\
—1
Supélec

Spectral Measure of Certain Gram
Random Matrices

Applications in Wireless Communications

Walid Hachem (Supélec, France)
Work done with Philippe Loubaton (UMLV) and Jamal Najim (CNRS)

NUS / IMS Program on Random Matrices

23 March 2006




(GRAM MATRICES IN THIS PRESENTATION

H,=Y,+A,

e Y, isa N x n random matrix with independent centered elements having possibly
different variances.

e A, is a deterministic matrix.

N
Eigenvalue distribution of H,H!! when n — cc and — — ¢ > 0?
n
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Problem Statement

Problem Statement

Transmitter : '3 Receiver

n antennas '1 ;' N antennas

Figure 1: Multiple Input Multiple Output (MIMO) wireless communication
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Problem Statement

SHANNON’S MUTUAL INFORMATION

Shannon's mutual information per receive antenna of the N x n random MIMO
channel H,,:

1 1
C,, (CZ) — N[Elog det (IN + g_anHE)

where ¢? is a known parameter (noise variance).

Information theory: NC,, (¢?) is the maximum data rate attainable by the transmission
system.

N
Behaviour of C), (¢*) asn —ocoand — — ¢ >0 7?
n
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Problem Statement

SPECTRAL MEASURE AND STIELTJES TRANSFORM

A;é”) —E / log (1 + 2 ) pn(dt) where yi;, is the

spectral measure (empirical distribution of eigenvalues {\1 ,,..., Ann}) of
H, HI

Given a certain statistical model for H,,, one hopes that the spectral measure 1,
converges weakly to a deterministic Limit Spectral probability Measure (LSM) g, in
order to have

Cy (¢°) —— C* (%) = /10g (1 + giz) p(dt) .

n—oo

We study i, in the asymptotic regime, or equivalently, its Stieltjes Transform (ST)

By —

Weak convergence of 11, towards p is equivalent to convergence of f,, (z) towards
the ST f,(z) of the LSM .
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Problem Statement

CHANNEL STATISTICAL MODEL 1

"Ricean" Channel Model

H,=7Z,+B,

o Z, = [ZZ(Z’)} elements of a Gaussian stationary two dimensional process with

covariance function k:

n n * 1 . . . .
E [Z( A ] = E/ﬁl(’bl — Q9,51 — j2)

11,71 712,72

e B,, is a deterministic matrix (Rice component).
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Problem Statement

CHANNEL STATISTICAL MODEL 2

Channel matrix is FxyH, F where F; is the [ x [ Fourier matrix and

H,=Y,+A,

e Elements of Y,, = [Y;(;“)} written Yz(;’) = L(n)Xij with X;; standard Gaussian

4D

independent random variables.

e A, is a deterministic matrix.

Sometimes we shall assume:

(A) Variance profile is 0;;(n)? = o (%, l) where o2 (z,y) is a continuous function
n

on [0, 1]? called a limit variance profile.

7/31



Problem Statement

LINK BETWEEN MODELS 1 AND 2

For asymptotic study, model 1 can be replaced with model 2 with

e Assumption (A) with 0%(z,y) = I'(z,y) where

Lz,y) =) w(i,j)e” 20w
i

is the Spectral Density of the process Z; ;.

e A, is the two-dimensional Fourier Transform of B,,.

and some assumptions.
Argument formalized in Hachem, Loubaton and Najim’05.
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Problem Statement

PROBLEM STATEMENT

Model 2: H, =Y,, + A,, with size N x n.

oY, = [Yz(;“)] with YZ(;“) = ‘”\j/%”) X;, random variables X;; are centered unit

variance iid.
We release Gaussianity assumption on Xj;.

e A, is a deterministic matrix.

With appropriate additional assumptions,

o Characterize the asymptotic behaviour of the spectral measure u,, of H,H! as
n — oo and N/n — ¢ > 0, or equivalently, its ST £, (2).

e Deduce the asymptotic behaviour of Shannon’s mutual information C,, (s?).
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Some particular cases

Some particular cases

THE CENTERED CASE (A,

Assume (A), i.e., 3 a limit variance profile.

e Girko'90: 1, converges weakly to a deterministic probability measure 1 which ST

1
f,(2) has the form £, (2) :/ p(u, z)du.
0

Function p(u, z) continuous in u for every z, ST of a probability measure in z for
every u, defined as the unique solution of an implicit equation.

e Same result can be deduced from the work of Boutet de Monvel, Khorunzhyi and
Vasilchuck (96).

e And also from Shlyakhtenko’s (96) result stated for Wigner Gaussian matrices. His
approach based on the concept of freeness with amalgamation.

10/31



Some particular cases

REMARK ON THE GENERAL NON CENTERED CASE

Even if we have a limit variance profile 02 (z,y) for the elements of Y,, and if A,, Al

has a limit spectral measure, the spectral measure p,, of H, H!! does not converge

except in some very specific cases.
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Some particular cases

SPECIFIC CASE 1: o(z,y) CONSTANT AND AA™ HAS A LSM

Case

e o(x,y) = o is a constant, i.e., Y, has iid elements,

e The spectral measure v, of A,,Al converges weakly

Vp = U
treated by Brent Dozier and Silverstein (04): p,, converges to a deterministic
probability measure which ST f(z) is the unique solution to
/ v(dt)
—2 (14 co?£(2)) + (1 — c)o® +

f(2) ;

1+ co?f(z)

in the class of ST of probability measures over R .
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Some particular cases

SPECIFIC CASE 2: 0°(x,y) NON TRIVIAL AND A DIAGONAL

Hachem, Loubaton, Najim'05:
Existence of a limit variance profile (A).
Moment assumption: 3 € > 0 where E \Xij\4+€ <

Can be lightened by a truncation argument (Bai and Silverstein).

A, diagonal, i.e., when n > N (which we shall assume), has the form

A, =

N
1
N Z (i/N,|Au)?) = H(dt,d)), compactly supported pr. measure in [0, 1] x R

N

1
"Stonger" than convergence of the empirical distributon N Z 0|4
i=1

ii |
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Some particular cases

SPECIFIC CASE 2: TECHNIQUE

e Resolvent is Q,(z) = (H,HY — zIN)_l. ST associated with the spectral measure
i, of H, H:

/—,un (dt) Z . = %trQn(Z)

— Z

e Let iy be the spectral measure of H) H,,. Associated ST is £, (z) = %tr@n(z)
with Q,(z) = (HUH,, — 21,,) '

e We study jointly the convergence of f,, and f;;, by considering the diagonal terms

Qii(2) and Q;;(2) of Q,(2) and Q,,(2).
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Some particular cases

SPECIFIC CASE 2: TECHNIQUE

e We establish convergence of measures

Ly (z,du,d)\)

~

Ly (z,du, d\)

1 N
N O Qi) 8¢ a7y (e, dN)
1=1

1 e ~
- Z;ij(z) B2 14,2y (s V)
J:

4+ % Z @jj(z) 5%(du) ® do(dN)

j=N+1
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Some particular cases

SPECIFIC CASE 2: LIMIT SPECTRAL MEASURE

e Consider the following system: for every bounded continuous g,

/ gdn(z,du,d\) = / 9(u,A) . H(du,d)\)
/

—Z — Zf0'2('u,7 t)dﬁ-(z, dt, dC) + 1+cf02(t,cu)d7r(z,dt,dC)

A
gdii(z,du,d)) = ¢ / . gleu, 2) . H (du, dX)
—z —cz [ o2(t,cu)dm(z, dt, dC) + T T o (a.t) @5 (=, dE.0)

—c 1 s 9) “
H0-0 | o e

System has a unique solution (7, 7) in a certain class of complex measures (the
Stieltjes kernels).

e 7 and 7 are the limits of L,, and L,, in the weak convergence of complex measures.

e The limit ST f,, and f;; are then

fu(z):/w(z,dt,d)\) and £ ( ):/ﬁ(z,dt,dA)
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The general case

The general case

e We assume o%(x,y) non trivial and A,, has no particular structure.

e Difficult to devise simple conditions for the existence of a limit spectral measure,

N
1
. n - . -
i.e., an "extension" of assumption N 25(¢/N,|A“|2) —> H(dt,d)\) that we used
i=1
for the case A, is diagonal.
e An alternative approach: look for a deterministic approximation of the empirical
ST: there exists a a N x NN deterministic matrix function T,,(2) such that

1

£, (2)— NtrTn(z) — 0 almost surely

This "deterministic approximation" dates back to Girko.
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The general case

DETERMINISTIC APPROXIMATION: ASSUMPTIONS

Hachem, Loubaton, Najim'05 (preprint): Extension of Girko's result and simplification
of his proof, approximation of Shannon's mutual information.
Problem: approximate the spectral measure of H,, = Y,, + A,, with
o YZ(;”) = ‘”\j/%) Xi; with X, centered unit variance iid and E 1 X11]*1° < oo for
some € > (. Last assumption can be lightened.

sup a?j(n) < 00,
1,7,M

e Euclidean norms of rows and columns of A,, uniformly bounded.

Girko assumed boundedness of ¢; norms of rows and columns.
In wireless communications, columns of A,, have typically the form

- 1, exp(w), . .., exp(t(N — 1)w)]

VN

¢1 norm increases in /N while Euclidean (¢3) norm is bounded.
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The general case

DETERMINISTIC APPROXIMATION: RESULT

Let DY) = diag ([O’%j, cee 012\,3-]) and D = diag ([e4,....02.]).

e The deterministic system of N + n equations:

1
— for1 <i: <N,
z (1 + %tr (D(i)T(z)>)
- —1
(4) —
Vo) z (14 2tr (DUWT(z)))

pi(z) =

for 1 <j5 <n,

diag ([ (z2),..., M (2)]), ®(2) = diag ([%”(z), s W)(Z)J)

- (ql_l(z)—zA\Tl(z)AH)_l, T(z) ({Ivl_l(z)—zAH\Il(z)A)

admits a unique solution (pM), ... W) HM 45 in the class of Stieltjes

Transforms of probability measures over R, .
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The general case

DETERMINISTIC APPROXIMATION: RESULT

e Almost surely,

1

(ltrén(z) - l1:1"'1‘71(,2)) —— 0 VzeC-—-Ry
n n

n—oo
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The general case

BACK TO MUTUAL INFORMATION

Mutual information can be written

>~ /1 1
/g2 (; — [ENtrQn (—w)) dw

Combining this expression with the last result, we can establish:
Let

2

_ 1 W (—c2 -1 -
Cn(gz):ﬁlogdet[ (=) + AW (—

S

1 ¥ (—¢2) ™
+Nlogdet ( 2> Nn Z 0'2 Tii(— gg(—Cz)

g 1=1:N
j=1ln

where T;; and fjj are the diagonal elements of T,,(z) and T, (z). Then

Cy (¢%) = Cpn(s*) —— 0.

n—oo

21/31



General case: main steps of the proof

General case: main steps of the proof

STEP 1: EXISTENCE AND UNICITY OF T(z)

Existence and unicity of T,,(z) and ’f‘n(z) as solutions of the system of N +n
equations above.

e Existence by an iterative scheme.
e Unicity in a certain region of C. In C — R, by analytic continuation.

e Use an extension of complex analysis results about Stieltjes transforms of
probability measures over R, : let T(z) be an analytical matrix function on
C. ={z:32z >0} such that IT(z) >0 on C, and &zT(z) > 0on C,, (as non
negative matrices). Then there exists a matrix C > 0 and a matrix valued measure
p carried by R, such as pu(A) > 0 for every Borel set A of R, and

1 1
— - : -
T(z) =C+ / " zu(dt) with tr/ ] tu(dt) < o0
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General case: main steps of the proof

STEP 2: INTRODUCING NEW FUNCTIONS R(z) AND R(z)

We introduce intermediate matrices R,,(z) and R,,(z) defined as:

b (z) = 1 , B(z)=diag ([b(l)(2)7 e b(N)(Z)]) )

z (1 + %tr (ﬁ(@)é(z)»

—1

W) = (1+1tr (DOQ(2)))’

(B_l(z) _ zAﬁ(z)AH)_l |
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General case: main steps of the proof

STEP 2: INTRODUCING NEW FUNCTIONS R(z) AND R(z)

We show that for any diagonal matrices U,, and U, such that sup,, ||Un|| < oo and
sup,, ||U,|| < oo, we have on C,

ElLtr (Qu(z) = Ra(2) U)["? < Cstxn=(+</4)  and

~ ~ ~ 2+4¢/2
E ‘%tr ((Qn(z) _ Rn(z)> Un> < Cst x n—(1+e/4)

Derivations along the lines of those of Brent Dozier and Silverstein (04).
Bai and Silverstein’s (98) lemma is of prime importance: in our context, for any p > 2,
1 1 P Cst
£ 'NXNZNXN — NU‘ZN < N2
for xy = [X1,.. .,XN]T with X iid centered unit variance random variables with
E \X11\2p < 00, and Zy is a N x N random matrix independent of X such that
supy |1 Zn|| < oo.
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General case: main steps of the proof

STEP 3: LtrR IS CLOSE TO =trT

We show that in a certain region D of C,

E %tr (R(z) - T(z)) e <
F|Ller (ﬁ(z) —T(z)) e <

n

|dea:

. ~1
Recall that bV (z) =

z (1 + %tr (f)“ki(z))) |

. 1 /e~ 1/~ i~ ,
From step 2 with U = D® we have —tr (D(Z)Q( )) = —tr (D(Z)R(z)> + el
n n

1
z (1 + %tr (f)(z)f{(z))>

E e [P/2 < Cst x -4,

It results that bV (z) = + €9 with
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General case: main steps of the proof

STEP 3: LtrR IS CLOSE TO =trT

—1
z(1+ Ltr (DUR(z)))

Similarly %) (z) = + &),

Recall that

—1

(B—l(z) —zAﬁ(z)AH)_l and R(z) = (ﬁ—l(z) —ZAHB(Z)A)

So, up to the (¥ and é9), matrices B and B satisfy the same system as ¥ and U

With this idea, (R, f{) can be approached by (T,’T‘) for z carefully chosen (in the
region D).
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General case: main steps of the proof

PUTTING PIECES TOGETHER

Step 1: T, (z) and T,(z) exist and are unique as solutions of a system of equations.

Step 2: |

Step 3: L

1

“tr (Ry(z) — Ta(2))

2+¢/2

~tr ((Qn(2) — Ru(2))) < Cst x n~ (/9 py taking U, = Iy.

24-¢/2
< Cst x n~1F¢/%) i a region D.

1
Consequence: Ntr (Qn(z) — Ty(2)) —— 0 almost surely on C — Ry by

n—oo

Borel-Cantelli's lemma and by analytic continuation.
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Towards a Central Limit Theorem

Towards a Central Limit Theorem

Let I,, (¢?) = S logdet ([ Iy + iHnHE so that C,, (¢2
N G2

e CLT over I,, asn — oo and N/n — ¢ > 0, at least in some particular cases such
as A,, = 0 in the model H,, =Y,, + A,,. We shall assume this case.

e By means of the "Gaussian approximation", we have an idea of the "outage
probability" P (1,, < a given threshold R).
In certain situations, this gives the probability that the channel cannot provide data
rate R.

e [wo terms :

— CLT over x1., = N (I, — C},) and variance derivation.

— Bias x2,, = N (C,, — C},) between mutual information NC,, and the
deterministic approximation NC,,.
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Towards a Central Limit Theorem

THE TERM X1 p,

Approach: CLT for martingales as in Girko and in Bai and Silverstein'04.

Notations:

Y ) is the N x (n — 1) matrix that remains after extracting column j denoted as
y(9) from Y.

. : . —1
QU () is the resolvent QU (2) = (Y(J)Y(])H — zIn> .
FU) is the o—field FU) =& (y(j), . ,y(”)).

EY) is the conditional expectation E [ .|| FW].

. 1 1 e
1Y) (%) = ~ log det (IN + —QY;ﬁYg)H).
S
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Towards a Central Limit Theorem

THE TERM X1,

N ([E(j) _ |]-:(j+1)> I,
=1

N ([Ew _ E(m)) ( I — ng)) due to ED W) — U+ (),
=1
By standard matrix manipulations, we have

N (In - Iﬁbj)) = log (¢*) + log (1 +y@D'QY) (=) y(j))

Sequence yU) = (EW) — EUTY) Jog (1 +yiQ® (—s?) y(j)) is a martingale
difference sequence with respect to the increasing filtration F(») ... F1) Apply

the CLT for martingales to Zy(j).

j=1

Variance of x1., is O(1).
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Towards a Central Limit Theorem

THE BIAS TERM X2,

We get back to ST by taking the derivative with respect to ¢2:

dX2,n
A= (EQu (%) ~ T (7))

We obtain
dXZ,n
dc?2  n—oo

([E ’X11’4 — 2) x Cst

X2,n» — 0 in the case elements of Y,, are Gaussian.
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