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I. Problem presentation
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Heteroscedastic Regression

Observations : finite collection of pairs {(x t , yt ); t = 1, . . . ,T}

• x t ∈ Rd multidimensional feature vector ;

• yt ∈ R real valued label.

Prediction : for a new feature xT+1, predict yT+1.

• Quadratic loss : `[yT+1,b(xT+1)] = (yT+1 − b(xT+1))2.

• Bayes predictor : b∗ = arg minb E
{
`[yT+1,b(xT+1)]

}
b∗(x) = E[yT+1|xT+1 = x ].

• Given xT+1 = x , the average loss of the Bayes predictor :

s∗2(x) = E
{
`[yT+1,b∗(xT+1)]

∣∣xT+1 = x
}

= Var[yT+1|xT+1 = x ].

The goal is to estimate the functions b∗ and s∗.
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Problem reformulation

Observations : finite collection (x t , yt ) ∈ Rd × R obeying

yt = b∗(x t ) + s∗(x t ) ξt , t ∈ T = {1, . . . ,T},

where b∗ : Rd → R and s∗ : Rd → R+ such that

Conditional mean : E[yt |x t ] = b∗(x t ).

Conditional variance : Var[yt |x t ] = s∗2(x t ).

Therefore, ξt ’s are such that E[ξt |x t ] = 0 and Var[ξt |x t ] = 1. They are
often assumed Gaussian N (0,1) for simplicity.

Goal : to jointly estimate the functions b∗ and s∗ by a computationally
tractable procedure with strong theoretical guarantees.
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Sparsity Assumption

• In these settings, estimating b∗ and s∗ under no further
assumption is an ill-posed problem.

• Sparsity scenario : b∗ and s∗ belong to some low dimensional
spaces.

Example : Homoscedastic regression

∀x , b∗(x) =

p∑
j=1

fj (x)β∗j = [f1(x), . . . , fp(x)]β∗, and s∗(x) ≡ σ∗

↪→ Dictionary {f1, . . . , fp} of functions from Rd to R

↪→ Unknown vector (β∗, σ∗) ∈ Rp × R, sparse vector β∗

↪→ Sparsity index : p∗ = |β∗|0 :=
∑p

j=1 1l(β∗j 6= 0) with p∗ � p
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Some remarks

• Because of its nonparametric nature, this problem is hard even
for small values of the dimension d .

• The literature on estimating s∗ is very scarce as compared to the
literature on estimating b∗.

• Estimators of s∗ may be used for constructing confidence
intervals for the predictions.

• The case of time-inhomogeneous observations is included in the
previous set-up. Indeed, if

b∗t (x) = E[yt |x t = x ]

depends on “time” t , one can include the time as a feature
x̄ t = (x t , t) and set b̄∗(x̄ t ) = b∗t (x t ).
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Homoscedastic regression

The model is

Y = Xβ∗ + σ∗ξ

Observations : Y = [y1, . . . , yT ]> ∈ RT

Noise : ξ = [ξ1, . . . , ξT ]> ∈ RT

Design Matrix : X = xt,j with xt,j = [fj (x t )] ∈ R

Coefficients : β∗ =
[
β∗1 , . . . , β

∗
p
]> ∈ Rp

Standard deviation : s∗(x t ) ≡ σ∗ ∈ R+
∗

Recall that the sparsity assumption postulates that |β∗|0 = p∗ � p.
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Most popular methods : Lasso and Dantzig selector

� The LASSO of Tibshirani (1996) is defined as

β̂
Lasso

= arg min
β∈Rp

(
|Y − Xβ|22

2σ∗2 + λ

p∑
j=1

|Xj |2|βj |
)

� The Dantzig selector of Candès and Tao (2007) is

β̂
DS

= arg min
β∈Rp

{ p∑
j=1

|Xj |2|βj | : max
j=1,··· ,p,

|X>j (Y − Xβ)|
|Xj |2

≤ λ
}

For a tuning parameter satisfying λ ∝ 1/σ∗, if X is “nice”, sharp oracle
inequalities are available, e.g., Bickel et al. (2009).

E
(

1
T
|X(β̂

•
− β)|22

)
≤ C

p∗ log(p)

T
.

To correctly tune the parameter λ, the knowledge of σ∗ is necessary.
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Joint estimation of β∗ and σ∗ (1/2)

� Scaled Lasso, Städler et al. (2010),

(β̂
ScL
, σ̂ScL) = arg min

β,σ

(
T log(σ)+

|Y − Xβ|22
2σ2 +

λ

σ

∑p

j=1
|Xj |2|βj |

)
.

This can be recast in a convex problem (do ρ := 1
σ and φ := β

σ ) :

arg min
φ,ρ

(
− T log(ρ) +

|ρY − Xφ|22
2

+ λ
∑p

j=1
|Xj |2|φj |

)
.

� Scaled DS version proposed by Dalalyan & Chen (2012) : sharp
analysis and computational advantages.
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Joint estimation of β∗ and σ∗ (2/2)

� Square-Root Lasso Antoniadis (2010), Belloni et al. (2011), Sun
& Zhang (2012),

β̂
SqR-Lasso

= arg min
β

(∣∣Y − Xβ
∣∣
2 + λ

∑p

j=1
|X j |2|βj |

)
σ̂SqR-Lasso = T−1/2

∣∣Y − Xβ̂
SqR-Lasso∣∣

2.

� Self Tuning Instrumental Variables (STIV) Gautier & Tsybakov
(2011), (β̂STIV, σ̂STIV) minimizes

σ + λ
∑p

j=1
|X j |2|βj |

subject to the constraints∣∣Y − Xβ
∣∣
2 ≤ σ; ∀j = 1, · · · ,p, |X>j (Y − Xβ)| ≤ λ̃|X j |2.

If the two tuning parameters coincide λ = λ̃, STIV = SqR-Lasso.
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Some remarks

• If the design matrix X satisfies some “nice” conditions (RIP,
RE,...), the theoretical guarantees for the methods presented in
this part are almost as strong as for the Lasso and the DS with
known σ∗.

• All the estimators presented in this part are computable by
solving a simple convex program. This can be done efficiently
even for large dimensions p.

• Extensions to the matrix estimation under the rank-sparsity
available Klopp (2012).
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Functional transformation

• Re-parametrize by the inverse of the conditional standard
deviation s∗

r∗(x) =
1

s∗(x)
and f∗(x) =

b∗(x)

s∗(x)
.

• This leads to

r∗(x t ) · yt = f∗(x t ) + ξt , t = 1, . . . ,T ,

where r∗ : Rd → R is the inverse of conditional standard
deviation (StD) and f∗ is the conditional signal-to-noise ratio.

• We impose modeling assumptions on the pair (r∗, f∗) rather than
on (s∗,b∗).
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Main assumptions on b∗ and s∗

Group Sparsity Assumption

For p given functions f1, . . . , fp mapping Rd into R, there is a vector
φ∗ ∈ Rp such that

f∗(x) =
∑p

j=1
φ∗j fj (x).

Furthermore, for a given partition G1, . . . ,GK of {1, . . . ,p}, the vector
φ∗ is group-sparse that is

Card({k : |φ∗Gk
|2 6= 0})� K .

Low dimensional inverse StD assumption

For q given functions r1, . . . , rq mapping Rd into R+, there is a vector
α∗ ∈ Rq such that

r∗(x) =
∑q

`=1
α∗` r`(x), ∀x ∈ Rd .
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Motivations for these assumptions

� Group sparsity assumption is relevant in a sparse
additive model, that is when

↪→ f∗(x) = ψ1(x1) + . . .+ ψd (xd ) s.t. ψj ≡ 0 for most j ,
↪→ projection on basis ψj(xj) ≈

∑Kj
`=1 φ

∗
`,j f`(xj),

↪→ group sparsity of φ = (φ`,j).

� Low dimensionality of the inverse StD occurs, for
instance when the noise is block-wise homoscedastic or
periodic.
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Estimation for heteroscedastic regression

Observations : (x t , yt )t=1,...,T obeying

yt = b∗(x t ) + s∗(x t ) ξt = r∗(x t )
−1(f∗(x t ) + ξt ).

Under our assumptions

f∗(x t ) =
∑p

j=1
φ∗j fj (x t ) = X(t)φ∗,

r∗(x t ) =
∑q

`=1
α∗` r`(x t ) = R(t)α∗.

Thus, f∗(x1)
...

f∗(xT )

 = Xφ∗ and

r∗(x1)
...

r∗(xT )

 = Rα∗.

This leads to

DY Rα∗ = Xφ∗ + ξ, DY = diag(y1, . . . , yT ).
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Estimation for heteroscedastic regression

Scaled Heteroscedastic Lasso : (φ̂ScHeL, α̂ScHeL) solution to

min
(φ,α)

{
−

T∑
t=1

log(R(t)α) +
1
2
|DY Rα− Xφ|22︸ ︷︷ ︸

Gaussian negative log-likelihood

+
K∑

k=1

λk |XGkφGk
|2︸ ︷︷ ︸

sparsity promoting penalty

}
.

• The optimization problem is convex.

• ... but the gradient of the objective is not Lipschitz.
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Estimation for heteroscedastic regression

Scaled Heteroscedastic Dantzig selector (ScHeDs) :

(φ̂ScHeDs, α̂ScHeDs) solution to

min
(φ,α)∈Rp+q

K∑
k=1

λk |XGkφGk
|2 s.t.∣∣∣ΠGk

(
diag(Y )Rα− Xφ

)∣∣
2 ≤ λk , ∀k ∈ {1, . . . ,K};

T∑
t=1

Rt`

Rt,:α
≤
(
ytRt,:α− X t,:φ

)
ytRt`, ∀` ∈ {1, . . . ,q};

Theorem : ScHeDs can be solved by an SOCP. Furthermore, the
feasible set of this problem is not empty and contains, in particular,
the ScHeL.
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Comments on the procedure

• Degrees of freedom :
↪→ Many tuning parameters in the procedure
↪→ Theory : λk = λ0

√
rk with λ0 > 0 and rk = rank(XGk )

↪→ Most papers use λk ∝
√
|Gk | (k = 1, . . . ,K )

• One can include additional constraints of boundedness of
the conditional mean or conditional standard deviation
without breaking convexity.

• Bias Correction, practical improvement :
↪→ Classical two-steps methods :

i) our algorithm with λk = λ0
√

rk (k = 1, . . . ,K )
ii) Least squares on the selected variables (λ = 0)
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Comments on the implementation

Several off-the-shelves toolboxes (for instance in Matlab) exist
to deal with SOCP

• Sedumi Sturm (1999) : popular interior point methods
http://sedumi.ie.lehigh.edu/

↪→ highly accurate solution for moderately large
datasets, e.g. p,T ≤ 2000

• Tfocs Becker et al. (2011) : first-order proximal method
http://cvxr.com/tfocs/

↪→ less accurate (but do we need high accuracy in
a noisy setting ?)

BUT can handle large scale datasets.
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Finite sample risk bounds for the ScHeDs

Theorem
Consider the aforementioned heteroscedastic model with sub-
Gaussian errors ξ. Let K ∗ (resp. p∗) be the number of relevant groups
(resp. corrdinates of φ∗). Let ε ∈ (0,1) be a tolerance level and set

λk = 4
(√

rank(XGk ) +
√

log(K/ε)
)
.

Under some assumptions, with probability at least 1− 2ε,∣∣X(φ̂− φ∗)
∣∣
2 ≤ D3/2

T ,ε

√
q log(2q/ε) + DT ,ε

√
p∗ + K ∗ log(K/ε).∣∣R(α̂−α∗)

∣∣
2 ≤ D3/2

T ,ε

√
q log(2q/ε) + DT ,ε

√
p∗ + K ∗ log(K/ε),

where DT ,ε ∝ (maxt |f∗(x t )|+ log(2T/ε)).

c© Dalalyan, A.S. Dec. 19, 2012 22



IV. Numerical experiments
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Homoscedastic noise

Data : 500 repetitions :

• Design matrix : X ∈ RT×p i.i.d. entries N (0,1)

• Noise vector : ξ ∼ N (0T , IT×T ) independent of X ; σt ≡ σ∗

• Regression vector : β0 = [1p∗ , 0p−p∗ ]
> ;

↪→ permutation of the entries of β0 gives β∗ ;

• Response vector : Y = Xβ∗ + σ∗ξ.

Setting : 8 different settings varying (T ,p,p∗, σ∗)

Challenger : Square-root Lasso

Tuning parameter : universal choice for both λ =
√

2 log(p) as
good in most cases as Cross Validation, cf. Sun and Zhang
(2012)
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FIGURE: Comparing interior point (IP) vs. optimal first-order (OFO)
method. Top & middle : MSE of β̂

ScHeDs
. Bottom : running times.
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Experiment with bias correction for the two methods :
ScHeDs |β̂ − β∗|2 |p̂ − p∗| 10|σ̂ − σ∗|

( T , p, i∗, σ∗) Ave StD Ave StD Ave StD

(100, 100, 2, .5) .06 .03 .00 .00 .29 .21
(100, 100, 5, .5) .11 .08 .01 .12 .32 .37
(100, 100, 2, 1) .13 .07 .03 .16 .57 .46
(100, 100, 5, 1) .28 .23 .10 .33 .77 .68
(200, 100, 5, .5) .08 .02 .00 .00 .23 .16
(200, 100, 5, 1) .16 .05 .00 .01 .09 .29
(200, 500, 8, .5) .09 .03 .00 .00 .22 .16
(200, 500, 8, 1) .21 .11 .03 .17 .48 .43

SqR Lasso |β̂ − β∗|2 |p̂ − p∗| 10|σ̂ − σ∗|
(100, 100, 2, .5) .08 .06 .19 .44 .32 .23
(100, 100, 5, .5) .12 .04 .18 .42 .33 .24
(100, 100, 2, 1) .16 .10 .19 .44 .59 .48
(100, 100, 5, 1) .25 .16 .21 .43 .68 .47
(200, 100, 5, .5) .09 .03 .21 .45 .24 .17
(200, 100, 5, 1) .18 .07 .21 .48 .48 .32
(200, 500, 8, .5) .10 .03 .14 .38 .23 .17
(200, 500, 8, .5) .21 .07 .18 .40 .46 .34
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Real data : temperature in Paris

Data : daily temperature in Paris from 2003 to 2008 ;
↪→ National Climatic Data Center (NCDC).

• Response variable yt : the difference of temperature
between two successive days.

• Covariates x t = (t ,ut ) : 17 dimensional vector (16+1)
↪→ time t ;
↪→ increments of temperature over the past 7 days ;
↪→ maximal intraday variation of temperature over the

past 7 days ;
↪→ wind speed of the day before.
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Construction of R : T × 11 matrix with columns r`.

r1(x t ) = 1; r2(x t ) = t ; r3(x t ) = 1/(t + 2× 365)
1
2 ;

r`(x t ) = 1 + cos(2π(`− 3)t/365); ` = 4, . . . ,7;

r`(x t ) = 1 + cos(2π(`− 7)t/365); ` = 8, . . . ,11.

Construction of X : T × 2176 matrix with columns fj . ↪→
Time-varying second-order polynomial in ut :

fj(t) = ψ`(t)× χm,m′(ut );

|{fj}| = 16× 16× 17/2 = 2176.

Construction of groups : 136 groups of 16 functions

Gm,m′ = {ψ`(t)× χm,m′(ut ) : ` = 1, . . . ,16}.
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Results

Samples :

↪→ Training set : temperatures from 2003 to 2007
(that is, 2172 values) ;

↪→ Test set : temperatures from 2008
(that is, 366 values, leap year).

Conclusions of the study :

• Dimension reduction : from 2176 to 26 ;

• Sign estimation : 62% of right estimation ;

• Volatility estimation : the oscillation of the temperature
during the period between May and July is significantly
higher than in March, September and October ;
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Summary

New procedures named ScHeL and ScHeDs :

� Suitable for fitting the heteroscedastic regression model.

� Simultaneous estimation of the mean and the variance functions.

� Takes into account group sparsity.

� Implemented using two different solvers :
↪→ primal-dual interior point method (highly accurate),
↪→ optimal first-order method (moderately accurate but with

cheap iterations).

� Competitive with state-of-the art algorithms
↪→ applicable in a much more general framework.

Manuscript is available on arxiv, codes are available on request.
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