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Portfolio theory: Basics

e Portfolio weights w;

e Risk: variance of the portfolio returns
2 e R
]
where 022 is the variance of asset ¢ and Cj;; is the correlation
matrix.

e If predicted gains are g; then the expected gain of the port-
folio is G = > w;g;.
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Empirical Correlation Matrix

e Large set of Assets (V) and (comparable) set of data points

(1)

e Empirical VVariance
5 1

0y :fZ( 5)2

t
relative square-error is (2 + k) /T

e Empirical Equal-Time Correlation Matrix

tyt
1 X,L-Xj

Eij =22,

t 9i9%j

order N2 quantities estimated with NT' datapoints. If T'< N
E has rank T' < N, not even invertible.
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Markowitz Optimization

e Find the portfolio with maximum expected return for a given
risk or equivalently, minimum risk for a given return (G)

e In matrix notation:
C_lg
gl'C-1g

WC:G

e \Where all returns are measured with respect to the risk-free
rate and o; = 1 (absorbed in g;).

e Non-linear problem: ", |w;| < A — a spin-glass problem!
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Risk of Optimized Portfolios
e Let E be an noisy estimator of C such that (E) = C

o ‘In-sample” risk

2 T G2
R = wrEwp =
in E E gTE_lg
e [rue minimal risk
G2
2 R A -
Rirye = WC'CWC — gTC_lg

e "'Out-of-sample’” risk
G2gTE-1CE1g
(gTE-1g)?

2 _..T —
Rt = wgCwpg =
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Risk of Optimized Portfolios

e Using convexity arguments, and for large matrices:

2 2 2
Rin < Rtrue < Rout

e Importance of eigenvalue cleaning:

wi oc 3NV = g+ (N - DV,
kj kj

— Eigenvectors with A > 1 are suppressed,

— Eigenvectors with A < 1 are enhanced. Potentially very
large weight on small eigenvalues.

— Must determine which eigenvalues to keep and which one
to correct
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Spectrum of Wishart Ensemble

e Consider an Empirical Correlation Matrix of N assets using
T data points both very large with n = N/T finite.

1 & hok kvl
E'z‘7 = f Z Xi X] where <Xz Xj> — Czy5kl
k=1

e \We need to find the trace of the resolvent or Stieljes trans-
form:
1 1
G(2) = Tt [(ZI —E) }

p(N) = lim 3 (GO~ i6))
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Null hypothesis C =1

e E;;is asum of (rotationally invariant) matrices Ef? = (XfX;?)/T

e Free random matrix theory: Find the additive R-transform
R(z) = B(z) — 1/z; B(G(2)) = =)

() — 1( 1 +N—1)

N \z—n z

e defining n = N/T, inverting G(z) to first order in 1/N,

1 1

Ri(x) = T(1— n) by additivity Rpg(x) = (1~ na)

(z—l—n—l)—\/(z—l—n—1)2—4zn

2zn

Gr(z) =



Null hypothesis C =1

n — n—1)2
sy = V= Q=12 2 v

Marcenko-Pastur (1967) (and many rediscoveries)

e Any eigenvalue beyond the Marcenko-Pastur band can be
deemed to contain some information (but see below)
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General C Case

e The general case for C cannot be directly written as a sum
of “Blue” functions.

e Solution using different techniques (replicas, diagrams, S-
transform:

<

1 + n(zGg(z) — 1)

2Gp(z) = ZGo(2) where Z

e For stocks, one large eigenvalue — the “"market” — and several
sectors
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Empirical Correlation Matrix
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Matrix Cleaning

Return
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General Correlation matrices

e Non equal time correlation matrices

t+7
1 XX,
Ej =252

t 9i9j

N x N but not symmetrical: ‘leader-lagger’ relations

e General rectangular correlation matrices

1< t vt
Gy = = > Yo X;
t=1
N ‘input’ factors X:; M ‘output’ factors Y

— Example: Y! = X;""T, N=M
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Singular values and relevant correlations

e Singular values: Square root of the non zero eigenvalues
of GGT or GTG, with associated eigenvectors u% and vf —
1 Z S1 > So > "'S(M,N)_ Z 0

e Interpretation: kK = 1: best linear combination of input vari-
ables with weights v}, to optimally predict the linear com-
bination of output variables with weights ué with a Ccross-
correlation = s3.

e s1. Mmeasure of the predictive power of the set of Xs with
respect to Y's

e Other singular values: orthogonal, less predictive, linear com-
binations
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Benchmark: no cross-correlations

e Null hypothesis: No correlations between Xs and Ys — (G) =
0

e But arbitrary correlations among Xs, Cx, and Ys, Cy, are
possible

e Consider exact normalized principal components for the sam-
ple variables Xs and Ys:

1

vl — t. ot —

and define G =YV X7,
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Benchmark: no cross-correlations

e [ricks:

— Non zero eigenvalues of GG1 are the same as those of
XTXYy1ly

— A= XTX and B = Y1V are mutually free, with n (m)
eigenvalues equal to 1 and 1 —n (1 —m) equal to O

— “S-transforms” are multiplicative
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Technicalities

(y) = ~Tr—>
naly) = Tro
o
1 _
Fa() =~ (1 + o).
[
n m
nA(y)—l—n—I-l_I_y, nB(y)—l—m+1_|_y.

(1+2)?
(x +n)(xz+m)

Yaa(r) =X p(0)Xp(e) =
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Benchmark: Random SVD

e Final result:( )

V(2 =74 — 52)

= (1—n,1—-m)T5(s m—4n—1)T5(s—
p(s) = (1-n,1-m)"6(s)+(m+n—-1)"6(s—1)+ rs(1 — 52)

with

7i=n—|—m—2mn:|:2\/mn(1—n)(1—m)a 0<~v <1

e Analogue of the Marcenko-Pastur result for rectangular cor-
relation matrices

e Many applications; finance, econometrics (‘large’ models),
genomics, etc.
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Benchmark: Random SVD

e Simple cases:

—n=m, s€ [0,2\/n(1—n)]
—n,m—0,s¢€[lym—vnl,vm+yn]
—m=1,s—=+v1—n

—m—0, s —+/n
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RSVD: Numerical illustration
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RSVD: Numerical illustration
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Inflation vs. Economic indicators
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Statistics of the Top Eigenvalue

All previous results are true when N, M,T — oo with fixed

n, m

How far is the top eigenvalue expected to leak out at finite
N7

Precise answer when matrix elements are iid Gaussian: Tracy-
Widom statistics

Width of the smoothed edge: N—2/3

Relation with the directed polymer problem 4+ many others
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Statistics of the Top Eigenvalue

e EXceptions

— 'Strong’ Rank One Perturbation — emergence of an iso-
lated eigenvalue with Gaussian, N—1/2 fluctuations (

)

— E.g9.. E;; — E;j+p(1—9;;) leads to a market mode Amax ~
Np

— Fat tailed distribution of matrix elements
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Fat tails and Top Eigenvalue: Wigner Case

e Eigenvalue statistics of large real symmetric matrices with
iid elements X;;, P(z) ~ |X|717#

e Eigenvalue density:
— u > 2 — Wigner semi-circle in [—2, 2]

— 11 < 2 — unbounded density with tails p()\) ~ A~17#

e Note: u < 2 non trivial statistics of eigenvectors (local-
ized /delocalized) ( )
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Fat tails and Top Eigenvalue: Wigner Case
e Largest Eigenvalue statistics ( )

— >4 Amax—2 ~ N—2/3 with a Tracy-Widom distribution
(max of strongly correlated variables)

2_1
— 2 < u < 4. dmax ~ Nr 2 with a Fréchet distribution

(although the density goes to zero when A > 211)

— u = 4. Amax > 2 but remains O(1), with a new distribu-
tion:

1
P> (Amax) = w0(Amax —2) + (L —w)F(s) Amax =s+ ;

e Note: The case u > 4 still has a power-law tail for finite NV,
of amplitude N2—#/2
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Fat tails and Correlation Matrices

e 11> 4 Amax — (1 +/n)2 ~ N—2/3 (but with a power-law tail
as above)

4_
o 1< 4: Amax ~ NH 17’L1_2/’u

e Fat tails induce fictitious ‘strong’ correlations — important
for applications in finance where p ~ 3 — 5.
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EWMA Empirical Correlation Matrices

e Consider the case where the Empirical matrix is often com-
puted using an exponentially weighted moving average (EWMA)
with e = 1/T

oo
Eijj=¢€¢Y (1-eFXFXF where (XFXEY = 6,50k
k=0

e Above trick based R-functions still works:

1
p(A) = —SG(N\) where G()\) solves AnG = n—log(1l—nG)
T
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EWMA Empirical Correlation Matrices

— exp Q=2
- - std Q=3.45

0.8f

0.61

p(A)

0.4

0.2y

Spectrum of the exponentially weighted random matrix with
n = 1/2 and the spectrum of the standard random matrix with
n=N/T = 1/3.45.
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Dynamics of the top eigenvector

e Specific dynamics of large top eigenvalue and eigenvector:
Ornstein-Uhlenbeck processes (on the unit sphere for Vl)

e T he angle obeys the following SDE:
o ~ —%sin 20dt + ¢ dW,
with
(P~ € E sin? 20, + % cos? 20;

0

e Eigenvector dynamics:

((ot4rltor) ) = B(cos(6; — O;4..)) = 1 — 6%(1 — exp(—er))
0
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The variogram of the top eigenvector
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