Capacity through Corre-
lated Channels in the presence of Correlated Interferers: A (Not so) Large-N
Analysis, IEEE Transactions on Information Theory, oct. 2003
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State of the art

• Results: Denote ξ and η the eigevenvalues of matrices Rtx and Rrx respectively:

µ =

ntx∑
i=1

log(1 + ρξir) +

nrx∑
i=1

log(1 + ρηiq) − nrxqr

σ2 = −2 log(1 − g(r, q))

g(r, q) =

[
1

ntx

ntx∑
i=1

(
ρηi

1 + ηiρq
)2

][
1

ntx

nrx∑
i=1

(
ρξi

1 + ξiρr
)2

]

r =
1

ntx

ntx∑
i=1

ρηi

1 + ηiρq

q =
1

ntx

nrx∑
i=1

ρξi

1 + ξiρr

• The replica method has been introduced in Telecommunications for the first time
by Tanaka: ”A Statistical Mechanics Approach to Large System Analysis of CDMA
Multiuser detectors, IEEE IT, vol.48, no11,p.2888-2910. nov.2002
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State of the art

• H zero mean Gaussian with any type of correlation C = E(vec(H)vec(H)H) (The
operator vec(H) stacks all the columns of matrix H into a single column):

• mean mutual information: open issue

• distribution: open issue.
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State of the art

• H Rice Channel:

H =

√
K

K + 1
A +

√
1

K + 1
B

• A represents the line of sight component (mean) of the channel.

• B is the random component of the channel with zero mean Gaussian distributed
entries.

• K is the Ricean factor:

– When K → 0, H zero mean channel.

– When K → 0, H is a purely deterministic channel.
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State of the art

• H Rice Channel:

H =

√
K

K + 1
A +

√
1

K + 1
B

• mean mutual information: problem solved

– for B i.i.d Gaussian: B. Dozier and J. Silverstein “On the Empirical Dis-
tribution of Eigenvalues of Large Dimensional Information-Plus-Noise Type
Matrices”, submitted.

– for B Gaussian independent with different variances: Girko. ”Theory of
Stochastic Canonical Equations”’, vol 1, Kluwer Academic publishers, Dor-
drecht

– For B any correlation, open issue.

• distribution: open issue.
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