Introduction	Estimation and background	Asymptotic distribution	Applications	RMT 0000	Conclusions

Robust covariance matrices estimation and applications in signal processing

F. Pascal SONDRA/Supelec

GDR ISIS Journée "Estimation et traitement statistique en grande dimension"

May 16th, 2013

Robust RM1

FP (SONDRA/Supelec)

1/27

16/05/13, GDR ISIS

Introduction ●○○○○○	Estimation and background	Asymptotic distribution	Applications	RMT 0000	Conclusions
Motivations					
Motivation	S				

Several SP applications require the covariance matrix estimation (sources localization, STAP, Polarimetric SAR classification, radar detection, MIMO...).

Classical radar applications consider the background to be Gaussian.

- \rightarrow The Sample Covariance Matrix (SCM)
- a simple estimate
- well-known statistical properties

Robustness : what happens in non-Gaussian models ?

- High resolution techniques and/or low grazing angle radars
- Outliers and other parasites are not been taken into account with the Gaussian model.
- The SCM gives then poor results.

Introduction	Estimation and background	Asymptotic distribution	Applications	RMT 0000	Conclusions
Motivations					
Why non (Gaussian modeling	g (heterogeneou	s clutter)?		

• Grazing angle Radar

- \Rightarrow Impulsive Clutter
- High Resolution Radar
 - ⇒ Small number of scatters in the Cell Under Test (CUT)
 - \Rightarrow Central Limit Theorem (CLT) is not valid anymore

Introduction	Estimation and background	Asymptotic distribution	Applications	RMT 0000	Conclusions
Motivations					

Failure of the OGD with non Gaussian background

FIGURE : Failure of the OGD - Adjustment of the detection threshold - K-distributed clutter with same power as the Gaussian noise

- \Rightarrow Bad performance of the OGD in case of mismodeling
- \Rightarrow Introduction of elliptical distributions
- \Rightarrow Introduction of robust estimates

Introduction ○○○●○○	Estimation and background	Asymptotic distribution	Applications	RMT 0000	Conclusions
Results					
Results					

- A more flexible and adjustable model
 - ~ Elliptical distributions
- A robust family of estimators
 - → M-estimators

To use the M-estimators for SP applications, we extend their statistical properties as well as

- the statistical property of the resulting ANMF (detection test)
- the statistical property of the MUSIC statistic (DoA estimation)

The relationship between its Probability of false alarm P_{fa} (Type-I error) and detection threshold is also derived.

Introduction	Estimation and background	Asymptotic distribution	Applications	RMT 0000	Conclusions
Extension to the RMT					
Extension	to the RMT				

In many applications, the dimension of the observation m is large : Hyperspectral imaging, MIMO-STAP, ...

- ⇒ The required number *N* of observations for estimation purposes needs to be larger : $N \gg m$
- \Rightarrow BUT this is not the case in practice !
- ~ Random Matrix Theory

$$\rightsquigarrow$$
 Main assumption : $N \rightarrow \infty, m \rightarrow \infty$ and $\frac{m}{N} \rightarrow c \in [0, 1]$

Preliminary results

Extension of the results on standard *M*-estimators :

- asymptotic distribution of the eigenvalues
- derivation of a robust G-MUSIC

S U N K A

Introduction	Estimation and background	Asymptotic distribution	Applications	RMT 0000	Conclusions
Extension to the I	RMT				
Presenta	ation outline				
 Introdu Moti Resi External 	ction vations ults nsion to the RMT				
2 Estimation	tion and background				

- Modeling the background
- Estimating the covariance matrix
- Asymptotic distribution of complex M-estimators
 - M-estimators and SCM
 - An important property of complex M-estimators
- Applications
 - Detection with the ANMF
 - DoA estimation using MUSIC
- 5 Random Matrix Theory
 - Classical Results
 - Robust RMT
 - Applications to DoA estimation
- Conclusions and perspectives

Introduction	Estimation and background ●○○○	Asymptotic distribution	Applications	RMT 0000	Conclusions
Modeling the backgro	und				
Modeling t	he background al distributions				

Let **z** be a complex circular random vector of length *m*. **z** has a complex elliptical distribution (CED) ($CE(\mu, \Lambda, g_z)$) if its PDF can be written

$$q_{\mathbf{z}}(\mathbf{z}) = |\mathbf{\Lambda}|^{-1} h_{z}((\mathbf{z} - \boldsymbol{\mu})^{H} \mathbf{\Lambda}^{-1} (\mathbf{z} - \boldsymbol{\mu})), \qquad (1)$$

where $h_z : [0, \infty) \to [0, \infty)$ is the density generator and is such as (1) defines a pdf.

- μ is the statistical mean
- A the scatter matrix

In general (finite second-order moment), $\mathbf{M} = \alpha \mathbf{\Lambda}$ where

- *α* = -2φ'(0),
- ϕ is defined through the characteristic function c_x of **x** by $c_x(\mathbf{t}) = \exp(i\mathbf{t}^H \mu) \phi(\mathbf{t}^H \Lambda \mathbf{t})$

Introduction	Estimation and background ○●○○	Asymptotic distribution	Applications	RMT 0000	Conclusions
Estimating the co	wariance matrix				
Estimatin	ng the covariance r	natrix			

PDF not specified \Rightarrow MLE can not be derived \Rightarrow M-estimators are used instead

Let $(\mathbf{z}_1, ..., \mathbf{z}_N)$ be a *N*-sample $\sim CE(\mathbf{0}, \mathbf{\Lambda}, g_{\mathbf{z}})$ of length *m*.

The complex *M*-estimator of Λ is defined as the solution of

$$\boldsymbol{J}_{N} = \frac{1}{N} \sum_{n=1}^{N} u \left(\boldsymbol{z}_{n}^{H} \boldsymbol{V}_{N}^{-1} \boldsymbol{z}_{n}^{H} \right) \boldsymbol{z}_{n} \boldsymbol{z}_{n}^{H}, \qquad (2)$$

Maronna (1976), Kent and Tyler (1991)

- Existence
- Uniqueness
- Convergence of the recursive algorithm...

Introduction	Estimation and background	Asymptotic distribution	Applications	RMT 0000	Conclusions
Estimating the cova	riance matrix				
Examples	of <i>M</i> -estimates				

Remarks :

- Huber = mix between SCM and FP
- FP and SCM are "not" M-estimators
- FP estimator is the most robust.

FP Estimate (Tyler, 1987; Pascal, 2008)

$$\mathbf{V}_{N} = \frac{m}{N} \sum_{n=1}^{N} \frac{\mathbf{z}_{n} \mathbf{z}_{n}^{H}}{\mathbf{z}_{n}^{H} \mathbf{V}_{N}^{-1} \mathbf{z}_{n}^{H}}$$

Introduction	Estimation and background ○○○●	Asymptotic distribution	Applications	RMT 0000	Conclusions
Estimating the covari	ance matrix				
Context M-estimators					

Let us set

$$\mathbf{V} = E\left[u(\mathbf{z}'\mathbf{V}^{-1}\mathbf{z})\,\mathbf{z}\mathbf{z}'\right],\tag{3}$$

where $\mathbf{z} \sim CE(\mathbf{0}, \mathbf{\Lambda}, g_{\mathbf{z}})$.

- (3) admits a unique solution V and V = $\sigma \Lambda = \sigma / \alpha M$ where σ is given by Tyler(1982),
- \mathbf{V}_N is a consistent estimate of \mathbf{V} .

SON

Introduction	Estimation and background	Asymptotic distribution ●○○	Applications	RMT 0000	Conclusions
M-estimators and SC	М				

Asymptotic distribution of complex *M*-estimators

Using the results of Tyler (1982), we derived the following results (Ph.D of M. Mahot) :

Theorem 1 (Asymptotic distribution of \mathbf{V}_N)

$$\sqrt{N} \operatorname{vec}(\mathbf{V}_N - \mathbf{V}) \stackrel{d}{\longrightarrow} \mathcal{CN}\left(\mathbf{0}, \mathbf{\Sigma}, \mathbf{\Omega}\right),$$

where \mathcal{CN} is the complex Gaussian distribution, Σ the CM and Ω the pseudo CM :

$$\begin{split} \boldsymbol{\Sigma} &= \sigma_1 (\boldsymbol{\mathsf{V}}^T \otimes \boldsymbol{\mathsf{V}}) + \sigma_2 \text{vec}(\boldsymbol{\mathsf{V}}) \text{vec}(\boldsymbol{\mathsf{V}})^H, \\ \boldsymbol{\Omega} &= \sigma_1 (\boldsymbol{\mathsf{V}}^T \otimes \boldsymbol{\mathsf{V}}) \, \boldsymbol{\mathsf{K}} + \sigma_2 \text{vec}(\boldsymbol{\mathsf{V}}) \text{vec}(\boldsymbol{\mathsf{V}})^T \end{split}$$

where K is the commutation matrix.

The SCM is defined as $\mathbf{W}_N = \frac{1}{N} \sum_{n=1}^{N} \mathbf{z}_n \mathbf{z}_n^H$ where \mathbf{z}_n are complex independent circular zero-mean Gaussian with CM V. Then,

$$\begin{split} \sqrt{N} \ \mathsf{vec}(\mathbf{W}_N - \mathbf{V}) & \stackrel{d}{\longrightarrow} \mathcal{CN} \left(\mathbf{0}, \mathbf{\Sigma}_W, \mathbf{\Omega}_W \right) \\ \mathbf{\Sigma}_W &= \left(\mathbf{V}^T \otimes \mathbf{V} \right) \\ \mathbf{\Omega}_W &= \left(\mathbf{V}^T \otimes \mathbf{V} \right) \mathbf{K} \end{split}$$

(4)

Introduction	Estimation and background	Asymptotic distribution ○●○	Applications	RMT 0000	Conclusions
An important prop	perty of complex <i>M</i> -estimators				

An important property of complex *M*-estimators

• Let \mathbf{V}_N an estimate of Hermitian positive-definite matrix \mathbf{V} that satisfies

$$\sqrt{N}\left(\operatorname{vec}(\mathbf{V}_{N}-\mathbf{V})\right) \stackrel{d}{\longrightarrow} \mathcal{CN}\left(\mathbf{0},\boldsymbol{\Sigma},\boldsymbol{\Omega}\right),\tag{5}$$

with

$$\begin{split} \boldsymbol{\Sigma} &= \boldsymbol{\nu}_{1} \boldsymbol{\mathsf{V}}^{\mathsf{T}} \otimes \boldsymbol{\mathsf{V}} + \boldsymbol{\nu}_{2} \text{vec}(\boldsymbol{\mathsf{V}}) \text{vec}(\boldsymbol{\mathsf{V}})^{\mathsf{H}}, \\ \boldsymbol{\Omega} &= \boldsymbol{\nu}_{1} (\boldsymbol{\mathsf{V}}^{\mathsf{T}} \otimes \boldsymbol{\mathsf{V}}) \, \boldsymbol{\mathsf{K}} + \boldsymbol{\nu}_{2} \text{vec}(\boldsymbol{\mathsf{V}}) \text{vec}(\boldsymbol{\mathsf{V}})^{\mathsf{T}}, \end{split}$$

where ν_1 and ν_2 are any real numbers.

		SCM	M-estimators	FP
0.0	ν_1	1	σ_1	(m+1)/m
e.g.	ν_2	0	σ_2	$-(m+1)/m^2$
		More accurate		More robust

Let H(V) be a *r*-multivariate function on the set of Hermitian positive-definite matrices, with continuous first partial derivatives and such as H(V) = H(αV) for all α > 0, e.g. the ANMF statistic, the MUSIC statistic.

Introduction	Estimation and background	Asymptotic distribution ○○●	Applications	RMT 0000	Conclusions				
An important proper	An important property of complex <i>M</i> -estimators								

An important property of complex *M*-estimators

Theorem 2 (Asymptotic distribution of $H(\mathbf{V}_N)$)

$$\sqrt{N} \left(H(\mathbf{V}_N) - H(\mathbf{V}) \right) \stackrel{d}{\longrightarrow} \mathcal{CN} \left(\mathbf{0}_{r,1}, \mathbf{\Sigma}_H, \mathbf{\Omega}_H \right)$$

where Σ_H and Ω_H are defined as

$$\begin{split} \boldsymbol{\Sigma}_{H} &= \boldsymbol{\nu}_{1} \boldsymbol{H}'(\boldsymbol{\mathsf{V}}) (\boldsymbol{\mathsf{V}}^{T} \otimes \boldsymbol{\mathsf{V}}) \boldsymbol{H}'(\boldsymbol{\mathsf{V}})^{H}, \\ \boldsymbol{\Omega}_{H} &= \boldsymbol{\nu}_{1} \boldsymbol{H}'(\boldsymbol{\mathsf{V}}) (\boldsymbol{\mathsf{V}}^{T} \otimes \boldsymbol{\mathsf{V}}) \, \boldsymbol{\mathsf{K}} \boldsymbol{H}'(\boldsymbol{\mathsf{V}})^{T}, \end{split}$$
where $\boldsymbol{H}'(\boldsymbol{\mathsf{V}}) &= \left(\frac{\partial \boldsymbol{H}(\boldsymbol{\mathsf{V}})}{\partial \text{vec}(\boldsymbol{\mathsf{V}})}\right).$

H(SCM) and H(M-estimators) share the same asymptotic distribution (differs from σ_1)

(6)

Introduction	Estimation and background	Asymptotic distribution	Applications	RMT	Conclusions			
000000	0000	000	000000	0000	00			
Detection with the ANMF								

Application : Detection using the ANMF test

In a *m*-vector y, detecting a complex known signal s = Ap embedded in an additive noise z (with covariance matrix V), can be written as the following statistical test :

 $\left\{ \begin{array}{ll} \text{Hypothesis } H_0: \quad \mathbf{y} = \mathbf{z} \qquad \mathbf{y}_n = \mathbf{z}_n \quad n = 1, \dots, N \\ \text{Hypothesis } H_1: \quad \mathbf{y} = \mathbf{s} + \mathbf{z} \quad \mathbf{y}_n = \mathbf{z}_n \quad n = 1, \dots, N \end{array} \right.$

where the z_n 's are *N* "signal-free" independent observations (secondary data) used to estimate the noise parameters.

• Let **V**_N be an estimate of **V**.

ANMF test

$$\Lambda(\mathbf{V}_N) = \frac{|\mathbf{p}^H \mathbf{V}_N^{-1} \mathbf{y}|^2}{(\mathbf{p}^H \mathbf{V}_N^{-1} \mathbf{p}) (\mathbf{y}^H \mathbf{V}_N^{-1} \mathbf{y})} \underset{H_0}{\overset{H_1}{\gtrless}} \lambda$$

One has $\Lambda(\mathbf{V}_N) = \Lambda(\alpha \mathbf{V}_N)$ for any $\alpha > 0$.

Introduction	Estimation and background	Asymptotic distribution	Applications	RMT 0000	Conclusions
Detection with the A	NMF				
Probabilit	ies of false alarm				

 P_{fa} -threshold relation in the Gaussian case of $\Lambda(SCM)$ (finite N)

$$P_{fa} = (1 - \lambda)^{a-1} {}_{2}F_{1}(a, a-1; b-1; \lambda),$$
(7)

where a = N - m + 2, b = N + 2 and $_2F_1$ is the Hypergeometric function.

From theorem 2, one has

 P_{fa} -threshold relation of $\Lambda(M$ -estimators) for all elliptical distributions

For *N* large and any elliptically distributed noise, the PFA is still given by (7) if we replace *N* by N/σ_1 .

Introduction	Estimation and background	Asymptotic distribution	Applications	RMT 0000	Conclusions		
Detection with the ANMF							
Simulation	S						

- Complex Huber's *M*-estimator.
- Figure 1 : Gaussian context, here $\sigma_1 = 1.066$.
- Figure 2 : K-distributed clutter (shape parameter : 0.1, and 0.01).

Introduction	Estimation and background	Asymptotic distribution	Applications	RMT 0000	Conclusions			
Detection with the ANMF								
Simulatio	Simulations : Probabilition of Falsa Alarm							

- Complex Huber's *M*-estimator.
- Figure 1 : Gaussian context, here $\sigma_1 = 1.066$.
- Figure 2 : K-distributed clutter (shape parameter : 0.1).

Interest of the *M*-estimators for False Alarm regulation₅ O N R A

seuil de detection à

Introduction	Estimation and background	Asymptotic distribution	Applications	RMT 0000	Conclusions				
Detection with the AN	Detection with the ANMF								

Hyperspectral Imaging - Ph.D of J. Frontera

Now, the statistical mean is non null

FIGURE : Probability of false alarm versus the detection threshold for m = 50 and N = 168

Perspectives

- Open problem : joint *M*-estimators of the mean and the covariance matrix as solutions of fixed point equations
- Estimators performance
- Large dimensional problem : use of RMT

Introduction	Estimation and background	Asymptotic distribution	Applications	RMT	Conclusions
			0000000		
DoA estimation using	MUSIC				

MUltiple Signal Classification (MUSIC) method for DoA estimation

- *K* direction of arrival θ_k on *m* antennas
- $\bullet\,$ Gaussian stationary narrowband signal with DoA 20 $^\circ$ with additive noise.
- the DoA is estimated from *N* snapshots, using the SCM and the Huber's *M*-estimator.

$$Z_t = \sum_{k=1}^{K} \sqrt{p}_k \mathbf{s}(\theta_k) \mathbf{y}_{k,t} + \sigma \mathbf{w}_t$$

$$\begin{cases} H(\mathbf{V}) = \gamma(\theta) = \mathbf{s}(\theta)^{H} E_{W} E_{W}^{H} \mathbf{s}(\theta), & (\mathbf{V} \text{ known}) \\ H(\mathbf{V}_{N}) = \hat{\gamma}(\theta) = \sum_{i=1}^{m-K} \lambda_{i} \mathbf{s}(\theta)^{H} \hat{\mathbf{e}}_{i} \hat{\mathbf{e}}_{i}^{H} \mathbf{s}(\theta) = H(\alpha \mathbf{V}_{N}), & (\mathbf{V} \text{ unknown}) \end{cases}$$

where λ_i (resp. \hat{e}_i) are the eigenvalues (resp.eigenvectors) of **V**_N.

The Mean Square Error (MSE) between the estimated angle $\hat{\theta}$ and the real angle θ is then computed (case of one source).

Introduction	Estimation and background	Asymptotic distribution	Applications	RMT 0000	Conclusions
DoA estimation using	MUSIC				

Simulation using the MUltiple Signal Classification (MUSIC) method

- A m = 3 uniform linear array (ULA) with half wavelength sensors spacing is used,
- Gaussian stationary narrowband signal with DoA 20° with additive noise.
- the DoA is estimated from *N* snapshots, using the SCM, the Huber's *M*-estimator and the FP estimator.

Introduction	Estimation and background	Asymptotic distribution	Applications	RMT ●○○○	Conclusions
Classical Results					
RMT - Cla	assical results				

Assumptions :

•
$$N, m \to \infty$$
 and $\frac{m}{N} \to c \in (0, 1)$ and $\mathbf{W}_N = \frac{1}{N} \sum_{n=1}^N \mathbf{z}_n \mathbf{z}_n^H$ the SCM

• (z₁,..., z_N) be a N-sample, i.i.d with finite fourth-order moment

Thus one has :

F^{W_N} ⇒ F^{MP} where *F<sup>W_N* (resp. *F^{MP}*) stands for the distribution of the eigenvalues of **W**_N (resp. the Marcenko-Pastur distribution) and ⇒ stands for the weak convergence.
</sup>

2)
$$\hat{\gamma}(\theta) = \sum_{i=1}^{m} \beta_i s(\theta)^H \hat{e}_i \hat{e}_i^H s(\theta)$$
 is the G-MUSIC statistic (Mestre, 2008)
where
$$\beta_i = \begin{cases} 1 + \sum_{k=N-K+1}^{N} \left(\frac{\hat{\lambda}_k}{\hat{\lambda}_i - \hat{\lambda}_k} - \frac{\hat{\mu}_k}{\hat{\lambda}_i - \hat{\mu}_k}\right) &, i \le N - K \\ - \sum_{k=1}^{N-K} \left(\frac{\hat{\lambda}_k}{\hat{\lambda}_i - \hat{\lambda}_k} - \frac{\hat{\mu}_k}{\hat{\lambda}_i - \hat{\mu}_k}\right) &, i > N - K \end{cases}$$
with $\hat{\lambda}_1 \le \ldots \le \hat{\lambda}_N$ the eigenvalues of \mathbf{W}_N and $\hat{\mu}_1 \le \ldots \le \hat{\mu}_N$ the eigenvalues of

diag
$$(\hat{\boldsymbol{\lambda}}) - \frac{1}{n}\sqrt{\hat{\boldsymbol{\lambda}}}\sqrt{\hat{\boldsymbol{\lambda}}}^{\mathsf{T}}, \hat{\boldsymbol{\lambda}} = (\hat{\lambda}_1, \dots, \hat{\lambda}_N)^{\mathsf{T}}.$$

Introduction	Estimation and background	Asymptotic distribution	Applications	RMT ○●○○	Conclusions
Robust RMT					

Robust RMT with R. Couillet and J.W. Silverstein

Assumptions :

- $N, m \to \infty$ and $\frac{m}{N} \to c \in (0, 1)$ and V_N a *M*-estimor (with previous assumptions)
- $(\mathbf{z}_1, ..., \mathbf{z}_N)$ be a *N*-sample, i.i.d with finite fourth-order moment

Thus, one has shown in [1] :

1) $\|\psi^{-1}(1)\mathbf{V}_N-\mathbf{W}_N\| \xrightarrow{a.s.} 0$ when $N, m \to \infty$ and $\frac{m}{N} \to c$

where $\|.\|$ stands for the spectral norm.

Classical results in RMT can be extended to the *M*-estimators

2) $\hat{\gamma}(\theta) = \sum_{i=1}^{m} \beta_i s(\theta)^H \hat{e}_i \hat{e}_i^H s(\theta)$ is STILL the G-MUSIC statistic for the *M*-estimators (for the eigenvalues of \mathbf{V}_N)

[1] R. Couillet, F. Pascal et J. W. Silverstein, "Robust M-Estimation for Array Processing : A Random Matrix Approach", *Information Theory, IEEE Transactions on (submitted to)*, SON 2012. arXiv :1204.5320v1.

FP (SONDRA/Supelec)

Introduction	Estimation and background	Asymptotic distribution	Applications	RMT	Conclusions
				0000	
And Reading to De	 A sector state 				

Applications to DoA estimation

Application to DoA estimation with MUSIC for different additive clutter

(a) Homogeneous noise (\simeq Gaussian), 50 data of size 10

(b) Heterogeneous clutter, 50 data of size 10

FIGURE : MSE performance of the various MUSIC estimators for K = 1 source

Introduction	Estimation and background	Asymptotic distribution	Applications	RMT ○○○●	Conclusions	
Annlications to DoA estimation						

Resolution probability of 2 sources

FIGURE : Resolution performance of the MUSIC estimators in homogeneous clutter for 50 data of size 10

Introduction	Estimation and background	Asymptotic distribution	Applications	RMT 0000	Conclusions ●○

Conclusions and Perspectives

Conclusions

- Derivation of the complex *M*-estimators asymptotic distribution, the robust ANMF and the MUSIC statistic asymptotic distributions.
- In the Gaussian case, *M*-estimators built with $\sigma_1 N$ data behaves as SCM built with *N* data (i.e. slight loss of performance in Gaussian case).
- Better estimation in non-Gaussian cases.
- Extension to the Robust RMT and derivation of the Robust G-MUSIC method.

Perspectives

- Low Rank techniques for robust estimation
- Robust estimation with a location parameter (non-zero-mean observation) : e.g. Hyperspectral imaging
- Second-order moment in RMT
- Eigenvalues distribution of the FP estimator (open-problem)

Introduction	Estimation and background	Asymptotic distribution	Applications	RMT	Conclusions
					00

Thank you for your attention !

Questions?

