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Introduction

 Wireless networking with energy harvesting 

nodes:

 Green, self-sufficient nodes,

 Extended network lifetime,

 Smaller nodes with smaller batteries.

A relatively new field with increasing interest.
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Wireless sensor

networks
Green

communications
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Some Applications

Various other 

applications



Harvesting Energy

 Wind turbines                           

50-750kW, intermittent
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Image Credits: (top) 
http://www.popsci.com/files/imagecache/article_image_large/articles/GreenMountainWindFarm_Fluvanna_2004.jpg
(bottom) http://edu.glogster.com/media/4/33/80/5/33800548.jpg

 Photovoltaic Cells          

Abundant solar energy



Harvesting Energy

 Fujitsu’s hybrid device 

utilizing heat or light.
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Image Credits: (top) http://www.fujitsu.com/global/news/pr/archives/month/2010/20101209-01.html
(bottom) http://www.zeitnews.org/nanotechnology/squeeze-power-first-practical-nanogenerator-developed.html

 Nanogenerators built at 

Georgia Tech, utilizing strain



Motivation
 New Wireless Network Design Challenge: 

A set of energy feasibility constraints based on 

harvests govern the communication resources.

 Design question:

When and at what rate/power  should a “rechargeable” 

(energy harvesting) node transmit? 

 Optimality? Throughput; Delivery Delay
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 Maximize  the throughput of an energy 
harvesting transmitter by deadline T.

 Find optimal power allocation/transmission 
policy that departs maximum number of bits in 
a given duration.

 Up to a certain amount of energy can be stored 
by the transmitter  BATTERY CAPACITY

1. Short-term Throughput 
Maximization (STTM)
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 Energy arrivals of energy      at times     

 Arrivals known non-causally by transmitter,
 Stored in a finite battery of capacity       ,
 Design parameter: power     rate    .

System Model
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Power-Rate Function

 Strictly concave

Example: AWGN Channel,                                
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 Power allocation function:

 Energy consumed: 

 Short-term throughput:
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 Battery Capacity:

Energy Constraints

(Energy arrivals of Ei at times si)

 Energy Causality: nn
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 Set of energy-feasible power allocations
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Energy “Tunnel”
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Short-Term Throughput 
Maximization Problem

 Maximize total number of transmitted bits by deadline T

 Convex constraint set, concave maximization problem
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Necessary Conditions for Optimality 
of a transmission policy

 Property 1: Transmission power remains constant between 

arrivals.

 Property 2: Battery never overflows.

 Property 3: The change in power level at an energy arrival 

instant has to be non-negative (non-positive) if the 

battery is depleted (full) at that time instant.

 Property 4: Battery is depleted at the end of transmission.
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Necessary Conditions for 
Optimality

Implications of Properties 1-4:

 Structure of optimal policy: (Property 1)

 For power to increase or decrease, policy must meet the upper 

or lower boundary of the tunnel respectively (Property 3)

 At termination step, battery is depleted (Property 4).
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Energy “Tunnel”
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Shortest Path Interpretation

 Optimal policy is identical for any concave power-rate function!

 Let                       , then the problem solved becomes:

The throughput maximizing policy yields 
the shortest path through the energy tunnel for 
any concave power-rate function.
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Shortest Path Interpretation

 Property 1: Constant power is better than any other alternative

 Shortest path between two points is a line (constant slope)

E

t0
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Throughput Maximizing 
Algorithm (TMA)

max1

1maxmax111
0

0

',...,0for         ,'     ,'

 ,'    ,'    ,.'

11

1

nnissEE

nnniTTpiEE

nnnnnn

n

k
k










 Knowing the structure of the policy, we can construct an iterative 

algorithm to get the tightest string in the tunnel.

 Note: After a step             is determined, the rest of the policy is 

the solution to a shifted problem with shifted arrivals and deadline:

 Essentially, the algorithm compares and find the tightest segment 

that hits the upper or lower wall staying feasible all along.

),( 11 ip
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Energy harvesting scenario

Energy-feasible tunnel with
optimal transmission policy
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Alternative Solution

 Transmission power constant within each epoch:

 STTM problem expressed with above notation
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Water-filling approach

 Lagrangian function for STTM:
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(Complementary slackness conditions)

 Solution: constrained water-filling
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Directional Water-Filling

 Harvested energies filled into epochs individually

0 t
O O O

→

0E
→

1E
→

2E

Water levels (vi)
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Directional Water-Filling

 Harvested energies filled into epochs individually

 Constraints:

 Energy Causality: water-flow only forward in time

0 t
O O O

→
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→

1E
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2E

Water levels (vi)
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Directional Water-Filling

 Harvested energies filled into epochs individually

 Constraints:

 Energy Causality: water-flow only forward in time

 Battery Capacity: water-flow limited to Emax by taps →

0 t
O O O

→

0E
→

1E
→

2E

Water levels (vi)
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Directional Water-Filling

 Energy tunnel 

and directional 

water-filling 

approaches 

yield the same 

policy
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Directional Water-Filling

 Energy tunnel 

and directional 

water-filling 

approaches 

yield the same 

policy
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Simulation Results

 Improvement of optimal algorithm over an on-off transmitter in 
a simulation with truncated Gaussian arrivals.

27



 Given the total number of bits to send as B, 
finalize the transmission in the shortest time 
possible.

2. Transmission Completion Time 
Minimization (TCTM)
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 Lagrangian dual of TCTM problem becomes:

Relationship of
STTM and TCTM problems






 





  

T

TPtpu
dttprBuT

0,)(0
))(( minmax







 





  

T

PtpTu
dttpruuBT

0)(0
))(( max.minmax

STTM problem for deadline T
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 Optimal allocations are identical:

 STTM solution can be used to solve the 
TCTM problem

Relationship of
STTM and TCTM problems

STTM’s solution 
for deadline T

departing B bits

TCTM’s solution 
for departing B
bits in time T
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Maximum Service Curve 
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Maximum Service Curve 

 Continuous, monotone increasing, invertible

 Optimal allocation 
for TCTM with B1
bits

Optimal allocation 
for STTM with 
deadline T1
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3. Extension to Fading 
Channels

 Find the short-term throughput maximizing 
and transmission completion time minimizing 
power allocations in a fading channel with non-
causally known channel states.
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System Model

 AWGN Channel with fading h :

 Each “epoch” defined as the interval between two “events”.

 Fading states and harvests known non-causally
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STTM Problem with Fading

 Transmission power constant within each epoch:

 Maximize total number of transmitted bits by a 

deadline T
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STTM Problem with Fading

 Lagrangian of the STTM problem
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(Complementary slackness conditions)

 Solution: constrained water-filling with 

fading levels: 
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Directional Water-Filling

0 t
O O Ox

→

0E
→

2E
→
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Fading levels (1/hi)

Water levels (vi)

x

 Same directional water filling model with added 

fading levels.

 Directional water flow (Energy causality)

 Limited water flow (Battery capacity)
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Directional Water-Filling

 Same directional water filling model with added 

fading levels.

 Directional water flow (Energy causality)

 Limited water flow (Battery capacity)
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Water depth gives
transmission power pi
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Maximum Service Curve 

 Continuous, non-decreasing
(flat regions when fading is severe)

 Inverse can be considered 
as the smallest T that 
achieves B1
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4. Online Algorithms
Optimal online policy can be found using dynamic 

programming
 States of the system: fade level: h, battery energy: e

 Quantizing time by δ,  g*(e,h,kδ) can be found by iteratively solving
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Online Algorithms
Constant Water Level

 A cutoff fading level h0 is determined by the average 
harvested power Pavg as:

 Transmitter uses the corresponding water-filling power 
if available, goes silent otherwise
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Fading distribution
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Online Algorithms
Energy Adaptive Water-Filling
 Cutoff fade level h0 determined from current energy as:

 Transmission power determined by water-filling expression:

 Sub-optimal, but requires only fading statistics.
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Online Algorithms
Time-Energy Adaptive Water-filling
 h0 determined by remaining energy scaled by remaining time as

Hybrid Adaptive Water-filling
 h0 determined similarly but by adding average received power
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Simulations

Performances of the 
policies w.r.t. energy 
arrival rates under:

 unit mean 
Rayleigh fading

 T = 10 sec

 Emax = 10 J.
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5. Gaussian IC with EH Transmitter
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 Sum-Throughput Maximization Problem:
Find optimal transmission power/rate policies that 
maximize the total amount of data transmitted to 
both receivers by a deadline T=Nτ.

Problem Definition
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 Claim:

Concavity of sum-rate

2121 ),( ppppr  and  in concave  jointlyis 

Given any transmission scheme achieving a sum-rate 
r(p1,p2), one can utilize time-sharing to construct concave 
sum-rate:
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 Alternating maximization method among the two 
users converge to the optimal transmission

Alternating Maximization
(Cyclic Coordinate Descent)

max,2
1

,2,2

1
,2,1

0
2

max,1
1

,1,1

1

1
,2,1

0

0..

),(maxarg

0..

),(maxarg

2

EpEts

ppr

EpEts

ppr

n

i
ii

N

i
i

k
i

n

i
ii

N

i

k
ii





































          

          

p

k

p

k
1

p

p
1

Only constraints 
corresponding to 
the optimized 
user are relevant
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 When achievable rate function r(p) is arbitrary,

Generalized Directional 
Water-Filling

 Solution: constrained water-filling with 

generalized water levels: i
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 Arises in most known IC sum-capacity expressions
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Sum-Rate for Asymmetric IC
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 User 1:

 Directional water-filling with base levels as 

Region I: ab>1 (a<1, b>1)
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 User 2: 
 KKT 

 Complementary Slackness    => directional water-filling 
type water level changes

 Generalized directional water-filling with water levels:

Region I: ab>1 (a<1, b>1)
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Simulations
 Energy arrivals: 

magenta

 Base levels: green, 

 Optimal p1 significantly 
differs from the single 
user level.

 This in return affects 
the optimal p2 found 
using generalized 
water-filling.
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Conclusion
• New paradigm: Networking with energy 

harvesting nodes

 New design insights arising from new energy 
constraints

 In this presentation, we covered 
 Optimal scheduling policies for a single transmitter,
 Directional water-filling for fading channels,
 Extension to the Interference Channel.
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Future Directions and 
Open Problems

 Information theoretic limits, optimal coding 
schemes for energy harvesters

 Energy harvesting relays, receivers,…

 Efficient online algorithms, simple practical 
implementations
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