Joint estimation of the conditional mean and the conditional variance in high-dimensions

Joint work with M. Hebiri, K. Meziani, J. Salmon

"Estimation et traitement statistique en grande dimension" May 16, 2013 Paris, FRANCE

Arnak S. Dalalyan

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めへで

ENSAE / CREST / GENES

I. Problem presentation

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Heteroscedastic Regression

Observations : finite collection of pairs $\{(\mathbf{x}_t, \mathbf{y}_t); t = 1, ..., T\}$

- $\mathbf{x}_t \in \mathbb{R}^d$ multidimensional feature vector;
- $y_t \in \mathbb{R}$ real valued label.

Prediction : for a new feature \mathbf{x}_{T+1} , predict y_{T+1} .

- Quadratic loss : $\ell[y_{T+1}, b(x_{T+1})] = (y_{T+1} b(x_{T+1}))^2$.
- Bayes predictor : $b^* = \arg \min_b \mathbf{E} \{ \ell[y_{T+1}, b(\boldsymbol{x}_{T+1})] \}$

$$b^*(\boldsymbol{x}) = \mathbf{E}[y_{T+1} | \boldsymbol{x}_{T+1} = \boldsymbol{x}].$$

• Given $\mathbf{x}_{T+1} = \mathbf{x}$, the average loss of the Bayes predictor :

 $s^{*2}(\mathbf{x}) = \mathbf{E}\{\ell[y_{T+1}, b^{*}(\mathbf{x}_{T+1})] \mid \mathbf{x}_{T+1} = \mathbf{x}\} = Var[y_{T+1} \mid \mathbf{x}_{T+1} = \mathbf{x}].$

The goal is to estimate the functions b* and s*.

Problem reformulation

Observations : finite collection $(\mathbf{x}_t, \mathbf{y}_t) \in \mathbb{R}^d \times \mathbb{R}$ obeying

 $\mathbf{y}_t = \mathbf{b}^*(\mathbf{x}_t) + \mathbf{s}^*(\mathbf{x}_t)\xi_t, \qquad t \in \mathcal{T} = \{1, \dots, T\},$

where $b^* : \mathbb{R}^d \to \mathbb{R}$ and $s^* : \mathbb{R}^d \to \mathbb{R}_+$ such that

Conditional mean : $\mathbf{E}[y_t | \mathbf{x}_t] = \mathbf{b}^*(\mathbf{x}_t)$. Conditional variance : $\mathbf{Var}[y_t | \mathbf{x}_t] = \mathbf{s}^{*2}(\mathbf{x}_t)$.

Therefore, ξ_t 's are such that $\mathbf{E}[\xi_t | \mathbf{x}_t] = 0$ and $\mathbf{Var}[\xi_t | \mathbf{x}_t] = 1$. They are often assumed Gaussian $\mathcal{N}(0, 1)$ for simplicity.

Goal : to jointly estimate the functions b^* and s^* by a computationally <u>tractable</u> procedure with strong theoretical guarantees.

Sparsity Assumption

- In these settings, estimating b* and s* under no further assumption is an ill-posed problem.
- Sparsity scenario : b* and s* belong to some low dimensional spaces.

Example : Homoscedastic regression $\forall \boldsymbol{x}, \quad b^*(\boldsymbol{x}) = \sum_{j=1}^{p} f_j(\boldsymbol{x}) \beta_j^* = [f_1(\boldsymbol{x}), \dots, f_p(\boldsymbol{x})] \beta^*, \quad \text{and} \quad s^*(\boldsymbol{x}) \equiv \sigma^*$ $\hookrightarrow \text{ Dictionary } \{f_1, \dots, f_p\} \text{ of functions from } \mathbb{R}^d \text{ to } \mathbb{R}$ $\hookrightarrow \text{ Unknown vector } (\beta^*, \sigma^*) \in \mathbb{R}^p \times \mathbb{R}, \text{ sparse vector } \beta^*$ $\hookrightarrow \text{ Sparsity index } : \rho^* = |\beta^*|_0 := \sum_{j=1}^{p} \mathbb{I}(\beta_j^* \neq 0) \text{ with } \rho^* \ll \rho$

Some remarks

- Because of its nonparametric nature, this problem is hard even for small values of the dimension *d*.
- The literature on estimating s* is very scarce as compared to the literature on estimating b*.
- Estimators of s* may be used for constructing confidence intervals for the predictions.
- The case of time-inhomogeneous observations is included in the previous set-up. Indeed, if

 $\mathsf{b}_t^*(\boldsymbol{x}) = \mathbf{E}[\boldsymbol{y}_t | \boldsymbol{x}_t = \boldsymbol{x}]$

depends on "time" *t*, one can include the time as a feature $\bar{\mathbf{x}}_t = (\mathbf{x}_t, t)$ and set $\bar{\mathbf{b}}^*(\bar{\mathbf{x}}_t) = \mathbf{b}_t^*(\mathbf{x}_t)$.

II. Previous work

< ロ > < 回 > < 三 > < 三 > < 三 > < ○ < ○

Homoscedastic regression

The model is

 $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta}^* + \sigma^*\boldsymbol{\xi}$

Observations : $\mathbf{Y} = [\mathbf{y}_1, \dots, \mathbf{y}_T]^\top \in \mathbb{R}^T$ Noise : $\boldsymbol{\xi} = [\xi_1, \dots, \xi_T]^\top \in \mathbb{R}^T$ Design Matrix : $\mathbf{X} = \mathbf{x}_{t,j}$ with $\mathbf{x}_{t,j} = [\mathbf{f}_j(\mathbf{x}_t)] \in \mathbb{R}$ Coefficients : $\boldsymbol{\beta}^* = [\boldsymbol{\beta}_1^*, \dots, \boldsymbol{\beta}_p^*]^\top \in \mathbb{R}^p$ Standard deviation : $\mathbf{s}^*(\mathbf{x}_t) \equiv \sigma^* \in \mathbb{R}^+$

Recall that the sparsity assumption postulates that $|\beta^*|_0 = p^* \ll p$.

Most popular methods : Lasso and Dantzig selector

The LASSO of Tibshirani (1996) is defined as

$$\widehat{\boldsymbol{\beta}}^{\mathsf{Lasso}} = \argmin_{\boldsymbol{\beta} \in \mathbb{R}^p} \left(\frac{|\boldsymbol{Y} - \boldsymbol{\mathsf{X}} \boldsymbol{\beta}|_2^2}{2\sigma^{*2}} + \lambda \sum_{j=1}^p |\boldsymbol{\mathsf{X}}_j|_2 |\beta_j| \right)$$

The Dantzig selector of Candès and Tao (2007) is

$$\widehat{\boldsymbol{\beta}}^{\mathsf{DS}} = \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^p} \left\{ \sum_{j=1}^{p} |\mathbf{X}_j|_2 |\beta_j| : \max_{j=1,\cdots,p,} \frac{|\mathbf{X}_j^{\top}(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})|}{|\mathbf{X}_j|_2} \le \lambda \right\}$$

For a tuning parameter satisfying $\lambda \propto 1/\sigma^*$, if **X** is "nice", sharp oracle inequalities are available, *e.g.*, Bickel *et al.* (2009).

$$\mathbf{E}\left(\frac{1}{T}|\mathbf{X}(\widehat{\boldsymbol{\beta}}^{\bullet}-\boldsymbol{\beta})|_{2}^{2}\right) \leq C \; \frac{p^{*}\log(p)}{T}$$

To correctly tune the parameter λ , the knowledge of σ^* is necessary.

Joint estimation of β^* and σ^* (1/2)

Scaled Lasso, Städler et al. (2010),

$$(\widehat{\boldsymbol{\beta}}^{\mathrm{ScL}}, \widehat{\sigma}^{\mathrm{ScL}}) = \operatorname*{arg\,min}_{\boldsymbol{\beta}, \sigma} \left(T \log(\sigma) + \frac{|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}|_2^2}{2\sigma^2} + \frac{\lambda}{\sigma} \sum_{j=1}^{\rho} |\boldsymbol{X}_j|_2 |\beta_j| \right).$$

This can be recast in a convex problem (do $\rho:=\frac{1}{\sigma}$ and $\phi:=\frac{\beta}{\sigma})$:

$$\underset{\phi,\rho}{\arg\min}\left(-T\log(\rho)+\frac{|\rho \mathbf{Y}-\mathbf{X}\phi|_2^2}{2}+\lambda\sum_{j=1}^{p}|\mathbf{X}_j|_2|\phi_j|\right).$$

 Scaled DS version proposed by Dalalyan & Chen (2012) : sharp analysis and computational advantages.

Joint estimation of β^* and σ^* (2/2)

Square-Root Lasso Antoniadis (2010), Belloni *et al.* (2011), Sun & Zhang (2012),

$$\begin{split} \widehat{\boldsymbol{\beta}}^{\text{SqR-Lasso}} &= \operatorname*{arg\,min}_{\boldsymbol{\beta}} \left(\left| \boldsymbol{Y} - \boldsymbol{X} \boldsymbol{\beta} \right|_{2} + \lambda \sum_{j=1}^{p} \left| \boldsymbol{X}_{j} \right|_{2} |\beta_{j}| \right) \\ \widehat{\sigma}^{\text{SqR-Lasso}} &= T^{-1/2} \left| \boldsymbol{Y} - \boldsymbol{X} \widehat{\boldsymbol{\beta}}^{\text{SqR-Lasso}} \right|_{2}. \end{split}$$

Self Tuning Instrumental Variables (STIV) Gautier & Tsybakov (2011), (β^{STIV}, σ^{STIV}) minimizes

$$\sigma + \lambda \sum_{j=1}^{p} |\boldsymbol{X}_j|_2 |\beta_j|$$

subject to the constraints

 $| \mathbf{Y} - \mathbf{X} \boldsymbol{\beta} |_2 \leq \sigma; \qquad \forall j = 1, \cdots, p, | \mathbf{X}_j^\top (\mathbf{Y} - \mathbf{X} \boldsymbol{\beta}) | \leq \widetilde{\lambda} | \mathbf{X}_j |_2.$

If the two tuning parameters coincide $\lambda = \tilde{\lambda}$, STIV = SqR-Lasso.

Some remarks

- If the design matrix **X** satisfies some "nice" conditions (RIP, RE,...), the theoretical guarantees for the methods presented in this part are almost as strong as for the Lasso and the DS with known σ^* .
- All the estimators presented in this part are computable by solving a simple convex program. This can be done efficiently even for large dimensions *p*.
- Extensions to the matrix estimation under the rank-sparsity available Klopp (2012).

© Dalalyan, A.S.

III. Main results

< ロ > < 回 > < 三 > < 三 > < 三 > < ○ < ○

Functional transformation

 Re-parametrize by the inverse of the conditional standard deviation s*

$$r^*(\boldsymbol{x}) = rac{1}{s^*(\boldsymbol{x})}$$
 and $f^*(\boldsymbol{x}) = rac{b^*(\boldsymbol{x})}{s^*(\boldsymbol{x})}.$

This leads to

 $\mathbf{r}^*(\mathbf{x}_t) \cdot \mathbf{y}_t = \mathbf{f}^*(\mathbf{x}_t) + \xi_t, \qquad t = 1, \dots, T,$

where $r^* : \mathbb{R}^d \to \mathbb{R}$ is the inverse of conditional standard deviation (StD) and f^* is the conditional signal-to-noise ratio.

 We impose modeling assumptions on the pair (r*, f*) rather than on (s*, b*).

Main assumptions on b* and s*

Group Sparsity Assumption

For *p* given functions f_1, \ldots, f_p mapping \mathbb{R}^d into \mathbb{R} , there is a vector $\phi^* \in \mathbb{R}^p$ such that

$$f^*(\boldsymbol{x}) = \sum_{j=1}^{\rho} \phi_j^* f_j(\boldsymbol{x}).$$

Furthermore, for a given partition G_1, \ldots, G_K of $\{1, \ldots, p\}$, the vector ϕ^* is group-sparse that is

$$Card(\{k: |\phi_{G_k}^*|_2 \neq 0\}) \ll K.$$

Low dimensional inverse StD assumption

For q given functions r_1, \ldots, r_q mapping \mathbb{R}^d into \mathbb{R}_+ , there is a vector $\alpha^* \in \mathbb{R}^q$ such that

$$\mathsf{r}^*(\boldsymbol{x}) = \sum_{\ell=1}^{\mathsf{q}} \alpha_\ell^* \mathsf{r}_\ell(\boldsymbol{x}), \qquad \forall \boldsymbol{x} \in \mathbb{R}^d.$$

Motivations for these assumptions

 Group sparsity assumption is relevant in a sparse additive model, that is when

 Low dimensionality of the inverse StD occurs, for instance when the noise is block-wise homoscedastic or periodic.

Estimation for heteroscedastic regression

Observations : $(\mathbf{x}_t, \mathbf{y}_t)_{t=1,...,T}$ obeying

$$y_t = \mathsf{b}^*(\boldsymbol{x}_t) + \mathsf{s}^*(\boldsymbol{x}_t)\xi_t = \mathsf{r}^*(\boldsymbol{x}_t)^{-1}(\mathsf{f}^*(\boldsymbol{x}_t) + \xi_t).$$

Under our assumptions

$$f^*(\boldsymbol{x}_t) = \sum_{j=1}^{\rho} \phi_j^* f_j(\boldsymbol{x}_t) = \mathbf{X}(t)\phi^*,$$

$$r^*(\boldsymbol{x}_t) = \sum_{\ell=1}^{q} \alpha_\ell^* r_\ell(\boldsymbol{x}_t) = \mathbf{R}(t)\alpha^*.$$

Thus,

$$\begin{bmatrix} f^*(\boldsymbol{x}_1) \\ \vdots \\ f^*(\boldsymbol{x}_T) \end{bmatrix} = \boldsymbol{X}\phi^* \quad \text{and} \quad \begin{bmatrix} r^*(\boldsymbol{x}_1) \\ \vdots \\ r^*(\boldsymbol{x}_T) \end{bmatrix} = \boldsymbol{R}\alpha^*.$$

This leads to

$$\mathbf{D}_{\mathbf{Y}}\mathbf{R}\alpha^* = \mathbf{X}\phi^* + \boldsymbol{\xi}, \qquad \mathbf{D}_{\mathbf{Y}} = \operatorname{diag}(y_1, \dots, y_T).$$

Estimation for heteroscedastic regression

- The optimization problem is convex.
- ... but the gradient of the objective is not Lipschitz.

© Dalalyan, A.S.

Estimation for heteroscedastic regression

Scaled Heteroscedastic Dantzig selector (ScHeDs) :

$$(\widehat{\phi}^{\text{ScHeDs}}, \widehat{\alpha}^{\text{ScHeDs}}) \text{ solution to}$$

$$(\phi, \alpha) \in \mathbb{R}^{p+q} \sum_{k=1}^{K} \lambda_k |\mathbf{X}_{G_k} \phi_{G_k}|_2 \quad \text{s.t.}$$

$$\left| \mathbf{\Pi}_{G_k} (\text{diag}(\mathbf{Y}) \mathbf{R} \alpha - \mathbf{X} \phi) \right|_2 \le \lambda_k, \quad \forall k \in \{1, \dots, K\};$$

$$\sum_{t=1}^{T} \frac{\mathbf{R}_{t\ell}}{\mathbf{R}_{t,:} \alpha} \le (y_t \mathbf{R}_{t,:} \alpha - \mathbf{X}_{t,:} \phi) y_t \mathbf{R}_{t\ell}, \quad \forall \ell \in \{1, \dots, q\};$$

Theorem : ScHeDs can be solved by an SOCP. Furthermore, the feasible set of this problem is not empty and contains, in particular, the ScHeL.

Comments on the procedure

• Degrees of freedom :

 \hookrightarrow Many tuning parameters in the procedure

- One can include additional constraints of boundedness of the conditional mean or conditional standard deviation without breaking convexity.
- Bias Correction, practical improvement :

 \hookrightarrow Classical two-steps methods :

i) our algorithm with $\lambda_k = \lambda_0 \sqrt{r_k}$ (k = 1, ..., K)

ii) Least squares on the selected variables ($\lambda = 0$)

Comments on the implementation

Several off-the-shelves toolboxes (for instance in Matlab) exist to deal with SOCP

• Sedumi Sturm (1999) : popular interior point methods http://sedumi.ie.lehigh.edu/

> → highly accurate solution for moderately large datasets, e.g. p, T ≤ 2000

• Tfocs Becker *et al.* (2011) : first-order proximal method http://cvxr.com/tfocs/

 \hookrightarrow less accurate (but do we need high accuracy in a noisy setting ?)

BUT can handle large scale datasets.

Finite sample risk bounds for the ScHeDs

Theorem

Consider the aforementioned heteroscedastic model with sub-Gaussian errors $\boldsymbol{\xi}$. Let K^* (resp. \boldsymbol{p}^*) be the number of relevant groups (resp. corrdinates of ϕ^*). Let $\varepsilon \in (0, 1)$ be a tolerance level and set

$$\lambda_k = 4 \left(\sqrt{\operatorname{rank}(\mathbf{X}_{G_k}) + \sqrt{\log(K/\varepsilon)}} \right).$$

Under some assumptions, with probability at least $1 - 2\varepsilon$,

 $ig| \mathbf{X}(\widehat{\phi} - \phi^*) ig|_2 \leq D_{T,\varepsilon}^{3/2} \sqrt{q \log(2q/\varepsilon)} + D_{T,\varepsilon} \sqrt{p^* + K^* \log(K/\varepsilon)}.$ $ig| \mathbf{R}(\widehat{lpha} - lpha^*) ig|_2 \leq D_{T,\varepsilon}^{3/2} \sqrt{q \log(2q/\varepsilon)} + D_{T,\varepsilon} \sqrt{p^* + K^* \log(K/\varepsilon)},$

where $D_{T,\varepsilon} \propto (\max_t |f^*(\boldsymbol{x}_t)| + \log(2T/\varepsilon)).$

IV. Numerical experiments

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● の < @

Homoscedastic noise

Data : 500 repetitions :

- Design matrix : $\mathbf{X} \in \mathbb{R}^{T \times p}$ i.i.d. entries $\mathcal{N}(0, 1)$
- Noise vector : $\boldsymbol{\xi} \sim \mathcal{N}(\boldsymbol{0}_T, \boldsymbol{I}_{T \times T})$ independent of **X** ; $\sigma_t \equiv \sigma^*$
- Regression vector : $\beta^0 = [\mathbf{1}_{\rho^*}, \mathbf{0}_{\rho-\rho^*}]^\top$; \hookrightarrow permutation of the entries of β^0 gives β^* ;
- Response vector : $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta}^* + \sigma^*\boldsymbol{\xi}$.

Setting : 8 different settings varying (T, p, p^*, σ^*)

Challenger : Square-root Lasso

Tuning parameter : universal choice for both $\lambda = \sqrt{2 \log(p)}$ as good in most cases as Cross Validation, *cf.* Sun and Zhang (2012)

method. Top & middle : MSE of $\hat{\beta}^{\text{ScHeDs}}$. Bottom : running times.

Experiment with bias correction for the two methods :

ScHeDs	$ \widehat{oldsymbol{eta}}-oldsymbol{eta}^* _{ extsf{2}} _{ extsf{2}}$		$ \widehat{p} - p^* $		$ 10 \widehat{\sigma} - \sigma^* $	
(T, p, i^*, σ^*)	Ave	StD	Ave	StD	Ave	e StD
(100, 100, 2, .5)	.06	.03	.00	.00	.29) .21
(100, 100, 5, .5)	.11	.08	.01	.12	.32	2 .37
(100, 100, 2, 1)	.13	.07	.03	.16	5 .57	.46
(100, 100, 5, 1)	.28	.23	.10	.33	3 .77	7.68
(200, 100, 5, .5)	.08	.02	.00	.00	.23	3 .16
(200, 100, 5, 1)	.16	.05	.00	.01	.09	.29
(200, 500, 8, .5)	.09	.03	.00	.00	.22	2 .16
(200, 500, 8, 1)	.21	.11	.03	.17	.48	.43
SaP Lasso					10 2*	
		$\beta_{ 2 }$	<i>ρ</i> –	p		$-\sigma$
(100, 100, 2, .5)	.08	.06	.19	.44	.32	.23
(100, 100, 5, .5)	.12	.04	.18	.42	.33	.24
(100, 100, 2, 1)	.16	.10	.19	.44	.59	.48
(100, 100, 5, 1)	.25	.16	.21	.43	.68	.47
(200, 100, 5, .5)	.09	.03	.21	.45	.24	.17
(200, 100, 5, 1)	.18	.07	.21	.48	.48	.32
(200, 500, 8, .5)	10	03	.14	.38	.23	.17
()) -)	.10	.00			-	
(200, 500, 8, .5)	.21	.07	.18	.40	.46	.34

Real data : temperature in Paris

<u>Data</u> : daily temperature in Paris from 2003 to 2008 ; \hookrightarrow National Climatic Data Center (NCDC).

- Response variable *y_t* : the difference of temperature between two successive days.
- Covariates $\boldsymbol{x}_t = (t, \boldsymbol{u}_t)$: 17 dimensional vector (16+1) \hookrightarrow time t;

 \hookrightarrow increments of temperature over the past 7 days; \hookrightarrow maximal intraday variation of temperature over the past 7 days;

 \hookrightarrow wind speed of the day before.

<u>Construction of \mathbf{R} </u>: $T \times 11$ matrix with columns r_{ℓ} .

$$\begin{aligned} \mathsf{r}_1(\boldsymbol{x}_t) &= 1; \quad \mathsf{r}_2(\boldsymbol{x}_t) = t; \quad \mathsf{r}_3(\boldsymbol{x}_t) = 1/(t+2\times 365)^{\frac{1}{2}}; \\ \mathsf{r}_\ell(\boldsymbol{x}_t) &= 1 + \cos(2\pi(\ell-3)t/365); \quad \ell = 4, \dots, 7; \\ \mathsf{r}_\ell(\boldsymbol{x}_t) &= 1 + \cos(2\pi(\ell-7)t/365); \quad \ell = 8, \dots, 11. \end{aligned}$$

<u>Construction of **X**</u> : $T \times 2176$ matrix with columns f_j . \hookrightarrow Time-varying second-order polynomial in u_t :

$$f_j(t) = \psi_\ell(t) \times \chi_{m,m'}(\boldsymbol{u}_t);$$

 $|\{f_j\}| = 16 \times 16 \times 17/2 = 2176.$

Construction of groups : 136 groups of 16 functions

$$\mathcal{G}_{m,m'} = \{\psi_{\ell}(t) \times \chi_{m,m'}(\boldsymbol{u}_t) : \ell = 1, \dots, 16\}.$$

© Dalalyan, A.S.

Results

Samples :

- \hookrightarrow Training set : temperatures from 2003 to 2007 (that is, 2172 values);
- \hookrightarrow Test set : temperatures from 2008 (that is, 366 values, leap year).

Conclusions of the study :

- Dimension reduction : from 2176 to 26;
- Sign estimation : 62% of right estimation ;
- Volatility estimation : the oscillation of the temperature during the period between May and July is significantly higher than in March, September and October;

Summary

New procedures named ScHeL and ScHeDs :

- Suitable for fitting the heteroscedastic regression model.
- Simultaneous estimation of the mean and the variance functions.
- Takes into account group sparsity.
- Implemented using two different solvers :

 \hookrightarrow primal-dual interior point method (highly accurate),

 \hookrightarrow optimal first-order method (moderately accurate but with cheap iterations).

Competitive with state-of-the art algorithms

 applicable in a much more general framework.

Manuscript is available on arxiv, codes are available on request.

References I

A. Antoniadis, Comments on : *ℓ*₁-penalization for mixture regression models, TEST **19** (2010), no. 2, 257–258. MR 2677723

S. R. Becker, E. J. Candès, and M. C. Grant, <u>Templates for convex cone problems with applications to sparse</u> signal recovery, Mathematical Programming Computation **3** (2011), no. 3, 165–218.

A. Belloni, V. Chernozhukov, and L. Wang, <u>Square-root Lasso : Pivotal recovery of sparse signals via conic</u> programming, Biometrika **98** (2011), no. 4, 791–806.

P. J. Bickel, Y. Ritov, and A. B. Tsybakov, Simultaneous analysis of Lasso and Dantzig selector, Ann. Statist. 37 (2009), no. 4, 1705–1732.

E. J. Candès and T. Tao, <u>The Dantzig selector : statistical estimation when *p* is much larger than *n*, Ann. Statist. **35** (2007), no. 6, 2392–2404.</u>

E. Gautier and A. Tsybakov, <u>High-dimensional instrumental variables regression and confidence sets</u>, September 2011.

N. Städler, P. Bühlmann, and Sara s van de Geer, <u>*l*</u>-penalization for mixture regression models, TEST **19** (2010), no. 2, 209–256.

J. F. Sturm, <u>Using sedumi 1.02</u>, a MATLAB toolbox for optimization over symmetric cones, Optimization Methods and Software **11–12** (1999), 625–653.

T. Sun and C.-H. Zhang, <u>Scaled sparse linear regression</u>, Biometrika **99** (2012), no. 4, 879–898.

R. Tibshirani, <u>Regression shrinkage and selection via the Lasso</u>, J. Roy. Statist. Soc. Ser. B 58 (1996), no. 1, 267–288.