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Chapter 1

Introduction

The mid-nineties have witnessed a convergence between wireless communication and large random
matrices. Although both fields were separately active, the pionneering works of Telatar, Foschini,
Verdù, Shamai, Tse and others related the two subjects in an extremely convincing way. From
that time, the application of large random matrices to wireless communication has grown and
continues to grow. It continuously extends from its original field of application, that is broadly
multiple input multiple output (MIMO) channels and code division multiple access (CDMA), to
reach recent and fashionable subjects such as compression and collaborative sensing. The first
result that has been successfully applied by Telatar to MIMO channels is 1967 Marčenko and
Pastur celebrated result. Since, Girko’s equations and Bai and Silverstein numerous results and
many other existing results were quickly exploited. Nevertheless, there has been, at an early stage
of this story, a need to develop specific mathematical results that were not available in the huge
body of knowledge related to random matrices.

This document is devoted to the presentation of my scientific contribution in the field of
random matrices and their applications to wireless communication. It roughly covers a period that
extends from 2002, where I began to learn about random matrices with the help of my colleagues
Walid Hachem and Philippe Loubaton, to nowadays. During this period, I also had a marginal
activity on the subject of large deviations, which I have been working on extensively during my
Ph-D. These efforts resulted in a series of three papers [86, 29, 77] which will not be discussed any
further here. As we shall see however, my interest in large deviations has been revived recently, in
the context of collaborative sensing this time.

The rest of the document is organized in four chapters whose contents are briefly described
below.

Chapter 2 is entitled “a random matrix approach to wireless communication”. In the first
part of the chapter, I present various wireless communication models (MIMO channels, CDMA,
collaborative sensing networks) that have largely motivated the introduction of random matrices
within the field. The presentation is intended to a mathematical audience not necessarily familiar
with the field and focuses on the key-role played by the spectrum of various Gram matrices with
random entries in the description of performance indicators such as the ergodic capacity or the sig-
nal to interference plus noise ratio. The second part of the chapter gives a brief historical account
on Large Random matrices. This account is by no means exhaustive1 and intends to describe the

1In particular, free probability techniques are largely ignored, both from a theoretical point of view and from a
practical one - see [55] for a mathematical account, [114] for applications to digital communication.
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practical and theoretical background where our results take place. The third part of the chapter
is devoted to the description of three simple but nonetheless far-reaching concepts. The first one
is the Stieltjes transform, the second one is referred to as gaussian tools and comprises an inte-
gration by part identity and Poincaré-Nash inequality; the last one is a martingale decomposition
of functionals of random matrices. For each concept, I develop simple examples, in a quick but
non-rigorous way, intended to illustrate their range of application. For instance, I quickly derive
Marčenko-Pastur distribution with the help of the Stieltjes transform, then with the help of Gaus-
sian tools; and finally, I outline the proof of the Central Limit Theorem for a functional of the
spectrum of a given random matrix with the help of martingale techniques. These techniques have
been widely used in my work [31, 52, 53, 54, 64, 65].

Chapters 3, 4 and 5 are a guideline to my research. They all begin by a summary which
should ease the reading, and are devoted to the presentation of results that have either been
published in referred journals, or that are parts of submitted articles. The proofs are therefore
available at some point and omitted here.

A notable exception is the last part of the last chapter (section 5.3) which is more an
announcement as the proofs, being part of an ongoing work, are not yet available. I decided however
to include it as it gathers my past and present interests: Large deviations, random matrices and
wireless communication.

Chapter 3 is devoted to the presentation of first-order results. Consider the spectrum of a
Gram matrix M = XX∗ and a linear functional of its eigenvalues 1

N

∑
f(λi), then we describe, as

precisely as possible, its limiting behaviour when both dimensions of the matrix X go to infinity
at the same rate, whenever matrix X fulfills specific assumptions motivated by wireless communi-
cation such as the presence of a variance profile (the variance of each entry depends on its location
in matrix X) and a mean profile (the mean of each entry depends as well on its location).

Chapter 4 is devoted to the presentation of second-order results. Considering as previously
a linear functional 1

N

∑
f(λi) where function f is either related to the mutual information in the

case of MIMO channels (cf. section 2.1.1) or to the signal plus interference plus noise in the case
of CDMA models (cf. section 2.1.2), we describe its fluctuations. There are two series of results,
one when the underlying entries are gaussian (cf. section 4.1) and one where they are not (cf.
sections 4.2 and 4.3). The techniques differ, so do the expressions of the variance related to the
fluctuations.

In chapter 5, we focus on three specific contributions to wireless communication: The opti-
mization of the ergodic capacity, where we build upon results of chapter 3 to optimize the mutual
information of a MIMO channel. An algorithm is presented, to compute both the ergodic capacity
and the maximizing covariance matrix, and its theoretical study is developed. The second appli-
cation is devoted to the approximation of the signal to interference plus noise and the Bit Error
Rate. Approximating this quantities by a gaussian random variable as justified by the CLT is
too rough for low dimension. A way to circumvent this issue is to match the distribution with a
generalized gamma distribution, the third moment of which is computed by gaussian techniques.
Finally, the last application is related to collaborative sensing. In the context where a secondary
wireless network scans the bandwidth of a primary wireless network to check whether it can use
the ressource or not, we propose a statistical test and study its type I error and type II error with
the help of random matrices techniques, and especially with the study of the large deviations of
the largest eigenvalue of a Gram matrix.
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Chapter 2

A random matrix approach to
wireless communication problems

2.1 Wireless communication models

2.1.1 Multiple-Input Multiple-Output channels

During the mid-nineties, an important paradigm has emerged in wireless communication: Instead
of considering a point-to-point wireless communication channel to transmit some information,
people discovered that using several antennas both at the emitting and receiving side would result
in a dramatic increase of the capacity of the channel, that is the amount of information per time
unit one can transmit. These channels whose study has resulted in a huge amount of articles
in the electrical engineering literature are now coined as MIMO channels, for Multiple-Input
Multiple-Output channels.

The MIMO channel. In a MIMO channel, the received signal writes:

y = Hx + n,

where x is a vector of dimension t representing the transmitted vector, H is a r × t matrix rep-
resenting the channel and n is a vector of dimension r representing the noise. Let us be more
specific:

• There are t transmitting antennas and the jth component of x represents the signal trans-
mitted by the jth antenna.

• Similarly, there are r receiving antennas and the ith component of y represents the signal
received by the ith antenna.

• The ith component of n represents the noise received by the ith antenna.

• Finally, the entry Hij of matrix H represents the complex path gain between transmitter j
and receiver i.
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In the sequel, we shall assume that each entry Hij is random. This is based on the fact that
between transmitting antenna j and receiving antenna i, there are a large number of independent
reflected and scattered paths with random amplitudes. The gain Hij appears as a complex sum of
random variables and a Central Limit Theorem argument yields the fact that Hij can be modelled
as a complex gaussian random variable.

Channel matrix H. It is worth giving a closer look at H. Matrix H will be assumed to be
random and the physical characteristics of the channel will translate into properties related to the
statistical distribution of H as we shall see. The realization of H will be known to the receiver
while the transmitter will only have access to the distribution of H.

In the seminal work of Telatar [111], the entries of H are complex gaussian random variables
(r.v.), independent and identically distributed (i.i.d.), with zero-mean, independent real and imag-
inary part, both with variance 1/2, denoted in the sequel by CN(0, 1) (i.e. circular normal random
variables). Quoting Telatar: “Equivalently, each entry of H has uniform phase and Rayleigh mag-
nitude. This choice models a Rayleigh fading environment with enough separation within the re-
ceiving antennas and the transmitting antennas such that the fades for each transmitting-receiving
antenna pair are independent.”

It may happen that the assumption of sufficient separation between the antennas does not
hold. In fact simulation-based studies [24] report that the observed performances are lower that
the predicted ones. Thus, some correlation between the gains must be taken into account. Such an
environment will be referred to as a correlated fading environment. In a correlated Rayleigh fading
environment (the entries still being jointly gaussian but not independent any more), a popular and
tractable correlation structure is the so-called Kronecker model where:

E
(
HpjH

∗
qk

)
= TjkRpq .

This model accounts for a correlation structure between the transmitting antennas described by

matrix T (for example E

(
HpjH

∗
pk

)
= Tjk), a correlation structure between the receiving antennas

described by matrix R, and independent correlations at the emitting and receiving sides. Thus,
matrix H admit the representation: R

1
2 WT

1
2 where W has i.i.d. CN(0, 1) entries. Experimental

validation of such a model can be found in [68] for instance.

Another improvement toward a realistic model is the Rician fading channel where the chan-
nel matrix H is the sum of a deterministic matrix A and a random one with some given correlation
structure. While, as previously, the random part of the channel matrix accounts for many inde-
pendent paths, the deterministic one accounts for a large and known path (often referred to as a
Line of Sight component). Mixing the rician component with a Kroneker-type correlation yields

the channel: H = A + R
1
2 WT

1
2 (where W has i.i.d. CN(0, 1) entries), often referred to as a

separately correlated Rician fading channel.

Measurement of the channel performances. Two scenarios are considered. In the fast
fading channel scenario, to each transmitted vector x with covariance matrix Q corresponds a new
realisation of the channel H. The mutual information between x and y is given by

E log det
(
Ir +

ρ

r
HQH∗

)
,

where ρ stands for the variance of the noise n (whose covariance matrix is ρIr). The distribution
of the channel being known to the transmitter, one can optimize the covariance matrix Q, and get

12



the ergodic capacity:

sup
Q≥0, 1

t
Trace(Q)≤1

E log det
(
Ir +

ρ

r
HQH∗

)
,

where the trace constraint 1
t Trace(Q) ≤ 1 corresponds to the total transmit power constraint. From

an information-theoretic point of view, the ergodic capacity represents the theoretical maximum
rate at which one can reliably transmit the data x in a fast fading channel scenario. Therefore,
being able to compute the maximizing covariance matrix Q is a challenging problem of important
practical interest.

In the slow fading channel scenario, the realisation of the channel H persists while many
vectors x are transmitted. It is not legitimate any more to average over the realisations of the
channel H (i.e. to take the expectation E with respect to H) and the mutual information writes

log det
(
Ir +

ρ

r
HQH∗

)
.

It can be poor if the current realisation of H is bad. The communication capability of a slow fading
channel is now described by the outage probability curve

Pout(R) = inf
Q≥0, 1

t
Trace(Q)≤1

P

(
log det

(
Ir +

ρ

r
HQH∗

)
< R

)
.

and a trade-off must be made between the desired transmitting rate R and the probability Pout(R)
that this rate cannot be attained.

2.1.2 Code Division Multiple Access

In this section, we shall look at specific techniques for communication over wireless channel. We
look at many mobile users interested in communicating with a common wireline infrastructure for
a wideband system. Unlike traditional methods such as Time-Division multiple access (TDMA)
or Frequency-Division multiple access (FDMA), spread-spectrum techniques are broadband in the
sens that the entire transmission bandwidth is shared between all users at all time. One form
of spread-spectrum is Code Division Multiple Access, or CDMA. A simple channel model for
(direct-sequence) CDMA is:

(2.1) y =

K∑

k=1

xksk + w ∈ R
N ,

where K is the number of users, xk the transmitted data symbol of user k, w ∼ N (0, σ2IN ) is
the additive gaussian noise in the channel, and y is the received vector. Vector sK ∈ RN is the
signature sequence associated with the kth transmitted data symbol. These sequences are known
at the receiving side. Assume moreover that Exk = 0 and E(xk)2 = pk, the received power of user
k.

To catch the idea behind CDMA, consider a noiseless system y =
∑K

k=1 xksk with the
sequences (sk) being orthonormal. In this case, one can perfectly extract the transmitted data
symbol xk by observing the received vector y. Indeed, the orthogonality of the sequences directly
yields xk = st

ky.

In the environment described by (2.1), a natural class of receivers is the class of linear
receivers. Focusing on user 1, the estimate x̂1 of the transmitted symbol x1 is of the form x̂1 = ct

1y,
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where c1 ∈ RN is the linear receiver for user 1. For example, choosing c1 = s1, which allows perfect
reconstruction in the absence of noise, yields the well-known matched-filter receiver. There are other
linear receivers and one way to classify them is to evaluate their performance.

A commonly used ratio to do so is the signal-to-interference plus noise ratio (SINR), which
(in the case of user 1) writes:

S1 =
(ct

1s1)
2p1

(ct
1c1)2σ2 +

∑
i6=1(c

t
1si)2pi

.

The SINR is the ratio of the variance of user 1 to of noise plus interference from other users,
measured at the output of the linear receiver. The optimal receiver which maximizes the output
SINR is the minimum mean-square error (MMSE) receiver which minimizes E(x1 − x̂1)

2. This
least squares problem has a well-known solution given by:

(2.2) c1 = (SDSt + σ2I)−1s1 and S1 = p1s
t
1(SDSt + σ2I)−1s1

where S = [s2, · · · , sK ] and D = diag(p2, · · · , pK).

2.1.3 Cooperative spectrum sensing

It is a common understanding that current mobile communication systems do not make full use of
the available spectrum, either due to sparse user access or to the system’s inherent defficiencies.
In its simplest form spectrum sensing means looking for a signal in the presence of noise for a
given frequency band. Although this problem has been extensively studied before, it has regained
attentio now as part as the cognitive radio research effort. By cognitive radio, we mean techniques
where systems such as mobile agents are able to opportunistically exploit their environment in
order to take advantage of available spectrum leftovers.

From a cognitive radio perspective, the problem of spectrum sensing has very stringent
requirements among which:

• No priori knowledge of the signal structure,

• Very fast detection of the signal (real-time context),

• Ability to detect reliably in heavily faded environments.

Consider the scenario depicted in Figure 2.1.3 in which primary users (in white) communicate
to their dedicated (primary) base station. Secondary base stations BS1, · · · , BSK are cooperatively
sensing the channel in order to identify whether the spectrum is available and to exploit the
medium in this case. By cooperatively, we mean that the K base stations in the secondary system
share information between them. This can be performed by transmission over a wired high speed
backbone for instance.

Each secondary base station k = 1 : K receives a sampled signal of dimension N : (yk(ℓ), ℓ =
1 : N). Stacking all these signals yields the matrix:

Y = (yk(ℓ); k = 1 : K, ℓ = 1 : N) ,

14



Figure 2.1: Considered scenario for cooperative spectrum sensing

of dimensions K ×N . If no signal is emitted from a primary base station, then:

yk(ℓ) = σwk(ℓ)
△
= ŷk(ℓ) ,

where σwk(ℓ) ∼ CN(0, σ2) is a white noise with unknown variance σ2. If some signal is emitted,
then:

yk(ℓ) = hks(ℓ) + σwk(ℓ)
△
= y̌k(ℓ) ,

where hk is the propagation channel associated to secondary base station number k and s(ℓ) ∼
CN(0, 1).

In order to decide whether a signal is emitted or not, one needs to perform a statistical test:

Y = Ŷ versus Y = Y̌ .

This issue is addressed in Section 5.3.

2.2 Large random matrices come into play

2.2.1 How large are these random matrices?

In the various scenarios of wireless communications described previously, random matrices have
naturally popped up. This report is based on an asymptotic study of the random matrices under
investigation. By asymptotic study, we mean a study of the spectrum of the considered matrices
whenever the two dimensions of the matrices under investigation are of the same order, and grow
at the same pace. The first assumption is very legitimate:

• In a MIMO channel, the number of emitting antennas is of the same magnitude as the number
of receiving antennas;

• In CDMA, the number of users K is comparable to the gain N of the system;

• In cooperative spectrum sensing, the number of secondary base stations is comparable to the
dimension of the signal received by each station;

However, the second one may sound questionable, and indeed is.
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• For a MIMO channel, quoting Tulino and Verdú [114, pp. 8-9]: “In multi antenna systems,
arrays of 8 to 16 antennas would be at the forefront of what is envisioned to be feasible in
the foreseeable future”.

• In CDMA, channels with K symbols and gain N between 32 to 64 would be fairly typical.

• In collaborative compress sensing, 10 secondary base station, each receiving 50 samples, is a
good order of magnitude.

These figures are low, especially for MIMO channels. A partial answer lies again in [114,
p.9]: “Surprisingly, even quite smaller system sizes are large enough for the asymptotic limit to
be an excellent approximation. Furthermore, not only do the averages of [· · · ] converge to their
limits surprisingly fast, but the randomness in those functionals due to the random outcome of H
disappears extremely quickly. Naturally, such robustness has welcome consequences for operational
significance of the resulting formulas.”

As the entries are complex gaussian, one may expect to have direct access to the distribution
of log det

(
I + ρ

r HH∗). It turns out that despite the small size of the system or the gaussianity of
the entries, a large random matrix approach is supported by several arguments:

• The asymptotic approximations are often relatively simple closed-form formulas where the
role of many parameters of the system clearly appears.

• The convergence is fast; moreover, the gaussianity of the entries fastens the convergence up
to a factor proportional to the dimension of the matrix.

• Simulations match theoretical predictions for unreasonably small systems.

• Direct computations based on the exact expression of the eigenvalues of HH∗ in the gaussian
case are rapidely out of reach for complex scenarios (non-separable covariance structure,
Rician fading channel, etc.).

A brief survey

Law of Large Numbers. The study of the whole spectrum of large random matrices is relevant,
as noticed before, whenever one wants to compute the ergodic capacity or the outage probability
of a MIMO system, or the signal to interference plus noise ratio in a CDMA system.

For square matrices, this study can be traced back to the seminal work of Wigner [122, 123].
In the article “On the distribution of the roots of certain symmetric matrices”, Wigner derived
the limiting distribution of the spectrum of a symmetric n × n matrix Xn with independent
and identically distributed (i.i.d.) entries (up to the symmetry) and proved that the limiting
distribution was the semi-circle probability distribution. Wigner proceeded in counting the limiting
moments of the spectrum of the matrix, which turned out to converge toward the Catalan numbers,
well-known to be the moments of the semi-circle law.

A few years later, Marčenko and Pastur [78] derived the (eponymic) limiting distribution
of the spectrum of a Gram random matrix XnX∗

n where Xn is a N × n matrix whose entries are
i.i.d. as the dimensions go to infinity at the same pace (i.e. N

n → c ∈ (0,∞)). They did not follow
the same path as Wigner but instead studied the resolvent of the matrix and proved that the
Stieltjes transform (that is the normalized trace of the resolvent) of the limiting distribution was
the solution of a simple quadratic equation. Combining a systematic use of the Stieltjes transform
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and computation techniques based on the gaussianity of the entries, Pastur and his collaborators
developped further the technique in a series of papers [70, 92, 69, 16, 15, 89, 90, 91].

In the mid-nineties, people studying wireless network began to take advantage of theses
results. In 1995, Telatar (paper published in ’99 [111]) took advantage of Marčenko and Pastur’s
result to evaluate the ergodic capacity of a MIMO channel. In [36], Foschini also mentionned the
linear growth of the capacity and based his computations on Marčenko and Pastur’s result, wrongly
attributed to Grenander and Silverstein [45]. In the context of CDMA, Tse and Hanly [113], and
Shamai and Verdù [119] studied the performances of multiuser linear receivers for random spreading
sequences in large dimension. Tse pursued the study of the fluctuations with Zeitouni in [112].

In his books [39] and [41], Girko systematically studied many models of random matrices
beyond the i.i.d. case. These references soon became precious for people looking for more realistic
channels, that is matrices H whose entries would not be i.i.d. but rather correlated or non-centered
- see Müller [85], Chuah et al. [25], Mestre et al. [79], Moustakas et al. [82], Tulino et al. [116].
Girko’s books are full of ready-to-use equations and beautiful results related to non-centered non-
i.i.d. models but the mathematical proofs are hard to follow and extremely difficult to exploit or
extend.

Silverstein, together with Bai and other collaborators, played a pivotal role in the study of
large gram random matrices. Their favourite model, XTX∗, X being random with i.i.d. entries and
T being deterministic enables one to consider some correlation between the entries. Unsurprisingly,
many of their papers [103, 8, 30] are of constant use among electrical engineering (especially wireless
communication) specialists.

In Sections 2.3.1 and 2.3.2, we quickly revisit the historical example of Marčenko and Pastur
with the help of the Stieltjes transform to give a flavor of the technique.

Fluctuations. Central limit theorems have been widely studied for various models of random
matrices and for various classes of linear statistics of the eigenvalues in the physics, engineering
and mathematical literature.

In the mathematical literature, CLTs for Wigner matrices can be traced back to Girko [37]
(see also [40]). Results for this class of matrices have also been obtained by Khorunzhy et al.
[69], Johansson [61], Sinai and Sochnikov [105], Soshnikov [107], Cabanal-Duvillard [18]. For band
matrices, let us mention the paper by Khorunzhy et al. [69], Boutet de Monvel and Khorunzhy
[15], Guionnet [46], Anderson and Zeitouni [4]. The case of Gram matrices has been studied in
Jonsson [62] and Bai and Silverstein [7]. Fluctuations for Wigner and Wishart matrices have also
been studied by Chatterjee [20], and Mingo and Speicher in [80] with the help of free probability
tools. A recent preprint by Pastur and Lytova [88] is of particular interest, where the authors
develop tools to extend CLTs obtained with gaussian entries to models with non-gaussian entries.
The major interest follows from the fact that one can rely on the body of methods (and results)
developed for models with gaussian entries. The extension process yields however non-trivial
computations. For a more detailed overview, the reader is referred to the introduction in [4]. In
the physics literature, so-called replica methods as well as saddle-point methods have long been a
popular tool to compute the moments of the limiting distributions related to the fluctuations of
the statistics of the eigenvalues.

Previous results and methods have recently been exploited in the engineering literature,
with the growing interest in random matrix models for wireless communications (see the seminal
paper by Telatar [111] and the subsequent papers of Tse and co-workers [112], [113] - see also the
monograph by Tulino and Verdu [114] and the references therein). One main interest lies in the
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study of the convergence and the fluctuations of the mutual information 1
N log det (YnY

∗
n + ρIN ) for

various models of matrices Yn. General convergence results have been established by the authors
in [53, 51, 52] while fluctuation results based on Bai and Silverstein [7] have been developed in
Debbah and Müller [28] and Tulino and Verdu [115]. Other fluctuation results either based on
the replica method or on saddle-point analysis have been developed by Moustakas, Sengupta and
coauthors [82, 99], Taricco [109]. In a different fashion and extensively based on the Gaussianity
of the entries, a CLT has been proved in Hachem et al. [50].

In section 2.3.3, we sketch the proof of the CLT for log det(I +XX∗) in the case where X
has i.i.d. entries. We rely on a technique based on a martingale decomposition of the functional
of interest.

2.3 Random Matrices Techniques

2.3.1 Stieltjes transforms

Consider a hermitian matrix An, of dimension n× n and eigenvalues (λi, i = 1 : n). The resolvent
Rn(z) of An is the complex-indexed matrix Rn(z) = (An − zIn)−1 defined for any z ∈ C different
from the eigenvalues od An. A function-theoretic study of z 7→ Rn(z) has proven to be an efficient
way to study the spectrum of An (see for instance [67]).

A natural extension of the resolvent whenever the dimension of An grows to infinity is the
normalized trace of the resolvent:

fn(z) =
1

n
Trace Rn(z) .

As we shall see, this function is the Stieltjes transform of the empirical probability distribution
Ln = 1

n

∑n
i=1 δλi

.

Let µ be a probability measure over R. Its Stieltjes transform f is defined by:

f(z) =

∫

R

µ(dλ)

λ− z
, z ∈ C

+ △
= {z ∈ C, Im (z) > 0}.

It is now clear that:

fn(z) =
1

n
Trace Rn(z) =

1

n

n∑

i=1

1

z − λi
=

∫
Ln(dλ)

λ− z
.

As one should expect, the Stieltjes transform carries a lot of information on the underlying proba-
bility measure: One can get back the underlying probability measure with the help of its Stieltjes
transform (2.3) and one can characterize the convergence of probability measures toward the con-
vergence of their Stieltjes transforms (2.4).

Proposition 2.1. The following properties hold true:

1. Let f be the Stieltjes transform of µ, then

- the function f is analytic over C+,

- if z ∈ C+ then f(z) ∈ C+,

- the function f satisfies: limy→+∞ −iy f(iy) = 1.
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2. Conversely, let f be a function analytic over C+ such that f(z) ∈ C+ if z ∈ C+. If
limy→+∞ −iy f(iy) = 1, then f is the Stieltjes transform of a probability measure µ and
the following inversion formula holds:

(2.3) µ([a, b]) = lim
η→0+

1

π

∫ b

a

Im f(ξ + iη) dξ,

whenever a and b are continuity points of µ.

3. If, for x0 ∈ R, Im f(x0)
△
= limz∈C+→x0

Im f(z), then x 7→ µ(−∞, x] is differentiable at x0

with value 1
π Im f(x0).

4. Let Pn and P be probability measures over R and denote by fn and f their Stieltjes transforms.
Then

(2.4)
(
∀z ∈ C

+, fn(z) −−−−→
n→∞

f(z)
)

⇐⇒ Pn
D−−−−→

n→∞
P.

where D stands for convergence in distribution.

In their seminal paper [78], Marčenko and Pastur have first used Stieltjes transforms tech-
niques to characterize the (eponymic) limiting probability measure of the spectrum of XnX∗

n where
Xn is a rectangular matrix with i.i.d. entries whose dimensions grow at the same pace.

To illustrate the strength of this transformation, we propose:

A quick derivation of Marčenko and Pastur’s distribution. Consider a N ×n matrix Xn

with entries X
(n)
ij = σ√

n
Yij , the Yij ’s being i.i.d. Denote by Rn(z) = (rij(z), 1 ≤ i, j ≤ N) the

resolvent of matrix XnXT
n and by R̃n(z) the co-resolvent , i.e. the resolvent of XT

nXn. Let fn(z) =
1
N TraceRn(z) = 1

N

∑N
i=1 rii(z) and f̃n(z) = 1

nTrace R̃n(z). Assume that cn = N
n → c ∈ (0,∞),

then:

rii(z)
(a)
= − 1

z

(
1 + ξi

(
X

(i)T
n X

(i)
n − zIn

)−1

ξT
i

)

(b)≈ − 1

z

(
1 + σ2

n Trace
(
X

(i)T
n X

(i)
n − zIn

)−1
)

(c)≈ − 1

z
(
1 + σ2

n Trace (XT
nXn − zIn)

−1
)

= − 1

z
(
1 + σ2f̃n(z)

)

where (a) is a standard matrix identity (cf. [57]) [denote by X
(i)
n matrix Xn where the ith line ξi has

been removed], (b) follows from standard results related to quadratic forms: xAx ∼∞
1
nTraceA

when x and A are independent (see for instance [6, Lemma 2.7]), and (c) follows from a rank-one
perturbation argument. Summing over i and dividing by N yields:

fn(z) ≈ − 1

z
(
1 + σ2f̃n(z)

)
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Similarly, we obtain f̃n(z) ≈ − 1
z(1+cnσ2fn(z)) . This yields the asymptotic equation:

(2.5) f(z) =

(
−z +

σ2

1 + cσ2f(z)

)−1

.

This quadratic equation admits two solutions. Pick up the one that is a Stieltjes transform:

f(z) =
(1 − c) − |1 − c|

2zc
+

−z + |1 − c|σ2 +
√

(z − σ2(1 +
√
c)2) (z − σ2(1 −√

c)2)

2zcσ2
,

where
√

is the branch of the complex logarithm such that1 z ∈ C
+ ⇒ f(z) ∈ C

+ and let PM̌P

be the probability associated to f (Marčenko-Pastur distribution). Denote by λ+ = σ2(1 +
√
c)2

and λ− = σ2(1 −√
c)2. If c ≤ 1, then using Prop. 2.1-(3) yields:

PM̌P (dλ) =

√
(λ+ − λ)+ (λ− λ−)+

2cπλσ2
dλ ,

where x+ = sup(x, 0). If c > 1, then:

f(z) =

(
1 − 1

c

)
f1(z) +

1

c
f2(z) with f1(z) = −1

z
.

Note that f1 is the Stieltjes transform of the dirac measure at zero and that f2 can be handled
with Prop. 2.1-(3). Thus

PM̌P (dλ) =

(
1 − 1

c

)
δ0(dλ) +

1

c

√
(λ+ − λ)+ (λ− λ−)+

2πλσ2
dλ .

2.3.2 Gaussian calculus

If one deals with random matrices with gaussian entries, then two powerful tools are available.
The first one is an integration by parts formula, which enables to get identities between random
quantities of interest; the second one is Poincaré-Nash inequality which yields sharp estimates form
the variance of random quantities and enables one to decorrelate these quantities.

In the sequel, consider a N × n matrice Yn = [y1, · · · ,yn], the yj ’s being its columns with
each entry Yij being i.i.d. CN(0, σ2). Denote by Rn(z) = (−zI + n−1YnY∗

n)−1. The following
differentiation formulas will be of interest:

(2.6)
∂rpq

∂Yij
= − 1

n
rpi[Y

∗R]jq = − 1

n
rpi[y

∗
jR]q and

∂rpq

∂Yij

= − 1

n
[RY]pjriq = − 1

n
[Ryj ]priq .

An Integration by parts formula for Gaussian functionals

Let ξ = [ξ1, . . . , ξM ]T be a complex Gaussian random vector whose law is determined by E[ξ] = 0,
E[ξξT ] = 0, and E[ξξ∗] = Ξ. Let Γ = Γ(ξ1, · · · , ξM , ξ1, · · · , ξM ) be a C1 complex function
polynomially bounded together with its derivatives, then:

(2.7) E [ξpΓ(ξ)] =

M∑

m=1

[Ξ]pm E

[
∂Γ(ξ)

∂ξm

]
.

1Note that one must consider a different branch according to the fact that z ∈ C+ is such that ℜ(z) is below or
above the average between σ2(1 −√

c)2 and σ2(1 +
√

c)2.
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This formula relies on an integration by parts and thus is referred to as the Integration by parts
formula for Gaussian vectors.

Poincaré-Nash inequality

Let ξ and Γ be as previously and let ∇zΓ = [∂Γ/∂z1, . . . , ∂Γ/∂zM ]T and ∇zΓ = [∂Γ/∂z1, . . . , ∂Γ/∂zM ]T .
Then the following inequality holds true:

(2.8) var (Γ(ξ)) ≤ E

[
∇zΓ(ξ)T Ξ ∇zΓ(ξ)

]
+ E

[
(∇zΓ(ξ))

∗
Ξ ∇zΓ(ξ)

]
.

When ξ is the vector of the stacked columns of matrix Y, i.e. ξ = [Y11, . . . , YNn]T , formula (2.7)
becomes:

(2.9) E [YijΓ(Y)] = σ2
E

[
∂Γ(Y)

∂Yij

]
,

while inequality (2.8) writes:

(2.10) var (Γ(Y)) ≤
N∑

i=1

n∑

j=1

σ2
E

[∣∣∣∣
∂Γ(Y)

∂Yi,j

∣∣∣∣
2

+

∣∣∣∣
∂Γ(Y)

∂Yi,j

∣∣∣∣
2
]
.

Poincaré-Nash inequality turns out to be extremely useful to deal with variances of various
quantities of interest related to random matrices. In order to give right away the flavour of such
results, we state and prove the following:

Proposition 2.2. Let An be a N × N real diagonal matrix whose spectral norm is uniformly
bounded in n. Then

var

(
1

n
TrAnRn

)
= O

(
n−2

)
.

Proof. We apply inequality (2.10) to the function Γ(Y) = 1
nTrAR. Using (2.6), we have

∂Γ

∂Yi,j
=

1

n

N∑

p=1

ap
∂rpp

∂Yi,j
= − 1

n2
[y∗

jRAR]i .

Therefore, denoting by A the upper bound A = supn ‖An‖ and noticing that |∂Γ/∂Yi,j | =∣∣∂Γ/∂Yi,j

∣∣, we have:

var Γ(Y) ≤ 2

n4

N∑

i=1

n∑

j=1

σ2
E

∣∣∣
[
y∗

jHAH
]
i

∣∣∣
2

=
2

n4

n∑

j=1

σ2
E
(
y∗

jRAR2ARyj

)

=
2σ2

n3
E Tr

(
RAR2AR

YY∗

n

)

(a)

≤ 2σ2

n3
E

{
‖R‖4‖A‖2 Tr

(
YY∗

n

)}
(b)

≤ 2A2σ2

n3
E Tr

(
YY∗

n

)
≤ K

n2
,

where inequality (a) follows from the standard inequality Tr(AB) ≤ ‖B‖TrA, (b) follows from the
fact that the spectral norm of R is bounded and from the boundedness of ‖An‖.
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Another derivation of Marčenko-Pastur distribution. Let us introduce the following no-
tations:

fn(z) =
1

N
TrRn(z), gn(z) = Efn(z),

◦
fn = fn − gn and cn =

N

n
.

Recall that Rn = (−zI + n−1YnY∗
n)−1, then the resolvent identity yields:

Rn
YnY∗

n

n
= I − yRn .

In particular,

(2.11)

[
Rn

YnY∗
n

n

]

pp

= 1 + z rpp .

Now E

[
Rn

YnY∗
n

n

]
pp

=
∑N

i=1 E[rpiYijYpj ]. Using the integration by part formula, we get:

E[rpiYijYpj ] = σ2
Eriiδip − σ2

n
E[(RY)pjriiYpj ]

where δip is zero except if i = p. Now sum over i:

E[(RY)pjYpj ] = σ2
Erpp − σ2cnEfn(RY)pjYpj

= σ2
Erpp − σ2cngnE(RY)pjYpj − σ2cnE

◦
fn(RY)pjYpj .

Using Schwarz inequality plus Poincaré-Nash inequality yields E
◦
fn(RY)pjYpj = O(n−2). Thus

E[(RY)pjYpj ](1 + σ2cngn) = σ2
Erpp + O(n−2)

⇒ E

(
R

YY∗

n

)

pp

(1 + σ2cngn) = σ2
Erpp + O(n−2) .

Using (2.11) yields

(1 + zErpp)(1 + σ2cngn) = σ2
Erpp + O(n−2) ,

which after summation over p yields the equation:

gn =

(
−z +

σ2

1 + σ2cngn

)−1

+ O(n−2) .

Asymptotically, we obtain:

f =

(
−z +

σ2

1 + σ2cf

)−1

which can be solved as previously.

2.3.3 Martingale techniques: Fluctuations of the mutual information

When considering functionals of random matrices, it is often interesting to introduce the filtration
associated to the columns of the random matrix and to decompose a functional as the sum of
martingale increments.
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In order to illustrate the technique, we apply it to the mutual information of a Gram matrix
with i.i.d. entries:

In(ρ) =
1

N
log det (ρIN +XnX

∗
n) .

We will first decompose In−EIn as a sum of martingale increments, and then study its fluctuations.

Denote by R̃(z) = (−zIn +X∗
nXn)−1 the co-resolvent

(2.12) r̃jj =
det(XjT

n Xj
n − zIn−1)

det(XT
nXn − zIn)

,

where Xj
n is the N × (n− 1) matrix for which column j has been removed.

Consider χn = log det(ρIN +XnX
∗
n)−E log det(ρIN +XnX

∗
n) , and introduce the filtration

Fj = σ(xk; j ≤ k ≤ n), xk being column k of Xn and Fn+1 = {∅,Ω}. Then χn writes as the sum
of martingale differences:

χn =

n∑

j=1

Ej log det(ρIN +XnX
∗
n) − Ej+1 log det(ρIN +XnX

∗
n).

As Ej log det(ρIN + Xj
nX

j∗
n ) = Ej+1 log det(ρIN + Xj

nX
j∗
n ), we obtain, by substracting on both

sides:

χn = −
n∑

j=1

Ej log
det(ρIn +Xj

nX
j∗
n )

det(ρIn +XnX∗
n)

+ Ej+1 log
det(ρIn +Xj

nX
j∗
n )

det(ρIn +XnX∗
n)

= −
n∑

j=1

Ej log
det(ρIn−1 +Xj∗

n Xj
n)

det(ρIn +X∗
nXn)

+ Ej+1 log
det(ρIn−1 +Xj∗

n Xj
n)

det(ρIn +X∗
nXn)

= −
n∑

j=1

Ej log R̃jj(−ρ) +

n∑

j=1

Ej+1 log R̃jj(−ρ)

=
n∑

j=1

Ej log(1 + x∗jRjxj) −
n∑

j=1

Ej+1 log(1 + x∗jRjxj)

Use now the fact that Ej log
(
1 + σ2

n TraceRj

)
= Ej+1 log

(
1 + σ2

n TraceRj

)
, we obtain:

χn =

n∑

j=1

Ej log

(
1 + x∗jRjxj

1 + σ2

n TraceRj

)
−

n∑

j=1

Ej+1 log

(
1 + x∗jRjxj

1 + σ2

n TraceRj

)

=
n∑

j=1

(Ej − Ej+1) log

(
1 +

x∗jRjxj − σ2

n TraceRj

1 + σ2

n TraceRj

)

△
=

n∑

j=1

(Ej − Ej+1) log (1 +Aj) with Aj =
x∗jRjxj − σ2

n TraceRj

1 + σ2

n TraceRj

△
=

n∑

j=1

γj .

This decomposition can be used to study the fluctuations of In − EIn with the help of
specific Central Limit Theorems for martingales such that:
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Theorem 2.3 (CLT for martingales, Th. 35.12 in [14]). Let γ
(n)
n , γ

(n)
n−1, . . . , γ

(n)
1 be a martingale

difference sequence with respect to the increasing filtration F (n)
n , . . . ,F (n)

1 . Assume that there exists
a sequence of real positive numbers Θ2

n such that

(2.13)
1

Θ2
n

n∑

j=1

Ej+1γ
(n)
j

2 P−−−−→
n→∞

1 .

Assume further that the Lindeberg condition holds:

∀ǫ > 0,
1

Θ2
n

n∑

j=1

E

(
γ

(n)
j

2
1˛

˛

˛
γ
(n)
j

˛

˛

˛
≥ǫΘn

)
−−−−→
n→∞

0 .

Then Θ−1
n

∑n
j=1 γ

(n)
j converges in distribution to N (0, 1).

Let us sketch the proof of the following:

Theorem 2.4. Consider

In =
1

N
log det(ρIN +XnX

∗
n).

Then, the following Central Limit Theorem holds true:

N(IN − EIN )
P−−−−→

N→∞
N (0,Θ2)

where the variance Θ2 is given by:

Θ2 = log

(
1 − cσ4f(−ς2)

(1 + cσ2f(−ς2))2
)

+ κ
cσ4f(−ς2)

(1 + cσ2f(−ς2))2 ,

with f(z) being the Stieltjes transform of Marčenko-Pastur distribution and κ = E|Y11|4 − 2.

Now the Lindeberg (or even the stronger Lyapounov) condition can be proved to hold quite
easily. It remains to study

∑n
j=1 Ej+1γ

2
j . We can prove that:

n∑

j=1

Ej+1γ
2
j =

n∑

j=1

Ej+1 [(Ej − Ej+1) log(1 +Aj)]
2

≈
n∑

j=1

Ej+1 (EjAj − Ej+1Aj)
2

=
n∑

j=1

{
Ej+1(EjAj)

2 − Ej+1A
2
j

}

≈
n∑

j=1

Ej+1(EjAj)
2 .

Now,

Ej+1(EjAj)
2 = Ej+1

(
y∗jR

(j)yj − σ2

n TraceR(j)

1 + σ2

n TraceR(j)

)2

≈ 1
(
1 + σ2

n Trace EQ
)2 Ej+1

(
y∗jR

(j)yj −
σ2

n
TraceR(j)

)2

.
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The square can be developped:

Ej+1

(
y∗jR

(j)yj −
σ2

n
TraceR(j)

)2

=
1

n2

(
σ4Trace (Ej+1R

(j))(Ej+1R
(j)) + κ

N∑

i=1

σ4
Ej+1[R

(j)]2ii

)
.

Introduce ξj = σ4

n Trace Ej+1(Q)Q. We can prove that:

ξj ≈ σ4

n
TraceEQ2 +

n− j − 1

n
ξj

σ4

n TraceEQ2

(1 + σ2

n TraceDEQ)2
,

and therefore extract ξj

ξj =
σ4

n Trace EQ2

1 − n−j−1
n

σ4

n
Trace EQ2

(1+ σ2

n
Trace EQ)2

Letting j
n → x and ξj → ξ(x) yields the following asymptotic equation:

ξ(x) =
cσ4f2(−ς2)

1 − (1 − x) cσ4f(−ς2)
(1+cσ2f(−ς2))2 .

Finally,

n∑

j=1

Ej+1(EjAj)
2 ≈

n∑

j=1

1

n

ξj

(1 + σ2

n TraceEQ)2
+
κ

n

N∑

i=1

σ4
Ej+1[R

(j)]2ii

−−−−→
n→∞

1

(1 + cσ2f)2

∫ 1

0

ξ(x)dx + κ
cσ4f2

(1 + σ2cf)2
.

It remains to integrate (note that ξ has the form u′/u) to get the desired formula.
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Chapter 3

First order results: Laws of Large
Numbers

Summary

This chapter is mainly devoted to the description of the results of paper [53]. Partial results of paper [31]
together with the results of [51] are also presented.

[31] J. Dumont, W. Hachem, S. Lasaulce, P. Loubaton, and J. Najim. On the capacity achieving
covariance matrix for Rician MIMO channels: an asymptotic approach. to be published in IEEE Inf.

Th., submitted in 2007.

[51] W. Hachem, P. Loubaton, and J. Najim. The empirical eigenvalue distribution of a Gram matrix:
From independence to stationarity. Markov Process, Related Fields., 11(4):629–648, 2005.

[53] W. Hachem, P. Loubaton, and J. Najim. Deterministic equivalents for certain functionals of large
random matrices. Ann. Appl. Probab., 17(3):875–930, 2007.

Section 3.1. Let Σn = Yn + An be a N ×n random matrix, An being deterministic, with columns and
rows uniformly bounded in the Euclidean norm. Matrix Yn = (Y n

ij ) is random, its entries are given by

Y n
ij =

σij(n)√
n

Xn
ij , the Xn

ij being independent and identically distributed, centered with unit variance and
satisfying some mild moment assumption. We will refer to Yn as a matrix with a given variance profile.
The main result of [53] presented in Section 3.1 is a description of the behaviour of the spectrum of ΣnΣ∗

n

under the asymptotic regime n → ∞, N
n

→ c ∈ (0,∞) . We assert that there exists a deterministic
N × N matrix-valued function Tn(z) analytic in C − R

+ such that, almost surely,

lim
n→+∞, N

n
→c

„
1

N
Trace(ΣnΣT

n − zIN)−1 − 1

N
Trace Tn(z)

«
= 0.

Otherwise stated, there exists a deterministic equivalent to the empirical Stieltjes transform of the dis-
tribution of the eigenvalues of ΣnΣT

n . For each n, the entries of matrix Tn(z) are defined as the unique
solutions of a certain system of nonlinear functional equations. It is also proved that 1

N
Trace Tn(z) is the

Stieltjes transform of a probability measure πn(dλ), and that for every bounded continuous function f , the
following convergence holds almost surely 1

N

PN
k=1 f(λk)−

R ∞
0

f(λ)πn(dλ) −−−−→
n→∞

0 , where the (λk)1≤k≤N

are the eigenvalues of ΣnΣT
n .
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Girko’s work [39], although difficult to exploit from a mathematical point of view, has been a major

source of inspiration. In particular, the equations defining Tn(z) already appear in [53]. Our contribution

is to provide clear proofs, to lower the assumptions related to matrix An (in order to apply the results

to standard wireless channel models), and to prove that 1
N

Trace Tn(z) is the Stieltjes transform of a

probability measure πn(dλ).

Section 3.2. Results related to the approximation of the mutual information Cn(σ2) = 1
N

E log det
“
IN +

ΣnΣT
n

σ2

”
,

(where σ2 is a known parameter) are exposed here. Except the work of Taricco [110] (based on the replica
method), there has been little study devoted to the mutual information of a Rician channel (that is involv-
ing non-centered matrices). We first provide a deterministic equivalent to the mutual information. Notice
that Cn(σ2) writes:

Cn(σ2) =

Z +∞

σ2

„
1

ω
− 1

N
E Tr

“
ΣnΣT

n + ωIN

”−1
«

dω .

In view of the previous results, one can expect Cn(σ2) to be close to Cn(σ2) =
R +∞

σ2

`
1
ω
− 1

N
Tr Tn(−ω)

´
dω.

This is indeed true: Cn(σ2) − Cn(σ2) −−−−−−−−→
n→∞, N

n
→c

0 . Moreover, Cn(σ2) admits a completely explicit

representation:

Cn(σ2) =
1

N
log det

»
Ψ(−σ2)−1

σ2
+ AΨ̃(−σ2)AT

–

+
1

N
log det

Ψ̃(−σ2)−1

σ2
− σ2

nN

X

i,j

σ2
ijTii(−σ2)T̃jj(−σ2),

where Ψ, Ψ̃, T, T̃ satisfy the system of equations described in Section 3.1. This result is established in [53]
and substantially extends those in [114], proved in the case of a centered matrix Σn with i.i.d. entries, and
in [82] proved at a physical level of rigor (with the help of the replica method) for a centered matrix Σn

with a separable variance profile i.e. σ2
ij = did̃j .

We then specialize the results to the Gaussian non-centered separable case (cf. [31]), that is in

the case where the entries of matrix Yn write: Y n
ij =

did̃j√
n

Xij where the Xij are i.i.d. complex gaussian

variables. In this case, we are able to get a speed of convergence Cn(σ2)−Cn(σ2) = O
`
N−2

´
. This rate

is quite fast and partly explains the quality of approximations for small dimensions.

Section 3.3. In this section, we study the spectrum of a Gram matrix ΣnΣ∗
n, where Σn = Zn + An,

An is deterministic with uniform assumptions related to its columns and rows, and Zn is a Gaussian
correlated random matrix such that cov(Zn

j1j2 , Zn
j′1j′2

) = n−1C(j1 − j′1, j2 − j′2). The main result states that

the spectrum of ΣnΣ∗
n behaves like the spectrum of a companion matrix whose entries are independent

gaussian random variables but not identically distributed. This fact has more or less been taken for granted
in the electrical engineering community and is now explicitely proved. Close to our work but relying on
different methods, Anderson and Zeitouni subsequently studied non-gaussian models [3] with finite-range
correlation.

Here is a precise description of the main statement: Let Zn = (Zn
j1j2) be a N × n random matrix

with entries

Zn
j1j2 =

1√
n

X

(k1,k2)∈Z2

h(k1, k2)U(j1 − k1, j2 − k2),

where (U(j1, j2), (j1, j2) ∈ Z
2) is a sequence of independent complex Gaussian random variables CN(0, 1)

and (h(k1, k2), (k1, k2) ∈ Z
2) is deterministic and satisfies

P
(k1,k2)∈Z2 |h(k1, k2)| < ∞ . Then cov(Zn

j1j2 , Zn
j′1j′2

) =

n−1C(j1 − j′1, j2 − j′2) where:

C(j1, j2) =
X

(k1,k2)∈Z2

h(k1, k2)h
∗(k1 − j1, k2 − j2) .
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Introduce the p × p Fourier unitary matrix Fp = (F p
j1,j2

)0≤j1,j2<p defined by F p
j1,j2

= 1√
p

exp 2iπ
“

j1j2
p

”
,

and the function:

Φ(t1, t2) =
X

(ℓ1,ℓ2)∈Z2

h(ℓ1, ℓ2)e
2πi(ℓ1t1−ℓ2t2) .

Then the empirical distributions of the eigenvalues satisfy

F (Zn+An)(Zn+An)∗ − F (Yn+F∗
N AnFn)(Yn+F∗

NAnFn)∗ → 0,

where Y n
ℓ1ℓ2

= 1√
n
Φ

`
ℓ1
N

, ℓ2
n

´
Xn

ℓ1ℓ2
where the Xn

ℓ1ℓ2
are independent CN(0, 1) random variables. Now the

later distribution has been studied previously. We are therefore able to fully describe the behaviour of the

spectrum of (Zn + An)(Zn + An)∗.

3.1 Spectrum of a Gram matrix with independent entries

The model. Consider an N × n random matrix Yn where the entries are given by

(3.1) Y n
ij =

σij(n)√
n

Xn
ij ,

where (σij(n), 1 ≤ i ≤ N, 1 ≤ j ≤ n) is a bounded sequence of real numbers (i.e. supn max(i,j) |σij(n)| =
σmax < +∞) called a variance profile and the real random variables Xn

ij are centered, independent
and identically distributed (i.i.d.) with finite 4 + ε moment. Consider a real deterministic N × n
matrix An = (An

ij) whose columns (an
k )1≤k≤n and rows (ãn

ℓ )1≤ℓ≤N satisfy

(3.2) sup
n≥1

max
k,ℓ

(‖an
k‖, ‖ãn

ℓ ‖) < +∞ ,

where ‖·‖ stands for the Euclidean norm. Denote by Σn = Yn+An. This model has two interesting
features: The random variables are independent but not i.i.d. since the variance may vary and An,
the centering perturbation of Yn, can have a very general form.

About the literature. If Zn is a zero-mean N × n random matrix, the asymptotics of the
spectrum of the N × N Gram random matrices ZnZ

T
n have been widely studied: Marčenko and

Pastur [78], Yin [124], Silverstein et al. [30, 102, 103] for i.i.d. entries, Girko [38], Khorunzhy et
al. [69], Boutet de Monvel et al. [16] (see also Shlyakhtenko [100]) for non i.i.d. entries. In the
centered case, it turns out that very often the empirical distribution of the eigenvalues converges
towards a limiting distribution.

The case where matrix Zn has non zero mean has been comparatively less studied. Among
the related works, we first mention [30] which studies the eigenvalue asymptotics of the matrix
(Rn +Yn)(Rn +Yn)T in the case where the matrices Yn and Rn are independent random matrices,
Yn has i.i.d. entries and the empirical distribution ofRnR

T
n converges to a non-random distribution.

It is shown there that the eigenvalue distribution converges almost surely towards a deterministic
distribution whose Stieltjes transform is uniquely defined by a certain functional equation. The
case (Yn + ∆n)(Yn + ∆n)T where Yn is given by (3.1) and ∆n is deterministic pseudo-diagonal has
been studied in [52] where it is shown that under suitable assumptions the eigenvalue distribution
converges. In the general case Σn = Yn +An, the convergence of the empirical distribution of the
eigenvalues of ΣnΣT

n may fail to happen even if the variance profile exists in some limit and the
spectral distribution of AnA

T
n converges.
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Girko proposed in [39, Chapter 7] to study a deterministic equivalent of some functionals of
the eigenvalues of ΣnΣT

n in the case where the following condition holds for An:

(3.3) sup
n

max
i

n∑

j=1

|An
i,j | < +∞ and sup

N
max

j

N∑

i=1

|An
i,j | < +∞ .

Girko showed that the entries of the resolvent (ΣnΣT
n−zI)−1 have the same asymptotic behaviour as

the entries of a certain deterministic holomorphicN×N matrix-valued function Tn(z) characterized
by a nonlinear system of (n+N) coupled functional equations. Condition (3.3) is however rather
restrictive. In particular, it does not hold in the context of wireless MIMO system in which (3.2) is
actually much more relevant. We thus extend some of the results of Girko [39] to the case where An

satisfies (3.2). For this, we do not follow the approach of Girko [39] based on the use of Cramer’s
rule but rather take the approach of Dozier and Silverstein [30] as a starting point. This approach
not only allows to extend the result of [39] to deterministic matrices satisfying (3.2), but also
provides a simpler proof. It also enables us to prove that the deterministic equivalent 1

N TrTn(z) of
the Stieltjes transform 1

N Tr(ΣnΣT
n −zI)−1 is itself the Stieltjes transform of a probability measure,

which is a result of interest from a practical point of view.

Notations and assumptions. Let N = N(n) be a sequence of integers such that limn→∞
N
n =

c ∈ (0,∞). We denote by i the complex number
√
−1 and by Im (z) the imaginary part of z ∈ C.

Consider an N × n random matrix Yn where the entries are given by

Y n
ij =

σij(n)√
n

Xn
ij ,

where Xn
ij and (σij(n)) are defined below.

Assumption A-1. The random variables (Xn
ij ; 1 ≤ i ≤ N, 1 ≤ j ≤ n , n ≥ 1) are real,

independent and identically distributed. They are centered with E(Xn
ij)

2 = 1. Moreover there exists
ε > 0 such that:

E|Xn
ij |4+ε <∞ ,

where E denotes expectation.

Assumption A-2. There exists a non-negative finite real number σmax such that the family of
real numbers (σij(n), 1 ≤ i ≤ N, 1 ≤ j ≤ n, n ≥ 1) satisfies:

sup
n≥1

max
1≤i≤N
1≤j≤n

|σij(n)| ≤ σmax.

Denote by var(Z) the variance of the random variable Z. Since var(Y n
ij ) = σ2

ij(n)/n, the
family (σij(n)) will be called a variance profile.

Let An = (An
ij) be an N × n real deterministic matrix. We introduce the N × n matrix

Σn = Yn +An.

For every matrix M , we will denote by MT (resp. M∗) its transpose (resp. its Hermitian adjoint),

by Tr (M) (resp. det(M)) its trace (resp. its determinant if M is square) and by FM MT

, the
empirical distribution function of the eigenvalues of MMT . The matrix In will always refer to the
n× n identity.
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Let A be an n×n matrix with complex entries. If A is Hermitian and positive semi-definite
(that is z∗Az ≥ 0 for every z ∈ C

n), we write A ≥ 0. If A and B are Hermitian matrices, A ≥ B
means A−B ≥ 0.

We define the matrix Im (A) by

Im (A) =
1

2i
(A−A∗).

Let B be the Borel σ-field on R. An n × n matrix-valued measure M on B is a matrix-valued
function on B, the entries of which are complex measures. A positive matrix-valued measure M
is such that for every ∆ ∈ B, M(∆) ≥ 0 (i.e. M(∆) is a Hermitian and positive semi-definite
matrix). In this case, the diagonal entries are non-negative measures and for every z ∈ Cn, z∗Mz
is a scalar non-negative measure.

Denote by ‖ · ‖ the Euclidean norm for vectors. In the case of matrices, the norm ‖ · ‖sp will

refer to the spectral norm and if Z is a complex-valued random variable, denote by ‖Z‖p = (E|Z|p) 1
p

for p > 0. If X is a topological space, we endow it with its Borel σ-algebra B(X ) and we denote
by P(X ) the set of probability measures over X .

We denote by C− = {z ∈ C, Im (z) < 0} and by C+ = {z ∈ C, Im (z) > 0}.

Assumption A-3. Denote by an
k the kth column of An, by ãn

ℓ its ℓth row and by

amax,n = max (‖an
k‖, ‖ãn

ℓ ‖; 1 ≤ k ≤ n, 1 ≤ ℓ ≤ N) .

We assume that

amax = sup
n≥1

amax,n <∞.

If (α1, · · · , αk) is a finite sequence of real numbers, we denote by diag(α1, · · · , αk) the k× k
diagonal matrix whose diagonal elements are the αi’s. Let

(3.4) Dj = diag(σ2
ij(n); 1 ≤ i ≤ N) and D̃i = diag(σ2

ij(n); 1 ≤ j ≤ n).

We will denote by D
1/2
j = diag(σij , i ≤ N) and D̃

1/2
i = diag(σij , j ≤ n). Let µ be a probability

measure over R. Its Stieltjes transform f is defined by:

f(z) =

∫

R

µ(dλ)

λ− z
, z ∈ C

+.

Recall that if f be a function analytic over C+ such that f(z) ∈ C+ if z ∈ C+. If limy→+∞ −iy f(iy) =
1, then f is the Stieltjes transform of a probability measure µ and the following inversion formula
holds:

µ([a, b]) = lim
η→0+

1

π

∫ b

a

Im f(ξ + iη) dξ,

whenever a and b are continuity points of µ.

In the sequel we shall denote by S(R+) the set of Stieltjes transforms of probability measures
over R+.
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The deterministic equivalent: Existence and asymptotic behaviour. Let us introduce
the following resolvents:

Qn(z) = (ΣnΣT
n − zIN)−1 = (qij(z))1≤i,j≤N , z ∈ C − R

+,

Q̃n(z) = (ΣT
n Σn − zIn)−1 = (q̃ij(z))1≤i,j≤n , z ∈ C − R

+.

The function fn(z) = 1
N TrQn(z) is the Stieltjes transform of the empirical distribution of the

eigenvalues of ΣnΣT
n . The aim of this paper is to get some insight on fn by the means of a

deterministic equivalent. We will often drop subscripts n. In Theorem 3.1, we prove the existence
of matrix-valued deterministic functions T (z) and T̃ (z) which satisfy a system of N +n functional
equations. In Theorem 3.2, we prove that asymptotically,

1

N
TrQ(z) ∼ 1

N
TrT (z) and

1

n
Tr Q̃(z) ∼ 1

n
Tr T̃ (z)

in a sense to be defined.

Theorem 3.1. Let An be an N × n deterministic matrix. The deterministic system of N + n
equations:

ψi(z) =
−1

z
(
1 + 1

nTr D̃iT̃ (z)
) for 1 ≤ i ≤ N,(3.5)

ψ̃j(z) =
−1

z
(
1 + 1

nTrDjT (z)
) for 1 ≤ j ≤ n,(3.6)

where

(3.7)
Ψ(z) = diag(ψi(z), 1 ≤ i ≤ N) , Ψ̃(z) = diag(ψ̃j(z), 1 ≤ j ≤ n)

T (z) =
(
Ψ−1(z) − zAΨ̃(z)AT

)−1

, T̃ (z) =
(
Ψ̃−1(z) − zAT Ψ(z)A

)−1

.

admits a unique solution (ψ1, . . . , ψN , ψ̃1, . . . , ψ̃n) in S(R+)N+n.

Moreover, there exist a positive N×N matrix-valued measure µ = (µij) and a positive n×n
matrix-valued measure µ̃ = (µ̃ij) such that

µ(R+) = IN , µ̃(R+) = In and T (z) =

∫

R+

µ(dλ)

λ− z
, T̃ (z) =

∫

R+

µ̃(dλ)

λ− z

for z ∈ C − R+. In particular, 1
N Tr T (z) and 1

nTr T̃ (z) are Stieltjes transforms of probability
measures.

Proof of Theorem 3.1 relies on an iteration scheme and on properties of matrix-valued
Stieltjes transforms.

Theorem 3.2. Assume that Assumptions (A-1), (A-2) and (A-3) hold, then the following limits
hold true almost everywhere:

lim
n→∞, N

n
→c

(
1

N
TrQ(z) − 1

N
TrT (z)

)
= 0, ∀z ∈ C − R

+,

lim
n→∞, N

n
→c

(
1

n
Tr Q̃(z) − 1

n
Tr T̃ (z)

)
= 0, ∀z ∈ C − R

+.
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Remark 3.3 (limiting behaviour). There are two well-known cases where the empirical distribution
of the eigenvalues of ΣnΣT

n converges towards a limit expressed in terms of its Stieltjes transform:
The case where the variance profile σij = σ is a constant [30] and the case where the centering
matrix A (which can be rectangular) has elements equal to zero outside the diagonal [52] (with

FAnAT
n converging to a probability measure in both cases). Interestingly, one can obtain discretized

versions of the limiting equations in [30] and [52] by combining (3.5)-(3.7).

Corollary 3.4. Assume that Assumptions (A-1), (A-2) and (A-3) hold. Denote by Pn and πn

the probability measures whose Stieltjes transform are respectively 1
N TrQn and 1

N TrTn. Then the
following limit holds true almost everywhere:

∫ ∞

0

f(λ)Pn(dλ) −
∫ ∞

0

f(λ)πn(dλ) −−−−→
n→∞

0,

where f : R+ → R is a continuous and bounded function. The same results hold for the probability
measures related to 1

nTr Q̃n and 1
nTr T̃n.

Remark 3.5 (Concentration and Martingale arguments). If one is interested in proving that the
empirical measure is close to its expectation, one can rely on concentration arguments (see e.g.
[47]) at least when the entries are Gaussian, bounded or satisfy the Poincaré inequality. One can
also rely on martingale arguments, regardless of the nature of the entries (as long as they are
independent and satisfy some mild moment assumptions - see [39, Chapter 16], and also [31]).
The purpose here is to provide a “computable” deterministic equivalent which is not expressed in
terms of expectations. In fact, although expectations can be computed by Monte-Carlo methods,
these methods quickly imply a huge amount of computations when the size of the matrix models
increases.

Outline of the proof of Theorem 3.2. The proof relies on the introduction of intermediate
quantities which are the stochastic counterparts of Ψ, Ψ̃, T and T̃ . Denote by

bi(z) =
−1

z
(
1 + 1

nTrD̃iQ̃(z)
) for 1 ≤ i ≤ N, B(z) = diag(bi(z), 1 ≤ i ≤ N) ,(3.8)

b̃j(z) =
−1

z
(
1 + 1

nTrDjQ(z)
) for 1 ≤ j ≤ n, B̃(z) = diag(b̃j(z), 1 ≤ j ≤ n) ,(3.9)

and by

(3.10) R(z) = (B−1(z) − zAB̃(z)AT )−1 and R̃(z) = (B̃−1(z) − zATB(z)A)−1.

The introduction of the quantities R, R̃, T and T̃ can be traced back to the work of Girko. We
first prove that 1

N TrQ(z) ∼ 1
N TrR(z) and 1

N Tr Q̃(z) ∼ 1
N Tr R̃(z). These computations, quite

involved, are along the same lines as the computations by Dozier and Silverstein in [30]. We then
prove that 1

N TrR(z) ∼ 1
N TrT (z) and 1

N Tr R̃(z) ∼ 1
N Tr T̃ (z).

3.2 A closed-form formula for the “log-det” functional

The mutual information is the maximum number of bits per second per Hertz per antenna that
can be transmitted reliably on a MIMO channel with channel matrix Hn. It is equal to

(3.11) Cn(σ2) =
1

N
E log det

(
IN +

HnH
∗
n

σ2

)
,
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where σ2 represents the variance of an additive noise corrupting the received signals. The mutual
information Cn(σ2) is related to 1

N Tr(HnH
∗
n + σ2IN )−1 by the formula

∂Cn

∂σ2
=

1

N
E Tr(HnH

∗
n + σ2IN )−1 − 1

σ2

or equivalently by

Cn(σ2) =

∫ +∞

σ2

(
1

ω
− 1

N
E Tr (HnH

∗
n + ωIN )

−1

)
dω ,

which follows from (3.11) by Fubini’s theorem. In certain cases, channel matrix Hn is unitarily
equivalent to Σn = Yn + An which has complex entries. Without loss of generality, we shall work
with matrix Σn with real entries in order to remain consistent with the general exposition. Showing

that 1
N Tr

(
ΣnΣT

n + ωIN
)−1 ≃ 1

N TrTn(−ω) for the deterministic matrix-valued function Tn(z) de-

fined in Theorem 3.1 allows one to approximate Cn(σ2) by Cn(σ2) =
∫ +∞

σ2

(
1
ω − 1

N TrTn(−ω)
)
dω.

This approximant can be written more explicitly.

Theorem 3.6. Assume that Assumptions (A-1), (A-2) and (A-3) hold and denote by

(3.12) Cn(σ2) =

∫ +∞

σ2

(
1

ω
− 1

N
TrTn(−ω)

)
dω ,

where T is given by Theorem 3.1. Then the following limit holds true:

Cn(σ2) − Cn(σ2) −−−−−−−−−→
n→+∞, N

n
→c

0,

where σ2 ∈ R+. Moreover,

(3.13) Cn(σ2) =
1

N
log det

[
Ψ(−σ2)−1

σ2
+AΨ̃(−σ2)AT

]

+
1

N
log det

Ψ̃(−σ2)−1

σ2
− σ2

nN

∑

i,j

σ2
ijTii(−σ2)T̃jj(−σ2).

In certain cases, the study of the behaviour of Cn(σ2) is simpler than the behaviour of
Cn(σ2), and allows one to get some insight on the behaviour of the mutual information of certain
MIMO wireless channels (see e.g. [32] for preliminary results).

Remark 3.7. Eq. (3.13) has already been established in the zero mean case (An = 0): the centered
case with no variance profile has been studied by Verdú and Shamai [119], the centered case with
a variance profile by Sengupta and Mitra [99] (with a separable variance profile) and Tulino and
Verdú ([114], Theorem 2.44).

Sharper results for the Gaussian separable case. Let Hn = Yn + An and assume the
following:

Assumption A-4. 1. Matrix Yn writes:

Yn =
1√
n
D1/2

n XnD̃
1/2
n

where Dn (resp. D̃n) is a N × N (resp. n × n) diagonal matrix whose spectral norm is
uniformly bounded, Xn is a N × n matrix with i.i.d. CN(0, 1) entries.
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2. Matrix An is N × n and has a uniformly bounded spectral norm.

As previously, denote by:

Cn(σ2) =
1

N
E log det

(
IN +

HnH
∗
n

σ2

)
,

Lemma 3.8. The following system of equations admits, for every σ2 > 0, a unique pair of solutions
(δ, δ̃): 




δ =
1

n
Tr

[
D
(
σ2(IN +Dδ̃) +A(In + D̃δ)−1A∗

)−1
]

δ̃ =
1

n
Tr

[
D̃
(
σ2(In + D̃δ) +A∗(IN +Dδ̃)−1A

)−1
] .

Remark 3.9. Interestingly, the set of N + n equations in Theorem 3.1 reduces to 2 equations in
the case where the variance profile is separable.

The following theorem holds true:

Theorem 3.10. Assume that (A-4) holds true, then:

Cn(σ2) − Cn(σ2) = O
(

1

t2

)
,

where

Cn(σ2) = log det
[
In + δD̃ + σ−2A∗(IN + δ̃D)−1A

]
+ log det

[
IN + δ̃D

]
− σ2δδ̃ ,

and δ and δ̃ are given by the previous lemma.

3.3 From independence to stationarity

The model Let Zn = (Zn
j1j2 , 0 ≤ j1 < N, 0 ≤ j2 < n) be a N × n random matrix with entries

Zn
j1j2 =

1√
n

∑

(k1,k2)∈Z2

h(k1, k2)U(j1 − k1, j2 − k2),

where (U(j1, j2), (j1, j2) ∈ Z2) is a sequence of independent complex Gaussian random variables

(r.v.) such that EU(j1, j2) = 0, EU(j1, j2)
2 = 0 and E |U(j1, j2)|2 = 1, and (h(k1, k2), (k1, k2) ∈

Z2) is a deterministic complex sequence satisfying
∑

(k1,k2)∈Z2

|h(k1, k2)| <∞ .

The bidimensional process Zn
j1j2

is a stationary gaussian field. Indeed, cov(Zn
j1j2

, Zn
j′1j′2

) = n−1C(j1−
j′1, j2 − j′2) where

(3.14) C(j1, j2) =
∑

(k1,k2)∈Z2

h(k1, k2)h
∗(k1 − j1, k2 − j2)

(we denote by a∗ the complex conjugate of a ∈ C - we also denote by A∗ the hermitian adjoint of
matrix A).
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Aim and motivation The purpose here is to study the asymptotic behaviour of the empirical
distribution of the eigenvalues of various Gram matrices based on Zn in the large limit n → ∞,
N
n → c ∈ (0,∞). More precisely, we shall study the convergence of the spectral distribution of
(Zn + An)(Zn + An)∗ where An is a deterministic matrix. The contribution in this section is to
provide a new method to study Gram matrices based on Gaussian fields. The main idea is to
approximate the matrix Zn by a matrix Z̃n unitarily congruent to a matrix with independent but
not identically distributed entries. This method will allow us to revisit the centered case ZnZ

∗
n,

already studied by Boutet de Monvel et al. in [16] and to state asymptotic results for the spectral
distribution of the non-centered case (Zn +An)(Zn + An)∗.

The motivations for such a work are twofold. First of all, we believe that this line of proof is
new. Let us briefly describe the three main elements of it. The first one is a periodization scheme
popular in signal processing and described as follows:

Z̃n = (Z̃n
j1j2) where Z̃n

j1j2 =
1√
n

∑

(k1,k2)∈Z2

h(k1, k2)U ((j1 − k1) mod N, (j2 − k2) mod n) ,

where mod denotes modulo.
The second element is an inequality due to Bai [5] involving the Lévy distance L between

distribution functions:

(3.15) L4(FAA∗

, FBB∗

) ≤ 2

N2
Tr(A−B)(A−B)∗Tr(AA∗ +BB∗),

where FAA∗

denotes the empirical distribution function of the eigenvalues of the matrix AA∗ and
Tr(X) denotes the trace of matrix X . With the help of this inequality, we shall prove that ZnZ

∗
n

and Z̃nZ̃
∗
n have the same limiting spectral distribution.

The third element comes from the advantage of considering Z̃n. In fact, Z̃n is congruent (via
Fourier unitary transforms) to a random matrix with independent but not identically distributed
entries. Therefore, we can (and will) rely on results established in [52] for Gram matrices with
independent but not identically distributed entries.

The second motivation comes from the field of wireless communications. In a communication
system employing antenna arrays at the transmitter and at the receiver sides, random matrices
extracted from Gaussian fields are often good models for representing the radio communication
channel. In this course, the stationary model as considered above is often a realistic channel model.
The computations of popular receiver performance indexes such as Signal to Interference plus
Noise Ratio or Shannon channel capacity heavily rely on the knowledge of the limiting spectral
distribution of matrices of the type ZnZ

∗
n (see [26],[74] and also the tutorial [114] for further

references).

About the literature Various Gram matrices based on Gaussian fields have already been stud-
ied in the literature. The study of the general case (Zn + An)(Zn + An)∗ has been undertaken
by Girko in [39, 41]. His approach is based on more general results valid in the case of a Gram
matrix with asymptotically independent entries. In this context, Girko shows that the normalized
trace of its resolvent has the same asymptotic behavior as the normalized trace of a deterministic
matrix verifying a certain non-linear “canonical equation”. Since no assumptions are done on the
structure of An, there might not be any limiting spectral distribution. In the case where Zn is a
stationary field and An is Toeplitz, the equations have a simpler form, and depend on the spectral
measure of Zn and on the Fourier transform of the entries of An. Note that the Gaussianity is not
necessary in this approach.

Boutet de Monvel et al. [16] have also studied Gram matrices based on stationary Gaussian
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fields in the case where the matrix has the form Vn + ZnZ
∗
n, Vn being a deterministic Toeplitz

matrix. Their line of proof is based on a direct study of the resolvent, taking advantage of the
gaussianity of the entries.

Following the idea behing [51], Anderson and Zeitouni [3] extended to a non-gaussian setup
(and in the case of Hermition matrices) some of the results presented here. The price to pay is a
more stringent assumption related to the covariance function.

Disclaimer. We study in detail the case where the entries of matrix Zn are complex and where
An is not zero. In the real case, the general framework of the proof works as well if one considers the
real counterpart of the Fourier unitary transforms, however the computations are more involved.
We provide some details in Section 3.3. In the case where An is equal to zero, one would get a
limiting probability distribution result (for the details, see [51]).

Assumptions and notations Let N = N(n) be a sequence of integers such that

lim
n→∞

N(n)

n
= c ∈ (0,∞).

We denote by i the complex number
√
−1, by 1A(x) the indicator function over set A and by

δx0(x) the Dirac measure at point x0. A sum will be equivalently written as
∑n

k=1 or
∑

k=1:n. We
denote by CN (0, 1) the distribution of the Gaussian complex random variable U satisfying EU = 0,

EU2 = 0, and E |U |2 = 1 (equivalently, U = A+ iB where A and B are real independent Gaussian
r.v.’s with mean 0 and standard deviation 1√

2
each).

Assumption A-5. The entries (Zn
j1j2

, 0 ≤ j1 < N, 0 ≤ j2 < n , n ≥ 1) of the N × n matrix Zn

are random variables defined as:

Zn
j1j2 =

1√
n

∑

(k1,k2)∈Z2

h(k1, k2)U(j1 − k1, j2 − k2),

where (h(k1, k2), (k1, k2) ∈ Z2) is a deterministic complex sequence satisfying

hmax
△
=

∑

(k1,k2)∈Z2

|h(k1, k2)| <∞

and (U(j1, j2), (j1, j2) ∈ Z2) is a sequence of independent random variables with distribution
CN (0, 1).

Remark 3.11. Assumption (A-5) is a bit more restrictive than the related assumption [16], which
only relies on the summability of the covariance function of the stationary process.

For every matrix A, we denote by FA A∗

the empirical distribution function of the eigenvalues
of AA∗. Since we will study at the same time the limiting spectrum of the matrices ZnZ

∗
n (resp.

(Zn + An)(Zn + An)∗) and Z∗
nZn (resp. (Zn + An)∗(Zn + An)), we can assume without loss of

generality that c ≤ 1. We also assume for simplicity that N ≤ n.

When dealing with vectors, the norm ‖ · ‖ will denote the Euclidean norm. In the case
of matrices, the norm ‖ · ‖ will refer to the spectral norm. Denote by C+ the set C+ = {z ∈
C, Im (z) > 0} and by C(X ) the set of bounded continuous functions over a given topological
space X endowed with the supremum norm ‖ · ‖∞.
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The asymptotic behaviour in the non centered case Following [53], it is possible to rely
on Theorem 3.2 to provide a deterministic equivalent for a matrix (Zn +An)(Zn + An)∗

We first introduce the following complex-valued function Φ : [0, 1] × [0, 1] → C defined by:

(3.16) Φ(t1, t2) =
∑

(ℓ1,ℓ2)∈Z2

h(ℓ1, ℓ2)e
2πi(ℓ1t1−ℓ2t2)

We also introduce the p× p Fourier matrix Fp = (F p
j1,j2

)0≤j1,j2<p defined by:

(3.17) F p
j1,j2

=
1√
p

exp 2iπ

(
j1j2
p

)
.

Note that matrix Fp is a unitary matrix.

Theorem 3.12. Let Σn = Zn + Bn where Bn is a complex N × n matrix which satisfies (A-3).
Denote by Q(z) = (ΣnΣ∗

n − zIN )−1 and Q̃n(z) = (Σ∗
nΣn − zIn)−1. Then

lim
n→∞, N

n
→c

(
1

N
TrQ(z) − 1

N
TrT (z)

)
= 0 and lim

n→∞, N
n
→c

(
1

n
Tr Q̃(z) − 1

n
Tr T̃ (z)

)
= 0

for every z ∈ C − R+ where T and T̃ in Theorem 3.1 must be replaced by the following:

T (z) =
(
Ψ−1(z) − zAΨ̃(z)A∗

)−1

, T̃ (z) =
(
Ψ̃−1(z) − zA∗Ψ(z)A

)−1

,

and where the variance profile σij(n) must be replaced by
∣∣Φ
(

i
N ,

j
n

)∣∣, and matrix A by FNBF
∗
n .

The convergence holds in probability.

Sketch of proof. The proof is based on two key lemmas. The first one, Lemma 3.13, is about
deconvolution; the second one, Lemma 3.14, fully relies on Bai’s inequality (3.15).

We introduce the N × n matrix Z̃n whose entries are defined by

Z̃n
j1j2 =

1√
n

∑

(k1,k2)∈Z2

h(k1, k2)U(j1 − k1 mod N, j2 − k2 mod n).

For simplicity, we shall write Ũn(j1, j2) instead of U(j1 mod N, j2 mod n). Recall that L stands
for the Lévy distance between distribution functions. The main interest in dealing with matrix Z̃n

lies in the following two lemmas.

Lemma 3.13. Consider the N × n matrix Yn = FN Z̃nF
∗
n . Then the entries Y n

ℓ1ℓ2
of Yn can be

written

Y n
ℓ1ℓ2 =

1√
n

Φ

(
ℓ1
N
,
ℓ2
n

)
Xn

ℓ1ℓ2

where Φ is defined in (3.16) and the complex random variables {Xn
ℓ1ℓ2

, 0 ≤ ℓ1 < N, 0 ≤ ℓ2 < n}
are independent with distribution CN (0, 1).

Lemma 3.14. Let Bn be a N×n deterministic matrix such that the sequence 1
nTrBnB

∗
n is bounded

over n. Then
L
(
F (Zn+Bn)(Zn+Bn)∗ , F (Z̃n+Bn)(Z̃n+Bn)∗

)
P−−−−→

n→∞
0,

where
P−→ denotes convergence in probability.
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Remarks on the real case In the case where the entries of matrix Zn are given by

Zn
j1j2 =

1√
n

∑

(k1,k2)∈Z2

h(k1, k2)U(j1 − k1, j2 − k2),

where (h(k1, k2), (k1, k2) ∈ Z2) is a deterministic real and summable sequence and where U(j1, j2)
are real standard independent gaussian r.v.’s, the conclusion of Lemma 3.13 is no longer valid. In
fact the entries of Yn = FN Z̃nF

∗
n are far from being independent since straightforward computation

yields:
Y n

ℓ1,ℓ2 = Y n∗

N−ℓ1,n−ℓ2 for 0 < ℓ1 < N and 0 < ℓ2 < n.

We introduce the p× p orthogonal matrix Qp = (QP
j1j2

)0≤j1,j2<p defined by:

Qp
0,j2

=
1√
p
, 0 ≤ j2 < p.

In the case where p is even, the entries Qp(j1, j2) (j1 ≥ 1) are defined by





Qp
2j1−1,j2

=
√

2
p cos

(
2πj1j2

p

)
if 1 ≤ j1 ≤ p

2 − 1, 0 ≤ j2 < p;

Qp
2j1,j2

=
√

2
p sin

(
2πj1j2

p

)
if 1 ≤ j1 ≤ p

2 − 1, 0 ≤ j2 < p;

Qp
p−1,j2

= (−1)j2
√

p if 0 ≤ j2 < p.

In the case where p is odd, they are defined by





Qp
2j1−1,j2

=
√

2
p cos

(
2πj1j2

p

)
if 1 ≤ j1 ≤ p−1

2 , 0 ≤ j2 < p;

Qp
2j1,j2

=
√

2
p sin

(
2πj1j2

p

)
if 1 ≤ j1 ≤ p−1

2 , 0 ≤ j2 < p.

In the sequel, ⌊x⌋ stands for the integer part of x. The following result is the counterpart of Lemma
3.13 in the real case.

Lemma 3.15. Consider the N × n matrix Wn = QN Z̃nQ
T
n where AT is the transpose of matrix

A. Then the entries Wn
ℓ1ℓ2

of Wn can be written as

Wn
ℓ1ℓ2 =

1√
n

∣∣∣∣Φ
(

1

N

⌊
ℓ1 + 1

2

⌋
,
1

n

⌊
ℓ2 + 1

2

⌋)∣∣∣∣X
n
ℓ1ℓ2

where Φ is defined in (3.16) and the real random variables {Xn
ℓ1ℓ2

, 0 ≤ ℓ1 < N, 0 ≤ ℓ2 < n} are
independent standard gaussian r.v.’s.

The proof is computationally more involved but similar in spirit to that of Theorem 3.12.

As a consequence of this lemma, Theorem 3.12 remains true.
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Chapter 4

Second order analysis: Central
Limit Theorems

Summary

This chapter is devoted to the description of the results of papers [50], [54] and [64]

[50] W. Hachem, O. Khorunzhiy, P. Loubaton, J. Najim, and L. Pastur. A new approach for mutual
information analysis of large dimensional multi-antenna chennels. IEEE Trans. Inform. Theory,
54(9):3987–4004, 2008.

[54] W. Hachem, P. Loubaton, and J. Najim. A CLT for information-theoretic statistics of gram random
matrices with a given variance profile. Ann. Appl. Probab., 18(6):2071–2130, 2008.

[64] A. Kammoun, M. Kharouf, W. Hachem, and J. Najim. A Central Limit Theorem for the SINR at
the LMMSE estimator output for large dimensional signals. accepted for publication in IEEE Inf.

Th., june 2008.

Section 4.1. In this section, we state a Central Limit Theorem for In(ρ) = log det
`
IN + ρn−1YnY∗

n

´
,

where Yn = D
1/2
n Xn

eD1/2
n is a N × n matrix, Dn and eDn are respectively N × N and n × n diagonal

matrices, and Xn has i.i.d. entries with distribution CN (0, 1). Notice that the order of the fluctuations is
N . This section follows [50] where the CLT is proved.

Consider the system of equations in (δ, δ̃) and the deterministic matrices Tn and T̃n:


δ = 1

n
TrDn(I + ρδ̃Dn)−1

δ̃ = 1
n
Tr eDn(I + ρδ eDn)−1 ,


Tn = (IN + ρδ̃Dn)−1

eTn = (In + ρδ eDn)−1 .

The results stated in Chapter 3 (see e.g. Section 3.2) yield that under the asymptotic regime: n → ∞ and
0 < lim inf N

n
≤ lim sup N

n
< ∞, we have E[In(ρ)] = Vn(ρ) + O

`
n−1

´
where:

Vn(ρ) = log det
“
In + ρδn

eDn

”
+ log det

“
IN + ρδ̃nDn

”
− nρδnδ̃n .

Now, denote by γn = 1
n
TrD2

nT2
n and γ̃n = 1

n
Tr eD2

n
eT2

n, and by σ2
n(ρ) = − log(1 − ρ2γnγ̃n). Then the

following convergence (in distribution) holds true:

In(ρ) − Vn(ρ)

σn(ρ)
L−−−−→

n→∞
N (0, 1) .
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The Central Limit Theorem is stated for Gaussian random variables and its proof relies on Gaussian

tools such as Poincaré-Nash inequality and the integration by part formula. Interestingly, this result

confirms previous computations of asymptotic first and second moments obtained at a physical level of

rigor by the replica method , and fully establishes the convergence towards a Gaussian random variable.

Although the results in [50] could be inferred from those in [54], we prefer to present them separately

because they rely on Gaussian tools of interest on their own (cf. [31], [65]).

Section 4.2. This section is devoted to the study of the fluctuations of In(ρ) = 1
N

log det (YnY ∗
n + ρIN),

where Yn = (Y n
ij ) is a N × n random matrix whose entries are given by Y n

ij =
σij(n)√

n
Xn

ij , the Xij ’s being
complex, centered and i.i.d. with unit variance. The main differences with the result in Section 4.1 lie in
the fact that the X ′

ijs are no longer gaussian, and that the variance profile is no longer separable.

A Central Limit Theorem (CLT) is stated for In(ρ) whenever n → ∞ and 0 < lim inf N
n

≤
lim sup N

n
< ∞. In [53] (see Section 3.2), it has been proved that there exists a sequence of deterministic

probability measures (πn) such that the mathematical expectation EIn(ρ) satisfies:

EIn(ρ) −
Z

log(λ + ρ)πn( dλ) −−−−→
n→∞

0 .

Moreover,
R

log(λ + ρ)πn( dλ) has a closed form formula and is easier to compute than EIn (whose evalu-
ation would rely on massive Monte-Carlo simulations). Accordingly, we study the fluctuations of

1

N
log det(YnY ∗

n + ρIN) −
Z

log(ρ + t)πn( dt) ,

and prove that this quantity properly rescaled converges in distribution toward a Gaussian random variable.

In order to prove the CLT, we study separately the quantity N(In(ρ) − EIn(ρ)) from which the
fluctuations arise and the quantity N(EIn(ρ) −

R
log(λ + ρ)πn( dλ)) which yields a bias.

As we shall see, the variance Θ2
n of N(In(ρ) − EIn(ρ)) takes a remarkably simple closed-form

expression. In fact, there exists a n×n deterministic matrix An whose entries depend on the variance profile
(σij) and such that the variance takes the form: Θ2

n = − log det(In −An)+ κTrAn, where κ = E|X11|4 − 2
in the fourth cumulant of the complex variable X11. The CLT expresses as:

N

Θn
(In − EIn)

L−−−−→
n→∞

N (0, 1).

Finally, there exists a deterministic quantity Bn(ρ) such that:

N

„
EIn(ρ) −

Z
log(λ + ρ)πn( dλ)

«
−Bn(ρ) −−−−→

n→∞
0 .

A special attention is devoted to the case where the variance profile is the sample of a continuous function,
i.e. σij = σ(i/N, j/n) where (x, y) 7→ σ(x, y) is a bounded continuous function.

There are many overlaps between the results presented here and the articles from Bai and Silverstein

[7] and from Anderson and Zeitouni [4]. Among the main differences: We do not need random variables

with gaussian-like second and fourth moments (which is the case in [7]); we only need mild moments

assumptions whereas all the moments are required in [4]; and our method of proof works both for the real

and complex case while the combinatorics methods of [4] heavily rely on the fact that the variables are

real. On the other hand, we only deal with one functional (the logdet) for simplicity while larger classes

of functions are considered in [7, 4]; A precise comparison is made in Section 4.2.
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Section 4.3. This section is devoted to the study of the fluctuations of the quadratic form βK =
y∗ (YY∗ + ρIN )−1

y, where y is a N × 1 vector, Y is a N × K matrix, both extracted from matrix
Σ = [y Y]:

Σ =
`
Σnk

´N,K

n=1,k=0
=

„
σnk√

K
Wnk

«N,K

n=1,k=0

.

The complex random variables Wnk are i.i.d. with EWnk = 0, EW 2
nk = 0 and E|Wnk|2 = 1 and where

(σ2
nk; 1 ≤ n ≤ N ; 0 ≤ k ≤ K) is an array of real numbers.

The study of such a quadratic form arises from performance analysis of large dimensional signals. If
one considers the communication model r = Σs+n (where s, n, r and Σ are respectively the transmitted
signal, white noise, received signal and channel - see Section 2.1.2 for more details), then β is the Signal
to Interference plus noise (SINR) associated to the Linear Minimum Mean Square Estimator (LMMSE)
which is known to be the best (that is the one with lowest SINR) estimator in the class of linear estimators.

Matrix Σ is centered with a given variance profile and therefore the study of its asymptotic behaviour
falls into the framework developed in Section 3.2. We denote by βK the deterministic equivalent of βK .
We can now state the Central Limit Theorem:

√
K

ΘK

`
βK − βK

´
−−−−→
K→∞

N (0, 1)

where Θ2
K depends on the variance profile and the fourth moment of the entries.

Although simpler than the study of the mutual information (as exposed in Section 4.2), the study of

the quadratic form βK bears interesting features: The order of the fluctuations
√

K is due to the random

vector y (in fact, one could prove that the fluctuations of 1
K

Trace (YY∗ + ρIN)−1 are of order K). Matrix

A appearing in the variance of the mutual information (see Section 4.2) also appears in the expression of

the variance for the quadratic form. As the random variables are not gaussian, the variance depends upon

E|W01|4, which is expected. The results presented here generalize and simplify Tse and Zeitouni’s result

[112] and Pan et al. results [87].

4.1 A CLT for the mutual information (I)

This section is devoted to the study of the fluctuations of the mutual information in the case where
the entries are gaussian and the variance profile is separable.

Introduction It is widely known that high spectral efficiencies are attained when multiple an-
tennas are used at both the transmitter and the receiver of a wireless communication system.
Indeed, consider the classical transmission model y = Gx + z, where y is the received signal, x is
the vector of transmitted symbols, z is a complex white Gaussian noise, and G is the N × n Mul-
tiple Input Multiple Output (MIMO) channel matrix with N antennas at the receiver’s site and n
antennas at the transmitter’s. In this section, the emphasis is put on channel models that include
a correlation between paths (or entries of G). One of the main purposes of this generalization is
to better understand the impact of these correlations on Shannon’s mutual information. Let us
cite in this context the contributions [85], [25], [79], [82] and [116], all devoted to the study of the
mutual information in the case where the elements of channel’s matrix are centered and correlated
random variables. In [53], a deterministic equivalent is computed under broad conditions for the
mutual information based on Rice channels modeled by non-centered matrices with independent
but not identically distributed random variables. The link between matrices with correlated entries
and matrices with independent entries and a variance profile is studied in [51].
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One of the most popular correlated channel models used for these mutual information eval-
uations is the so-called Kronecker model G = ΨWΨ̃ where W is a N × n matrix with Gaussian
centered i.i.d. entries, and Ψ and Ψ̃ areN×N and n×nmatrices that capture the path correlations
at the receiver and at the transmitter sides respectively [27], [68]. This model has been studied by

Chuah et al. in [25]. With some assumptions on matrices Ψ and Ψ̃, these authors showed that
I(ρ)/n converges to a deterministic quantity defined as the fixed point of an integral equation.
Later on, Tulino et al. [116] obtained the limit of I(ρ)/n for a correlation model more general
than the Kronecker model. Both these works rely on a result of Girko describing the eigenvalue
distribution of the Gram matrix associated with a matrix with independent but not necessarily
identically distributed entries, a close model as we shall see in a moment.

In [82], Moustakas et al. studied the mutual information for the Kronecker model by using
the so-called replica method. They found an approximation V (ρ) of E [I(ρ)] accurate to the order
1/n in the large n regime. Using this same method, they also showed that the variance of I(ρ)−V (ρ)
is of order one and were able to derive this variance for large n.

Although the replica technique is powerful and has a wide range of applications, the rigorous
justification of some of its parts remains to be done. We propose here a new method to study
the convergence of EI(ρ) and the fluctuations of I(ρ). Beside recovering the results in [82] and
especially the strikingly simple form of the variance, we establish the Central Limit Theorem (CLT)
for I(ρ) − V (ρ) (for a related CLT in a non-Gaussian context, see [54]). The practical interest of
such a result is of importance since the CLT leads to an evaluation of the outage probability, i.e.
the probability that I(ρ) lies beneath a given threshold, by means of the Gaussian approximation.
Many other works have been devoted to CLT for random matrices. Close to our present article
are [4], [7], [15].

We also would like to advocate the method used to establish both the approximation of
I(ρ) in the large n regime and the CLT. Due to the Gaussian nature of the entries of Matrix
G, two simple ingredients are available. The first one is an Integration by parts formula that
provides an expression for the expectation of certain functionals of Gaussian vectors. This formula
has been widely used in RMT [70, 92, 93]. The second ingredient is Poincaré-Nash inequality
that bounds the variance of functionals of Gaussian vectors. Although well-known [23, 58], its
application to RMT is fairly recent [21], [93] (see also [20] and [47] where general concentration
inequalities are derived for functions of random matrices). This inequality enables us to control the
decrease rate of the approximation errors such as the order 1/n error E [I(ρ)]−V (ρ) (note that the
Gaussian structure enters in two places: First the reduction to matrices with independent entries
and varying variance and then integration by part and Poincaré-Nash bounds for the variance
of relevant spectral characteristics). We believe that these tools of rigorous and explicit analysis
might be of great interest for the communications engineering community (see for instance the
estimates obtained in [31] in the context of Ricean MIMO channels).

From a Kronecker model to a separable variance model. Consider a MIMO system rep-
resented by a N × n matrix G where n is the number of antennas at the transmitter and N is the
number of antennas at the receiver and where N(n) is a sequence of integers such that

(4.1) 0 < ℓ− = lim inf
n→∞

N(n)

n
≤ ℓ+ = lim sup

n→∞

N(n)

n
<∞ ,

a condition we shall refer to by writing n,N → ∞. Assuming the transmitted signal is a Gaussian
signal with a covariance matrix equal to 1

nIn (and thus, a total power equal to one), Shannon’s
mutual information of this channel is In(ρ) = log det

(
ρ
nGnG∗

n + IN

)
, where ρ > 0 is the inverse
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of the additive white Gaussian noise variance at each receive antenna. The general problem we
address here concerns the behaviour of the mutual information for large values of N and n in the
case where the channel matrix Gn, assumed to be random, is described by the Kronecker model
Gn = ΨnWnΨ̃n. In this model, Ψn and Ψ̃n are respectively N × N and n × n deterministic
matrices and Wn is random with independent entries distributed acccording to the complex circular
Gaussian law with mean zero and variance one CN (0, 1).

It is well known that this model can be replaced with a simpler Kronecker model involving
a matrix with Gaussian independent (but not necessarily identically distributed) entries. Indeed,

let Ψn = UnD
1
2
nV∗

n (resp. Ψ̃n = ŨnD̃
1
2
n Ṽ∗

n) be a Singular Value Decomposition (SVD) of Ψn

(resp. Ψ̃n), where Dn (resp. D̃n) is the diagonal matrix of eigenvalues of ΨnΨ∗
n (resp. Ψ̃nΨ̃

∗
n),

then In(ρ) writes:

In(ρ) = log det
( ρ
n
YnY∗

n + IN

)
,

where Yn = D
1
2
nXnD̃

1
2
n is a N ×n matrix, Dn and D̃n are respectively N ×N and n× n diagonal

matrices, i.e.

Dn = diag
(
d
(n)
i , 1 ≤ i ≤ N

)
and D̃n = diag

(
d̃
(n)
j , 1 ≤ j ≤ n

)
,

and Xn = V∗
nWnŨn has i.i.d. entries with distribution CN (0, 1) since Vn and Ũn are determin-

istic unitary matrices. Since every individual entry of Yn has the form Y
(n)
ij =

√
d
(n)
i d̃

(n)
j Xij , we

call Yn a random matrix with a separable variance profile.

Assumptions and Notations. The centered random variable X −E[X ] will be denoted by
◦
X.

Element (i, j) of a matrix A will be either denoted [A]ij or Aij . Element i of vector a will be
denoted ai or [a]i. Column j of matrix A will be denoted aj . The transpose, the Hermitian adjoint
(conjugate transpose) of A, and the matrix obtained by conjugating its elements are denoted
respectively AT , A∗, and A. The spectral norm of a matrix A will be denoted ‖A‖. If A is
square, TrA refers to its trace. Let i =

√
−1, then the operators ∂/∂z and ∂/∂z where z = x+ iy

is a complex number are defined by ∂
∂z = 1

2

(
∂
∂x − i ∂

∂y

)
and ∂

∂z = 1
2

(
∂
∂x + i ∂

∂y

)
where ∂

∂x and ∂
∂y

are the standard partial derivatives with respect to x and y.

In order to study a deterministic approximation of In(ρ) and its fluctuations, the follow-

ing mild assumptions are required over the two triangular arrays
(
d
(n)
i , 1 ≤ i ≤ N, n ≥ 1

)
and

(
d̃
(n)
j , 1 ≤ j ≤ n, n ≥ 1

)
.

(A1) The real numbers d
(n)
i and d̃

(n)
j are nonnegative and the sequences

(
d
(n)
i

)
and

(
d̃
(n)
j

)
are

uniformly bounded, i.e. there exist constants dmax and d̃max such that

sup
n

‖Dn‖ < dmax and sup
n

‖D̃n‖ < d̃max.

where ‖Dn‖ and ‖D̃n‖ are the spectral norms of Dn and D̃n.

(A2) The normalized traces of Dn and D̃n satisfy

inf
n

1

n
Tr (Dn) > 0 and inf

n

1

n
Tr
(
D̃n

)
> 0.
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In the sequel, we shall frequently omit the subscript n and the superscript (n).

The resolvent associated with 1
nYnY∗

n is the N × N matrix Hn(t) =
(

t
nYnY∗

n + IN

)−1
.

Of prime importance is the random variable β(t) = 1
nTrDnHn(t) and its expectation α(t) =

1
nTrDn EHn(t). We finally introduce the solutions of a deterministic 2 × 2 system.

Proposition 4.1. For every n, the system of equations in (δ, δ̃)

(4.2)

{
δ = 1

nTrDn(I + tδ̃Dn)−1

δ̃ = 1
nTrD̃n(I + tδD̃n)−1

admits a unique solution
(
δn(t), δ̃n(t)

)
satisfying δn(t) > 0, δ̃n(t) > 0. Moreover, there exist

nonnegative measures µn and µ̃n over R
+ such that

(4.3) δn(t) =

∫

R+

µn(dλ)

1 + tλ
and δ̃n(t) =

∫

R+

µ̃n(dλ)

1 + tλ
,

where µn(R+) = 1
nTrDn and µ̃n(R+) = 1

nTrD̃n.

With δ and δ̃ properly defined, we introduce the followingN×N and n×n diagonal matrices:

Tn = (IN + tδ̃Dn)−1 and T̃n = (In + tδD̃n)−1.

Notice in particular that δ = 1
nTrDnTn and δ̃ = 1

nTr D̃nT̃n by (4.2). We finally introduce the
following quantities which are required to express the fluctuations of In(ρ):

(4.4)





γn(t) = 1
nTrD2

nT2
n(t)

γ̃n(t) = 1
nTrD̃2

nT̃2
n(t)

.

Proposition 4.2. Assume that Assumptions (A1) and (A2) hold and denote by

(4.5) σ2
n (t) = − log

(
1 − t2γn(t)γ̃n(t)

)
, t > 0

where γn(t) and γ̃n(t) are given by (4.4). Then σ2
n(t) is well-defined, i.e. 1 − t2γn(t)γ̃n(t) > 0 for

t > 0. Moreover, there exist nonnegative real numbers mt and Mt such that

(4.6) 0 < m2
t ≤ inf

n
σ2

n(t) ≤ sup
n
σ2

n(t) ≤M2
t <∞ for t > 0 .

Finally, σ2
n(t) is upper-bounded uniformly in n and t for t ∈ [0, ρ], i.e. supt≤ρM

2
t <∞.

Statement of the main results. We now state the main results. Theorem 4.3 describes the first
order approximation of the mutual information In(ρ) while Theorem 4.4 describes its fluctuations
when centered with respect to its first order approximation. Theorem 4.3 is a consequence of
results in [53] and [31].

Theorem 4.3. Let Xn be a N ×n matrix whose elements Xij are independent complex Gaussian
variables such that

E(Xij) = E(X2
ij) = 0, E(|Xij |2) = 1, 1 ≤ i ≤ N, 1 ≤ j ≤ n,
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and Yn = D
1
2
nXnD̃

1
2
n where the diagonal matrices Dn and D̃n satisfy Assumptions (A1) and

(A2). Let In(ρ) = log det
(

ρ
nYnY∗

n + IN

)
. Then, we have

(4.7) E[In(ρ)] = Vn(ρ) + O
(

1

n

)

as n,N → ∞ (in the sense of (4.1)), where

Vn(ρ) = log det
(
In + ρδn(ρ)D̃n

)
+ log det

(
IN + ρδ̃n(ρ)Dn

)
− nρδn(ρ)δ̃n(ρ) .

and where (δn(t), δ̃n(t)) is the unique positive solution of the system

{
δ = 1

nTrDn(IN + tδ̃Dn)−1

δ̃ = 1
nTrD̃n(In + tδD̃n)−1 .

Theorem 4.4. Assume that the setting of Theorem 4.3 holds and let

σ2
n(ρ) = − log

(
1 − ρ2γn(ρ)γ̃n(ρ)

)
,

where γn(ρ) and γ̃n(ρ) are defined in (4.4). Then the following convergence holds true:

In(ρ) − Vn(ρ)

σn(ρ)

L−−−−→
n→∞

N (0, 1) ,

where
L−→ stands for the convergence in distribution.

4.2 A CLT for the mutual information (II)

This section is devoted to the study of the fluctuations of the mutual information in the case where
the entries are non-gaussian and the variance profile is non-separable.

Introduction. Consider a N × n random matrix Yn = (Y n
ij ) whose entries are given by

(4.8) Y n
ij =

σij(n)√
n

Xn
ij ,

where (σij(n), 1 ≤ i ≤ N, 1 ≤ j ≤ n) is a uniformly bounded sequence of real numbers, and the
random variables Xn

ij are complex, centered, independent and identically distributed (i.i.d.) with

unit variance and finite 8th moment. Consider the following linear statistics of the eigenvalues:

In(ρ) =
1

N
log det (YnY

∗
n + ρIN ) =

1

N

N∑

i=1

log(λi + ρ)

where IN is the N×N identity matrix, ρ > 0 is a given parameter and the λi’s are the eigenvalues of
matrix YnY

∗
n . This functional known as the mutual information for multiple antenna radio channels

is very popular in wireless communication. Understanding its fluctuations and in particular being
able to approximate its standard deviation is of major interest for various purposes such as for
instance the computation of the so-called outage probability.
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The purpose of this section is to state a Central Limit Theorem (CLT) for In(ρ) whenever
n→ ∞ and N

n → c ∈ (0,∞).

In [53], it has been proved that there exists a sequence of deterministic probability measures
(πn) such that the mathematical expectation EIn(ρ) satisfies:

EIn(ρ) −
∫

log(λ+ ρ)πn( dλ) −−−−→
n→∞

0 .

Moreover,
∫

log(λ+ ρ)πn( dλ) has a closed form formula (see Section 3.2) and is easier to compute
than EIn (whose evaluation would rely on massive Monte-Carlo simulations). Accordingly, we
study in this article the fluctuations of

1

N
log det(YnY

∗
n + ρIN ) −

∫
log(ρ+ t)πn( dt) ,

and prove that this quantity properly rescaled converges in distribution toward a Gaussian random
variable. Although phrased differently, such a centering procedure relying on a deterministic
equivalent is used in [4] and [7].

In order to prove the CLT, we study separately the quantity N(In(ρ)−EIn(ρ)) from which
the fluctuations arise and the quantity N(EIn(ρ) −

∫
log(λ+ ρ)πn( dλ)) which yields a bias.

We will see that the variance Θ2
n of N(In(ρ)−EIn(ρ)) takes a remarkably simple closed-form

expression. In fact, there exists a n×n deterministic matrix An (described in Theorem 4.9) whose
entries depend on the variance profile (σij) such that the variance takes the form:

Θ2
n = − log det(In −An) + κTrAn,

where κ = E|X11|4 − 2 in the fourth cumulant of the complex variable X11 and the CLT expresses
as:

N

Θn
(In − EIn)

L−−−−→
n→∞

N (0, 1).

The presence in the variance of a term directly depending on the cumulant of the variable X11

(κ = EX4
11 − 3EX2

11 if X11 is real; κ = E|X11|4 − 2E|X11|2 if X11 is complex) can be traced back
to the article by Khorunzhy et al. [69, Formula (I.15)] and also appears in the recent paper by
Anderson and Zeitouni [4]. In the case where κ = 0 (which happens if Xij is a complex Gaussian
random variable for instance), the variance has the log-form Θ2

n = log det(In − An). This has
already been noticed for different models in the engineering literature by Moustakas et al. [82],
Taricco [109]. See also Hachem et al. in [49].

Finally, there exists a deterministic quantity Bn(ρ) (described in Theorem 4.11) such that:

N

(
EIn(ρ) −

∫
log(λ+ ρ)πn( dλ)

)
− Bn(ρ) −−−−→

n→∞
0 .

If κ = 0, then Bn(ρ) = 0 and there is no bias in the CLT.

About the literature - comparison with existing work. Central limit theorems have been
widely studied for various models of random matrices and for various classes of linear statistics of
the eigenvalues in the physics, engineering and mathematical literature.

In the mathematical literature, CLTs for Wigner matrices can be traced back to Girko [37]
(see also [40]). Results for this class of matrices have also been obtained by Khorunzhy et al.
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[69], Johansson [61], Sinai and Sochnikov [105], Soshnikov [107], Cabanal-Duvillard [18]. For band
matrices, let us mention the paper by Khorunzhy et al. [69], Boutet de Monvel and Khorunzhy [15],
Guionnet [46], Anderson and Zeitouni [4]. The case of Gram matrices has been studied in Jonsson
[62] and Bai and Silverstein [7]. Fluctuations for Wigner and Wishart matrices have also been
studied by Mingo and Speicher in [80] with the help of free probability tools. For a more detailed
overview, the reader is referred to the introduction in [4]. In the physics literature, so-called replica
methods as well as saddle-point methods have long been a popular tool to compute the moments
of the limiting distributions related to the fluctuations of the statistics of the eigenvalues.

Previous results and methods have recently been exploited in the engineering literature,
with the growing interest in random matrix models for wireless communications (see the seminal
paper by Telatar [111] and the subsequent papers of Tse and co-workers [112], [113] - see also the
monograph by Tulino and Verdu [114] and the references therein). One main interest lies in the
study of the convergence and the fluctuations of the mutual information 1

N log det (YnY
∗
n + ρIN ) for

various models of matrices Yn. General convergence results have been established by the authors
in [53, 51, 52] while fluctuation results based on Bai and Silverstein [7] have been developed in
Debbah and Müller [28] and Tulino and Verdu [115]. Other fluctuation results either based on
the replica method or on saddle-point analysis have been developed by Moustakas, Sengupta and
coauthors [82, 99], Taricco [109]. In a different fashion and extensively based on the Gaussianity
of the entries, a CLT has been proved in Hachem et al. [49].

There are many overlaps between this work and other works in the literature, in particular
with the paper by Bai and Silverstein [7] and the paper by Anderson and Zeitouni [4] (although this
last paper is primarily devoted to band matrix models, i.e. symmetric matrices with a symmetric
variance profile). The computation of the variance and the obtention of a closed-form formula
significantly extend the results obtained in [49].

Here, we deal with complex variables which are more relevant for wireless communication
applications. The case of real random variables would have led to very similar computation, the
cumulant κ = E|X |4 − 2 being replaced by κ̃ = EX4 − 3. In [4], Anderson and Zeitouni deal
with band matrices with real variables. Due to the complex nature of the variables herein, the
standard trick of considering the symmetric matrix

(
0 X

X∗ 0

)
to study the spectral distribution

of XX∗ does not help and one cannot rely on the CLT in [4]. Moreover, we substantially relax the
moment assumptions concerning the entries with respect to [4] where the existence of moments
of all order is required 1. In this paper, we shall only assume the finiteness of the 8th moment.

Bai and Silverstein [7] consider the model T
1
2

n XnX
∗
nT

1
2

n where the entries of Xn are i.i.d. and have
Gaussian fourth moment.

This assumption can be skipped in our framework, where a good understanding of the
behaviour of the diagonal individual entries of the resolvent (−zIn + YnY

∗
n )−1 enables us to deal

with non-Gaussian entries.

On the other hand, it must be noticed that we establish the CLT for the single functional
log det(YnY

∗
n + ρIN ) and do not provide results for a general class of functionals as in [4] and [7].

We do believe however that all the computations performed in this article are a good starting point
to address this issue.

The approach developed in this article is conceptually simple. The quantity In(ρ)−EIn(ρ)
is decomposed into a sum of martingale differences; we then systematically approximate random

1However, provided one is willing to make strong moment and distribution assumptions and consider real rather
than complex random variables, one can in principle get a CLT for I from [4] although the closed-form formula for
the variance obtained here would still require a specific effort.
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quantities such as quadratic forms xTAx where x is some random vector and A is some deter-
ministic matrix, by their deterministic counterparts 1

nTraceA (in the case where the entries of x
are i.i.d. with variance 1

n ) as the size of the vectors and the matrices goes to infinity. A careful
study of the deterministic quantities that arise, mainly based on (deterministic) matrix analysis is
carried out and yields the closed-form formula for the variance. The martingale method which is
used to establish the fluctuations of In(ρ) can be traced back to Girko’s REFORM (REsolvent,
FORmula and Martingale) method (see [37, 40]) and is close to the one developed in [7].

Notations and assumptions. Let N = N(n) be a sequence of integers such that

lim
n→∞

N(n)

n
= c ∈ (0,∞) .

In the sequel, we shall consider a N × n random matrix Yn with individual entries:

Y n
ij =

σij(n)√
n

Xn
ij ,

where Xn
ij are complex centered i.i.d random variables with unit variance and (σij(n); 1 ≤ i ≤

N, 1 ≤ j ≤ n) is a triangular array of real numbers. Denote by var(Z) the variance of the random
variable Z. Since var(Y n

ij ) = σ2
ij(n)/n, the family (σij(n)) will be referred to as a variance profile.

Assumption A-6. The random variables (Xn
ij ; 1 ≤ i ≤ N, 1 ≤ j ≤ n , n ≥ 1) are complex,

independent and identically distributed. They satisfy

EXn
ij = E(Xn

ij)
2 = 0, E|Xn

ij |2 = 1 and E|Xn
ij |8 <∞ .

Assumption A-7. There exists a finite positive real number σmax such that the family of real
numbers (σij(n), 1 ≤ i ≤ N, 1 ≤ j ≤ n, n ≥ 1) satisfies:

sup
n≥1

max
1≤i≤N
1≤j≤n

|σij(n)| ≤ σmax .

Assumption A-8. There exists a real number σ2
min > 0 such that

lim inf
n≥1

min
1≤j≤n

1

n

N∑

i=1

σ2
ij(n) ≥ σ2

min .

Sometimes we shall assume that the variance profile is obtained by sampling a function on
the unit square of R2. This helps to get limiting expressions and limiting behaviours (cf. Theorem
4.7):

Assumption A-9. There exists a continuous function σ2 : [0, 1] × [0, 1] → (0,∞) such that
σ2

ij(n) = σ2(i/N, j/n).

Remark 4.5. (Remarks related to the assumptions)

1. One may readily relax the assumption N
n → c ∈ (0,∞) and assume instead:

0 < lim inf
n

N

n
≤ lim sup

n

N

n
<∞ ,

as done in [49]. We stick to the initial assumption to remain coherent with the companion
paper [53].
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2. Using truncation arguments à la Bai and Silverstein [6, 102, 103], one may lower the moment
assumption related to the Xij’s in A-6.

3. Obviously, assumption A-8 holds if σ2
ij is uniformly lower bounded by some nonnegative

quantity.

4. Obviously, assumption A-9 implies both A-7 and A-8. When A-9 holds, we shall say that
there exists a limiting variance profile.

5. If necessary, assumption A-8 can be slightly improved by stating:

max


lim inf

n≥1
min

1≤j≤n

1

n

N∑

i=1

σ2
ij(n) , lim inf

n≥1
min

1≤i≤N

1

n

n∑

j=1

σ2
ij(n)


 > 0 .

In the case where the first liminf is zero, one may notice that log det(YnY
∗
n + ρIN ) =

log det(Y ∗
n Yn + ρIn) + (n−N) log ρ and consider Y ∗

n Yn instead.

The indicator function of the set A will be denoted by 1A(x), its cardinality by #A. As
usual, R+ = {x ∈ R : x ≥ 0} and C+ = {z ∈ C : Im (z) > 0}.

We denote by
P−→ the convergence in probability of random variables and by

D−→ the conver-
gence in distribution of probability measures.

Denote by diag(ai; 1 ≤ i ≤ k) the k× k diagonal matrix whose diagonal entries are the ai’s.
Element (i, j) of matrixM will be either denoted mij or [M ]ij depending on the notational context.
Denote by MT the matrix transpose of M , by M∗ its Hermitian adjoint, by Tr(M) its trace and
det(M) its determinant (if M is square), and by FM M∗

, the empirical distribution function of the
eigenvalues of MM∗, i.e.

FM M∗

(x) =
1

N
#{i : λi ≤ x} ,

where MM∗ has dimensions N ×N and the λi’s are the eigenvalues of MM∗.

When dealing with vectors, ‖ · ‖ will refer to the Euclidean norm, and ‖ · ‖∞, to the max (or
ℓ∞) norm. In the case of matrices, ‖ · ‖ will refer to the spectral norm and |||·|||∞ to the maximum

row sum norm (referred to as the max-row norm), i.e., |||M |||∞ = max1≤i≤N

∑N
j=1 |[M ]ij | when M

is a N ×N matrix. We shall denote by r(M) the spectral radius of matrix M .

When no confusion can occur, we shall often drop subscripts and superscripts n for read-
ability.

Let ν be a bounded non-negative measure over R. Its Stieltjes transform f is defined as:

f(z) =

∫

R

ν(dλ)

λ− z
, z ∈ C \ supp(ν) ,

where supp(ν) is the support of the measure ν. We shall denote by S(R+) the set of Stieltjes
transforms of probability measures with support in R+.

First Order Results.

Theorem 4.6 ([53], [39]). Consider the family of random matrices (YnY
∗
n ) and assume that A-6

and A-7 hold. Then, the following hold true:
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1. The system of N functional equations:

(4.9) ti(z) =
1

−z + 1
n

∑n
j=1

σ2
ij

(n)

1+ 1
n

P

N
ℓ=1 σ2

ℓj
(n)tℓ(z)

admits a unique solution (t1(z), · · · , tN (z)) in S(R+)N . In particular, mn(z) = 1
N

∑N
i=1 ti(z)

belongs to S(R+) and there exists a probability measure πn on R+ such that:

mn(z) =

∫ ∞

0

πn(dλ)

λ− z
.

2. For every continuous and bounded function g on R+,
∫

R+

g(λ) dFYnY ∗
n (λ) −

∫

R+

g(λ)πn(dλ) −−−−→
n→∞

0 a.e.

3. The function Vn(ρ) =
∫

R+ log(λ+ ρ)πn(dλ) is finite for every ρ > 0 and

EIn(ρ) − Vn(ρ) −−−−→
n→∞

0 where In(ρ) =
1

N
log det (YnY

∗
n + ρIN ) .

Moreover, Vn(ρ) admits the following closed form formula:

Vn(ρ) = − 1

N

N∑

i=1

log ti(−ρ) +
1

N

n∑

j=1

log

(
1 +

1

n

N∑

ℓ=1

σ2
ℓj(n)tℓ(−ρ)

)

− 1

Nn

∑

i=1:N,j=1:n

σ2
ij(n)ti(−ρ)

1 + 1
n

∑N
ℓ=1 σ

2
ℓj(n)tℓ(−ρ)

.

where the ti’s are defined above.

In the case where there exists a limiting variance profile, the results can be expressed in the
following manner:

Theorem 4.7 ([16], [38], [52] ). Consider the family of random matrices (YnY
∗
n ) and assume that

A-6 and A-9 hold. Then:

1. The functional equation

(4.10) τ(u, z) =

(
−z +

∫ 1

0

σ2(u, v)

1 + c
∫ 1

0
σ2(x, v)τ(x, z) dx

dv

)−1

admits a unique solution among the class of functions Φ : [0, 1] × C \ R → C such that
u 7→ Φ(u, z) is continuous over [0, 1] and z 7→ Φ(u, z) belongs to S(R+).

2. The function f(z) =
∫ 1

0
τ(u, z) du where τ(u, z) is defined above is the Stieltjes transform of

a probability measure P. Moreover, we have

FYnY ∗
n

D−−−−→
n→∞

P a.s.
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Remark 4.8. If one is interested in the Stieltjes function related to the limit of FY ∗
n Yn , then one

must introduce the following function τ̃ , which is the counterpart of τ :

τ̃ (v, z) =

(
−z + c

∫ 1

0

σ2(t, v)

1 +
∫ 1

0
σ2(t, s)τ̃ (s, z) ds

dt

)−1

.

Functions τ and τ̃ are related via the following equations:

(4.11)





τ(u, z) = −
[
z
(
1 +

∫ 1

0 σ
2(u, v)τ̃ (v, z) dv

)]−1

τ̃ (v, z) = −
[
z
(
1 + c

∫ 1

0 σ
2(t, v)τ(t, z) dt

)]−1 .

The Central Limit Theorem for In(ρ). When given a variance profile, one can consider the
ti’s defined in Theorem 4.6-(1). Recall that

T (z) = diag(ti(z), 1 ≤ i ≤ N) and Dj = diag(σ2
ij , 1 ≤ i ≤ N) .

We shall first define in Theorem 4.9 a non-negative real number that will play the role of the
variance in the CLT. We then state the CLT in Theorem 4.19. Theorem 4.11 deals with the bias
term N(EI − V ).

Theorem 4.9 (Definition of the variance). Consider a variance profile (σij) which fulfills assump-
tions A-7 and A-8 and the related ti’s defined in Theorem 4.6-(1). Let ρ > 0.

1. Let An = (aℓ,m) be the matrix defined by:

aℓ,m =
1

n

1
nTrDℓDmT (−ρ)2
(
1 + 1

nTrDℓT (−ρ)
)2 , 1 ≤ ℓ,m ≤ n ,

then the quantity Vn = − log det(In −An) is well-defined.

2. Denote by Wn = TrAn and let κ be a real number2 satisfying κ ≥ −1. The sequence
(Vn + κWn) satisfies

0 < lim inf
n

(Vn + κWn) ≤ lim sup
n

(Vn + κWn) < ∞

as n→ ∞ and N/n→ c > 0. We shall denote by:

Θ2
n

△
= − log det(I −An) + κTrAn .

In the sequel and for obvious reasons, we shall refer to matrix An as the variance matrix.
In order to study the CLT for N(In(ρ)− Vn(ρ)), we decompose it into a random term from which
the fluctuations arise:

N (In(ρ) − EIn(ρ)) = log det(YnY
∗
n + ρIN ) − E log det(YnY

∗
n + ρIN ) ,

and into a deterministic one which yields a bias in the CLT:

N (EIn(ρ) − Vn(ρ)) = E log det(YnY
∗
n + ρIN ) −N

∫
log(λ+ ρ)πn( dλ) .

We can now state the CLT.
2In the sequel, κ is defined as κ = E|X11|4 − 2.
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Theorem 4.10 (The CLT). Consider the family of random matrices (YnY
∗
n ) and assume that

A-6, A-7 and A-8 hold true. Let ρ > 0, let κ = E|X11|4 − 2, and let Θ2
n be given by Theorem 4.9.

Then

Θ−1
n

(
log det(YnY

∗
n + ρIN ) − E log det(YnY

∗
n + ρIN )

)
D−−−−−−−−→

n→∞, N
n
→c

N (0, 1) .

The asymptotic bias is described in the following theorem:

Theorem 4.11 (The bias). Assume that the setting of Theorem 4.19 holds true. Then

1. For every ω ∈ [ρ,+∞), the system of n linear equations with unknown parameters (wℓ,n(ω); 1 ≤
ℓ ≤ n):

(4.12) wℓ,n(ω) =
1

n

n∑

m=1

1
nTrDℓDmT (−ω)2

(1 + 1
nTrDℓT (−ω))2

wm,n(ω) + pℓ,n(ω),

with

(4.13) pℓ,n(ω) = κ ω2t̃ℓ(−ω)2×
(
ω

n

N∑

i=1

(
σ2

iℓti(−ω)3

n
TrD̃2

i T̃ (−ω)2
)

− t̃ℓ(−ω)

n
TrD2

ℓT (−ω)2

)

admits a unique solution for n large enough. In particular if κ = 0, then pℓ,n = 0 and
wℓ,n = 0.

2. Let

(4.14) βn(ω) =
1

n

n∑

ℓ=1

wℓ,n(ω) .

Then Bn(ρ)
△
=
∫∞

ρ βn(ω) dω is well-defined, moreover,

(4.15) lim sup
n

∫ ∞

ρ

|βn(ω)| dω < ∞.

Furthermore,

(4.16) N (EIn(ρ) − Vn(ρ)) − Bn(ρ) −−−−−−−−→
n→∞, N

n
→c

0 .

Remark 4.12 (The Gaussian case). In the case where the entries Xij are complex Gaussian (i.e.
with independent normal real and imaginary parts, each of them centered with variance 2−1) then
κ = 0 and the CLT writes:

N [− log det(I −An)]−
1
2 (In(ρ) − Vn(ρ))

D−−−−−−−−→
n→∞, N

n
→c

N (0, 1) .
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The CLT for a limiting variance profile. In this section, we shall assume that A-9 holds, i.e.
σ2

ij(n) = σ2(i/N, j/n) for some continuous nonnegative function σ2(x, y). Recall the definitions
(4.10) of function τ and of the ti’s (defined in Theorem 4.6-(1)). In the sequel, we take ρ > 0,

z = −ρ and denote τ(t)
△
= τ(t,−ρ).

Let K : [0, 1]2 → R be some non-negative continuous function we shall refer to as a kernel.
Consider the associated operator (similarly denoted with a slight abuse of notations):

K : C[0, 1] → C[0, 1]

f 7→ Kf(x) =

∫

[0,1]

K(x, y)f(y) dy .

Then one can define (see for instance [106, Theorem 5.3.1]) the Fredholm determinant det(1+λK),
where 1 : f 7→ f is the identity operator, as

(4.17) det(1 − λK) =

∞∑

k=0

(−1)kλk

k!

∫

[0,1]k
K

(
x1 · · · xk

x1 · · · xk

)
⊗k

i=1 d xi

where

K

(
x1 · · · xk

y1 · · · yk

)
= det(K(xi, yj), 1 ≤ i, j ≤ k) ,

for every λ ∈ C. One can define the trace of the iterated kernel as:

TrKk =

∫

[0,1]k
K(x1, x2) · · ·K(xk−1, xk)K(xk, x1)dx1 · · · dxk

In the sequel, we shall focus on the following kernel:

(4.18) K∞(x, y) =
c
∫
[0,1]

σ2(u, x)σ2(u, y)τ2(u) du
(
1 + c

∫
[0,1] σ

2(u, x)τ(u) du
)2 .

Theorem 4.13 (The variance). Assume that assumptions A-6 and A-9 hold. Let ρ > 0 and recall
the definition of matrix An:

aℓ,m =
1

n

1
n

∑N
i=1 σ

2
(

i
N ,

ℓ
n

)
σ2
(

i
N ,

m
n

)
t2i(

1 + 1
n

∑N
i=1 σ

2
(

i
N ,

ℓ
n

)
ti

)2 , 1 ≤ ℓ,m ≤ n .

Then:

1. TrAn −−−−→
n→∞

TrK∞ .

2. det(In −An) −−−−→
n→∞

det(1 −K∞) and det(1 −K∞) 6= 0.

3. Let κ = E|X11|4 − 2, then

0 < − log det(1 −K∞) + κTrK∞ <∞ .
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Corollary 4.14 (Fluctuations). Assume that A-6 and A-9 hold. Denote by

Θ2
∞ = − log det(1 −K∞) + κTrK∞ ,

then

N

Θ∞
(In(ρ) − EIn(ρ))

= Θ−1
∞ (log det (YnY

∗
n + ρIN ) − E log det (YnY

∗
n + ρIN ))

L−−−−→
n→∞

N (0, 1) .

Recall the definition of τ̃ (cf. Remark 4.8).

We now state a consequence of Corollary 4.14 in the case where the variance profile is
separable. Recall the definitions of τ and τ̃ given in (4.11).

Corollary 4.15 (Separable variance profile). Assume that A-6 and A-9 hold. Assume moreover
that ρ > 0 and that σ2 is separable, i.e. that

σ2(x, y) = d(x)d̃(y) ,

where both d : [0, 1] → (0,∞) and d̃ : [0, 1] → (0,∞) are continuous functions. Denote by

γ = c

∫ 1

0

d2(t)τ2(t) dt and γ̃ =

∫ 1

0

d̃2(t)τ̃2(t) dt .

Then

(4.19) Θ2
∞ = − log

(
1 − ρ2γγ̃

)
+ κρ2γγ̃ .

Remark 4.16. In the case where the random variables Xij are standard complex circular Gaussian
(i.e. Xij = Uij + iVij with Uij and Vij independent real centered Gaussian random variables with
variance 2−1) and where the variance profile is separable, then

N(In(ρ) − Vn(ρ))
L−−−−→

n→∞
N
(
0,− log

(
1 − ρ2γγ̃

))
.

This result is in accordance with those in [82] and in [49].

4.3 A CLT for the Signal to Interference plus Noise ratio

Introduction Large Random Matrix Theory (LRMT) is a powerful mathematical tool used to
study the performance of multi-user and multi-access communication systems such as Multiple
Input Multiple Output (MIMO) digital wireless systems, antenna arrays for source detection and
localization, spread spectrum communication systems as Code Division Multiple Access (CDMA)
and Multi-Carrier CDMA (MC-CDMA) systems. In most of these communication systems, the N
dimensional received random vector r ∈ CN is described by the model

(4.20) r = Σs + n

where s = [s0, s1, . . . , sK ]T is the unknown random vector of transmitted symbols with size K + 1
satisfying Ess∗ = IK+1, the noise n is an independent Additive White Gaussian Noise (AWGN)
with covariance matrix Enn∗ = ρIN whose variance ρ > 0 is known, and matrix Σ represents the
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known “channel” in the wide sense whose structure depends on the particular system under study.
One typical problem addressed by LRMT concerns the estimation performance by the receiver of
a given transmitted symbol, say s0.

In this paper we focus on one of the most popular estimators, namely the linear Wiener
estimator, also called LMMSE for Linear Minimum Mean Squared Error estimator: the LMMSE
estimate ŝ0 = g∗r of signal s0 is the one for which the N × 1 vector g minimizes E|ŝ0 − s0|2. If
we partition the channel matrix as Σ = [y Y] where y is the first column of Σ and where matrix

Y has dimensions N ×K, then it is well known that vector g is given by g = (ΣΣ∗ + ρIN )
−1

y.
Usually, the performance of this estimator is evaluated in terms of the Signal to Interference plus
Noise Ratio (SINR) at its output. Writing the received vector r as r = s0y + rin where s0y is
the relevant term and rin represents the so-called interference plus noise term, the SINR is given
by βK = |g∗y|2/E|g∗rin|2. Plugging the expression of g given above into this expression, one can
prove that the SINR βK is given by the well-known expression:

(4.21) βK = y∗ (YY∗ + ρIN )
−1

y .

In general, this expression does not provide a clear insight on the impact of the channel model
parameters (such as the load factorKN−1, the power distribution of the transmission data streams,
or the correlation structure of the channel paths in the context of multi-antenna transmissions) on
the performance of the LMMSE estimator.

An alternative approach, justified by the fluctuating nature of the channel paths in the
context of MIMO communications and by the pseudo-random nature of the spreading sequences
in spread spectrum applications consists to model matrix Σ as a random matrix (in this case, βK

becomes a random SINR). The simplest random matrix model for Σ, corresponding to the most
canonical MIMO or CDMA transmission channels, corresponds to independent and identically
distributed (i.i.d.) entries with mean zero and variance N−1. In that case, LRMT shows that
when K → ∞ and the load factor KN−1 converges to a limiting load factor α > 0, the SINR βK

converges almost surely (a.s.) to an explicit deterministic quantity β(α, ρ) which simply depends
on the limiting load factor α and on the noise variance ρ. As a result, the impact of these two
parameters on the LMMSE performance can be easily evaluated [113, 119].

The LMMSE SINR large dimensional behavior for more sophisticated random matrix models
has also been thoroughly studied (cf. [113, 35, 13, 96, 22, 72, 116, 94]) and it has been proved
that there exists a deterministic sequence (βK), generally defined as the solution of an implicit
equation, such that βK − βK → 0 almost surely as K → ∞ and K

N remains bounded away from
zero and from infinity.

Beyond the convergence βK − βK → 0, a natural question arises concerning the accuracy of
βK for finite values of K. A first answer to this question consists in evaluating the Mean Squared
Error (MSE) of the SINR E|βK − βK |2 for large K. A further problem is the computation of
outage probability, that is the probability for βK − βK to be below a certain level. Both problems
can be addressed by establishing a Central Limit Theorem (CLT) for βK − βK . In this paper,
we establish such a CLT (Theorem 4.19 below) for a large class of random matrices Σ. We prove

that there exists a sequence Θ2
K = O(1) such that

√
K

ΘK
(βK − βK) converges in distribution to the

standard normal law N (0, 1) in the asymptotic regime. One can therefore infer that the MSE

asymptotically behaves like
Θ2

K

K and that the outage probability can be simply approximated by a
Gaussian tail function.

The class of random matrices Σ we consider in this paper is described by the following
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statistical model: Assume that

(4.22) Σ =
(
Σnk

)N,K

n=1,k=0
=

(
σnk√
K
Wnk

)N,K

n=1,k=0

where the complex random variables Wnk are i.i.d. with EWnk = 0, EW 2
nk = 0 and E|Wnk|2 = 1

and where (σ2
nk; 1 ≤ n ≤ N ; 0 ≤ k ≤ K) is an array of real numbers. Due to the fact that

E|Σnk|2 =
σ2

nk

K , the array (σ2
nk) is referred to as a variance profile. An important particular case is

when σ2
nk is separable, that is, writes:

(4.23) σ2
nk = dnd̃k ,

where (d1, . . . , dN ) and (d̃0, . . . , d̃K) are two vectors of real positive numbers.

The asymptotic approximation βK (first order result) is connected with the asymptotic
eigenvalue distribution of Gram matrices YY∗ where elements of Y are described by the model
(4.22), and can be found in the mathematical LRMT literature in the work of Girko [38] (see also
[103] and [100]). Applications in the field of wireless communications can be found in e.g. [22] in
the separable case and in [116] in the general variance profile case.

Concerning the CLT for βK − βK (second order result), only some particular cases of the
general model (4.22) have been considered in the literature among which the i.i.d. case (σ2

nk = 1)
is studied in [112] (and based on a result of [101] pertaining to the asymptotic behavior of the
eigenvectors of YY∗). The more general CDMA model has been considered in [87], using a result
of [44]. The model used in this paper includes the models of [112] and [87] as particular cases.

Fluctuations of other performance indexes such as Shannon’s mutual information E log det
(

ΣΣ∗

ρ + IN

)

have also been studied at length. Let us cite [50] where the CLT is established in the separable
case and [54] for a CLT in the general variance profile case. Similar results concerning the mutual
information are found in [82] and in [83].

The statements about these deterministic approximations are valid within the following
asymptotic regime:

(4.24) K → ∞, lim inf
K

N
> 0 and lim sup

K

N
<∞ .

Note that K
N is not required to converge. In the remainder of the paper, the notation “K → ∞”

will refer to (4.24).

We note that in the particular case where K
N → α > 0 and the variance profile is obtained

by a regular sampling of a continuous function f i.e. σ2
nk = f

(
n
N ,

k
K+1

)
, it is possible to prove

that βK and Θ2
K converge towards limits that can be characterized by integral equations.

The approach used here is simple and powerful. It is based on the approximation of βK

by the sum of a martingale difference sequence and on the use of the CLT for martingales [14].
We note that apart from the LRMT context, such a technique has been used recently in [10] to
establish a CLT on general quadratic forms of the type z∗Az where A is a deterministic matrix
and z is a random vector with i.i.d. elements.

Notations. Given a complex N × N matrix X = [xij ]
N
i,j=1, denote by ‖X‖ its spectral norm,

and by |||X|||∞ its maximum row sum norm, i.e., |||X|||∞ = max1≤i≤N

∑N
j=1 |xij |. Denote by ‖ · ‖

the Euclidean norm of a vector and by ‖ · ‖∞ its max (or ℓ∞) norm.
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First Order Results: The SINR Deterministic Approximation In the sequel, we shall
often show explicitly the dependence on K in the notations. Consider the quadratic form (4.21):

βK = y∗ (YY∗ + ρIN )
−1

y ,

where the sequence of matrices Σ(K) = [y(K) Y(K)] is given by

Σ(K) = (Σnk(K))
N,K
n=1,k=0 =

(
σnk(K)√

K
Wnk

)N,K

n=1,k=0

.

Let us state the main assumptions:

Assumption A-10. The complex random variables (Wnk; n ≥ 1, k ≥ 0) are i.i.d. with EW10 = 0,
EW 2

10 = 0, E|W10|2 = 1 and E|W10|8 <∞.

Assumption A-11. There exists σmax <∞ such that supK≥1 max 1≤n≤N

0≤k≤K

|σnk(K)| ≤ σmax .

Let (am; 1 ≤ m ≤M) be complex numbers, then diag(am; 1 ≤ m ≤M) refers to the M ×M
diagonal matrix whose diagonal elements are the am’s. If A = (aij) is a square matrix, then
diag(A) refers to the matrix diag(aii). Consider the following diagonal matrices based on the
variance profile along the columns and the rows of Σ:

(4.25)
Dk(K) = diag(σ2

1k(K), · · · , σ2
Nk(K)), 0 ≤ k ≤ K

D̃n(K) = diag(σ2
n1(K), · · · , σ2

nK(K)), 1 ≤ n ≤ N.

Assumption A-12. The variance profile satisfies

lim inf
K≥1

min
0≤k≤K

1

K
TrDk(K) > 0 .

Since E|W10|2 = 1, one has E|W10|4 ≥ 1. The following is needed:

Assumption A-13. At least one of the following conditions is satisfied:

E|W10|4 > 1 or lim inf
K

1

K2
Tr

(
D0(K)

K∑

k=1

Dk(K)

)
> 0 .

Remark 4.17. If needed, one can attenuate the assumption on the eighth moment in A-10. For
instance, one can adapt without difficulty the proofs in this paper to the case where E|W10|4+ǫ <∞
for ε > 0. We assumed E|W10|8 < ∞ because at some places we rely on results of [54] which are
stated with the assumption on the eighth moment. Assumption A-12 is technical. It has already
appeared in [53]. Assumption A-13 is necessary to get a non-vanishing variance Θ2

K in Theorem
4.19.

The following definitions will be of help in the sequel. A complex function t(z) belongs to
class S if t(z) is analytical in the upper half plane C+ = {z ∈ C ; im(z) > 0}, if t(z) ∈ C+ for all
z ∈ C+ and if im(z)|t(z)| is bounded over the upper half plane C+.

Denote by QK(z) and Q̃K(z) the resolvents of Y(K)Y(K)∗ and Y(K)∗Y(K) respectively,
that is the N ×N and K ×K matrices defined by:

QK(z) = (Y(K)Y(K)∗ − zIN )−1 and Q̃K(z) = (Y(K)∗Y(K) − zIK)−1 .
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It is known [38, 53] that there exists a deterministic diagonal N × N matrix function T(z) that
approximates the resolvent Q(z). As we shall see, matrix T(z) also plays a fundamental role in the
second order result (Theorem 4.19). In the following theorem, we recall the definition and some of
the main properties of T(z).

Theorem 4.18. The following hold true:

1. [53, Theorem 2.4] Let (σ2
nk(K); 1 ≤ n ≤ N ; 1 ≤ k ≤ K) be a sequence of arrays of real

numbers and consider the matrices Dk(K) and D̃n(K) defined in (4.25). The system of
N +K functional equations

(4.26)





tn,K(z) =
−1

z
(
1 + 1

K Tr(D̃n(K)T̃K(z))
) , 1 ≤ n ≤ N

t̃k,K(z) =
−1

z
(
1 + 1

K Tr(Dk(K)TK(z))
) , 1 ≤ k ≤ K

where

TK(z) = diag(t1,K(z), . . . , tN,K(z)), T̃K(z) = diag(t̃1,K(z), . . . , t̃K,K(z))

admits a unique solution (T, T̃) among the diagonal matrices for which the tn,K ’s and the
t̃k,K ’s belong to class S. Moreover, functions tn,K(z) and t̃k,K(z) admit an analytical con-
tinuation over C − R+ which is real and positive for z ∈ (−∞, 0).

2. Let βK =
1

K
Tr(D0(K)TK(−ρ)) where TK is given by Theorem 4.18–(1). Assume that A-10

and A-11. Then
βK − βK −−−−→

K→∞
0 a.s.

Second order results: The Central Limit Theorem The following theorem is the main
result of this section.

Theorem 4.19. 1. Assume that A-11, A-12 and A-13 hold true. Let AK and ∆K be the K×K
matrices

AK =

[
1

K

1
K TrDℓDmT(−ρ)2
(
1 + 1

K TrDℓT(−ρ)
)2

]K

ℓ,m=1

and(4.27)

∆K = diag

((
1 +

1

K
TrDℓT(−ρ)

)2

; 1 ≤ ℓ ≤ K

)
,

where T is defined in Theorem 4.18–(1). Let gK be the K × 1 vector

gK =

[
1

K
TrD0D1T(−ρ)2, · · · , 1

K
TrD0DKT(−ρ)2

]T
.

Then the sequence of real numbers

(4.28) Θ2
K =

1

K
gT(IK − A)−1∆−1g + (E|W10|4 − 1)

1

K
TrD2

0T(−ρ)2

is well defined and furthermore

0 < lim inf
K

Θ2
K ≤ lim sup

K
Θ2

K <∞ .
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2. Assume in addition A-10. Then the sequence βK = y∗(YY∗ + ρI)−1y satisfies

√
K

ΘK

(
βK − βK

)
−−−−→
K→∞

N (0, 1)

in distribution where βK = 1
K TrD0TK is defined in the statement of Theorem 4.18-(2).

Remark 4.20. (Comparison with other performance indexes) It is interesting to compare the
“Mean Squared Error” (MSE) related to the SINR βK : MSE(βK) = E(βK − βK)2, with the MSE
related to Shannon’s mutual information per transmit dimension I = 1

K log det(ρΣΣ∗ + I) (studied
in [82, 54] for instance):

MSE(βK) ∝ O
(

1

K

)
while MSE(I) ∝ O

(
1

K2

)
.

Remark 4.21. (On the achievability of the minimum of the variance) Recall that the variance
writes

Θ2
K =

1

K
gT(IK − A)−1∆−1g + (E|W10|4 − 1)

1

K
TrD2

0T
2 .

As E|W10|2 = 1, one clearly has E|W10|4 − 1 ≥ 0 with equality if and only if |W10| = 1 with
probability one. Moreover, we can prove that lim infK

1
K D0(K)T2

K > 0. Therefore (E|W10|4 −
1) 1

K TrD2
0T

2 is nonnegative, and is zero if and only if |W10| = 1 with probability one. As a
consequence, Θ2

K is minimum with respect to the distribution of the Wnk if and only if these
random variables have their values on the unit circle. In the context of CDMA and MC-CDMA,
this is the case when the signature matrix elements are elements of a PSK constellation. In multi-
antenna systems, the Wnk’s are frequently considered as Gaussian which induces a penalty on the
SINR asymptotic MSE with respect to the unit norm case.

The deterministic approximation in the separable case In the separable case σ2
nk(K) =

dn(K)d̃k(K), matrices Dk(K) and D̃n(K) are written as Dk(K) = d̃k(K)D(K) and D̃n(K) =

dn(K)D̃(K) where D(K) and D̃(K) are the diagonal matrices

(4.29) D(K) = diag(d1(K), . . . , dN (K)), D̃(K) = diag(d̃1(K), . . . , d̃K(K)) .

and one can check that the system of N + K equations leading to TK and T̃K simplifies into a
system of two equations, and Theorem 4.18 takes the following form:

Proposition 4.22. [53, Sec. 3.2]

1. Assume σ2
nk(K) = dn(K)d̃k(K). Given ρ > 0, the system of two equations

(4.30)





δK(ρ) = 1
K Tr

(
D
(
ρ(IN + δ̃K(ρ)D)

)−1
)

δ̃K(ρ) = 1
K Tr

(
D̃
(
ρ(IK + δK(ρ)D̃)

)−1
)

where D and D̃ are given by (4.29) admits a unique solution (δK(ρ), δ̃K(ρ)). Moreover, in

this case matrices T(−ρ) and T̃(−ρ) provided by Theorem 4.18–(1) coincide with

(4.31) T(−ρ) =
1

ρ
(I + δ̃(ρ)D)−1 and T̃(−ρ) =

1

ρ
(I + δ(ρ)D̃)−1 .
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2. Notice that D0 = d̃0D and that δ(ρ) given by the system (4.30) coincides with 1
K Tr(DT).

Assume that A-10 and A-11 hold true. Then

βK

d̃0

− δK(ρ) −−−−→
K→∞

0 a.s.

where δK(ρ) is given by Proposition 4.22–(1).

3. Assume that A-11 is satisfied and that σ2
nk = dnd̃k. Assume moreover that

(4.32) min

(
lim inf

K

1

K
Tr(D(K)), lim inf

K

1

K
Tr(D̃(K))

)
> 0

where D and D̃ are given by (4.29). Let γ = 1
K TrD2T2 and γ̃ = 1

K TrD̃2T̃2. Then the
sequence

(4.33) Ω2
K = γ

(
ρ2γγ̃

1 − ρ2γγ̃
+
(
E|W10|4 − 1

))

satisfies 0 < lim infK Ω2
K ≤ lim supK Ω2

K <∞. If, in addition, A-10 holds true, then:

√
K

ΩK

(
βK

d̃0

− δK

)
−−−−→
K→∞

N (0, 1)

in distribution.

Remark 4.23. Let us provide a more explicit expression of δK . By combining the two equations
in System (4.30), it turns out that δ = δK(ρ) is the unique solution of the implicit equation:

(4.34) δ =
1

K

N−1∑

n=0

dn

ρ+ 1
K dn

∑K
k=1

pk

1+pkδ

.
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Chapter 5

Specific contributions to wireless
communication

Summary

This chapter is devoted to the description of three specific applications of random matrix theory
to wireless communication. Results of papers [31] (optimization of the ergodic capacity), [65] (Bit
Error Rate and Outage probability approximation) and [11] (Collaborative compress sensing) are
presented.

[31] J. Dumont, W. Hachem, S. Lasaulce, P. Loubaton, and J. Najim. On the capacity achieving
covariance matrix for rician mimo channels: an asymptotic approach. to be published in
IEEE Inf. Th., submitted in 2007.

[64] A. Kammoun, M. Kharouf, W. Hachem, and J. Najim. BER and Outage probability ap-
proximations for LMMSE detectors on correlated MIMO channels. accepted for publication
in IEEE Inf. Th., submitted in sept. 2008.

[11] P. Bianchi, M. Debbah, M. Mäıda, and J. Najim. Power analysis of some hypothesis tests for
collaborative sensing. In IEEE Workshop on Stat. Signal Processing, Cardiff, UK, August
2009.

Section 5.1. Consider the capacity CE associated to a MIMO channel H:

CE = sup
Q≥0, 1

t
Trace Q≤1

I(Q) with I(Q) = EH

»
log det

„
Ir +

1

σ2
HQH

H

«–
,

In this section, we propose an algorithm to approximate both CE and the Capacity Achieving Covariance
Matrix Q∗, that is the maximizer Q∗ of I over the set of constraints C1 =

˘
Q ≥ 0, 1

t
Trace Q ≤ 1

¯
in the

case of a Rician channel:

H =

r
K

K + 1
A +

1√
K + 1

V ,

where matrix A is deterministic with 1
r
Tr(AAH) = 1 and accounts for a line of sight component, matrix V

is a random matrix and constant K ≥ 0 is the so-called Rician factor which expresses the relative strength
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of the direct and scattered components of the received signal. Matrix V is given by V =
1√
t
C

1
2 WC̃

1
2 ,

where W = (Wij) is a r × t matrix whose entries are independent and identically distributed (i.i.d.)
CN(0, 1).

Being able to compute the Capacity Achieving Covariance Matrix Q∗ is fundamental because it

enables to precode the transmitted vector x by Q∗ 1
2 x in order to achieve the capacity.

Contrary to the cases where A = 0 (Rayleigh channel) or C, C̃ = I (Rician uncorrelated channel),
the problem does not admit a closed-form analytical solution and one often relies on massive Monte-Carlo
solutions to optimize CE . We propose a different approach based on Large Random Matrix theory in
the asymptotic regime r, t → ∞, 0 < lim inf r

t
≤ lim sup r

t
< ∞. The main results of the section are

summarized below:

1. Construction of a deterministic approximation I(Q) of I(Q) easily computable following the lines
exposed in Section 3: I(Q) − I(Q) = O(t−1).

2. Maximization of I(Q) over the set of constraints C1: I(Q
∗
) = supQ∈C1

I(Q) .

3. Proof that I(Q
∗
) − I(Q∗) → 0, where Q∗ is the Capacity Achieving Covariance Matrix. This fact

insures that the precoding can be performed by Q
∗
.

4. Description of an algorithm to efficiently compute I(Q
∗
) = supQ∈C1

I(Q) .

The presented results substantially improve previous algorithms devoted to the computation of the

CACM, and based on a direct optimization of I over C1 by computationally-intensive Monte-Carlo methods

(cf. Vu and Paulraj [120]). Simulations are provided and a very good fit can be observed with the true

capacity even for very small dimensions.

Section 5.2. Consider a N dimensional received signal r = Σs + n, where s = [s0, · · · , sK ]T is the
transmitted complex vector signal with size K + 1, Σ = [y S] is the N × (K + 1) channel matrix and n is
the white noise. The signal to interference plus noise writes:

βK = y
∗ (SS

∗ + ρIN)
−1

y .

The purpose of the section is to compute the three asymptotic moments of the SINR in the case of a
correlated channel. Such a computation is motivated by applications: The first asymptotic moment gives
a deterministic approximation of the SINR; the first two moments allow to approximate the distribution
of the SINR by a gaussian one, using a CLT argument.

It turns out however that for small K, N , the gaussian approximation is no longer accurate. Li,
Paul, Narasimhan and Cioffi [73] proposed to approximate the SINR distribution by so-called generalized
Gamma distribution, which is parametrized by its three first moments and allows to take into account the
positivity of the SINR. Having a good approximation of the distribution of the SINR is of prime importance
since it allows one to compute the so-called Bit Error Rate and the outage probability of the channel.

Consider a correlated channel modeled by a matrix D1/2ZD̃1/2, where Z has i.i.d. CN(0, 1) entries,
and D and D̃ are deterministic diagonal matrices. The SINR writes:

βK =
p0

ρK
z
∗
D

1
2

„
1

Kρ
D

1
2 ZD̃Z

∗
D

1
2 + I

«−1

D
1
2 z

where z is a N × 1 vector with complex independent standard Gaussian entries independent from Z.
Introduce the following well-known 2 × 2 system and the deterministic matrices T and T̃,

8
<
:

δ = 1
K

TrDK

“
I + tδ̃DK

”−1

δ̃ = 1
K

Tr eDK

“
I + tδ eDK

”−1 and

8
<
:

T =
“
I + tδ̃D

”−1

eT =
“
I + tδ eD

”−1 ,
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and let δ = 1
K

TrDT, δ̃ = 1
K

Tr eDeT, γ = 1
K

TrD2T2 and γ̃ = 1
K

Tr eD2 eT2. The following approximations
of the first, second and third moment of the SINR hold true (by K → ∞, we mean K → ∞ and 0 <
lim inf K

N
≤ lim sup K

N
< ∞):

1. First asymptotic moment:

E

„
βK

p0

«
− δ

ρ
−−−−→
K→∞

0,

2. Second asymptotic moment:

Ω2
K =

γ

ρ2

„
γγ̃

ρ2 − γγ̃
+ 1

«
and KE

„
βK

p0
− E

„
βK

p0

««2

− Ω2
K −−−−→

K→∞
0,

3. Third asymptotic moment:

νK =
2ρ3

K (ρ2 − γγ̃)3

»
TrD3

T
3 − γ3

ρ3
Tr eD3 eT3

–
= O(1) and K2

E

„
βK

p0
− E

„
βK

p0

««3

−νK −−−−→
K→∞

0.

This result extends Li et al.’s results [73] to the correlated case and is extensively based on gaussian tools

-the integration by part formula and Poincaré-Nash inequality.

Section 5.3. In this contribution, we provide a theoretical study of a new technique for collab-
orative sensing proposed in [12] based on the analysis of the normalized (by the trace) maximum
eigenvalue of the sample covariance matrix. The analytical study is based on Large Deviation
Principles and asymptotic random matrix theory where we compute the error exponent of the
probability of error of the test. The performance of the test is compared with the eigen-based ratio
test (ratio of the extremal eigenvalues) and a proof, through the Bahadur efficiency, of the superi-
ority of the new technique is provided. To be more specific, consider a K×K matrix R̂ = 1

N YYH

where matrix Y is K×N . Under assumption (H0), matrix Y has i.i.d. CN(0, 1) entries and under
assumption (H1), the matrix follows a spiked model, i.e. the largest eigenvalue converges outside
the bulk. In this section, we study the test based on the satistics λ1

1
K

Tr R̂
where λ1 is the largest

eigenvalue of R̂. The Tracy-Widom fluctuations of λ1 enables us to compute the threshold of the
test. The study of the type II error relies on the study of the large deviations of λ1. These large
deviations enable us to compute the error exponent of the test.

5.1 Optimization of the ergodic capacity

Introduction. Since the seminal work of Telatar [111], the advantage of considering multiple
antennas at the transmitter and the receiver in terms of capacity, for Gaussian and fast Rayleigh
fading single-user channels, is well understood. In that paper the figure of merit chosen for char-
acterizing the performance of a coherent1 communication over a fading Multiple Input Multiple
Output (MIMO) channel is the Ergodic Mutual Information (EMI). This choice will be justified
later. Assuming the knowledge of the channel statistics at the transmitter, one important issue is
then to maximize the EMI with respect to the channel input distribution. Without loss of optimal-
ity, the search for the optimal input distribution can be restricted to circularly Gaussian inputs.
The problem then amounts to finding the optimum covariance matrix.

This optimization problem has been addressed extensively in the case of certain Rayleigh
channels. In the context of the so-called Kronecker model, it has been shown by various authors (see

1Instantaneous channel state information is assumed at the receiver but not necessarily at the transmitter.
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e.g. [43] for a review) that the eigenvectors of the optimal input covariance matrix must coincide
with the eigenvectors of the transmit correlation matrix. It is therefore sufficient to evaluate the
eigenvalues of the optimal matrix, a problem which can be solved by using standard optimization
algorithms. Note that [1] extended this result to more general (non Kronecker) Rayleigh channels.

Rician channels have been comparatively less studied from this point of view. Let us mention
the work [56] devoted to the case of uncorrelated Rician channels, where the authors proved
that the eigenvectors of the optimal input covariance matrix are the right-singular vectors of
the line of sight component of the channel. As in the Rayleigh case, the eigenvalues can then
be evaluated by standard routines. The case of correlated Rician channels is undoubtedly more
complicated because the eigenvectors of the optimum matrix have no closed form expressions.
Moreover, the exact expression of the EMI being complicated (see e.g. [66]), both the eigenvalues
and the eigenvectors have to be evaluated numerically. In [120], a barrier interior-point method
is proposed and implemented to directly evaluate the EMI as an expectation. The corresponding
algorithms are however not very attractive because they rely on computationally-intensive Monte-
Carlo simulations.

In this section, we address the optimization of the input covariance of Rician channels with
a two-sided (Kronecker) correlation. As the exact expression of the EMI is very complicated, we
propose to evaluate an approximation of the EMI, valid when the number of transmit and receive
antennas converge to +∞ at the same rate, and then to optimize this asymptotic approximation.
This will turn out to be a simpler problem.

The asymptotic approximation of the mutual information has been obtained by various
authors in the case of MIMO Rayleigh channels, and has shown to be reliable even for a quite
moderate number of antennas. The general case of a Rician correlated channel has recently been
established in [53] using large random matrix theory and completes a number of previous works
among which [26], [114] and [82] (Rayleigh channels), [2] and [84] (Rician uncorrelated channels),
[59] (Rician receive correlated channel) and, later on, [110] (Rician correlated channels). Notice
that the latest work (together with [82] and [84]) relies on the powerful but non-rigorous replica
method. It also gives an expression for the variance of the mutual information.

In this paper, we rely on the results of [53] in which a closed form asymptotic approximation
for the mutual information is provided, and present new results concerning its accuracy. We then
address the optimization of the large system approximation w.r.t. the input covariance matrix
and propose a simple iterative maximization algorithm which, in some sense, can be seen as a
generalization to the Rician case of [121] devoted to the Rayleigh context: Each iteration will be
intended to solve a system of two non linear equations as well as a standard waterfilling problem.
In contrast with [121], we give some convergence results and prove that the algorithm converges
towards the optimum input covariance matrix if it converges at all. Finally, simulation results
confirm the relevance of our approach.

Problem statement. General Notations: In this paper, the notations s, x, M stand for scalars,
vectors and matrices, respectively. As usual, ‖x‖ represents the Euclidian norm of vector x and
‖M‖ stands for the spectral norm of matrix M. The superscripts (.)T and (.)H represent re-
spectively the transpose and transpose conjugate. The trace of M is denoted by Tr(M). The
mathematical expectation operator is denoted by E(·). ℜ and ℑ denote respectively the real and
imaginary parts of a given complex number. If x is a possibly complex valued random variable,
Var(x) = E|x|2 − |E(x)|2 represents the variance of x.

All along this paper, r and t stand for the number of transmit and receive antennas. Certain
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quantities will be studied in the asymptotic regime t→ ∞, r → ∞ in such a way that

0 < lim inf
t

r
≤ lim sup

t

r
<∞ .

In order to simplify the notations, t→ +∞ should be understood from now on as t→ ∞, r → ∞
and 0 < lim inf tr−1 ≤ lim sup tr−1 < ∞. Let Mt a matrix whose size depends on t. Then, Mt is
said to be uniformly bounded if supt ‖Mt‖ < +∞.

Several variables used throughout this paper depend on various parameters, e.g. the number
of antennas, the noise level, the covariance matrix of the transmitter, etc. In order to simplify the
notations, we may not always mention all these dependencies.

Channel model. We consider a wireless MIMO link with t transmit and r receive antennas. In our
analysis, the channel matrix can possibly vary from symbol vector (or space-time codeword) to
symbol vector. The channel matrix is assumed to be perfectly known at the receiver whereas the
transmitter has only access to the statistics of the channel. The received signal can be written as

(5.1) y(τ) = H(τ)x(τ) + z(τ)

where x(τ) is the t × 1 vector of transmitted symbols at time τ , H(τ) is the r × t channel ma-
trix (stationary and ergodic process) and z(τ) is a complex white Gaussian noise distributed as
N(0, σ2Ir). For the sake of simplicity, we omit the time index τ from our notations. The channel
input is subject to a power constraint Tr

[
E(xxH )

]
≤ t. Matrix H has the following structure:

(5.2) H =

√
K

K + 1
A +

1√
K + 1

V ,

where matrix A is deterministic, V is a random matrix and constant K ≥ 0 is the so-called Rician
factor which expresses the relative strength of the direct and scattered components of the received
signal. Matrix A satisfies 1

r Tr(AAH) = 1 while V is given by

(5.3) V =
1√
t
C

1
2 WC̃

1
2 ,

where W = (Wij) is a r×t matrix whose entries are independent and identically distributed (i.i.d.)

complex circular Gaussian random variables CN(0, 1). The matrices C̃ > 0 and C > 0 account
for the transmit and receive antenna correlation effects respectively and satisfy 1

t Tr(C̃) = 1 and
1
r Tr(C) = 1. This correlation structure is often referred to as a separable or Kronecker correlation
model.

Maximum ergodic mutual information. We denote by C the cone of nonnegative Hermitian t × t

matrices and by C1 the subset of all matrices Q of C for which
1

t
Tr(Q) = 1. Let Q be an element

of C1 and denote by I(Q) the ergodic mutual information (EMI) defined by:

(5.4) I(Q) = EH

[
log det

(
Ir +

1

σ2
HQHH

)]
.

Maximizing the EMI with respect to the input covariance matrix Q = E(xxH ) leads to the channel
Shannon capacity for fast fading MIMO channels i.e. when the channel vary from symbol to symbol.
This capacity is achieved by averaging over channel variations over time. For slow fading MIMO
channels, i.e. when the channel matrix remains constant over a certain block duration much smaller
than the channel coherence time, such an averaging is not possible and one has to communicate

67



at rates smaller than the ergodic capacity. The maximum EMI is therefore a rate upper bound for
slow fading MIMO channels and only a fraction of it can be achieved2. A more suited performance
metric to study slow-fading channels is the outage capacity whose computation would require the
knowledge of the variance of the mutual information. This is beyond the aim of this paper where
we limit ourselves to the calculation of an asymptotic approximation of the mean of the mutual
information. The computations performed in this article can be seen as a first step toward the
evaluation of the variance of the EMI and its outage probability.

We will denote by CE the maximum value of the EMI over the set C1:

(5.5) CE = sup
Q∈C1

I(Q).

The optimal input covariance matrix thus coincides with the argument of the above maximization
problem. Note that I : Q 7→ I(Q) is a strictly concave function on the convex set C1, which
guarantees the existence of a unique maximum [75]. When C̃ = It, C = Ir, [56] shows that the
eigenvectors of the optimal input covariance matrix coincide with the right-singular vectors of A.
By adapting the proof of [56], one can easily check that this result also holds when C̃ = It and C
and AAH share a common eigenvector basis. Apart from these two simple cases, it seems difficult
to find a closed-form expression for the eigenvectors of the optimal covariance matrix. Therefore
the evaluation of CE requires the use of numerical techniques (see e.g. [120]) which are very
demanding since they rely on computationally-intensive Monte-Carlo simulations. This problem
can be circumvented as the EMI I(Q) can be approximated by a simple expression denoted by
Ī(Q) as t→ ∞ which in turn will be optimized with respect to Q (see below).

Remark 5.1. Finding the optimum covariance matrix is useful in practice, in particular if the
channel input is assumed to be Gaussian. In fact, there exist many practical space-time encoders
that produce near-Gaussian outputs (these outputs are used as inputs for the linear precoder Q1/2).
See for instance [98].

Summary of the main results. The main contributions of this section can be summarized as follows:

1. We derive an accurate approximation of I(Q) as t→ +∞: I(Q) ≃ Ī(Q) where

(5.6) Ī(Q) = log det
[
It + G(δ(Q, δ̃(Q))Q

]
+ i(δ(Q), δ̃(Q))

where δ(Q) and δ̃(Q) are two positive terms defined as the solutions of a system of 2 equations
(see Eq. (5.7)). The functions G and i depend on (δ(Q), δ̃(Q)), K, A, C, C̃, and on the
noise variance σ2. They are given in closed form.

The derivation of Ī(Q) is based on the observation that the eigenvalue distribution of random
matrix HQHH becomes close to a deterministic distribution as t→ +∞. This in particular
implies that if (λi)1≤i≤r represent the eigenvalues of HQHH , then:

1

r
log det

[
Ir +

1

σ2
HQHH

]
=

1

r

r∑

i=1

log

(
1 +

λi

σ2

)

has the same behaviour as a deterministic term, which turns out to be equal to Ī(Q)
r . Taking

the mathematical expectation w.r.t. the distribution of the channel, and multiplying by r
gives I(Q) ≃ Ī(Q).

2This fraction is called the multiplexing gain in [126] where the authors introduced the famous diversity multi-
plexing trade-off.
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The error term I(Q) − Ī(Q) is shown to be of order O(1
t ). As I(Q) is known to increase

linearly with t, the relative error I(Q)−Ī(Q)
I(Q) is of order O( 1

t2 ). This supports the fact that

Ī(Q) is an accurate approximation of I(Q), and that it is relevant to study Ī(Q) in order to
obtain some insight on I(Q).

2. We prove that the function Q 7→ Ī(Q) is strictly concave on C1. As a consequence, the
maximum of Ī over C1 is reached for a unique matrix Q∗. We also show that I(Q∗)−I(Q∗) =
O(1/t) where we recall that Q∗ is the capacity achieving covariance matrix. Otherwise stated,
the computation of Q∗ (see below) allows one to (asymptotically) achieve the capacity I(Q∗).

3. We study the structure of Q∗ and establish that Q∗ is solution of the standard waterfilling
problem:

max
Q∈C1

log det
(
I + G(δ∗, δ̃∗)Q

)
,

where δ∗ = δ(Q∗), δ̃∗ = δ̃(Q∗) and

G(δ∗, δ̃∗) =
δ∗

K + 1
C̃ +

1

σ2

K

K + 1
AH

(
Ir +

δ̃∗
K + 1

C

)−1

A .

This result provides insights on the structure of the approximating capacity achieving covari-
ance matrix, but cannot be used to evaluate Q∗ since the parameters δ∗ and δ̃∗ depend on the
optimum matrix Q∗. We therefore propose an attractive iterative maximization algorithm
of Ī(Q) where each iteration consists in solving a standard waterfilling problem and a 2 × 2
system characterizing the parameters (δ, δ̃).

Approximation of the capacity I(Q∗).

Theorem 5.2. For Q ∈ C1, consider the system of equations

(5.7)

{
δ = f(δ, δ̃,Q)

δ̃ = f̃(δ, δ̃,Q)
,

where f(δ, δ̃,Q) and f̃(δ, δ̃,Q) are given by:

(5.8) f(δ, δ̃,Q) =
1

t
Tr

{
C
[
σ2
(
Ir +

δ̃

K + 1
C
)

+
K

K + 1
AQ

1
2

(
It +

δ

K + 1
Q

1
2 C̃Q

1
2

)−1

Q
1
2 AH

]−1
}
,

(5.9) f̃(δ, δ̃,Q) =
1

t
Tr

{
Q

1
2 C̃Q

1
2

[
σ2
(
It +

δ

K + 1
Q

1
2 C̃Q

1
2

)

+
K

K + 1
Q

1
2 AH

(
Ir +

δ̃

K + 1
C

)−1

AQ
1
2

]−1
}
.

Then the system of equations (5.7) has a unique strictly positive solution (δ(Q), δ̃(Q)).
Furthermore, assume that supt ‖Q‖ < +∞, supt ‖A‖ < +∞, supt ‖C‖ < +∞, and supt ‖C̃‖ <
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+∞. Assume also that inft λmin(C̃) > 0 where λmin(C̃) represents the smallest eigenvalue of C̃.
Then, as t→ +∞,

(5.10) I(Q) = Ī(Q) +O

(
1

t

)

where the asymptotic approximation Ī(Q) is given by

(5.11) Ī(Q) = log det


 It +

δ(Q)

K + 1
Q

1
2 C̃Q

1
2 +

1

σ2

K

K + 1
Q

1
2 AH

(
Ir +

δ̃(Q)

K + 1
C

)−1

AQ
1
2




+ log det

(
Ir +

δ̃(Q)

K + 1
C

)
− tσ2

K + 1
δ(Q) δ̃(Q) ,

or equivalently by

(5.12) Ī(Q) = log det

(
Ir +

δ̃(Q)

K + 1
C +

1

σ2

K

K + 1
AQ

1
2

(
It +

δ(Q)

K + 1
Q

1
2 C̃Q

1
2

)−1

Q
1
2 AH

)

+ log det

(
It +

δ(Q)

K + 1
Q1/2C̃Q1/2

)
− tσ2

K + 1
δ(Q) δ̃(Q).

Theorem 5.3. The function Q 7→ Ī(Q) is strictly concave on C1.

Since Ī is strictly concave over the compact set C1, it admits a unique argmax we shall
denote by Q∗, i.e.:

Ī(Q∗) = max
Q∈C1

Ī(Q) .

As we shall see, matrix Q∗ can be obtained by a rather simple algorithm. Provided that supt ‖Q∗‖
is bounded, Eq. (5.10) in Theorem 5.2 yields I(Q∗) − Ī(Q∗) → 0 as t → ∞. It remains to check
that I(Q∗) − I(Q∗) goes asymptotically to zero to be able to approximate the capacity. This is
the purpose of the next proposition.

Proposition 5.4. Assume that supt ‖A‖ < ∞, supt ‖C̃‖ < ∞, supt ‖C‖ < ∞, inft λmin(C̃) > 0,
and inft λmin(C) > 0. Let Q∗ and Q∗ be the maximizers over C1 of Ī and I respectively. Then the
following facts hold true:

(i) supt ‖Q∗‖ <∞.

(ii) supt ‖Q∗‖ <∞.

(iii) I(Q∗) = I(Q∗) +O(t−1).

Optimization of the input covariance matrix. We have showed that matrix Q∗ asymptoti-
cally achieves the capacity. The purpose of this section is to propose an efficient way of maximizing
the asymptotic approximation Ī(Q) without using complicated numerical optimization algorithms.
In fact, we will show that our problem boils down to simple waterfilling algorithms.

Properties of the maximum of Ī(Q).
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In this section, we shall establish some of Q∗’s properties. We first introduce a few notations.
Let V (κ, κ̃,Q) be the function defined by:

(5.13)

V (κ, κ̃,Q) = log det

(
It +

κ

K + 1
Q

1
2 C̃Q

1
2 +

K

σ2(K + 1)
Q

1
2 AH

(
Ir +

κ̃

K + 1
C

)−1

AQ
1
2

)

+ log det

(
Ir +

κ̃

K + 1
C

)
− tσ2κκ̃

K + 1
.

or equivalently by

(5.14)

V (κ, κ̃,Q) = log det

(
Ir +

κ̃

K + 1
C +

K

σ2(K + 1)
AQ

1
2

(
It +

κ

K + 1
Q

1
2 C̃Q

1
2

)−1

Q
1
2 AH

)

+ log det

(
It +

κ

K + 1
Q1/2C̃Q1/2

)
− tσ2κκ̃

K + 1
.

Note that if (δ(Q), δ̃(Q)) is the solution of system (5.7), then:

Ī(Q) = V (δ(Q), δ̃(Q),Q) .

Denote by (δ∗, δ̃∗) the solution (δ(Q∗), δ̃(Q∗)) of (5.7) associated with Q∗. The aim of the section
is to prove that Q∗ is the solution of the following standard waterfilling problem:

Ī(Q∗) = max
Q∈C1

V (δ∗, δ̃∗,Q) .

Denote by G(κ, κ̃) the t× t matrix given by:

(5.15) G(κ, κ̃) =
κ

K + 1
C̃ +

K

σ2(K + 1)
AH

(
Ir +

κ̃

K + 1
C

)−1

A .

Then, V (κ, κ̃,Q) also writes

(5.16) V (κ, κ̃,Q) = log det (I + QG(κ, κ̃)) + log det

(
Ir +

κ̃

K + 1
C

)
− tσ2κκ̃

K + 1
,

which readily implies the differentiability of (κ, κ̃,Q) 7→ V (κ, κ̃,Q) and the strict concavity of
Q 7→ V (κ, κ̃,Q) (κ and κ̃ being frozen).

Proposition 5.5. Consider the functions δ(Q), δ̃(Q) and Ī(Q) from C1 to R. The following
properties hold true:

(i) Denote by δ∗ and δ̃∗ the quantities δ(Q∗) and δ̃(Q∗). Matrix Q∗ is the solution of the standard
waterfilling problem: Maximize over Q ∈ C1 the function V (δ∗, δ̃∗,Q) or equivalently the
function log det(I + QG(δ∗, δ̃∗)).

Remark 5.6. The quantities δ∗ and δ̃∗ depend on matrix Q∗. Therefore, Proposition 5.5 does not
provide by itself any optimization algorithm. However, it gives valuable insights on the structure
of Q∗. Consider first the case C = I and C̃ = I. Then, G(δ∗, δ̃∗) is a linear combination of I and
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matrix AHA. The eigenvectors of Q∗ thus coincide with the right singular vectors of matrix A, a
result consistent with the work [56] devoted to the maximization of the EMI I(Q). If C = I and
C̃ 6= I, G(δ∗, δ̃∗) can be interpreted as a linear combination of matrices C̃ and AHA. Therefore, if
the transmit antennas are correlated, the eigenvectors of the optimum matrix Q∗ coincide with the
eigenvectors of some weighted sum of C̃ and AHA. This result provides a simple explanation of
the impact of correlated transmit antennas on the structure of the optimal input covariance matrix.
The impact of correlated receive antennas on Q∗ is however less intuitive because matrix AHA has
to be replaced with AH(I + δ̃∗C)−1A.

The optimization algorithm.

We are now in position to introduce our maximization algorithm of Ī. It is mainly moti-
vated by the simple observation that for each fixed (κ, κ̃), the maximization w.r.t. Q of function
V (κ, κ̃,Q) defined by (5.16) can be achieved by a standard waterfilling procedure, which, of course,
does not need the use of numerical techniques. On the other hand, for Q fixed, the equations (5.7)
have unique solutions that, in practice, can be obtained using a standard fixed-point algorithm.
Our algorithm thus consists in adapting parameters Q and δ, δ̃ separately by the following iterative
scheme:

• Initialization: Q0 = I, (δ1, δ̃1) are defined as the unique solutions of system (5.7) in which
Q = Q0 = I. Then, define Q1 are the maximum of function Q → V (δ1, δ̃1,Q) on C1, which
is obtained through a standard waterfilling procedure.

• Iteration k: assume Qk−1, (δk−1, δ̃k−1) available. Then, (δk, δ̃k) is defined as the unique
solution of (5.7) in which Q = Qk−1. Then, define Qk are the maximum of function Q →
V (δk, δ̃k,Q) on C1.

One can notice that this algorithm is the generalization of the procedure used by [121] for opti-
mizing the input covariance matrix for correlated Rayleigh MIMO channels.

We now study the convergence properties of this algorithm, and state a result which implies
that, if the algorithm converges, then it converges to the unique argmax Q∗ of Ī.

Proposition 5.7. Assume that the two sequences (δk)k≥0 and (δ̃k)k≥0 verify

(5.17) lim
k→+∞

δk − δk−1 → 0, lim
k→+∞

δ̃k − δ̃k−1 → 0

Then, the sequence (Qk)k≥0 converges toward the maximum Q∗ of Ī on C1.

Remark 5.8. If the algorithm is convergent, i.e. if sequence (Qk)k≥0 converges towards a matrix

P∗, Proposition 5.7 implies that P∗ = Q∗. In fact, functions Q 7→ δ(Q) and Q 7→ δ̃(Q) are
continuous by Proposition 5.5. As δk = δ(Qk−1) and δ̃k = δ̃(Qk−1), the convergence of (Qk)
thus implies the convergence of (δk) and (δ̃k), and (5.17) is fulfilled. Proposition 5.7 immediately
yields P∗ = Q∗. Although we have not been able to prove the convergence of the algorithm, the
above result is encouraging, and tends to indicate the algorithm is reliable. In particular, all the
numerical experiments we have conducted indicates that the algorithm converges towards a certain
matrix which must coincide by Proposition 5.7 with Q∗.

Numerical experiments. How large do the numbers of antennas need to be to reach the asymp-
totic regime? All our analysis is based on the approximation of the ergodic mutual information.
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This approximation consists in assuming the channel matrix to be large. Here we provide typical
simulation results showing that the asymptotic regime is reached for relatively small number of
antennas. For the simulations provided here we assume:

• Q = It.

• The chosen line-of-sight (LOS) component A is based on the following typical structure:

(5.18) A =
1√
t
[a(θ1), . . . ,a(θt)]Λ ,

where a(θ) = (1, eiθ, . . . , ei(r−1)θ)T and Λ is a diagonal matrix whose entries represent the
complex amplitudes of the t line of sight (LOS) components.

The angle of arrivals are chosen randomly according to a uniform distribution.

• Antenna correlation is assumed to decrease exponentially with the inter-antenna distance i.e.

C̃ij ∼ ρ
|i−j|
T , Cij ∼ ρ

|i−j|
R with 0 ≤ ρT ≤ 1 and 0 ≤ ρR ≤ 1.

• K is equal to 1.

Figure 5.1 represents the EMI I(I) evaluated by Monte Carlo simulations and its approx-
imation Ī(I) as well as their relative difference (in percentage). Here, the correlation coefficients
are equal to (ρT , ρR) = (0.8, 0.3) and three different pairs of numbers of antenna are considered:
(t, r) ∈ {(2, 2), (4, 4), (8, 8)}. Figure 5.1 shows that the approximation is reliable even for r = t = 2
in a wide range of SNR.

Comparison with the Vu-Paulraj method. In this paragraph, we compare our algorithm with the
method presented in [120] based on the maximization of I(Q). We recall that Vu-Paulraj’s algo-
rithm is based on a Newton method and a barrier interior point method. Moreover, the average
mutual informations and their first and second derivatives are evaluated by Monte-Carlo simula-
tions. In fig. 5.3, we have evaluated CE = maxQ∈C1 I(Q) versus the SNR for r = t = 4. Matrix H
coincides with the example considered in [120]. The solid line corresponds to the results provided
by the Vu-Paulraj’s algorithm; the number of trials used to evaluate the mutual informations
and its first and second derivatives is equal to 30.000, and the maximum number of iterations
of the algorithm in [120] is fixed to 10. The dashed line corresponds to the results provided by
our algorithm: each point represent I(Q∗) at the corresponding SNR, where Q∗ is the ”optimal”
matrix provided by our approach; the average mutual information at point Q∗ is evaluted by
Monte-Carlo simulation (30.000 trials are used). The number of iterations is also limited to 10.
Figure 5.3 shows that our asymptotic approach provides the same results than the Vu-Paulraj’s
algorithm. However, our algorithm is computationally much more efficient as the above table
shows. The table gives the average executation time (in sec.) of one iteration for both algorithms
for r = t = 2, r = t = 4, r = t = 8.

In fig. 5.4, we again compare Vu-Paulraj’s algorithm and our proposal. Matrix A is gener-
ated according to (5.18), the angles being chosen at random. The transmit and receive antennas
correlations are exponential with parameter 0 < ρT < 1 and 0 < ρR < 1 respectively. In the exper-
iments, r = t = 4, while various values of ρT , ρR and of the Rice factor K have been considered.
As in the previous experiment, the maximum number of iterations for both algorithms is 10, while
the number of trials generated to evaluate the average mutual informations and their derivatives
is equal to 30.000. Our approach again provides the same results than Vu-Paulraj’s algorithm,
except for low SNRs for K = 1, ρT = 0.5, ρR = 0.8 where our method gives better results: at these
points, the Vu-Paulraj’s algorithm seems not to have converge at the 10th iteration.

73



−5 0 5 10
0

5

10

15

20

E
M

I i
n 

bp
s/

H
z

−5 0 5 10
0

1

2

3

4

5

SNR in dB

R
el

at
iv

e 
E

rr
or

 in
 p

er
ce

nt

Montecarlo Simulations ( 2*2 )
Deterministic Approximant ( 2*2 )
Montecarlo Simulations ( 4*4 )
Deterministic Approximant ( 4*4 )
Montecarlo Simulations ( 8*8 )
Deterministic Approximant ( 8*8 )

Relative Error ( 2*2 )
Relative Error ( 4*4 )
Relative Error ( 8*8 )

Figure 5.1: The large system approximation is accurate for correlated Rician MIMO channels. The
relative difference between the EMI approximation and that obtained by Monte-Carlo simulations
is less than 5 % for a 2 × 2 system and less than 1 % for a 8 × 8 system.

Conclusion. In this section, an explicit approximation for the ergodic mutual information for
Rician MIMO channels with transmit and receive antenna correlation is provided. This approxi-
mation is based on the large system approach. The accuracy of the approximation has been studied
both analytically and numerically. It has been shown to be very accurate even for small MIMO
systems: The relative error is less than 5% for a 2 × 2 MIMO channel and less 1 % for an 8 × 8
MIMO channel.

The derived expression for the EMI has been exploited to derive an efficient optimization
algorithm providing the optimum covariance matrix.

5.2 Bit Error Rate and Outage probability approximation

Introduction. In this section, we focus on the study of the Signal to interference plus noise ratio
(SINR) for the linear Wiener receiver, also called LMMSE for Linear Minimum Mean Squared Error
receiver. In this context, an outage event occurs when the SINR at the LMMSE output lies beneath
a given threshold. One purpose of this section is to approximate the associated outage probability
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Figure 5.2: Average time per iteration in seconds

−5 0 5 10 15
0

2

4

6

8

10

12

14

16

18

SNR (dB)

C
ap

ac
ity

 (
bp

s/
H

z)

Vu−Paulraj
New Algorithm

Figure 5.3: Comparison with the Vu-Paulraj algorithm II

for an important class of MIMO channel models. Another performance index associated with the
SINR is the Bit Error Rate (BER) which will be also studied herein.

Outage probability approximations has been provided in recent works for various channels,
under very specific technical conditions (in the case where the moment generating function [71] or
the probability density function [42] have closed form expressions; when a first order expansion of
the probability density function can be derived [60]; in the more general case where the moment
generating function can be approximated by using Padé approximations [108]; etc.). All these
results deal with specific situations where the statistics of the SINR could be derived for finite
system dimensions.

Alternatively, by making use of large random matrix theory, one can study the behavior
of the SINR in the asymptotic regime where the channel matrix dimensions grow to infinity.
For fairly general channel statistical models, it is then possible to prove the convergence of the
SINR to deterministic values and even establish its asymptotic normality (see for instance [64]).
However, this Gaussian approximation is not accurate when the channel dimensions are small.
This is confirmed in [48] where it is shown that the asymptotic BER based on the sole Gaussian
approximation is significantly smaller than the empirical estimate. A more precise approximation of
the BER or the outage probability is expected if one chooses to approximate the SINR probability
distribution with a distribution 1) which is supported by R+ (indeed, a Gaussian random variable
takes negative values which is not realistic), 2) which is adjusted to the first three moments of the
SINR instead of the first two moments needed by the Gaussian approximation.

In this line of thought, Li, Paul, Narasimhan and Cioffi [73] proposed to use alternative
parameterized distributions (Gamma and generalized Gamma distributions) whose parameters are
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Figure 5.4: Comparison with the Vu-Paulraj algorithm III

set to coincide with the asymptotic moments of the output SINR. This approach was derived
for (transmit) correlated channels and asymptotic moments were provided for the special case of
uncorrelated or equicorrelated channels. For the general correlated channel case, only limiting
upper bounds for the first three asymptotic moments were provided. Based on Random Matrix
Theory and especially on the Gaussian mathematical tools elaborated in [50] and further used in
[31], we derive closed-form expressions for the first three moments, generalizing the work of [73] to
a general (receive) correlated channel. Using the generalized Gamma approximation, we provide
closed-form expressions for the BER and numerical approximations for the outage probability.

System Model and SINR expression. We consider an uplink transmission system, in which
a base station equipped by N correlated antennas detects the symbols of a given user of interest in
the presence of K interfering users. The N dimensional received signal writes r = Σs + n, where
s = [s0, · · · , sK ]

T
is the transmitted complex vector signal with size K+1 satisfying Ess∗ = IK+1,

and Σ is the N × (K + 1) channel matrix. We assume that this matrix writes as

Σ =
1√
K

Ψ
1
2 WP

1
2 ,

where Ψ is a N ×N Hermitian nonnegative matrix that captures the correlations at the receiver,
P = diag (p0, · · · , pK) is the deterministic matrix of the powers allocated to the different users and
W = [w0, · · · ,wK ] (wk being the kth column) is a N × (K + 1) complex Gaussian matrix with
centered unit variance (standard) i.i.d entries. To detect symbol s0 and to mitigate the interference
caused by users 1, . . . ,K, the base station applies the LMMSE estimator, which minimizes the

following metric g = minh E |h∗r − s0|2 . Let y =
√

p0

K Ψ
1
2 w0, then it is well known that the

LMMSE estimator is given by:

g = (ΣΣ∗ + ρIN )
−1

y.

Writing the received vector r = s0y + rin where s0y is the relevant term and rin represents
the interference plus noise term, the SINR at the output of the LMMSE estimator is given by :
βK = |g∗y|2 /E |g∗rin|2. Plugging the expression of g given above into this expression, one can
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show that the SINR βK is given by:

βK = y∗
(

1

K
Ψ

1
2 W̃P̃W̃∗Ψ

1
2 + ρIN

)−1

y,

with P̃ = diag (p1, · · · , pK) and W̃ = [w1, · · · ,wK ]. Let Ψ = UDU∗ be a spectral decomposition
of Ψ. Then, βK writes:

βK =
p0

ρK
z∗D

1
2

(
1

Kρ
D

1
2 ZD̃Z∗D

1
2 + I

)−1

D
1
2 z

where: z = U∗w0 (resp. Z = U∗W̃) is a N × 1 vector with complex independent standard
Gaussian entries (resp. N ×K matrix with independent Gaussian entries).

Under appropriate assumptions, it can be proved that βK admits a deterministic approxi-
mation as K,N → ∞, the ratio being bounded below by a positive constant and above by a finite
constant. Furthermore, its fluctuations can be precisely described under the same asymptotic
regime (for a full and rigorous computation based on random matrix theory, see[64]). As it will
appear shortly, a deterministic approximation of the third centered moment of βK is needed and
will be computed in the sequel.

A quick reminder of the generalised Gamma distribution. Recall that if a random variable
X follows a generalized gamma distribution G(α, b, ξ), where α and b are respectively referred to
as the shape and scale parameters, then:

EX = αb, var(X) = αb2 and E(X − EX)3 = (ξ + 1)αb3 .

The probability density function (pdf) of the generalized Gamma distribution with parameters
(α, b, ξ) does not have a closed form expression but its moment generating function (MGF) writes:

MGF(s) =

{
exp( α

ξ−1 (1 − (1 − bξs)
ξ−1

ξ )) if ξ > 1,

exp( α
1−ξ ((1 − bξs)

ξ−1
ξ − 1)) if ξ ≤ 1.

BER approximation. Under QPSK constellations with Gray encoding and assuming that the
noise at the LMMSE output is Gaussian, the BER is given by:

BER = EQ(
√
βK)

where Q(x) = 1√
2π

∫∞
x e−t2/2 dt and the expectation is taken over the distribution of the SINR βK .

Based on the asymptotic normality of the SINR, [47] and [97] proposed to use the limiting BER
value given by:

BER =
1√
2π

∫ ∞
√

βK

e−t2/2dt,

where βK denotes an asymptotic deterministic approximation of the first moment of βK . It was
shown however in [73] that this expression is inaccurate since a Gaussian random variable allows
negative values and has a zero third moment while the output SINR is always positive and has a
non-zero third moment for finite system dimensions. To overcome these difficulties, Li et al. [73]
approximate the BER by considering first that the SINR follows a Gamma distribution with scale
α and shape b, these parameters being tuned by equating the first two moments of the Gamma
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distribution with the first two asymptotic moments of the SINR. However, the third asymptotic
moment was shown to be different from the third moment of the Gamma distribution which only
depends on the scale α and shape b. In light of this consideration, Li et al. [73] refine this
approximation and consider that the SINR follows a generalized Gamma distribution which is
adjusted by assuming that its first three moments equate the first three asymptotic moments of
the SINR. As expected, this approximation has proved to be more accurate than the Gamma
approximation, and so will be the one considered in this paper. Next, we briefly review this
technique, which we will rely on to provide accurate approximations for the BER and outage
probability.

Let E∞(βK), var∞(βK) and S∞(βK) denote respectively the deterministic approximations
of the asymptotic central moments of βK . Then, the parameters ξ, α and b are determined by
solving:

E∞(βK) = αb, var∞(βK) = αb2 and S∞(βK) = (ξ + 1)αb3,

thus giving the following values:

α =
(E∞(βK))2

var∞(βK)
, β =

var∞(βK)

E∞(βK)
and ξ =

S∞(βK)E∞(βK)

(var∞(βK))2
− 1.

Using the MGF, one can evaluate the BER by using the following relation [104], that holds for
QPSK constellation:

(5.19) BER =
1

π

∫ π
2

0

MGF

(
− 1

2 sin2 φ

)
dφ.

Note that similar expressions for the BER exist for other constellations and can be derived by
plugging the following identity involving the function Q(x) [104]:

Q(x) =
1

π

∫ π
2

0

exp

(
− x2

2 sin2 θ

)
dθ

into the BER expression.

Outage probability approximation. Only the moment generation function (MGF) has a
closed form expression. Knowing the MGF, one can compute numerically the cumulative dis-
tribution function by applying the saddle point approximation technique [17]. Denote by K(y) =
log(MGF(y)) the cumulative generating function, by y the threshold SINR and by ty the solution

of K ′(ty) = y. Let w0 and u0 be given by: w0 = sign(ty)
√

2 (tyy −K(ty)) and u0 = ty
√
K”(ty).

The saddle point approximate of the outage probability is given by:

(5.20) Pout = Φ(w0) + φ(w0)

(
1

w0
− 1

u0

)
,

where Φ(x) =
∫ x

−∞
1√
2π
e−t2/2 dt and φ(x) = 1√

2π
e−x2/2 denote respectively the standard normal

cumulative distribution function and probability distribution function.

So far, we have presented the technique that will be used in simulations for the evaluation
of the BER and outage probability. This technique is heavily based on the computation of the
three first asymptotic moments of the SINR βK , an issue that is handled in the next section.
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Assumptions. Recall from Section 5.2 the various definitions K,N,D, D̃. In the following, we
assume that both K and N go to +∞, their ratio being bounded below and above as follows:

0 < ℓ− = lim inf
K

N
≤ ℓ+ = lim sup

K

N
< +∞ .

In the sequel, the notation K → ∞ will refer to this asymptotic regime. We will frequently write
DK and D̃K to emphasize the dependence in K, but may drop the subscript K as well. Assume
the following mild conditions:

Assumption A-14. There exist real numbers dmax <∞ and d̃max <∞ such that:

sup
K

‖DK‖ ≤ dmax and sup
K

‖D̃K‖ ≤ d̃max,

where ‖DK‖ and ‖D̃K‖ are the spectral norms of DK and D̃K .

Assumption A-15. The normalized traces of DK and D̃K satisfy:

inf
K

1

K
Tr(DK) > 0 and inf

K

1

K
Tr(D̃K) > 0.

Asymptotic moments computation In this section, we provide closed form expressions for
the first three asymptotic moments. We shall first introduce some deterministic quantities that
are used for the computation of the first, second and third asymptotic moments.

Proposition 5.9. (cf. [50]) For every integer K and any t > 0, the system of equations in (δ, δ̃)




δK = 1
K TrDK

(
I + tδ̃KDK

)−1

,

δ̃K = 1
K TrD̃K

(
I + tδKD̃K

)−1

,

admits a unique solution
(
δK(t), δ̃K(t)

)
satisfying δK(t) > 0, δ̃K(t) > 0.

Let T and T̃ be the N ×N and K ×K diagonal matrices defined by:

T =
(
I + tδ̃KD

)−1

and T̃ =
(
I + tδKD̃

)−1

.

Note that in particular: δ = 1
K TrDT and δ̃ = 1

K TrD̃T̃. Define also γ and γ̃ as γ = 1
K TrD2T2

and γ̃ = 1
K TrD̃2T̃2. Finally, replace t by 1

ρ and introduce the following deterministic quantities:

Ω2
K =

γ

ρ2

(
γγ̃

ρ2 − γγ̃
+ 1

)
and νK =

2ρ3

K (ρ2 − γγ̃)3

[
TrD3T3 − γ3

ρ3
TrD̃3T̃3

]
.

As usual, the notation αK = O(βK) means that αK(βK)−1 is uniformly bounded as K → ∞.
Then, the first three asymptotic moments are given by the following theorem:

Theorem 5.10. Assuming that the matrices D and D̃ satisfy the conditions stated in 14 and 15,
then the following convergences hold true:

1. First asymptotic moment [63, 64]:

δK
ρ

= O(1) and E

(
βK

p0

)
− δK

ρ
−−−−→
K→∞

0,
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2. Second asymptotic moment [63, 64]:

ΩK = O(1) and KE

(
βK

p0
− E

(
βK

p0

))2

− Ω2
K −−−−→

K→∞
0,

3. Third asymptotic moment:

νK = O(1) and K2
E

(
βK

p0
− E

(
βK

p0

))3

− νK −−−−→
K→∞

0.

The two first items of the theorem are proved in [64] (beware that the notations used in this
article are the same as those in [50] and slightly differ from those used in [64]).

Remark 5.11. One can note that the third asymptotic moment is of order O(K−2). This is in
accordance with the asymptotic normality of the SINR, where the third moment of

√
K(βK−E(βK))

will eventually vanish, as this quantity becomes closer to a Gaussian random variable. However,
its value remains significant for small dimension systems.

5.3 Collaborative sensing

In the context of cognitive networks [81], sensing is one the major of steps in order for the flexible
network to adapt its parameters to the environment context. In general, the sensing procedure
requires the knowledge of the noise variance as well as a high number of samples for a successful test.
This is rarely compatible with the mobile constraints of the users and has pushed the community
to propose alternative methods based on collaborative sensing to reduce the number of samples
required [19, 125]. The techniques proposed trade the time dimension (samples) with the space
dimension (antennas or base stations) and do not require the knowledge of the noise variance,
which is one of the drawbacks of energy detector techniques [117]. The general idea of these new
techniques compute some functionals of the eigenvalues of the sample covariance matrix which
cancel out the noise variance. The work was initiated in [125, 19] using the ratio of the extremal
eigenvalues and further formally justified in [12] through the derivation of Generalized Likelihood
Ratio Test (GLRT). It was shown in particular that the normalized (by the trace) of the maximum
eigenvalue of the sample covariance matrix represents an adequate statistic. In this contribution,
we provide an analytical study of both tests using recent results of asymptotic random matrix
theory based on spiked models. Using Large Deviation Principles (LDP), we compute the error
exponents of the probability of error and show the superiority of the test proposed in [12] through
the Bahadur efficiency [118].

The section is articulated as follows: next Section focuses on the problem formulation and
contains the signal model, while in Section III the two tests are detailed. The asymptotic analytical
study is detailed in Section IV with some simulations. Section V is devoted to the evaluation of
the Bahadur relative efficiency of the tests. Conclusions are given in Section V.

5.3.1 Signal Model

Consider a secondary wireless network formed by K nodes, working in sensing mode. We assume
that all K nodes are simultaneously sensing a given sub-band B of the spectrum. For each k =
1, . . . ,K, we denote by yk(n) the complex envelope of the signal received by the kth sensor in band
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B after proper filtering and sampling. Denote by y(n) = [y1(n), . . . , yK(n)]T the vector obtained
when stacking all K sensors’ observations at time n into a column vector. The aim is to detect the
presence of a primary transmitter in band B. We respectively denote by H0 and H1 the hypotheses
corresponding to the case where “band B is free” and “a primary device is already transmitting in
band B”:

(5.21) y(n) =

{
w(n): H0

h s(n) + w(n): H1
,

where w(n) represents a complex circular temporally-white Gaussian noise vector with zero mean
and covariance matrix equal to σ2IK . In the H1-case, vector h ∈ CK1 represents the complex-
valued Single-Input Multiple-Output (SIMO) channel between the primary transmitter and the
K receiving nodes. Sequence s(n) denotes the unknown data process sent by the active primary
device. Sequence s(n) is assumed to be an independent identically distributed (i.i.d.) zero mean
random sequence. We assume without restriction that s(n) has unit variance. In order to be able
to derive hypothesis testing procedures and to analyze their performance in terms of probability of
false alarm and power, we make the usual assumption (see [9] and ref. therein) that the transmitted
symbols are Gaussian distributed, say s(n) ∼ CN (0, 1). We assume that

• the noise variance σ2 is unknown,

• the channel matrix h is unknown.

In the sequel, we denote by N the number of samples observed by each sensor k. Consider the
following KN data matrix Y:

(5.22) Y = [y(0), . . . ,y(N − 1)] .

In order to test hypothesis H0 versus H1, the aim is to construct a relevant test function ϕ :
CKN → {0, 1} with the sense that one decides hypothesis H0 (resp. H1) whenever ϕ(Y) = 0 (resp.
ϕ(Y) = 1). As usual, we restrict ourselves to the search for test functions such that the probability
of false alarm does not exceed a predefined level α i.e.,

(5.23) PH0 [ϕ(Y) = 1] ≤ α ,

where PHi
[E ] represents the probability of a given event E under hypothesis Hi, i = 0, 1. On the

otherhand, the power of the test is given by PH1 [ϕ(Y) = 1].

5.3.2 Eigen-based Hypothesis Tests

Generalized Likelihood Ratio Test. We respectively denote by p0(Y;σ2) and p1(Y; h, σ2)
the likelihood functions of the observation matrix y indexed by the unknown parameters h and σ2

under hypotheses H0 and H1 respectively:

p0(Y;σ2) = (πσ2)−NK exp

(
−N

σ2
Tr R̂

)
(5.24)

p1(Y; h, σ2) = (πK detR)−N exp
(
−NTr (R̂R−1)

)
(5.25)

where R = R(h, σ2) is the true covariance matrix under H1 defined by

R = hhH + σ2IK
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and where R̂ is the sampled covariance matrix:

R̂ =
1

N
YYH .

In the ideal case where parameters h and σ2 are supposed to be available, it is well known that a
uniformly most powerful test is obtained through the computation of the likelihood ratio statistic
p0(Y;σ2)/p1(Y; h, σ2). Unfortunately, parameters h and σ2 are unknown in our context so that a
uniformly powerful test can no longer be that easily defined. In this case, a suboptimal but classical
approach consists in replacing the true likelihood ratio by the following generalized likelihood ratio
(GLR)

(5.26) LN =
supσ2 p0(Y;σ2)

sup
h,σ2 p1(Y; h, σ2)

.

In the GLRT procedure, one rejects hypothesis H0 whenever LN < ξN , where ξN is a certain
threshold which is selected so that the probability of false alarm (5.23) does not exceed a given
level α. A closed form expression of the above GLR LN has been recently derived in [9, 12]. Denote

by λ1 > λ2 · · · > λK ≥ 0 the ordered eigenvalues of R̂ (all distincts with probability one). As we
shall see below, the GLR can be written as a function of the ratio

(5.27) T
(1)
N =

λ1

1
K Tr R̂

.

The following result is a direct consequence of [9, 12].

Proposition 5.12. The GLR (5.26) writes

LN = C T
(1)
N

(
1 − T

(1)
N

K

)K−1

where C =
(
1 − 1

K

)K−1
is a constant.

By definition, T
(1)
N belongs to the interval (1,K) with probability one. Now it is straightfor-

ward to show that function x 7→ x
(
1 − x

K

)K−1
is decreasing for x in the interval (1,K). Therefore,

we propose the following test.

Proposed hypothesis test.

(5.28) T
(1)
N

H1

≷

H0

γ
(1)
N

where γ
(1)
N is a certain threshold which is such that the probability of false alarm does not exceed

a given level α. Clearly, the above test is equivalent to the GLRT in the sense that both tests
have identical power under the PFA constraint (5.23). Before studying the performance of the
above test, we must now complete the definition of this test by providing a practical way to set

the threshold γ
(1)
N in (5.28).
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Setting the Threshold γ
(1)
N . In order to maximize the power of our test while keeping the

PFA constraint (5.23) satisfied, we must select the threshold γ
(1)
N such that PH0

[
T

(1)
N ≤ γ

(1)
N

]
= α.

This requires the tedious computation of the distribution function of T
(1)
N under H0 for each N,K.

Such a computation is usually impractical in cognitive radio applications, due to complexity/delay
constraints, along with the fact that the number of sensors nodes K and the number of observations

N are frequently varying. In order to simplify the selection of γ
(1)
N , we recently investigated in [12]

the asymptotic case where both the number K of sensors and the number of observations are

assumed to be large. In this case, simple expressions of the threshold γ
(1)
N can be derived. More

precisely, we studied the behaviour of T
(1)
N under H0 in the asymptotic regime

(5.29) N → ∞, K → ∞, K/N → c,

where 0 < c < 1 is a constant. This asymptotic regime is relevant under cognitive radio constraints,
as the secondary system must be able to decide the presence/absence of primary transmitters in a
moderate amount of time: the number K of sensors and the number N of samples have therefore
the same order of magnitude. In the asymptotic regime (5.29), it was proved in [12] that

N2/3




T
(1)
N − (1 +

√
c)2

(1 +
√
c)
(

1√
c

+ 1
)1/3


 D−−→

H0

X

where
D−−→
H0

stands for the convergence in distribution under H0 and where X is a random variable

which follows the Tracy-Widom distribution function FTW (.) associated with the Gaussian unitary
Ensemble (see [12] for details). As a consequence, we obtain the following result.

Proposition 5.13. The power of test (5.28) is maximum under constraint (5.23) only if the

threshold γ
(1)
N writes

(5.30) γ
(1)
N = (1 +

√
c)2 +

β
(1)
N

N2/3

for some β
(1)
N which tends to (1 +

√
c)
(

1√
c

+ 1
)1/3

F−1
TW (α).

The above Proposition was used in [12] to derive practical guidelines to select the thresh-

old γ
(1)
N without resorting to a tedious computation of the exact distribution function x 7→

PH0

[
T

(1)
N ≤ x

]
. This result will also be useful in Section 5.3.3 in order to analyze the performance

of the proposed hypothesis test. Before providing such a performance analysis, we mention the
existence of an other hypothesis testing approach which has been recently developed in [125, 19, 95]
for cognitive radio contexts.

An Other Existing Hypothesis Testing Approach. A different approach introduced in
several papers devoted to cognitive radio contexts [125, 19, 95] consists in rejecting the H0-
hypothesis when the following statistic

(5.31) T
(2)
N =

λ1

λK
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Figure 5.5: ROC curves of tests T
(1)
N and T

(2)
N – K=10, N=50, ρ=1.

lies above a well chosen threshold γ
(2)
N . The introduction of the above statistic T

(2)
N can be motivated

by the following observation. Assume that the following limiting signal-to-noise ratio (SNR) is well
defined :

(5.32) ρ = lim
K→∞

‖h‖2

σ2

where ‖h‖ denotes the L2-norm of the K1 vector h. Then, in the asymptotic regime (5.29),

T
(2)
N

a.s.−−→
H0

(1 −√
c)2

(1 +
√
c)2

T
(2)
N

a.s.−−→
H1

{
(1+ρ)(1+c/ρ)

(1+
√

c)2
if ρ >

√
c

(1−√
c)2

(1+
√

c)2
if ρ <

√
c .

(5.33)

Provided that the SNR is large enough (ρ >
√
c), T

(2)
N converges to different values depending on

the true hypothesis. This motivates the fact that the value of T
(2)
N can be used to decide which

hypothesis is true.

Simulation Analysis. In the following, we compare by simulations both tests in the case where
K = 10, N = 50 and ρ = 1. For a fixed level α, the thresholds γ1,2

N corresponding to the probability

of error under H0 are given by PH0(T
(1,2)
N ≥ γ

(1,2)
N ) = α. The power of the test is then given by

PH1(T
(1,2)
N ≥ γ

(1,2)
N ). Figure (5.5) provides the ROC curve for both tests. tests. It clearly shows

that the test T1 outperforms the test T2.

In the rest of the paper, we provide a theoretical performance study of the tests based on

T
(1)
N and T

(2)
N respectively to sustain the experimental claims of Figure 5.5. Using large deviations

arguments, we rigorously prove that the test (5.28) based on T
(1)
N outperforms the test based on

T
(2)
N .
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5.3.3 Error Exponents

Definition. The most natural approach to characterize the performance of the tests associated

with statistics T
(1)
N and T

(2)
N is to evalute the power of each of these tests, or equivalently the

miss probability PH1

(
T

(i)
N < γ

(i)
N

)
, i = 1, 2. As the miss probability has no simple expression in

the general case, we propose to study the asymptotic behaviour of the miss probability in the
asymptotic regime (5.29) of interest. More precisely, for each test i = 1, 2, we prove the existence
and provide the expression of the following error exponents

(5.34) Ei,ρ = lim
N→∞

− 1

N
log inf

{
PH1

(
T

(i)
N < γ

)}
,

where the infemum is taken w.r.t. all γ such that PFA constraint (5.23) holds for a fixed level α.

Main Result. The main conclusion is two-fold: First we give analytic closed form formulas for
both limits, based on a precise Large Deviation study inspired from [76]; second, we show that
the two limits are equal. Otherwise stated, the two tests have the same error exponents. Such a
conclusion needs to be taken with caution as the presented results are asymptotic in nature, while
the tests will be used in a finite-dimension context. A further study will be carried in the next
section to discriminate between the two tests.

In order to express the error exponents of interest, we need further notations. Recall that the

limiting probability distribution of the empirical distribution of the eigenvalues FN (x) = #{i, λi≤x}
K

of R̂ = 1
N YYH is (under both assumptions H0 or H1) Marčhenko-Pastur distribution:

PM̌P(dy) = 1(λ−,λ+)(y)

√
(λ+ − y)(y − λ−)

2πcy
dy,

where λ+ = (1 +
√
c)2 and λ− = (1 − √

c)2. We also introduce λ∞spk = (1 + ρ)
(
1 + c

ρ

)
(recall

that the largest eigenvalue λ1 converges toward λ+ under H0 and toward λ∞spk under H1 - see for
instance [8]). Of prime importance is the Stieltjes transform of PM̌P:

f(x) =

∫
PM̌P(dy)

y − x

which admits the following well-known closed-form representations: If x > λ+, then

f(x) =
(1 − x− c) +

√
(1 − x− c)2 − 4cx

2cx
,

else, that is if x ∈ (0, λ−), then

f(x) =
(1 − x− c) −

√
(1 − x− c)2 − 4cx

2cx
.

Denote by {
F+(x) =

∫
log(x− y)PM̌P(dy) for x > λ+,

F−(x) =
∫

log(y − x)PM̌P(dy) for x ∈ (0, λ−)
.

and let f̃(x) = − 1
x(1+cf(x)) .
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Lemma 5.14. The following representations hold true:

F+(x) = log(x) +
1

c
log(1 + cf(x)) + log(1 + f̃(x))

+xf(x)f̃ (x)

F−(x) = log(x) +
1

c
log(1 + cf(x)) + log(−(1 + f̃(x)))

+xf(x)f̃ (x) .

For similar computations, see for example [53, Section 4]. We are now in position to introduce
the functions that will help to express the error exponents. Denote by ∆(· | A) the convex indicator
function defined by:

∆(x | A) =

{
0 if x ∈ A,
∞ else .

Define for each ρ ≥ 0:

I+
ρ (x) =

x− λ∞spk

(1 + ρ)
− (1 − c) log

(
x

λ∞spk

)

−c
(
F+(x) − F+(λ∞spk)

)
+ ∆(x | [λ+,∞)) ,

I−(y) = y − λ∞spk − (1 − c) log

(
y

λ∞spk

)

−c
(
F−(y) − F−(λ−)

)
+ ∆(y | (0, λ−]) .

As one may expect, I+
ρ and I− are associated to the Large Deviation Principle (LDP) governing

λ1 and λK respectively. Thus, Γρ(t) = inf
{
I+
ρ (x) + I−(y), x

y = t
}

is associated to the LDP

governing λ1/λK .

Theorem 5.15. Assume that ρ >
√
c. Error exponents E1,ρ and E2,ρ are well defined and are

given by the following formulas:

E1, ρ = I+
ρ (λ+) and E2, ρ = Γρ

(
λ+/λ−

)
.

Moreover, I+
ρ (λ+) = Γρ (λ+/λ−) and thus

Eρ
△
= E1, ρ = E2, ρ .

It is easy to check the equality I+
ρ (λ+) = Γρ (λ+/λ−). In fact, take x = λ+ and y = λ−,

then the constraint x
y = λ+

λ− is satisfied and

I+
ρ (λ+) + I−(λ−) = I+

ρ (λ+) .

Now assume that the infemum of I+
ρ (x) + I−(y) over the constraint x

y = λ+

λ− is attained for some

different (x, y). Either x < λ+, but in this case I+
ρ (x) = ∞ due to the convex indicator function,

or x > λ+ but in this case y > λ−, which implies that I−(y) = ∞. Necessarily, the infemum is
achieved for x = λ+ and y = λ−. This yields I+

ρ (λ+) = Γρ (λ+/λ−).
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Figure 5.6: Logarithm of the error exponent Eρ as a function of ρ (in dB) for different values of c.

Comments and Numerical Results. In terms of error exponents, both tests T
(1)
N and T

(2)
N

admit the same error exponent. Figure 5.6 represents the error exponent in log-scale as a function
of the SNR ρ in dB. Error exponents are compared with the error exponent associated with the
Neyman-Pearson test, achieved in the ideal case where parameters H and σ are known. The
error exponent of the Neyman-Pearson test can be derived from Stein’s Lemma, and provides an

upper bound on the achievable error exponents. Note that when ρ <
√
c, the test statistic T

(1)
N

converges to the same limit under H0 and under H1. A similar behaviour occurs for T
(2)
N due to

equation (5.33). Thus, both tests fail when ρ <
√
c. Therefore, it is not surprising that the error

exponent tends to zero when ρ is close to
√
c.

5.3.4 Bahadur Relative Efficiency

The previous study provides the error exponents associated with the power of both tests. As
both error exponents coincide, one should consider other efficiency metrics in order to discriminate
both tests. A widespread approach consists in using the Bahadur relative efficiency [118] which

coincides with the ratio B1/B2 of the Bahadur slopes B1 and B2 associated with tests T
(1)
N and

T
(2)
N respectively. For each test i = 1, 2, the Bahadur slope3 Bi can be interpreted as the error

exponent associated with the significance level (p-value) under H1:

(5.35) Bi = lim
N→∞

− 1

N
logPH0

(
T

(i)
N ≤ T

(i)
∞,H1

)

where T
(i)
∞,H1

represents the (deterministic) limit in probability under H1 of T
(i)
N . When ρ >

√
c,

limits T
(1)
∞,H1

and T
(2)
∞,H1

are given by T
(1)
∞,H1

= λ∞spk and T
(2)
∞,H1

=
λ∞
spk

λ−
. Whereas the evaluation

of error exponents in Section 5.3.3 relied on a LDP under H1, it is clear from (5.35) that the
evaluation of the slopes relies on a LDP under H0.

3Strictly speaking, Bahadur slopes are defined by 2B1 and 2B2. However we still refer to B1 and B2 as the slopes
with slight language abuse.
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Theorem 5.16. Assume ρ >
√
c. Quantities B1 and B2 are given by:

B1 = I+
0 (λ∞spk)(5.36)

B2 = Γ0(
λ∞spk

λ−
)(5.37)

Moreover, B1 < B2 for each c ∈ (0, 1) and each ρ >
√
c.

The proof of (5.36) and (5.37) is omitted due to the lack of space. One can show inequality
B1 < B2 by noting that:

B2 = inf

(
I+
0 (x) + I−(y) :

x

y
=
λ∞spk

λ−

)

< I+
0 (λ∞spk) + I−(λ−) = I+

0 (λ∞spk) .

In particular, Theorem 5.16 proves that test T
(1)
N is more efficient than test T

(2)
N in Bahadur’s

sense. Furthermore, the Bahadur efficiency provides useful information on the number of samples
required by each of the two tests to achieve a target level α and a target power β (see [118]). These
aspects will be developed in an extended version of this paper.

Conclusion

In this section, we have studied the performance of two eigen-based collaborative sensing test and
showed the superiority of the one introduced in [12] using asymptotic random matrix tools.
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